Encapsulated Metal Ions: Mononuclear and Binuclear Complexes of Schiff-Base Macrocycles and Cryptands

Thesis

How to cite:

For guidance on citations see FAQs.

© 1991 Mary Josephine Hunter

Version: Version of Record

oro.open.ac.uk
"ENCAPSULATED METAL IONS: MONONUCLEAR AND BINUCLEAR COMPLEXES OF
SCHIFF-BASE MACROCYCLES AND CRYPTANDS."

A Thesis Submitted for the Degree of

Doctor of Philosophy

by

Mary Josephine Hunter, B.A.

Faculty of Science

The Open University, Milton Keynes. December 1990

Date of submission: 7 January 1991
Date of award: 8 March 1991
DECLARATION

The work described in this thesis was carried out in the Department of Chemistry, The Queen's University of Belfast, on behalf of the Open University, Milton Keynes, between November 1987 and November 1990. The work has not been submitted for any other degree and is the original work of the author, except where acknowledged by reference.

M. J. Hunter.

December 1990.
I would like to thank my supervisor Dr. Jane Nelson for her enthusiasm and encouragement throughout the last three years. I am indebted to Dr. Vickie Mc Kee, Dr. M.G.B.Drew and Dr. J. Malone for the X-ray structural analyses on complexes prepared during the course of this work. I would also like to thank Dr. Charlie Harding for guidance on the use of the faraday balance and Dr. Malachy Mc Cann for carrying out the electrochemical studies. My thanks are due to the Queen's University of Belfast for the use of the facilities in the Department of Chemistry where this research was carried out. In particular, I thank the analytical services for elemental analyses. The award of a higher degrees studentship by the Open University is gratefully acknowledged.
CONTENTS

ABSTRACT... 1

CHAPTER 1 - REVIEW

Introduction ... 4
A brief history ... 5
Synthesis .. 7
The macrocyclic and cryptate effect ... 14
Template effects ... 16
Schiff-base macrocycles and cryptands ... 16
Transmetallation ... 25
Binuclear transition metal complexes of macrocycles and cryptands 26
Polyaza macrocycles and their complexes ... 36
Mono-metal ion cryptates .. 44
Macrocyclic complexes and cryptates of lanthanide ions ... 62
Anion receptor molecules ... 69

CHAPTER 2 - EXPERIMENTAL

Synthesis of Inorganic starting materials ... 71
Metal complexes of:
The macrocycle P - Template Synthesis ... 75
Anion exchange reactions of Pb₂P(NCS)₄ ... 76
Transmetallation:
Homobinuclear complexes ... 78
Heterobinuclear complexes ... 80
The macrocycle MC .. 85
Anion exchange reactions of $\text{Pb}_2\text{MC(NCS)}_4$ 86

Transmetallation:
Homobinuclear complexes 88
Heterobinuclear complexes 90
The cryptand GT - Template syntheses 94

Transmetallation:
Mononuclear transition metal complexes 98
Binuclear copper cryptates of GT 103
Lanthanide ion cryptates 106
Group 1 metal ion cryptates 109
Attempted preparation of reduced metal-free GT 111
The cryptand 3Bp 114
Transmetallation 116
Complex formation using metal-free 3Bp 117
The synthesis of cryptand R3Bp 119
Complex formation using R3Bp 120
The cryptand 3Bm 124
The cryptand R3Bm 125
Attempted syntheses of transition metal 3Bp complexes 128
Attempted synthesis of cryptates 129

CHAPTER 3 - RESULTS AND DISCUSSION P AND MC

Introduction 131
Type 1, 2 and 3 copper 132
Haemocyanin 132
Blue copper oxidases 134
Cytochrome-C-oxidase 135
CHAPTER 4 - RESULTS AND DISCUSSION GT
Introduction
Chemistry of α-dilmine complexes 185
Group (II) metal cryptates of GT 186
Transmetallated complexes:
Mononuclear transition metal ion complexes 192
The crystal structure of (CoGT)(ClO₄)₂ 199
Copper GT cryptates 200
Dinuclear copper cryptates 202
Electrochemical studies 205
Lanthanide ion complexes 210
Group 1 ion cryptates 218
Attempted reductive demetallation of GT complexes 220
CHAPTER 5 - RESULTS AND DISCUSSION
3Bp R3Bp 3Bm R3Bm

Complexes of 3Bp .. 222
Transition metal ion complexes of cryptand R3BP 234
The crystal structure of [R3Bp 4H+] (CF3SO3)4 240
Complexes of ligand 3Bm ... 242
Complexes of R3Bm ... 245
CONCLUSION .. 248

APPENDICES

Appendix 1- The fundamentals of Cyclic Voltammetry 250
Appendix 2- Electron Spin Resonance 256
Appendix 3- Electronic Spectra 260
Appendix 4- Intramolecular Antiferromagnetism 262
Appendix 5- Instruments employed 265

REFERENCES .. 266
ABSTRACT

Schiff-base condensation of 2,6-diacetylpyridine with diamines on Pb(II) afforded complexes of binucleating [2+2] macrocyclic ligands P (1) and MC (2). The complexes were isolated as the dilead macrocyclic tetrathiocyanate. Interest derives from the unusual binding mode of thiocyanate as a single atom 'M-only' bridge between the pair of lead ions bound by the macrocycle. An X-ray crystallographic structure determination, carried out by Dr. V. McKee, on the dilead MC complex demonstrates the existence of a single thiocyanate 'M-only' bridge between the lead ions. The 'M-only' bridging mode of thiocyanate is retained in derivatives containing two or three triflate anions.

Transmetallation of the P complex, Pb₂P(NCS)₄ with transition metal triflates gave homobinuclear products with M = Cu(II), Co(II) and heterobinuclear Pb/M products with M = Mn(II), Fe(II), Ni(II), whereas transmetallation of the dilead MC complex afforded homobinuclear Cu(II) and Ni(II) complexes and heterobinuclear complexes with M = Mn(II) and Fe(II). Infrared spectra suggest that the 'M-only' bridging mode of thiocyanate exists between the metal ions in the heterobinuclear MnPbMC and FePbMC complexes and X-ray structural confirmation has been obtained for the manganese/lead MC complex. There was evidence of the existence of heterobinuclear FeCuP and FeCuMC complexes which were formed by metal exchange of the lead ion, in the respective FePb macrocyclic complex, for Cu(I).

The cryptand GT, (3) was formed by Schiff-base condensation of the tripod amine N(CH₂CH₂NH₂)₃ with glyoxal, using group (11) metal ions as template. A wide range of metal ion GT cryptates were obtained by transmetallation, including transition metal ion, lanthanide ion and
group(1) metal ion cryptates. An X-ray crystal structure of the cobalt(II) GT cryptate has been obtained. Generally the cryptates are mononuclear with respect to the metal ion, an exception being the binuclear copper(I) cryptate. Transmetallation with copper(II) produces either the mononuclear or the binuclear cryptate depending on conditions employed. The binuclear copper(II) cryptate has a particularly unusual 7-line esr spectrum which suggests formation of a mixed valence Cu(II)/Cu(I) species. Cyclic voltammetry has shown strong stabilisation of the Cu(I) state, with $E_{1/2}$ for the reduction lying in the range found for blue copper proteins.

Synthesis of transition metal ion complexes by transmetallation of disilver or dilead 3Bp (4), or metal ion insertion into the 3Bp ligand was investigated. Dicobalt(II) and dicopper (I) cryptates of 3Bp were obtained. The corresponding reduced metal-free cryptand, R3Bp (5), gave an interesting series of binuclear complexes of Ni(II), Cu(I), Cu(II) and Co(II). The dicopper(II) and dicobalt(II) cryptates are of particular interest due to the presence of a hydroxo bridge between the metal ions. Attempted insertion of Mn(II) into R3Bp failed but gave the tetraprotonated R3Bp triflate whose structure was crystallographically determined.

Attempts to insert metal ions into cryptand 3Bm (6) failed. However insertion of Ni(II) gave ring opening and a pendant arm macrocyclic complex was obtained. The reduced metal-free ligand, R3Bm (7) produced a wider range of complexes, including the dinickel(II), dicopper(II) and dicobalt(II) cryptates.

Transition metal complexes throughout, have been characterised using infrared, electronic, and e.s.r. spectroscopy. Magnetic susceptibility measurements and n.m.r. were employed where appropriate. The work
described in Chapters 2, 3, 4 and 5 is preceded by a review of the relevant literature, in Chapter 1.

The macrocycle "P" (1) The macrocycle "MC" (2)

The cryptand "GT" (3)

The cryptand "SBp" (4) The cryptand "R3Bp" (5)

The cryptand "SBm" (6) The cryptand "R3Bm" (7)
INTRODUCTION

Over the last two decades there has been a growing awareness of the importance of metal ion complexes of macrocycles or cryptands as models or mimics of biological molecules such as enzymes. Recognition of possible commercial applications of macrocyclic and cryptate complexes as catalysts, or the application of the free ligands as metal sequestration agents for example has led to increasing interest in the area. In addition, various new potential uses in areas such as radionuclide transportation, luminescence labelling or magnetic resonance imaging have been the driving force behind some of the recent research in the field.

The aim of this review is an investigation of macrocycles and cryptands which are capable of binding one or more metal ions. For the purposes of this review a macrocycle is defined as a cyclic compound which has nine or more members including three or more heteroatoms. A cryptand is defined as a macrocyclic compound that contains at least one additional link. Commonly these are described as macrobicycles, macrotricycles and so on. A short section on anion binding within cryptands is also included.

Emphasis is placed on nitrogen donor ligands, on the preparative route to the metal complexes and on their physicochemical properties and structure. Throughout the discussion the complexes are numbered consecutively and if referred to by name, trivial names used by the original author are used. A brief history of the area is outlined, followed by sections on the synthesis of macrocycles, cryptands and their complexes. Binuclear transition metal complexes of Schiff-base macrocycles and cryptands and mono-metal ion cryptates are emphasised.
Background material considered fundamental to much of the work mentioned is included.

A BRIEF HISTORY

Coordination compounds containing macrocyclic ligands have been around since life began, and include complexes on which all life depends, chlorophyll and haem-protein provide pertinent examples. However, the study of macrocyclic complexes did not begin until around the beginning of this century. Porphyrins, corrinns and phthalocyanines have been studied because of their resemblance to naturally occurring macrocyclic complexes such as chlorophyll or haem, or because of their potential as dyestuffs.

Only a few scattered reports of new synthetic macrocyclic ligands and their complexes appeared before 1960. However, in the early 1960s various macrocyclic complexes were reported.

\[
[Ni(en)_3]^{1+} \xrightleftharpoons[CH,COME]{\text{MeNH-NH-NH-NH-NH-Me}} \rightarrow \begin{align*}
\text{(1)} & \quad \text{Me} \quad \text{NH} \quad \text{NH} \\
\text{Me} & \quad \text{Me} \quad \text{Me} \\
\text{Me} & \quad \text{Me} \quad \text{CH}_2 \text{COMe}
\end{align*} + \begin{align*}
\text{(2)} & \quad \text{Me} \quad \text{Me} \\
\text{Me} & \quad \text{Me} \\
\text{Me} & \quad \text{Me}
\end{align*}
\]

Scheme 1

Curtis demonstrated the potential of the metal ion in formation of the isomeric macrocyclic products (1) and (2), which were produced by reaction of tris-ethylene diamine nickel(II) perchlorate and acetone. However the first deliberate synthesis of a metal ion complex of a new synthetic macrocyclic ligand (3) was reported by Thompson and Busch.
The cyclic polyether or "crown" macrocycles (4) were introduced by Pederson in 1967. These displayed moderate selectivity among group I and group II metal ions and were capable of binding small non-metallic ions or molecules, however their ability to bind transition metal ions was limited.

The extension from macrocycles to macrobicycles and into the 'third dimension' was initiated in 1968, with the reported synthesis of a clathrochelate (5) which contains α-dimine donor groups. The term "clathrochelate" was introduced by Busch to mean an encapsulated metal ion complex. In 1969 Lehn introduced the bicyclic polyether cryptands (6), containing tripod bridgehead nitrogen atoms that link polyether strands.
The cryptands were named by giving the number of oxygen atoms in each of the three strands linking the bridgehead nitrogen atoms, thus cryptand (6) was named 2.2.2.

Macrocyclic ligands have become increasingly topologically diverse and many subdivisions in the area now exist. Several classes of macrocycles are not reviewed here, these include polyphospha- and polyarsa-macrocycles, vaulted cyclidenes, cyclodextrins and porphyrins. Polyether macrocycles have been extensively reviewed elsewhere and only some of the more relevant examples are included. Important contributions have been made by Stoddart's group. Space does not permit a description of this interesting work.

SYNTHESES

The synthetic routes leading to macrocycles or cryptands fall into two main categories.

(1) Direct synthesis of the ligand by traditional organic methods.

(2) Template synthesis involving cyclisation in the presence of a metal ion - the in situ approach.

New macrocycles have also been obtained by modification of a previously synthesised parent macrocycle.
Synthesis of macrocycles or cryptands by traditional organic methods often involves multistep syntheses such as that shown in scheme 3. The yield of the desired product is sometimes low due to competing intermolecular polymerisation reactions. In order to circumvent this problem, steps involving ring closure are often carried out under conditions of high dilution thus encouraging intramolecular reaction which gives the macrocycle. Examples of macrocycles and cryptands formed in this way are shown in figure 1.

Figure 1

However direct synthesis of a cryptand or macrocycle need not necessarily involve a multistep reaction employing conditions of high dilution. Rigid groups may be incorporated into the reactants, both minimising unfavourable entropy effects on ring formation and fixing reactive sites in a favourable orientation for reaction.

The advantage of direct synthesis is the ease of purification and characterisation of the product. In addition, spectra of the ligand are available for comparison with those of the complex. Alternatively metal template syntheses offer high-yielding and selective routes to macrocyclic or macrobicyclic ligands and their complexes, and can provide products that are not accessible by an alternative route. The in situ syntheses are commonly convenient one pot reactions resulting in formation
of a metal ion complex of the macrocycle or cryptand. The synthesis of macropolycyclic ligands requires consideration of synthetic strategies for the construction of the macrocyclic framework. The routes to macrobicyclic ligands have been categorised27 and are represented schematically in figure 2.

Figure 2 Routes to macrobicyclic ligands

(a) A stepwise approach can be employed, which involves synthesis of a macrocycle followed by bridging of the macrocycle. An example is shown in scheme 4.29 The method includes two cyclisation steps effected under conditions of high dilution, each forming two bonds. The route provides access to cryptands containing three different strands between the bridgehead atoms.

(b) Tripode coupling involves C-N bond formation by coupling of a tripod containing three C-X groups with a tripod comprising three tosylamine groups (scheme 5).29 This is a one pot procedure that requires formation
of three bonds. The use of two different tripodal subunits provides asymmetrical cryptands.

Scheme 5

(c) Single capping generally involves closure of a tripod ligand to give a cryptand. The ligand is often complexed with a suitable metal ion prior to capping as in the example shown in scheme 6.

Scheme 6

(d) Double capping involves reaction of three difunctional bridging fragments with capping groups resulting in formation of a macrobicyclic ligand (scheme 7).

Scheme 7

(e) Tripode capping involves reaction of two tripod subunits with three bridging fragments to produce six new bonds. The method is used in formation of Schiff-base cryptands as shown in scheme 8.
Several classes of template reaction are commonly employed in the synthesis of macrocycles. One of the most common methods involves reaction of a dialdehyde or diketone with a diamine in the presence of a metal ion to give a Schiff-base macrocycle. The synthesis of this class of Schiff-base macrocycles is considered in more depth later in this review. Schiff-base formation by reaction of a complexed multidentate amine with a dicarbonyl or a ketone such as acetone are illustrated in schemes 9 and 10.

Reaction of a complexed dicarbonyl with a simple diamine is frequently reported. The Jager-type macrocycles for example are produced by reaction between 8-ketoiminato complexes with amines as shown in scheme 11.
An alternative synthesis involving Schiff-base condensation is the self condensation of ortho-aminobenzaldehyde (scheme 12). The reaction provides access to complexes of the planar tetradeinate macrocycle (19) and the trideinate macrocycle (20) on condensation in the presence of Ni(II) whereas the use of a Cu(II) template ion produces only the tetradeinate macrocyclic complex.35-37

A related reaction between transition metal ion amine complexes, formaldehyde and ammonia or nitromethane in basic solution provides saturated tetraaza macrocycles38, as illustrated in Scheme 13.
Reaction between dithiolates and dibromocalkanes provide access to sulphur containing macrocycles. A generalised reaction scheme is shown below.

\[
\begin{align*}
\text{NH}_2\text{S}^- & \quad + \quad \text{Br}^- \\
& \quad \rightarrow \quad \text{NH}_2\text{S}^-
\end{align*}
\]

Scheme 14

Several polyether macrocycles, such as (4), have been produced in template reactions between diphenols and dichlorides. The reaction yield is strongly dependent on the metal ion implying a template role for the cation. Less extensively studied reactions include capping of dimethylglyoxime complexes with boron compounds to form O-B-O linkages and the reaction of a coordinated dihydrazine with formaldehyde which provides access to macrocycles containing N-N bonds. Examples of such reactions are shown in Schemes 15 and 16.

Scheme 15

Scheme 16
Many of the synthetic methods used in the synthesis of macrocyclic complexes have also been employed in cryptate synthesis and are considered later in more detail.

THE MACROCYCLIC AND CRYPTATE EFFECT

It was realised from the early work on macrocyclic complexes that macrocyclic ligands confer unusual and potentially useful properties on their metal complexes. These include slow rates of dissociation, large stability constants compared to their open chain analogues and high ligand field strengths. The term 'macrocyclic effect' was introduced in recognition of these properties. An extension of the macrocyclic effect 'the cryptate effect' describes the analogous and often more pronounced stability enhancement observed in cryptates. The term incorporates both thermodynamic and kinetic components.

\[
\text{FORMATION: } \text{Cu}^{2+} (\text{aq}) + L \xrightarrow{k_f} \text{CuL}^{2+}
\]

\[
\text{DISSOCIATION: } \text{CuL}^{2+} + n\text{H}^+ \xrightarrow{k_d} \text{Cu}^{2+} (\text{aq}) + n\text{LH}^{n+}
\]

<table>
<thead>
<tr>
<th>Ligand</th>
<th>(k_f) (M(^{-1}) s(^{-1}))</th>
<th>(k_d) (s(^{-1}))</th>
</tr>
</thead>
<tbody>
<tr>
<td>(L^1)</td>
<td>5.8 (\times) 10(^2)</td>
<td>3.6 (\times) 10(^{-7})</td>
</tr>
<tr>
<td>(L^2)</td>
<td>2.9 (\times) 10(^4)</td>
<td>4.1</td>
</tr>
</tbody>
</table>

Figure 3 Rates of formation and dissociation of CuL\(^1\) and CuL\(^2\)
The kinetic effects have been illustrated by Cabbiness and Margerum in a comparison of the rates of dissociation and formation of copper(II) complexes of a macrocyclic ligand L and its open-chain analogue L', shown in figure 3. Although the rate of formation of the acyclic complex is faster than that of the macrocyclic complex, the complex of the acyclic ligand dissociates ca. 10^7 times faster than the macrocyclic complex. The mechanism of dissociation can be envisaged as an unwrapping process whereby a terminal nitrogen donor is freed from the metal ion and replaced by a solvent molecule, followed by sequential replacement of the adjacent N donor of the chain. Such an unwrapping mechanism is not possible for the macrocyclic complex as the macrocycle does not contain a terminal N donor. Dissociation of the macrocycle is thought to require an initial folding of the macrocycle before breaking of the first coordinate bond.

The enhanced thermodynamic stability of the macrocyclic complex is not entirely due to an increased chelate effect. Hinz and Margerum carried out a thermodynamic study of the complexation of Ni(II) by macrocycle L' and acyclic ligand L (Figure 4) and suggested that \(\Delta H^0 \) for complexation of the macrocycle is more negative than that for the corresponding acyclic ligand because the acyclic ligand requires a greater degree of solvation in its uncomplexed state and the associated H2O solvent molecules have to be displaced on complex formation. Paoletti et al concluded that both the enthalpy and entropy terms were important in determining the thermodynamic stability of the complex. The entropy contribution is favourable since cyclic ligands do not lose configurational entropy on coordination to the same extent as do acyclic ligands. The enthalpy effect depends on ligand solvation, match between metal ion radius and macrocyclic cavity and on the stereochemical preferences.
of the metal ion. The enthalpy term may therefore be either favourable or unfavourable in comparison with the acyclic ligand.

TEMPLATE EFFECTS

Several types of template effect have been identified.

(a) The coordination or kinetic template effect
- where a template effect arises from the stereochemistry imposed on some of the reactants by coordination to a metal ion. This promotes a series of controlled steps and characteristically gives products not formed in the absence of the metal ion.

(b) The thermodynamic template effect
- applies to reactions where the product is formed in the absence of metal ion but the metal ion improves the yield of product by removing it from the equilibrium.

(c) The equilibrium template effect
- where both of the effects above act together. The distinctive feature here is the formation of different products in the absence of the metal ion.

SCHIFF-BASE MACROCYCLES AND CRYPTANDS

The condensation of an amine and a carbonyl group to form the imine or Schiff-base function has been widely exploited in the synthesis of nitrogen donor macrocycles and has recently been applied to cryptand synthesis. The mechanism of Schiff-base formation is illustrated in figure 4. In the template process, the metal ion is coordinated by the oxygen atom of the carbonyl group, thus withdrawing electron density from the carbon of the carbonyl and activating the carbon
atom towards nucleophilic attack by the amine. The imine containing product is commonly isolated as a metal complex.

Step 1, addition:

$$
\begin{align*}
\text{RCR} + \text{R'NH}_2 & \overset{\text{fast}}{\longrightarrow} \text{RCR} \quad \overset{\text{fast}}{\longrightarrow} \text{RCR} \\
\text{NH}_2 & \quad \text{NH}
\end{align*}
$$

Step 2, elimination:

$$
\begin{align*}
\text{R}_2\text{C} = \text{NHR}' & \quad \text{fast} \quad \text{H}^+ \quad \text{R}_2\text{CNHR}' \\
\text{R}_2\text{C} \quad \text{NHR}' & \quad \text{H}_2\text{O} \quad \text{fast} \quad \text{R}_2\text{C}=\text{NHR}' \\
\text{R}_2\text{C} = \text{NR}' & \quad \text{H}^+ \quad \text{R}_2\text{C}=\text{NR}'
\end{align*}
$$

The imine

Figure 4 The mechanism of Schiff-base formation

The use of a template metal ion is widespread in the synthesis of Schiff-base macrocycles. The template ions most commonly employed are the stereochemically undemanding Group(II) metal cations, lead(II) or Ag(I) ions, though the use of various other template ions has been reported, transition metal ions such as Cu(I) or Cu(II), lanthanide ions and actinide ions, for example. Recently, the actinide complex ion UO$_2^{2-}$ has been used as a template in formation of Schiff-base macrocycles. Lanthanide ion macrocyclic complexes and cryptates are considered in greater depth in a later section.

The dicarbonyl compounds employed in Schiff-base reactions frequently incorporate a heterocaromatic ring such as pyridine, furan, thiophene, or pyrrole. Pyridine containing head units are particularly common, possibly because of the donating ability of the pyridine nitrogen.
which may act as an anchor, assisting the coordination of the dicarboxyl reactant to the template ion.23

Schiff-base macrocycles are frequently classified according to the number of dicarboxyl and diamine reactant molecules that combine to produce the macrocycle. The macrocycles formed from reaction of one dicarboxyl unit with one diamine unit have been termed 1+1 macrocycles, whereas the 2+2 macrocycle incorporates two of each type of reactant.24,50 Schiff-base cryptands have been formed in 2+3 reactions between two tripod amines and three dicarboxyl compounds. These are represented schematically in figure 5.

\begin{figure}[h]
\centering
\includegraphics[width=\textwidth]{figure5.png}
\caption{Schematic representations of 1+1, 2+2 and 2+3 Schiff-base ligands}
\end{figure}

The size of the template ion is of importance in directing the synthetic pathway in Schiff-base systems. The magnesium cation for example, is the only alkaline earth cation that generates the pentadentate 1+1 macrocycle shown in figure 6. However, magnesium is ineffective in forming the larger hexadentate macrocycle, though this is readily formed by template on the larger metal ions, calcium, strontium or barium.57,58 If the template metal ion is too large for the 1+1 macrocyclic cavity, the 2+2 macrocycle may form. As shown in figure 6, use of the larger Pb2+ template ion generates the 2+2 macrocycle, and incorporates two lead template ions into the macrocyclic cavity.59
Similarly, binuclear complexes of macrocycle (24) are formed by use of Sr$^{2+}$ (radius = 1.13Å) and Pb$^{2+}$ (radius = 1.21Å) as template ions, but a mononuclear complex arises with the use of the barium ion as template (Ba$^{2+}$ (radius = 1.35Å)).

It appears that the macrocyclic cavity cannot accommodate two barium ions.
Mismatch between the cavity of the macrocycle and the ionic radius of the metal ion alters the geometry of the complex. A flexible macrocycle may fold around a small metal ion, whereas a metal which is too large for the cavity of the macrocycle can be accommodated outside the plane of the macrocycle. However this results in use of coordination sites on only one side of the ion and permits the formation of a 'sandwich' type structure, where another macrocycle coordinates to the other face of the ion. As an example, macrocycle (25) forms on alkaline earth metal template ions, Ca\(^{2+}\), Sr\(^{2+}\) and Ba\(^{2+}\). Calcium and strontium ions are each bound to one macrocycle however, the larger Ba\(^{2+}\) ion is coordinated to donors from two macrocycles, giving a twelve coordinate barium ion complex.\(^5\) The geometry in this complex may be partly due to the preference of the barium ion for high coordination numbers.

\[\text{Ca}^{2+} \quad \text{Sr}^{2+} \quad \text{Ba}^{2+}\]

Another size-related effect is the metal induced ring contraction where a >NH or -OH functional group reacts with an imine of the macrocycle to produce a smaller macrocyclic ring. The example shown in figure 7 was reported by Fenton and coworkers.\(^6\) The larger barium cation gives (a) as the product from the reaction of 2,6-diacetylpyridine and 1,3-diamino-2-hydroxypropane whereas the smaller lead(II) cation gives (b) as the product.
Figure 7 *Metal-induced ring contraction*

Similar ring contractions which result in formation of imidazolidine rings have been reported by Nelson and coworkers. Presumably the mismatch of ionic radius with cavity size provides the thermodynamic driving force for the ring contraction.

The nature of the donor atoms also play a part in controlling the reaction pathway. This control is exercised through the strength of the interactions between metal ion and donor atoms. Although Pb(II) template ion leads to formation of the 2+2 macrocycle (L^2), shown in figure 8, when the diamine contains two ether oxygen donors, use of the corresponding tetraamine results in formation of the 1+1 macrocycle (L^2). The lead ion is likely to form stronger and therefore shorter bonds with the N donors. As a result the terminal amino group can extend to a position where 1+1 ring closure can take place.

![Chemical structures](image)

Figure 8
Stereochemical preference of the template ion also contributes towards the effectiveness of a synthetic pathway. Neither Cu(II) nor Hg(II) for example
act as templates for the pentadentate 1+1 macrocycles such as \(L^1 - L^4 \), yet they are commonly used in template synthesis of tetradentate \(\Pi_4 \) macrocycles such as (26) which was templated on \(\Pi_i(II) \).\(^{50,56}\)

![Image of macrocycle](image)

(26)

Presumably this is due to the preference of \(\text{Cu}(II) \) and \(\text{Ni}(II) \) cations for stereochemistries in which the bonding orbitals are in orthogonal arrangements as opposed to being pentagonally based.

Various 1+1 macrocycles have been reported, examples along with their reference are shown in figure 9.\(^{64-70}\) Schiff-base 1+1 condensations lead to asymmetric macrocycles. The larger macrocycles which are capable of binding two metal ions can incorporate two different binding sites.\(^{67}\)

![Figure 9](image)

Figure 9 Schiff-base 1+1 macrocycles
Macrocycles derived from 2+2 condensation are generally symmetrical and incorporate equivalent binding sites, selected examples are shown in figure 10.\(^7\)

![Schiff-base 2+2 macrocycles](image1)

Figure 10 Schiff-base 2+2 macrocycles

However, asymmetric 2+2 macrocycles have been produced by stepwise processes. Macrocycles that incorporate different head units, or different lateral units have been described and several examples are shown below.

![Asymmetric 2+2 Schiff-base macrocycles](image2)

Figure 11 Asymmetric 2+2 Schiff-base macrocycles

Synthesis of the asymmetric macrocycle in which the lateral units differ, involved initial formation of an acyclic Schiff-base by reaction of a diamine with two dicarbonyl species. The intermediate dicarbonyl was
reacted with the different diamine either in the presence of a metal ion to give the macrocyclic complex, or without a template ion affording the metal-free macrocycle. The macrocycle which incorporates different head units was obtained by reaction of a complex of the open-chain diamine intermediate with a different dicarbonyl.

Lead(II) or silver(I) containing Schiff-base macrocycles or cryptands can be reductively demetallated to yield the corresponding metal-free amino derivative. The reducing agents, sodium borohydride or lithium aluminium hydride are frequently used. Schiff-base macrocycles and cryptands prepared by non-template methods have also been reduced to the corresponding amino form.

Although metal ion templates are generally used in Schiff-base syntheses, several Schiff-base macrocycles and cryptands have been obtained by non-template methods. Examples of such ligands are shown in figure 12.

Figure 12 Metal-free macrocycles and cryptands from Schiff-base reactions

The ease of non-template synthesis of the thiophene containing macrocycle has been attributed to the predominant cis-cis conformation of the carbonyl groups in the precursor dialdehyde.

The use of s- and p- block cations as template ions has led to a great variety of macrocyclic complexes, including many that are
Inaccessible by template on transition metal ions. The kinetic lability of alkaline earth or main group templating agents has provided a synthetic pathway to otherwise inaccessible transition metal complexes.

TRANSMETALLATION

Transmetallation is a metal ion exchange process. Typically the template ion is replaced by a different ion through an exchange process in solution. The precise mechanism of the exchange is unknown and may vary from system to system. The metal-free macrocycle may be temporarily liberated by the kinetically labile template ion, permitting capture of the free macrocycle by the incoming ion. Alternatively a concerted process may occur in which the incoming ion becomes partially bound to the macrocycle before the template ion is fully released. The template ion may be replaced by one, or more than one incoming ions, as shown by the example illustrated in figure 13.

![Figure 13 Transmetallation reaction](image)

Generally the incoming ions have smaller ionic radius and/or form stronger bonds with the macrocyclic donor atoms. The incoming ions are commonly transition metal ions, though transmetallation with other metal ions such as the lanthanides or vanadium for example, have been successful.

Although metal exchange generally does not alter the framework of the macrocyclic ligand, there have been a few reports of modification of the
macrocyclic ligand on transmetallation. Ring contracted macrocycles such as those mentioned earlier have undergone ring expansion on transmetallation. Metal exchange of the barium ion in the ring contracted macrocycle (13) with two Cu$^{2+}$ or two Ag$^+$ ions yielded the binuclear complex of the expanded tetraimine macrocycle (figure 14).

![Figure 14](image)

Figure 14 *Ring expansion on transmetallation*

A different type of modification occurred in the attempted transmetallation of the Ag$^+$ complex of the quinonedentate macrocycle with Ni$^{2+}$ (figure 15). In this case, addition of methanol across one azomethine bond of the macrocycle resulted in formation of a macrocycle with sufficient flexibility to provide donors at positions approximating to five of the corners of an octahedron. The Ni$^{2+}$ bound a sixth ligand to obtain approximate octahedral coordination geometry.

![Figure 15](image)

BINUCLEAR TRANSITION METAL COMPLEXES OF MACROCYCLES AND CRYPTANDS.

Many studies of complexes in which pairs of metal ions are secured by macrocyclic ligands have been reported and several reviews of the subject
have been published. In binuclear complexes the distance between metal ions is dependent on ligand design; at short intercationic distance macrocyclic complexes facilitate study of properties dependent on metal-metal interactions such as magnetic coupling, electron transfer or modified redox properties. At larger separation, coordinatively unsaturated metal complexes can bind bridging substrates to form 'cascade' complexes as represented in figure 16.

Figure 16 Formation of a cascade complex

The design of ligands capable of forming binuclear complexes requires a consideration of various structural features:

- Nature of coordination sites (N, O, S, P) - the hard/soft nature of the binding sites as outlined by Pearson's hard/soft acid/base theory determine the selection of the cations. The binding sites determine the redox and substrate binding properties of the metal ion.
- The properties of the binding subunits, nature and geometry (chelating, tripodal, cyclic), number and arrangement of coordination sites, conformational and stereochemical features.
- Macropoly cyclic architecture, the framework linking the binding subunits, nature, number and flexibility of the links, distance between the binding sites.

A variety of cyclic structures which are capable of binding pairs of metal ions have been reported. Four of the more common ligand frameworks and their binuclear complexes are represented schematically in figure 17.
Figure 17 Macropolyccyclic ligands and their binuclear complexes

Many binuclear transition metal macrocyclic complexes have been formed by transmetallation of a Schiff-base macrocyclic complex. The transmetallation approach has proven particularly successful in the synthesis of binuclear copper(II) complexes of tetrarmlne Schiff-base macrocycles. Binuclear macrocyclic complexes are ideally suited to act as hosts for small bridging ligands such as OH\(^{-}\), N\(_{3}\)^{-}, NCS\(^{-}\) or imidazolate. Much of this work involves dicopper complexes as these are of use as speculative models for the bimetallobiosites in copper proteins such as tyrosinase or haemocyanin. However many macrocyclic complexes of other transition metal ions which bind bridging ligands between the metal centres have been reported.

Lehn and Martell have developed a series of macrocyclic and macrobicycllc ligands that form binuclear complexes which induce secondary binding of small bridging ligands. Various ligands and their complexes are illustrated in figure 18. The macrocyclic ligand bisdien has a tendency to form mononuclear complexes, presumably due to its
Figure 18 Lehn's macrocyclic ligands and their complexes.
flexibility, however its ability to form binuclear complexes is greatly enhanced by the binding of bridging ligands between the metal centres. The dicopper(II) complex induces binding of a bridging imidazole ligand, (27) which is represented below.

![Diagram of complex (27)](image)

Magnetic exchange studies on complex (27) showed the existence of antiferromagnetic coupling with $J = -23 \text{ cm}^{-1}$, a value which is close to the value found for the tetra Cu(II) derivative of bovine superoxide dismutase. The dicobalt(II) bisdecalen complex binds dioxygen to form the μ-peroxo-μ-hydroxo-dicobalt complex. This complex is particularly interesting as it binds a bridging oxalato group and a redox reaction between the two bridging ligands occurs. This results in oxidation of the oxalato group.

Binding constants for chloride and hydroxide anion by dicopper(II) and monocopper(II) bistren have been determined by a potentiometric method. Comparison with binding constants for O-bistren showed marked stabilisation of the hydroxo-bridged species within O-bistren, presumably as a result of hydrogen bonding of the hydroxo group to one or more of the ether oxygens of the O-bistren ligand.

Interesting binucleating Schiff-base macrocycles have recently been reported by Martell. The binuclear copper (I) complex reacts with
dioxygen giving a dicopper(II) complex of the modified macrocycle containing a bridging phenolate oxygen donor and a hydroxo bridge as shown in figure 19.

![Figure 19]

The cryptand shown in figure 20 provides an example of a 'chelate macrocycle' which binds a copper(II) ion in the macrocycle and another in the chelating bridge. As a result of their different binding sites, the two copper ions have markedly different redox potentials. The copper(II) bound in the sulphur containing macrocycle is reduced at +550 mV whereas the second copper is reduced at much less positive potential +70 mV, suggesting relatively facile formation of a mixed valence cryptate.

![Figure 20]

Dicopper (II) complexes of the 2+2 furan containing macrocycle (28) are readily reduced to dicopper(I) macrocyclic complexes on heating in acetonitrile. However, in this case the ease of reduction of the Cu(II)
ion when bound in the macrocycle has been traced to geometrical factors. The planar conformation of the macrocycle preferred by Cu(II) causes severe steric hindrance between the bridging groups and the uncoordinated furan oxygen atoms.

The steric hindrance is effectively removed if a tetrahedral geometry is attained. Tetrahedral coordination suits Cu(I) but is less acceptable to Cu(II) thus facile reduction is promoted.

Mixed valent dicopper complexes of macrocycles such as (29) have been obtained. The binuclear copper macrocycle was synthesised by Schiff-base condensation on copper (II). One electron electrochemical reduction gives the mixed valent Cu(II)/Cu(I) complex which exhibits photoassisted and thermal intramolecular electron transfer. The complex exhibits a seven-line esr spectrum in solution, indicative of interaction of the odd electron with both metal centres. At lower temperature the odd electron becomes localised and a four-line esr spectrum results.

The effect of reduction of the imine functions of the Schiff-base macrocycle on the redox behaviour of the dicopper complex (29) has been investigated. The stability of the dicopper(I) and the mixed valence Cu(II)/Cu(I) species were found to increase with increased ligand unsaturation. Dicopper (III) species and mixed valence Cu(II)/Cu(III) were
reported for the reduced derivatives. Electrochemical studies on dlcopper complexes of similar macrocycles have been reported. In all cases distinct one-electron transfer processes occurred, unlike the cooperative two-electron process found in Type 3 copper proteins.

Face to face linkage of two macrocycles by two bridges provides a varied range of cryptands, examples are shown in figure 21.

Figure 21

The dlcopper(II) cryptate of ligand (30) undergoes a reversible redox change at markedly positive potential (+ 455mV), a value similar to that found for blue copper proteins. An interesting mixed valence Cu(II)/Cu(I) cryptate is formed with the asymmetrical ligand (31) shown in figure 21. The Cu(I) and Cu(II) ions are probably located in the 18- and 12-membered rings respectively.

Figure 21

(30) (31) (32)

(33) (34)
Heterobinuclear cryptates of cryptand (33) have been reported. The cryptand (33) binds Rh-CO at the pyridine binding site and binding of Cu(II) has been detected spectroscopically at the other binding site. The orientation of the carbonyl is such that it points towards the metal bound by the macrocycle, and thus it may be activated towards nucleophilic reaction at the carbon centre. A macrocyclic bis-anthracenyl cryptand (34) displays remarkable fluorescence properties which are modified by binding of rubidium ions. The X-ray crystal structure of the binuclear rubidium complex was reported.

Many macrocycles that incorporate the phenol group or OH groups as part of the macrocyclic framework have been synthesised. Examples are shown in figure 22. The deprotonated hydroxy or phenoxy (RO−) groups are capable of acting as endogenous bridges between adjacent metal centres, thus the larger macrocycles of this type are suited to binding of clusters of metal ions. A tetranuclear Mn(II) complex of macrocycle (35) results from 4+4 Schiff-base condensation using manganese(II) as the template ion.
The manganese complex of (35) has potential as a structural model for the manganese bioproteins of photosystem II. The active site of the photosynthetic oxygen evolving complex is now generally believed to contain four Mn(II) ions bridged by oxygen donors.\(^{120}\) Macrocycle (36) also binds a tetranuclear cluster of manganese ions.\(^{119}\) Macrocycle (37) binds a tetranuclear cluster of Ni(II) ions.\(^{116}\) A 3+3 Schiff-base macrocycle which binds a hexanuclear cluster of copper ions was reported recently.\(^{114}\) Two hydroxo groups occupy the central cavity and each bridge a pair of copper ions. Various other classes of macrocycle also bind metal ion clusters.\(^{121,122}\) The trinucleating macrocycle (38) was reported by Lehn and coworkers\(^{121}\) and is of interest in view of the recent structural determination of a trinuclear copper (II) site in ascorbate oxidase.\(^{123}\) The macrocyclic iron-sulphur \(\text{Fe}_4\text{S}_4\) clusters (39), which are reminiscent of ferredoxins, have been used in electrochemical reduction of \(\text{CO}_2\) to give methanoate.\(^{123}\)

![Diagram of macrocycles](image)

Relatively few examples of heterobinuclear macrocyclic complexes have been reported. However heterobinuclear complexes have been obtained both with asymmetrical macrocycles which incorporate non-equivalent binding sites...
and with symmetrical ligands which offer the same binding site to each metal ion. A series of Cu(II)/M(II) (M = Mn, Fe, Co, Ni and Zn) complexes of macrocycle (40) have been synthesised.124 The reaction sequence shown in scheme 17 was used in the synthesis of the Cu/M complex (M = Mn, Fe, Zn) however the Ni(II)/Cu(II) complex was only available if Ni(II) was bound in the N2O4 site of the open chain intermediate, with subsequent addition of Cu(II) before the final ring closure.

\begin{equation}
\begin{align*}
\text{Scheme 17}
\end{align*}
\end{equation}

The redox properties of the series, Cu(II)/Co(II) excepted, was investigated and the observed changes in the properties of the Cu(II) ion have been ascribed to some form of metal-metal communication between the Cu(II) and the other transition metal ion bound by the macrocycle.125 The Ni(II)/Cu(II) complex of macrocycle (41) was formed by addition of one equivalent of nickel acetate to the acyclic ligand, followed by addition of diethylene triamine and another equivalent of copper acetate.126,127 In addition a heterobinuclear complex containing uranyl(IV) was reported.126
Heterobinuclear Pb(II)/M(II) macrocyclic complexes where M = Mn(II), Ni(II) and Fe(II) have been obtained by transmetallation of the diletal macrocyclic complex of macrocycle (42). A Ni(II)/Cu(II) complex of macrocycle (43) has been reported.

\[(43) \]

The mononuclear copper(II) complex of the macrocycle was formed initially and reaction with Ni(II) acetate gave the heterobinuclear complex. A series of heterobinuclear complexes of 1+1 Schiff-base macrocycles such as (44) have been obtained. The barium complex obtained in the template process was reacted with Ni(II), Cu(II) or Zn(II) to give the heterobinuclear complex.

POLYAZAMACROCYCLES AND THEIR COMPLEXES

Metal complexes of polyazaamacrocycles display unusual and potentially useful properties, such as high kinetic stability or stabilisation of unusual oxidation states of the metal, often high oxidation states are stabilised. As N-donor macrocycles, they are particularly suited to complexion of transition metal ions, whereas in their protonated form, they are capable of binding anions. Much of the recent work on the triaza and tetraazaamacrocycles has involved modification of existing macrocycles.
to produce pendant arm species. The pendant arms are generally functionalised so that they provide another donor for the metal ion, or provide means of linking the macrocycle to another molecule. Pendant arms incorporating primary amines, pyridine, imidazole, phenol, thiophene, and bipyridyl have been reported, among others. Further variation results from the attachment of the arm to either nitrogen or carbon atoms of the macrocyclic framework. The number of pendant arms attached also varies, examples with between one and four arms have been reported. Some of the more recent examples are shown in figure 23.

![Figure 23 Pendant arm macrocycles](image)

Triazamacrocycles coordinate the transition metal ion facially to form either 1:1 complexes where remaining coordination sites on the metal can be occupied by the pendant arm or other ligands, or form 1:2 complexes where a metal ion coordinates to two macrocycles forming a sandwich structure. By contrast the transition metal in tetraazamacrocycles generally lies in the plane of the ring (size permitting) and only 1:1
complexes are formed. The introduction of pendant arms to a macrocycle was found to modify various properties of the macrocyclic complex. Both triaza and tetraazamacrocycles displayed increased stabilization of the metal complex on addition of a chelating pendant arm. However N-functionalised species were more susceptible towards dissociation in acidic conditions. In addition the kinetics of metal complexation were altered. The capture of a metal ion by a pendant arm was shown to aid in transfer of the metal ion into the macrocyclic cavity, an ability of use in metal ion sequestration.

As a result of the marked kinetic stability of pendant arm macrocycles, medical uses involving metal ion transport have been investigated. A functionalised pendant arm provides a site for attachment to monoclonal antibodies, permitting the transport of an imaging or cytotoxic radionuclide specifically to a tumour. Use of 13 and 14 membered macrocycles (45) shown in figure 23, for example, provide stable 64Cu or 67Cu complexes of use in imaging or therapy. Incorporation of ionisable groups into pendant arms provides access to neutral complexes of metal ions which have the higher lipophilicity required for use of radioactively labelled metal complexes in imaging organs such as the brain or heart. For example the hexacoordinating ligand (46) which has three ionisable groups provides a H_3S_3^- core for binding gallium III ion.

An interesting gadolinium complex of a pendant arm macrocycle (47) has been prepared for use as a paramagnetic contrast agent in magnetic resonance imaging. The X-ray crystal structure of the complex has been determined. Fabbrizzi has reported an interesting Ni(II) complex of a functionalised cyclam which acts as an acid/base indicator.
due to yellow/blue colour change on change of spin state of the Ni(II) ion. Coordination of the pendant arm to Ni(II) gives high spin Ni(II) which is blue in colour, on change of pH the pendant arm no longer coordinates the metal ion resulting in spin pairing of the Ni(II) electrons, a change accompanied by yellow colouration. Similar effects have been observed by Hay' and Kimura" using the Ni(II) complex of a pendant arm cyclam. Generally the pendant arm coordinates to the metal ion bound in the macrocycle to which it is attached. However in a few cases the pendant arm complexes other metal ions. For example a heterobinuclear complex for use as a photoredox catalysis system has been synthesised using a pendant arm cyclam. The bipyridine-pendant cyclam macrocycle shown in figure 23 was used to form a complex with Ru(bpy)_2Cl_2, the heterobimetallic complex was formed by insertion of Ni (II) into the cyclam moiety. Fabbrizzi has designed a mono N-functionalised cyclam which acts as a carrier capable of performing selective electron transport across a liquid membrane. A series of 12-16 membered tetraazamacrocycles was investigated by Paoletti and it was found that that the 14-membered ring coordinates most strongly with 3d metal cations.

Various bis-macrocycles have been reported and selected examples are shown in figure 24.

Figure 24 Bis-macrocycles
Macrocycles have been linked via $\text{N=N}^{14,15}$ or C–C bonds. Cyclam macrocycles have also been joined at a single quaternary carbon atom forming C spiro bicyclams (53). Bis-macrocycles form binuclear complexes and display varying degrees of communication between the metal ions. Two consecutive one electron redox steps have been observed in homobinuclear bis-macrocyclic complexes. Redox change of one metal ion affects the redox change of the other metal ion implying communication between them.

Large polyazacycloalkanes such as (54) and (55), incorporating many nitrogen atoms are of interest as polytopic receptors for metal ions.

![Diagram](image)

The macrocycles containing from eight to twelve nitrogen atoms have been investigated by Paoletti. Stable binuclear complexes were formed with N8-N10 rings, whereas trinuclear species were obtained with the larger polyaza rings.

Thio analogues of the polyaza macrocycles of varying ring sizes have been reported. Sulphur donor macrocycles tend to favour the generation of low oxidation states due to the π-acidity of sulphur donors. Often high positive redox potentials for the Cu(II)/Cu(I) reduction are observed. Although the redox potential is often similar to that found in blue copper proteins, the applicability of copper complexes of S-donor
Various other types of macrocycle also incorporate sulphur donors, some examples are shown below. Metal complexes of some of these have been reported, for example binuclear rhodium or palladium complexes were obtained by metal insertion into the free macrocycle (57).\(^{58}\)

The phosphine functionalised pendant arm macrocycle (58) is capable of forming heterobimetallic complexes, binding a lewis acid metal centre in the macrocyclic ring and a redox active metal centre between the functionalised side arms.\(^{59}\)

The catenate (59) described by Sauvage is a particularly interesting macrocyclic complex.\(^{60,61}\)

The catenate was produced by template synthesis on Cu(I) and only the N donors coordinate the 'soft' copper(I) ion. Catenates of metal ions Cu(II),
Ni(I), Li+, Ag(I), Zn(II), Cd(II) have been prepared by insertion of the metal ion into the free catenand. The catenand provides a distorted tetrahedral site for coordination of the metal ion. Low oxidation states of the metal are stabilised due to the π- acceptor ability of the phenanthroline groups. In addition, the poor ligand field of tetrahedral coordination destabilises higher oxidation states of the metal. Marked stabilisation of the lower oxidation state is particularly evident with the copper(II)/copper(I) redox couple. The tetrahedral coordination site suits copper(I) but destabilises copper(II). The combined effects of preferred geometry of the Cu(II) ion and the high π-acceptor ability of the ligand results in high positive potential for the reduction of Cu(II) to Cu(I). Catenates made up of three interlocked rings and providing two phen based binding sites (60), have been reported.153

Lindoy153-158 has developed an interesting series of macrocyclic ligands with the aim of achieving metal ion discrimination (figure 25). Parameters of the macrocyclic ligand such as ring size, the nature of the donor atoms and the degree of substitution on the macrocycle were varied in a systematic way and a matrix relating macrocyclic structure and complex stability with a metal ion was prepared.

\begin{figure}
\centering
\includegraphics[width=0.5\textwidth]{figure25.png}
\caption{Mixed donor macrocycles for metal ion discrimination}
\end{figure}

\begin{tabular}{|c|c|c|c|}
\hline
X & m & n & p \\
\hline
C & 2 & 2 & 1 \\
O & 2 & 2 & 2 \\
C & 2 & 3 & 2 \\
O & 3 & 3 & 2 \\
O & 2 & 2 & 4 \\
S & 2 & 2 & 1 \\
S & 2 & 2 & 2 \\
S & 3 & 3 & 2 \\
\hline
\end{tabular}
The gradual variation in properties along a series of closely related ligands can trigger a sudden change in coordination geometry for complexes of adjacent ligands. This has been termed a 'dislocation'. The occurrence of dislocations along a ligand series for different ions and can form the basis for discrimination between these ions.

The affinity of a particular macrocycle for some metal ions can be 'detuned' by appending bulky substituent groups to the macrocycle. Steric interaction of the bulky substituent can prevent the macrocycle providing an acceptable coordination geometry to a metal ion with specific coordination requirements. Macrocycles such as (61) have been synthesised for this purpose.

![Diagram](61)
Various transition metal cryptates incorporating α-diimine binding groups have been synthesised by template methods. In all cases the transition metal ion is 6-coordinate and bound to three α-diimine groups. The synthesis of a cobalt(III) cryptate (5) from reaction of potassium tris-(dimethylglyoximato)cobaltate(III) and boron trifluoride etherate in ether was described by Boston and Rose. The orange-red complex contains three dimethylglyoximate ions "capped" at both ends by BF groups. Iodide ion has been used to reduce the cobalt ion from 3+ to the 2+ oxidation state while leaving the cage ligand intact. In the complex, the N6 coordination polyhedron has D3 symmetry and is only slightly distorted from trigonal prismatic geometry. Electrochemical studies of the cryptate have been carried out and Co(I) species were generated electrochemically.

Synthesis of the analogous Fe(II) cryptate was reported. Both BF3 and boric acid in n-butanol have been used to cap the cage ligand. Use of boric acid gives hydroxy or alkoxy substituents, which are derived from solvent, on the boron capping atoms. The cage-like nature of the product has been established by X-ray diffraction. The stereochemistry about iron (II) is intermediate between a trigonal prism and a trigonal antiprism, the twist angle being 16.5°. Attempts to oxidise the complex chemically to an iron (III) cryptate were not successful, and led either to decomposition products or no reaction. Oxidants used included Br2, I2, O2, H2O2, Ce(IV) and Cu(II). Attempted synthesis of the analogous Ni(II) cryptate failed.
Holm and co-workers developed a more general synthetic procedure leading to a series of 6-coordinate divalent transition metal cryptates. The approach used by Holm features the synthesis of a trigonally symmetric hexadentate ligand with a phosphorous bridgehead and three oxime parts. Following coordination to a metal ion Fe(II), Co(II), Ni(II) or Zn(II), a cryptate (62) is formed by treatment with BF$_3$ or BF$_4^-$. The cage ligand is designed to encapsulate and impose a trigonal prismatic or near trigonal prismatic geometry on the first row transition metal ions. However, two factors may prevent the attainment of trigonal prismatic coordination. The metal ion may have a configuration that favours an alternative stereochemistry or the metal ion may be larger or smaller than the cavity of the cryptand. The X-ray structure of the nickel cryptate has been reported and shows the stereochemistry about the nickel ion to be almost trigonal prismatic (twist angle 1.35'). The Co(II) and Zn(II) cryptates also have small twist angles whereas the low spin iron(II) complex has much larger twist angle. An X-ray crystal structure shows the coordination sphere around the iron ion to be distorted by approximately 21.5' from trigonal prismatic geometry.
Initially, it was suggested that the conformation adopted by the iron(II) complex was a compromise between trigonal prismatic geometry imposed by the ligand and the preference of the low spin iron ion for octahedral geometry due to the high crystal field stabilisation energy associated with a low spin d^6 ion. However, Churchill and Reis later concluded that ligand field stabilisation effects were more important in flexible ligand systems. The geometry of the metal coordination sphere in the series of rather rigid cage structures was consistent with being determined by relative sizes of metal ion and the cavity of the ligand. The iron(II) ion was said to be too small to fit the cavity without causing severe distortion towards octahedral geometry. The Ni(II) ion is close to ideal size but both Co(II) and Zn(II) are slightly too large and significant deviations from threefold symmetry are observed. The Ni(II) and Co(II) cryptates were reported to be high-spin, whereas the Fe(II) cryptate was essentially diamagnetic.

The non-occurrence of a Mn(II) derivative was said to be a size effect. Attempts to prepare the Cu(II) cryptate were also unsuccessful, presumably this is due to unfavourable spatial arrangement of reactive sites so that closure cannot be accomplished and/or unfavourable stability of the intermediate complex. A comparison of the properties of the cryptates and other complexes with trigonal prismatic or trigonal antiprismatic and intermediate stereochemistries has been made. Factors controlling the stereochemistry adopted have been discussed.

Goedken and Peng have reported synthesis of metal ion cryptates in a metal ion directed condensation of butane-2,3-dihydrazone with formaldehyde. Metal ions Fe(II), Co(II) and Ni(II) were successful as template species, however both Zn(II) and Mn(II) failed to give cyclisation
products under similar conditions. The low spin Fe(II) cryptate was found to be highly stable in acidic solution.

Elegant examples of the use of the template method can be found in the synthesis of macrobicyclic cobalt amine complexes by Sargeson and coworkers. A wide variety of mononucleating cage ligands incorporating amino nitrogen donors have been reported. Metal ion cryptates were synthesised by reaction of inert metal ion complexes such as [Co(en)$_3$]$^{3+}$ (en = ethylenediamine) with formaldehyde and ammonia in basic solution; a 95% yield of the cobalt(III) complex (64) was reported.

An X-ray crystal structure demonstrates the macrobicyclic nature of the product and shows that the cage contains six nitrogen donor atoms and two aza caps which are not bonded to the metal ion. The mechanism of the reaction is shown in scheme 18.
Schema 18 Proposed synthesis of [Co(III)Sepulchrate]$^{2-}$ ion

Synthesis occurs with retention of chirality of the [Co(en)$_3$]$^{3-}$ ion. The electron self exchange rate for Co(III)/(II) sepulchrate was found to be 106 times higher than that for the parent Co(en)$_3$III/II couple.18,19 The increase in the electron self exchange rate for cobalt within the cryptate has been explained on the basis that the cavity of the cage is slightly too large for Co(III) and a little too small for Co(II) and the transition state may be stabilised within the cryptand.

Template condensation reactions involving inert metal complexes of rhodium(III),16 iridium(III)16 and platinum(IV)16,18 with formaldehyde and ammonia have been reported to give analogous cryptates. The yield of cryptate varied from around 40% for the iridium and platinum cryptates to 90-100% for the rhodium cryptate.

In the platinum and rhodium cryptates, the cage ligand was found to stabilise unusual oxidation states of the metal. Platinum(III) transients have been detected by EPR spectroscopy. The rare mononuclear Rh(II) ion is stabilised within the cage. Reductions of Rh(III) amine complexes are normally irreversible processes. The Rh(I) intermediates dimerise, disproportionate and/or undergo further reductions to square planar Rh(I) species.
Use of nitromethane in place of ammonia produces an analogous cage with carbon atom caps and nitro substituents.199

![Scheme 19](image)

The carbon capped derivative 'sarcophagine' (65) is more stable toward disruption of the cage than is the N-capped 'sepulchrate' cage (64).

Furthermore, functional groups with varied electron withdrawing or electron donating powers can be attached to the carbon cap.199 Numerous substituents have been documented, including $-\text{NH}_2$, $-\text{NH}_3^+$, $-\text{N}(\text{CH}_3)_2^+$, $-\text{NH}_2\text{NH}_2^+$, $-\text{NH}_2\text{OH}$, $-\text{NO}$, $-\text{NO}_2$, OH, Cl, Br, I, COOH, COOR, NHCOCH_3, $-\text{CONH}_2$, CN, CH_3OH and NHCOCH_3. Cryptands with different substituents on either cap have been obtained. These substituents lead to wide variation in the redox potential of the encapsulated cobalt ion, a span of at least 0.6V has been reported.199 The Co(III)/Co(II) redox couple for the cryptates was reversible however reduction to Co(I) or the metal was irreversible and caused cage rupture.191
The extent of variation of redox potential with substituent is surprising in view of the distance of the substituent from the metal ion and implies relatively close communication between the apical substituents and the metal centres. This communication is also reflected in the NMR chemical shifts of the apical C atoms and the large coupling constants with the encapsulated metal ion.130,192 In addition, several of the apical substituents introduced provide means of coupling the cage to other molecules. As a result dimer cages such as (66) have been synthesised and the cage ligands have also been attached to polymers to provide chiral ion exchange columns.130

\[\text{Scheme 20} \]

Asymmetrical cages have been obtained by stepwise capping processes as shown in scheme 20.

The nitrogen donor sites of cryptands have been derivatised by treatment of Co(III) cage complexes with H\textsubscript{2}O\textsubscript{2} in basic solution.193 This results in oxidation of up to three coordinated \(N \) sites to hydroxylamine groups. Three complexes (figure 26) were isolated by ion exchange chromatography and the site of oxidation in one of the products was established by an X-
ray structure determination. Deprotonation of the hydroxyl substituents had substantial effect on the redox properties of the caged metal ion.

Figure 26

The synthetic method was extended to formation of cryptates with different cavity size in order to modulate redox potential of the metal ion and investigate the effect on rates of electron transfer reactions. The use of alternative chelating amines in inert metal-amine complexes has provided a range of cavity sizes.

Scheme 21

The rhodium cryptate (70) obtained from reaction of tris(1,3-propane diamine)Rh(III) with formaldehyde and nitromethane has provided a cryptand with larger cavity which resulted in stabilisation of the rhodium(II) state by approximately 0.4V relative to that found for the rhodium complex of the equivalent 1,2-ethanediamine based cryptand. The
more rigid cryptate (71) was synthesised by reaction of (R,R or S,S)
Co(trans 1,2 cyclohexanediamine)$_2$ with formaldehyde and nitromethane.

The cryptate (71) was found to be configurationally and conformationally
rigid and substitutionally inert in both Co(II) and Co(III) oxidation
states. As a result the cryptate was suitable for the investigation of
Co(II)/Co(III) outer-sphere electron transfer processes. The Co(III)
cryptate of (72) was synthesised recently by Hendry and coworkers. As
a result of the methyl substituents' preference for an equatorial position
on the chelate rings, the cryptate has stabilised chelate ring
conformations.

Tripod amine complexes of cobalt(III) have been used in cryptate
synthesis. The Co(tach)$_2^{3+}$ ion, on reaction with formaldehyde and
nitromethane under basic conditions, produces the cryptate shown in scheme
22.
In cryptate (73), a carbanion is stabilised by delocalisation and an amine site is methylated. The ligand is relatively rigid and has larger cavity than those produced from Co(en)_3, resulting in greater stabilisation of the Co(II) oxidation state relative to Co(III).^{19a}

The closely octahedral complex, Co(tame)_3+ gives a mixture of products on reaction with formaldehyde and nitromethane in basic solution.\textsuperscript{19b} Four major products were isolated by ion exchange chromatography and are shown in figure 27.

A crystal structure determination was carried out on a major product of the reaction which was obtained in 10% yield. The crystal structure shows a macrotricyclic cryptate containing three fused four-membered rings, all of which are fused to the six-membered rings of the cap. The three fused four-membered rings result in distortions of 16-21° from octahedral values.
for five of the \(N - Co - H \) angles.\(^{197} \) Another of the cryptates isolated is interesting as it has two highly strained 4-membered rings on one side and the nitromethane cap on the other side of the cryptate. As a result the 56 coordination sphere is severely distorted from octahedral geometry which is unusual in Co(III) amine chemistry. In addition, the cryptate shows the lowest reduction potential observed in Sargeson's Co(III) cryptates, presumably due to ring strain effects that would inhibit generation of the larger Co(II) ion.\(^{198} \) The redox properties of the macrotricyclic hexaamine Co(III) complexes have been investigated.\(^{199} \)

An alternative approach leading to asymmetric cryptates has been used by Sargeson and coworkers and is illustrated below. The synthetic method involves synthesis of a pendant arm macrocycle (78), followed by oxidation of a mixture of the macrocycle and Co(II) to give the Co(III) complex, and finally ring closure using formaldehyde and ammonia or nitromethane to give the corresponding macrotricyclic cage complex (79).\(^{200} \)

![Diagram](image)

Cryptates containing both nitrogen and sulphur donor atoms have been synthesised by a similar approach as shown in scheme 23. An X-ray crystal structure of the cryptate shows octahedrally coordinated Co(III).\(^{200} \)
A similar method has been applied to the synthesis of the pendant arm cryptates, (80) and (81) as shown in scheme 24.\(^{201,202}\)

A cryptate (82) which has a smaller cavity has been obtained by a rearrangement of the parent cryptate as shown below.

Scheme 23

Scheme 24

Scheme 25 Formation of the absar cage by rearrangement
Recently Sargeson has reported the synthesis of a pyruvate amine Co(III) complex which has been used in cryptate synthesis. A variety of new cryptates were obtained as shown in scheme 26.\(^{204}\)

A limitation of the synthetic strategy employed by Sargeson and coworkers is that inert metal-amine complexes are required for reaction. Attempts to carry out analogous syntheses with more labile trien complexes have given very poor yield of cryptate. A yield of less than 1% has been reported for Ni(II) sepulchrate formed by the template approach. The crystal structure of the complex has been determined, and shows the octahedrally coordinated Ni(II) ion.\(^{204}\) Condensation about Cu(II) gave a range of macrocyclic products though the cryptate was not obtained. However, the metal-free sarcophagine cryptand has been obtained by treatment of the cobalt(II) cryptate with concentrated HCl or HBr at high temperature (130-150°C).\(^{208}\)

Many of the cryptates, particularly the H capped cages do not withstand this metal ion removal process. However, recently removal of the Co(II) ion from cryptand (72) was achieved in concentrated NaCN solution.\(^{195}\) The free macrobicyclic sarcophagine ligand (65) encapsulates a wide range of labile metal ions,\(^{208}\) including Mg\(^{2+}\), Ti(IV), V(IV), Cr(III), Mn(III), Fe(III), Ni(III), Cu(II), Zn(II), Cd(II),
Hg(II), Ag(II), Ga(III) and In(III). The redox span obtained for the metal ion couples of the sar complexes is approximately 2V, ranging from about +1V to -1V. Redox couples occur at intervals of 0.1V using the sar cage or di(NH₃) substituted sar cage, providing an impressive array of redox reagents.

Electron transfer reactions of encapsulated Ru, Mn, Fe, Ni sarcophagine cryptates have been investigated. Estimates of the self-exchange rate constants for the X(sar)2+/3+ redox couple have been interpreted in terms of known structural and kinetic data for the complexes. High rate constants were found where there was little reorganisation of the metal coordination sphere involved in the redox process. The relatively low value for the rate constant for Mn cryptates reflects the large structural differences between the Mn(II) and Mn(III) complexes. The X-ray structure determinations of Mn(II)(sar) and Mn(III)(sar) reveal a trigonally twisted coordination around Mn(II) and a strongly Jahn-Teller distorted coordination around Mn(III).

Various practical applications have been investigated for Sargeson's cryptates. Cobalt (III) sepulchrate was reported to produce hydrogen from water after single electron reduction in an electrochemical process in which the cryptate acts as an electron relay. Encapsulation of a copper radionuclide within the sarcophagine cage has provided a kinetically inert and aqueous soluble complex, this has been coupled to monoclonal antibodies for use in imaging or treatment of tumours.

A considerable amount of work has been reported on the ruthenium sarcophagine cryptate. The complex is of particular interest because of the potential of ruthenium complexes as photosensitizers in significant processes such as reduction of water or carbon dioxide and in
catalysis of oxidation processes. The ruthenium(II) cryptate was obtained by metal insertion into the free sarcophagine cage using the remarkably labile Ru(DMF)₂(CF₃SO₂)₂ complex.¹¹ The pale yellow cryptate was extremely sensitive towards oxidants. Thermodynamic and kinetic parameters of ruthenium sarc have been studied and the autooxidation of Ru(sarc)²⁺, involving H atom transfer to O₂⁻ has been investigated by electrochemical and spectrophotometric techniques.¹² The sarc ligand, when coordinated to Ru(III) (83), rapidly undergoes oxidative dehydrogenation to introduce an imine group into the cap of the ligand (84).²¹ A stable ruthenium(II) hexaimine cryptate (85) has been obtained by successive two electron oxidations (85). Each imine group stabilises the Ru(II) state with respect to Ru(III) by approximately 0.15V.

Although the photochemical properties of ruthenium complexes containing unsaturated nitrogen ligands have been extensively investigated, few ruthenium(II) cryptates incorporating unsaturated nitrogen donors have been reported. The polypyridine containing cryptate (86) shows extraordinary stability towards photodecomposition,²¹ about 10⁴ times higher than that of Ru(bpy)₃²⁺. In addition encapsulation of the ruthenium ion enhances the excited state lifetime of the ruthenium ion.
Various mono-metal ion cryptates have been obtained by organic synthesis of the cryptand followed by metal insertion. The small pentaza cryptand (87) has been used to form mononuclear cryptates of Cu(II), Ni(II), Co(II) and Zn(II). The X-ray crystal structure of the Cu(II) cryptate was determined and demonstrates that the Cu(II) ion is 5-coordinate and has distorted square pyramidal coordination within the cryptand. A similar thiaaza cryptand (88) was synthesised and its Cu(II) cryptate was described. A marked inertness of the copper cryptates towards strong acids was noted.

Several cage ligands have been designed to mimic the selectivity found in binding of Fe(III) by siderophores which mediate the uptake of Fe(III) by microorganisms. Ferric iron is bound by six catechol oxygen donors both in ferric enterobactin and in the synthetic analogues. The cryptand of complex (89) has been synthesised by two alternative routes, a template
method resulting in 90% yield and by high dilution techniques leading to 27% yield.216-218

71

Vogtle and coworkers have reported the synthesis of a similar cryptand containing a larger bridgehead unit based on triphenylbenzene.219,220 Asymmetrical ligands such as (90) have been obtained.219

A new synthetic cryptand siderophore (91), containing three endocyclic hydroxamate donor groups was recently reported by Martell.221 The cage was prepared by tripodal coupling of a tris acid chloride with a tris O-benzylhydroxylamine. Complexes of Fe(III) and Ga(III) were prepared.

72

The selectivity of a series of cryptands (figure 28) for toxic metal ions has been investigated by Lehn and coworkers.222 High selectivity for
complexation of toxic metal cations Cd$^{2+}$, Hg$^{2+}$ and Pb$^{2+}$ with respect to biologically important cations (Na$^+$, K$^+$, Mg$^{2+}$, Zn$^{2+}$) was achieved by manipulation of the structural parameters of cavity size and the nature of the binding sites.

![Figure 28](image)

The N$_4$O$_4$ cryptand was found to have selectivity for cadmium, mercury and lead ions with respect to zinc(II) as high as 10^6, 10^{19} and 10^9 respectively, which is of obvious interest in detoxification, either in the body or in environmental depollution.

Stability constants of the cryptands, shown above, have also been measured with alkali or alkaline earth metal and transition metal ions. The stabilities and selectivities for group 1 and group 2 cations decreased as the number of N donors in the cryptand increased. Remarkably strong complexation properties towards transition metal ions were observed in the N$_4$O$_4$- donor cryptand. The intramolecular cavity of N$_4$O$_5$, N$_4$O$_4$ and N$_6$O$_2$ is too large for the small cations Co$^{2+}$, Ni$^{2+}$, Zn$^{2+}$ and the complexes formed are weak, however these cations are strongly complexed by the smaller N$_4$O$_4$ cryptand.

Several mononuclear cryptates of lanthanide ions have been reported. These are included in the following section.
MACROCYCLIC COMPLEXES AND CRYPTATES OF LANTHANIDE IONS.

In view of the similarities between lanthanide (III) ions and group (11) metal ions, such as their relatively 'hard' character and the often electrostatic nature of their bonding, it is not surprising that lanthanide ions are effective template species for Schiff-base macrocycles. The synthesis of Schiff-base macrocyclic complexes of lanthanide ions has recently been reviewed by Fenton and Vigato. The synthesis of a Schiff-base macrocycle employing a lanthanide template ion was first reported in 1979. The reaction of 1,2 diaminoethane with 2,6 diacetylpyridine on La(III) or Ce(III) gave the 2+2 macrocycle (92) whereas the heavier lanthanides were found to be ineffective as templates for the 18 membered ring.

More recently though this work was reinvestigated and complexes of (92) with all of the lanthanides, except promethium which is radioactive, were obtained. It was found that the ease and yield of the synthesis depended on the counterion present, good oxygen donor anionic ligands such as acetate were found to favour the reaction to a greater extent than chloride or perchlorate. Lanthanide complexes of (92) have also been obtained by transmetallation of the barium complex. The lanthanide complexes of (92) were resistant to hydrolysis and 'H NMR experiments indicated marked stability towards dissociation in D₂O unlike the
corresponding lanthanide complexes of cyclic polyethers. In addition, typical precipitating agents for Ln ions, such as fluoride or hydroxide ion do not remove the lanthanide ion from the complex. Recently a lanthanum Schiff-base macrocyclic complex of (92) was shown to be an effective catalyst for the hydrolysis of the phosphate ester 2,4-dinitrophenyl diethyl phosphate. The complex has potential as a model system for metallo-phosphatase enzymes and as a catalyst for detoxification of anticholinesterase agents used in chemical warfare. The complex is kinetically stable to dissociation in water. The crystal structure has been reported. Lanthanide (III) ions (Tb, Dy, Ho, Er, Tm, Yb, Lu) were effective in template synthesis of the 14-membered macrocycle (93). The complexes of the 14-membered macrocycle were susceptible to hydrolysis.

The large ionic radius of the lanthanides combined with the electrostatic nature of their bonding with ligands lead to high coordination numbers in their complexes. The X-ray structures of complexes of (92) show a steady decrease in coordination number from lanthanum to lutetium La=12, Ce=11, Nd=10, and Lu=9. Similar trends have been noted in lanthanide complexes of cyclic polyethers. The lanthanide ions, except promethium, have been used as template ions in the synthesis of macrocycle (94).
The lighter lanthanides La-Pr and Bu gave complexes of macrocycle (94) whereas the heavier lanthanides (Nd-Lu, except Bu and Pr) gave complexes in which a water molecule had added across an imine bond of the macrocycle affording a carbinolamine species (95). The resultant increase in flexibility of the macrocycle makes it capable of accommodating the smaller lanthanide ions. The X-ray crystal structure of the Pr complex of (96) was reported by Bombeiri. The praseodymium ion was 11 coordinate, using the six macrocyclic donors, two bidentate nitrates and a methanol molecule.

$$\text{(96)}$$

Schiff-base 2+2 macrocycles containing furan head units such as (97), have been obtained using Ln template ions. The lanthanum complex has been transmetallated to give the dicopper (II) complex. Macrocyclic 2+2 complexes derived from phenols have been produced by template on lanthanides and ring contractions on use of smaller lanthanide template ions have been observed.

$\text{Figure 29 Ring contraction of lanthanide complexes}$
Homo and heterobinuclear lanthanide (III) complexes of macrocycle (98) were reported recently.237

The heterobinuclear complexes (99) were obtained by an in situ procedure involving synthesis of the macrocycle and successive addition of the lanthanide ions Ln and Ln' where (Ln,Ln' = La,Sm; La,Gd; La,Eu; Gd,Eu; Gd,Tb; Eu,Tb among others). Data presented supports the formation of heterobinuclear species but does not prove it unambiguously. Fast atom bombardment mass spectroscopy of the heterobinuclear complexes was not reported.

Pyridine containing 1+1 macrocycles such as (100), have been synthesised by template reactions on lanthanides. The diamino reactant generally contains several O or N donors in addition to the primary amino238 groups providing high coordination number at the metal centre. The 1+1 complexes readily precipitate metal hydroxide on dissolution in water.

(100)
The first preparation of a lanthanide cryptate was reported in 1977 by Gansow and coworkers. Cryptates of the tripositive ions lanthanum, praseodymium, europium, gadolinium and ytterbium were obtained by metal insertion into Lehn's polyether cryptands 2:2:1 and 2:2:2. The europium and gadolinium cryptates exhibited kinetic stability in water and were claimed to be the first truly substitutionally inert lanthanide complexes. As a result, the Gd(2:2:1)\(^{2-}\) is of use as a T\(\text{I}\) shiftless relaxation reagent for NMR spectroscopy.\(^{240}\) Electrochemical studies revealed that encapsulation of the europium ion had remarkable effect on the Eu(III)/Eu(II) redox couple. The Eu(2:2:1)\(^{2+/3+}\) shows reversible electrochemistry, unlike the aqueous Eu(III)/(II) couple.\(^{239}\) The 2+ oxidation state of europium was stabilised relative to the 3+ when encapsulated in the 2:2:1 cage. Since this initial paper, the study of the lanthanide cryptates of Lehn's polyether cryptates has been extended to include electrochemical studies of the europium 2:2:2 cryptate and ytterbium cryptates of both 2:2:2 and 2:2:1.\(^{241,242}\)

The effects of varying the metal oxidation state on cryptate thermodynamics and kinetics have been investigated. The stability constants of lanthanide cryptates have been measured in various solvents using a variety of methods,\(^ {240,244,245}\) in aqueous solution using pH titration methods,\(^ {246}\) in dimethylsulphoxide using visible spectroscopic techniques,\(^ {247}\) in propylene carbonate by electrochemical methods.\(^ {248}\) Electrochemical studies have also been used as a probe for the degree of shielding of the lanthanide ion from interaction with solvent in polyether cryptates.\(^ {249}\) The inclusive nature of the polyether cryptates of La\(^ {250}\) Eu\(^ {251}\), Sm\(^ {252}\) and Nd\(^ {253}\) has been demonstrated by X-ray crystal structure determinations. The lanthanum ion was 12 coordinate, whereas
the others were ten coordinate complexes. All of the donor atoms in the cryptand were found to coordinate to the lanthanide ion and in addition nitrate or perchlorate anions were able to coordinate to the metal through the strands of the cryptand.

A ytterbium(III) cryptate of a small polyamine cage ligand (101) was obtained by template synthesis on ytterbium using the tripod amine \(\text{H(CH}_2\text{CH}_2\text{NH}_2)_3 \) and bis(dimethylamino)methane. The major products of the reaction were pendant arm macrocyclic complexes and the cryptate was a minor product isolated from the mother liquor.

\[
\text{Yb}
\begin{array}{c}
\text{N} \\
\text{N} \\
\text{N}
\end{array}
\text{[CF}_3\text{SO}_3\text{]}_3\text{CH}_3\text{CN}
\]

(101)

Several cryptands that incorporate heterobiaryl groups have been synthesised recently by Lehn and coworkers. Generally the symmetrical cryptands were synthesised by template on Na+ or Li+ by reaction of the dibromo derivative of the biaryl with ammonia in the presence of base. Conditions of high dilution were not required, presumably due to the templating role of the cation and the rigidity of the bridges introduced. Asymmetric cryptands were obtained by a stepwise procedure involving reaction of a dibromo compound with a preformed macrocycle in the presence of Li+ and base. Transmetallation afforded the corresponding lanthanide cryptate. A wide variety of heterobiaryl groups have been incorporated into the ligands including 2,2'-bipyridine, bithiazole, bistimidazole, 1,10-phenanthroline, bipyrididine and bipyrazolyl. Some examples are illustrated in figure 30. Photoactive europium and terbium cryptates that display strong luminescence were
obtained and are of interest both as new luminescent materials and as labels for time-resolved photo-immunoassays. The heterobiaryl groups act as light absorbers and the energy of the singlet excited state S_1 is transferred in a radiationless process through the triplet state T_1 to the resonant level of the lanthanide ion. As the metal ion is protected by the cryptand from radiationless deactivation by solvent molecules it emits its characteristic visible light, red from europium and green from terbium.280

![Figure 30](image)

More recently, a europium cryptate containing heterocyclic N-oxide groups (102), was synthesised and was found to be particularly strongly luminescent.281 However, cryptates incorporating the 3,3-bisquinoline unit (103) gave only weakly luminescent cryptates as this aromatic group is itself strongly fluorescent and loses its excited-state energy by light emission.281

![Molecules](image)
Although metal ion complexes of cryptand ligands have received most attention, interest in protonated cryptands as anion receptor molecules is growing.

ANION RECEPTOR MOLECULES

Protonated polyamines represent the most extensively studied coordinating ligands for binding inorganic as well as organic anions\(^{262-264}\). The area has been recently reviewed\(^{265}\). Protonated forms of bistren form stable inclusion complexes with anions\(^{266}\).

![Figure 31 Anion cryptates of Bistren](image)

Crystal structure determinations of the hexaprotonated ligand with F-, Cl-, Br- and H\(^+_3\)- have been reported. Ligand distortions on binding small spherical anions in the ellipsoidal cavity are apparent. However the linear azide anion complements the cavity of the cryptand and is bound by two pyramidal arrays of three hydrogen bonds each interacting with a terminal F- atom of the anion, as represented in (54)\(^{267}\). The formation constants of the complexes formed by hexaprotonated bistren with a range of anions (nitrate, carboxylate, ATP\(^4-\), ADP\(^3-\), sulphate for example) have been determined. Strong complexations were found accompanied by marked electrostatic and structural effects on stability and selectivity. The binding of chloride ion by protonated polyamine macrocycles and cryptand has been investigated by \(^{268}\)Cl-NMR spectroscopy\(^{268}\).
A new octaaza cryptand (104), which has a more spherical cavity than bistran has been synthesised by Lehn and coworkers. The hexaprotonated cryptand formed a fluoride cryptate and the X-ray crystal structure of this was determined. The crystal structure shows that the secondary nitrogen atoms are protonated and the fluoride anion is hexacoordinated to the six ammonium sites in a quasitrigonal-prismatic geometry.

Crystal structure determinations of chloride and ammonium ion complexes of a spheroidal macrotricyclic ligand (105) have been reported.

A series of interesting cryptands (106) have been synthesised recently with the aim of increasing or altering the selectivities of standard reagents (acids and bases, reagents for oxidation or reduction) in organic chemistry. The use of concave pyridine ligands as protonating agents in a regio- and stereoselective protonation of nitronate anions is reported.
CHAPTER 2
EXPERIMENTAL

Preparation of first transition series metal triflate salts.

Transition metal triflates, $M(\text{CF}_3\text{SO}_3)_2 : 6\text{H}_2\text{O}$, were prepared by reaction of transition metal carbonate with aqueous trifluoromethanesulphonic acid (triflic acid).

$$M\text{CO}_3 + 2\text{CF}_3\text{SO}_3\text{H} \rightarrow M(\text{CF}_3\text{SO}_3)_2 + \text{CO}_2 + 6\text{H}_2\text{O}$$

Iron(II) triflate was prepared, both by the above method and by reaction of iron powder with triflic acid.

$$\text{Fe} + 2\text{CF}_3\text{SO}_3\text{H} \rightarrow \text{Fe}(\text{CF}_3\text{SO}_3)_2 : 6\text{H}_2\text{O} + \text{H}_2$$

The following method was used to prepare Manganese, Nickel and Cobalt triflates.

Deionised water (5-10ml) was added to metal carbonate (0.05mol) Triflic acid 2M solution (0.1mol 50ml) was added dropwise with caution. The mixture was stirred at room temperature until fizzing had stopped and was filtered. The filtrate was reduced in volume by heating gently and the solid obtained was dried in vacuo. (Yield 60-85%)

Infrared spectrum: *inter alia* ν(O-H) 3504(br), ν(CF$_3$SO$_3$) 1246(s), 1189(s), 1035(s) and 642cm$^{-1}$.

Transition metal carbonates (M = Mn, Co) were prepared by anion exchange with sodium carbonate in water.

$$M(\text{NO}_3)_2 + \text{Na}_2(\text{CO}_3) \rightarrow M\text{CO}_3 : \text{aq} + 2\text{NaNO}_3$$
Iron triflate Fe(CF$_3$SO$_3$)$_2$: 6H$_2$O

This experiment was performed under nitrogen.

Triflic acid 2M (0.06mol 30ml) was deoxygenated and added in portions to FeCO$_3$ (0.06mol). The mixture was stirred for one hour at 50°C and was filtered to remove unreacted iron carbonate. The pale green filtrate was reduced in volume by bubbling nitrogen and heating. The solid obtained was dried with a nitrogen stream, dried in vacuo overnight and stored in a dessicator. (Yield 87%)

Iron triflate has also been prepared by reaction of triflic acid with iron powder. The reaction was carried out under nitrogen. Triflic acid 2M (20ml) was deoxygenated and added, with care, to a threefold excess of iron powder. The reaction mixture was stirred until fizzing had ceased, approximately one hour. The mixture was filtered to remove unreacted iron powder and the filtrate was brought to dryness by bubbling nitrogen. Pale green product solid resulted and was dried in vacuo overnight and stored in a dessicator. A yield of 88% was obtained.

Cu(C$_6$C$_1$I)$_4$CF$_3$SO$_3$.

This experiment was performed under nitrogen and dry deoxygenated solvents were used throughout. Acetonitrile (30ml) was deoxygenated, cooled to room temperature and approximately 10ml of the deoxygenated solvent was added to Cu$_2$O (0.025mol). Concentrated triflic acid (0.06mol) was cautiously added to acetonitrile and the solution was added in portions to the copper oxide suspension. The reaction mixture was stirred at room temperature until the copper oxide had dissolved. The beige coloured solution was filtered and the filtrate was brought to dryness by bubbling nitrogen without heating. It is important to avoid heating the reaction.
mixture, as heat caused disproportionation. The solid was dried in vacuo (yield 93%). The cream coloured product was stored under nitrogen.

Cu(MeCN)$_2$CF$_3$SO$_3$ was also prepared by an alternative method using deoxygenated 2M triflic acid, Cu$_2$O and a stoichiometric amount of deoxygenated acetonitrile. Although more crystalline product results from this preparation, the product proved difficult to dry thoroughly and became blue on storage due to surface oxidation. It is necessary to avoid heating as heat caused disproportionation in this preparation.

Cu(MeCN)$_4$ClO$_4$

This complex was prepared by the method reported by Hemmerich and Sigwart.272 The reaction was performed under nitrogen using dry deoxygenated solvents. Cu$_2$O (0.05mol) and acetonitrile (0.4mol 16ml) were refluxed in deoxygenated 2M HCIO$_4$ until the copper oxide had dissolved, ca 2 hours. The white crystalline product formed on cooling and was filtered, washed with cold acetonitrile and dried under a stream of nitrogen. The complex was stored under nitrogen.

Ba(CF$_3$SO$_3$)$_2$

Ba(CF$_3$SO$_3$)$_2$ was prepared from barium carbonate and triflic acid by the method used for manganese, nickel and cobalt triflates.
mer-(RuCl$_2$(P(C$_6$H$_5$)$_3$)$_3$)

This complex was prepared by the standard method.27a

Triphenylphosphine (0.01mol 2.62g) was dissolved in 50ml of hot, dry deoxygenated methanol under nitrogen, giving a colourless solution. RuCl$_3$·3H$_2$O (0.0025mol 0.65g) was added as a solid and the brown reaction mixture was refluxed with vigorous stirring for one hour. The product fell out of solution as a brown microcrystalline solid. Following cooling on ice, the product was filtered under nitrogen and washed with portions of dry deoxygenated methanol. After a final wash with dry ether the product was dried with a stream of nitrogen (91% yield).
Template synthesis of the dilaed complex of macrocycle P was previously reported by B. Murphy.27c

The reactants 1,5-diaminopentane $\text{NH}_2(\text{CH}_2)_5\text{NH}_2$ and 2,6-diacetylpypyridine (DAP) were obtained from Aldrich Chemical Company Ltd. and were used without further purification.

DAP Infrared spectrum \textit{inter alia}: 3070, 2970, 1705, 600 cm$^{-1}$.

The macrocycle P

![Macrocycle P](image)

$[\text{Pb}_2\text{P}(@\text{NCS})_4]$ Template synthesis.

$\text{Pb}(@\text{NCS})_2$ (0.005 mol), diacetylpypyridine (0.005 mol) and 1,5-diaminopentane (0.005 mol) were stirred vigorously at 60°C in 600 ml acetonitrile/200 ml ethanol for 5 hours. The reaction mixture was filtered and the yellow filtrate was reduced in volume to ca. 600 ml. Cooling and slow evaporation gave yellow crystalline product in 75% yield.

Analysis:

<table>
<thead>
<tr>
<th></th>
<th>Calc:</th>
<th>Found:</th>
</tr>
</thead>
<tbody>
<tr>
<td>C</td>
<td>34.8</td>
<td>34.7</td>
</tr>
<tr>
<td>H</td>
<td>3.5</td>
<td>3.7</td>
</tr>
<tr>
<td>N</td>
<td>12.7</td>
<td>12.4</td>
</tr>
</tbody>
</table>
Pb$_2$P(CF$_3$SO$_3$)$_4$: MeCN

Pb$_2$P(NCS)$_4$ (0.0005mol) was suspended in acetonitrile (150ml) at 40°C. Addition of AgCF$_3$SO$_3$ (0.002mol) produced an immediate white precipitate. After stirring at 40-50°C for 4hr the AgNCS precipitate was removed by filtration. Excess LiCF$_3$SO$_3$ was added to the filtrate and this was reduced in volume to ca. 100ml. Cooling and slow evaporation produced cream needle shaped crystals in 64% yield.

Analysis.

Calc: C 27.04 H 2.74 N 6.49

Found: C 27.21 H 2.83 N 6.43

Anion exchange did not occur when LiCF$_3$SO$_3$ was used in place of AgCF$_3$SO$_3$.

The infrared spectrum of the complex showed vMeCN.

[Pb$_2$P(NCS)](CF$_3$SO$_3$)$_4$: 2H$_2$O

Pb$_2$P(CF$_3$SO$_3$)$_4$ (0.0001mol) was suspended in acetonitrile (100ml) and warmed to 40-50°C. NaNCS (0.0001mol) was added and the reaction mixture was stirred at 45°C for 45 minutes. After filtration, the filtrate was reduced in volume. Ethanol (10ml) was added and cooling on ice produced cream semi-crystalline product (42% yield).

Analysis.

Calc: C 27.18 H 2.99 N 6.93

Found: C 27.66 H 3.05 N 6.69

This complex did not have infrared ν(NCS) absorption below 2000 cm$^{-1}$.
(Pb₂P(NCS))(CF₃SO₃)₃: EtOH

Pb₂P(NCS)₃ (0.0005 mol) was suspended in acetonitrile (100 ml) at 55°C. AgCF₃SO₃ (0.0015 mol) was dissolved in acetonitrile (50 ml) and added dropwise. After one hour at 55°C the reaction mixture was filtered and the filtrate was reduced in volume to ca. 20 ml. Addition of ethanol, followed by cooling on ice gave cream coloured microcrystals (71% yield).

Analysis.

Calc: C 28.67 H 3.11 N 6.88
Found: C 28.36 H 3.02 N 6.57

This compound showed νₓₓ(NCS) absorption below 2000 cm⁻¹ in the infrared spectrum.

FAB Mass Spec.

m/e Formula % of base peak at 77.

666 [PbP]+ (45)
724 [PbP(NCS)]⁻ (25)
815 [PbP(CF₃SO₃)]⁺ (50)
965 [PbP(CF₃SO₃)₂⁺H]⁺ (5)
1079 [Pb₂P(NCS)(CF₃SO₃)+2H]⁺ (5)
1139 [Pb₂P(NCS)(CF₃SO₃)⁺]⁺ (5)
1230 [Pb₂P(NCS)(CF₃SO₃)₂⁺]⁺ (15)

Throughout this chapter possible formulae of the fragment ions are suggested as above. The formulae have been calculated using the mass of the most abundant isotope of the atoms present. Where the mass calculated by this simple method does not exactly match the most intense peak of the cluster (the m/e value), the formula has been adjusted to match the m/e by suggesting protonation or deprotonation.
A solution of \(\text{Pb}_2\text{P(}\text{CF}_3\text{SO}_3\text{)}_4 \) (0.0001 mol) in acetonitrile (75 ml.) at 45°C. \(\text{NaNCS} \) (0.0003 mol) was added and the reaction mixture was stirred at 50°C for 45 minutes. The solution was filtered and ethanol was added to the filtrate, which was then reduced in volume. Pale yellow microcrystalline solid resulted on cooling the solution on ice.

Analysis.

Calc: C 29.86 H 2.97 N 8.70

Found: C 29.45 H 3.00 N 8.93

This product has also been formed by the addition of two equivalents of \(\text{AgCF}_3\text{SO}_3 \) to the complex \(\text{Pb}_2\text{P(NCS)}_4 \).

FAB Mass Spec.

<table>
<thead>
<tr>
<th>m/e</th>
<th>Formula</th>
<th>% base peak at 815</th>
</tr>
</thead>
<tbody>
<tr>
<td>664</td>
<td>([\text{PbP-2H}]^+)</td>
<td>(70)</td>
</tr>
<tr>
<td>724</td>
<td>([\text{PbP(NCS)}]^-)</td>
<td>(60)</td>
</tr>
<tr>
<td>815</td>
<td>([\text{PbP(CF}_3\text{SO}_3)]^+)</td>
<td>(100)</td>
</tr>
<tr>
<td>1139</td>
<td>([\text{Pb}_2\text{P(NCS)}_2(\text{CF}_3\text{SO}_3)]^+)</td>
<td>(40)</td>
</tr>
<tr>
<td>1230</td>
<td>([\text{Pb}_2\text{P(NCS)}(\text{CF}_3\text{SO}_3)_2]^+)</td>
<td>(75)</td>
</tr>
<tr>
<td>1321</td>
<td>([\text{Pb}_2\text{P(CF}_3\text{SO}_3)_3]^+)</td>
<td>(15)</td>
</tr>
</tbody>
</table>
TRANS METALLATION OF Pb₂P(NCS)₄.

(a) Homobinuclear complexes of macrocycle P.

\[\text{[Cu₂P(NCS)₄(CF₃SO₃)₃]: H₂O} \]

Pb₂P(NCS)₄ (0.0005 mol) was suspended in 100 ml ethanol at 55°C. Cu(CF₃SO₃)₂ was dissolved in ethanol (20 ml) and added dropwise. The reaction mixture was stirred at 55°C for one hour and a blue-green solid was filtered off in 85% yield. Recrystallisation from an acetonitrile/ethanol solvent mixture gave microcrystalline product.

Analysis.

Calc: C 37.75 H 3.96 N 11.01

Found: C 37.62 H 4.26 N 11.33

\[\text{[Co₂P(NCS)₄:2H₂O1(CF₃SO₃)₂} \]

Pb₂P(CF₃SO₃)₄ (0.0005 mol) was suspended in 100 ml acetonitrile and warmed to 55°C. Co(CF₃SO₃)₂ was dissolved in ethanol (20 ml.) and added dropwise. Na₂NCS (0.001 mol) was added and the reaction mixture was stirred for 2–3 hours at 55°C. After filtration the filtrate was reduced in volume and cooling on ice produced black crystals in 33% yield.

Analysis.

Calc: C 37.43 H 4.12 N 10.91

Found: C 37.14 H 3.82 N 10.58
(b) Heterobinuclear complexes of macrocycle P.

\([\text{PbMnP(NCS)}_2][\text{CF}_3\text{SO}_3]_2 \cdot 2\text{H}_2\text{O}.

\(\text{Pb}_2\text{P(NCS)}_4\) (0.0005mol) was suspended in acetonitrile (200ml) and warmed to 55°C. \(\text{Mn(CF}_3\text{SO}_3)_2\) (0.002mol) was dissolved in ethanol (50ml) and added dropwise. The reaction mixture was stirred at 55°C for 3 hours. A precipitate of \(\text{Pb(NCS)}_2\) was removed by filtration and the yellow filtrate was reduced to ca. 100ml. Slow evaporation gave yellow needle shaped crystals in 46% yield.

Analysis.

<table>
<thead>
<tr>
<th>Calc:</th>
<th>Found:</th>
</tr>
</thead>
<tbody>
<tr>
<td>C 32.82</td>
<td>C 32.74</td>
</tr>
<tr>
<td>H 3.62</td>
<td>H 3.32</td>
</tr>
<tr>
<td>N 9.57</td>
<td>N 9.38</td>
</tr>
</tbody>
</table>

FAB Mass Spec.

<table>
<thead>
<tr>
<th>m/e</th>
<th>Formula</th>
<th>% of base peak at 986</th>
</tr>
</thead>
<tbody>
<tr>
<td>512</td>
<td>([\text{MnP-H}]^+)</td>
<td>(60)</td>
</tr>
<tr>
<td>664</td>
<td>([\text{MnP(CF}_3\text{SO}_3)-2\text{H}]^+)</td>
<td>(30)</td>
</tr>
<tr>
<td>815</td>
<td>([\text{PbP(CF}_3\text{SO}_3)]^+)</td>
<td>(45)</td>
</tr>
<tr>
<td>837</td>
<td>([\text{MnPbP(NCS)}_2]^+)</td>
<td>(40)</td>
</tr>
<tr>
<td>927</td>
<td>([\text{MnPbP(NCS)}(\text{CF}_3\text{SO}_3)-\text{H}]^+)</td>
<td>(35)</td>
</tr>
<tr>
<td>986</td>
<td>([\text{MnPbP(NCS)}_2(\text{CF}_3\text{SO}_3)]^+)</td>
<td>(100)</td>
</tr>
<tr>
<td>1077</td>
<td>([\text{MnPbP(NCS)}(\text{CF}_3\text{SO}_3)_2]^+)</td>
<td>(50)</td>
</tr>
<tr>
<td>1139</td>
<td>([\text{Pb}_2\text{P(NCS)}_3]^+)</td>
<td>(5)</td>
</tr>
<tr>
<td>1230</td>
<td>([\text{Pb}_2\text{P(NCS)}(\text{CF}_3\text{SO}_3)_2]^+)</td>
<td>(20)</td>
</tr>
</tbody>
</table>
PbMnP(\text{NCS})_3(\text{O}_2\text{CCH}_3)_2 \cdot 3\text{H}_2\text{O}.

Pb_2\text{P(\text{NCS})}_2 \cdot 0.0005\text{mol} was suspended in acetonitrile (100ml) and ethanol (100ml) solvent mixture and warmed to 55°C. Mn(\text{O}_2\text{CCH}_3)_2 \cdot 4\text{H}_2\text{O} \cdot 0.002\text{mol} was added and after 3 hours at 55°C a small amount of brown powder was removed by filtration. The brown filtrate was reduced in volume and cooling on ice gave dark brown microcrystals in 45% yield. ESR spectral evidence suggests that this is a Mn(II) complex.

Analysis.

<table>
<thead>
<tr>
<th>Calc:</th>
<th>C 39.32</th>
<th>H 4.70</th>
<th>N 12.50</th>
</tr>
</thead>
<tbody>
<tr>
<td>Found:</td>
<td>C 39.59</td>
<td>H 4.41</td>
<td>N 12.06</td>
</tr>
</tbody>
</table>

FAB Mass Spec.

<table>
<thead>
<tr>
<th>m/e</th>
<th>Formula</th>
<th>% of base peak at 895</th>
</tr>
</thead>
<tbody>
<tr>
<td>460</td>
<td>[P +2H]^+</td>
<td>(70)</td>
</tr>
<tr>
<td>512</td>
<td>[MnP-H]^+</td>
<td>(40)</td>
</tr>
<tr>
<td>721</td>
<td>[MnPbP]^+</td>
<td>(20)</td>
</tr>
<tr>
<td>895</td>
<td>[MnPbP(\text{NCS})_2]^+</td>
<td>(100)</td>
</tr>
<tr>
<td>949</td>
<td>[MnPbP(\text{NCS})_3(\text{O}_2\text{CCH}_3)]^+</td>
<td>(85)</td>
</tr>
</tbody>
</table>

\text{PbNiP(\text{NCS})_2(\text{CF}_3\text{SO}_3)_2: 4\text{H}_2\text{O}}

Pb_2\text{P(\text{NCS})}_2 \cdot 0.0005\text{mol} was suspended in acetonitrile (200ml) at 55°C. A solution of Ni(\text{CF}_3\text{SO}_3)_2 \cdot 0.002\text{mol} in ethanol (50ml) was added dropwise. After heating for 2 hours at 55°C, the reaction mixture was filtered to remove Pb(\text{NCS})_2 and the green filtrate was reduced in volume to approximately 75ml. Cooling on ice produced green needle shaped crystals in 57% yield.
Analysis.
Calc: \(C \, 31.76 \quad H \, 3.83 \quad N \, 9.26 \)
Found: \(C \, 31.81 \quad H \, 3.58 \quad N \, 8.73 \)

FAB Mass Spec.

<table>
<thead>
<tr>
<th>m/e</th>
<th>Formula</th>
<th>% base peak at 989</th>
</tr>
</thead>
<tbody>
<tr>
<td>516</td>
<td>([\text{NiP}]^+)</td>
<td>(85)</td>
</tr>
<tr>
<td>840</td>
<td>([\text{NiPbP(NCS)}_2\text{-H}]^+)</td>
<td>(40)</td>
</tr>
<tr>
<td>931</td>
<td>([\text{NiPbP(NCS)}(\text{CF}_3\text{SO}_3)]^-)</td>
<td>(25)</td>
</tr>
<tr>
<td>989</td>
<td>([\text{NiPbP(NCS)}_2(\text{CF}_3\text{SO}_3)]^+)</td>
<td>(100)</td>
</tr>
<tr>
<td>1080</td>
<td>([\text{NiPbP(\text{CF}_3\text{SO}_3)})_2(\text{NCS})]^+)</td>
<td>(10)</td>
</tr>
</tbody>
</table>

Species containing \([\text{Pb}_2\text{P}]\) were not present.

\([\text{PbNiP(NCS)}_2]\) : \(\text{H}_2\text{O} \)

\(\text{MnPbP(NCS)}_2(\text{CF}_3\text{SO}_3)_2 \) (0.0003mol) was dissolved in acetonitrile with stirring at 50°C. \(\text{Ni(\text{CF}_3\text{SO}_3)})_2 \) (0.0003mol) was dissolved in acetonitrile and added dropwise. After heating for 2 hours at 50-55°C, the reaction mixture was filtered and excess \(\text{Na(NCS)} \) was added to the filtrate. Reduction in volume followed by cooling on ice produced green crystals in 63% yield.

Analysis.
Calc: \(C \, 40.16 \quad H \, 4.21 \quad N \, 14.64 \)
Found: \(C \, 39.74 \quad H \, 3.92 \quad N \, 14.51 \)

\([\text{PbFeP(NCS)}_2(\text{H}_2\text{O})])(\text{CF}_3\text{SO}_3)_2\)

This reaction was performed under nitrogen and dry deoxygenated solvents were used throughout. \(\text{Pb}_2\text{P(NCS)}_4 \) (0.0005mol) and \(\text{Fe(\text{CF}_3\text{SO}_3)}_2 \) (0.002mol) were stirred together in acetonitrile (200ml). After heating for 2 hours
at 60°C the dark wine coloured suspension was filtered to remove Pb(NCS)₂. The filtrate was reduced in volume by bubbling nitrogen. Addition of ethanol produced blackcurrant coloured solid which was filtered off and dried with a stream of nitrogen.

Analysis:

<table>
<thead>
<tr>
<th>Calculated</th>
<th>Found</th>
</tr>
</thead>
<tbody>
<tr>
<td>C 33.31</td>
<td>C 33.59</td>
</tr>
<tr>
<td>H 3.49</td>
<td>H 3.10</td>
</tr>
<tr>
<td>N 9.71</td>
<td>N 9.66</td>
</tr>
</tbody>
</table>

FAB Mass Spec.

<table>
<thead>
<tr>
<th>m/e</th>
<th>Formula</th>
<th>% base peak at 987</th>
</tr>
</thead>
<tbody>
<tr>
<td>513</td>
<td>[FeP-H]⁻</td>
<td>(75)</td>
</tr>
<tr>
<td>663</td>
<td>[FeP(CF₃SO₃)]⁺</td>
<td>(25)</td>
</tr>
<tr>
<td>837</td>
<td>[FePbP(NCS)₂+H]⁺</td>
<td>(30)</td>
</tr>
<tr>
<td>928</td>
<td>[FePbP(NCS)₂(CF₃SO₃)+H]⁺</td>
<td>(10)</td>
</tr>
<tr>
<td>987</td>
<td>[FePbP(NCS)₂(CF₃SO₃)]⁺</td>
<td>(100)</td>
</tr>
<tr>
<td>1078</td>
<td>[FePbP(NCS)₂(CF₃SO₃)₂]⁺</td>
<td>(15)</td>
</tr>
<tr>
<td>1136</td>
<td>[FePbP(NCS)₂(CF₃SO₃)₂]⁺</td>
<td>(5)</td>
</tr>
</tbody>
</table>

Species containing [Pb₂P] or [Fe₂P] were not present.

ATTEMPTED PREPARATION OF HETERBI-TRANSITION METAL COMPLEXES OF P

Attempts were made to substitute another transition metal ion for the lead ion in the heterobinuclear complexes of macrocycle P. The complexes MnPbP(NCS)₂(CF₃SO₃)₂, NiPbP(NCS)₂(CF₃SO₃)₂ and FePbP(NCS)₂(CF₃SO₃)₂ were used as starting materials. Triflates of the transition metal ions Mn(II), Fe(II), Co(II), Ni(II), Cu(II) and Cu(I) were used in attempted transmetallation. In several experiments
Cu(MeCN)₄(ClO₄) was used. The following experimental methods were employed.

Transmetalation attempts involving oxygen sensitive complexes, FePbP(NCS)₂(CF₃SO₃)₂, Cu(MeCN)₄(CF₃SO₃), Cu(MeCN)₄(ClO₄), or Fe(CF₃SO₃)₂·6H₂O were carried out in dry deoxygenated solvents under nitrogen.

MPbP(NCS)₂(CF₃SO₃)₂ (0.0003mol) was dissolved in dry deoxygenated MeCN (200ml) with stirring at 55°C. The transition metal triflate (0.00029mol) was added as the solid. After heating for 3 hours at 55°C the reaction mixture was filtered and the filtrate was bubbled down in volume. The addition of ethanol gave products which were filtered and dried with a nitrogen stream.

In reactions that did not involve oxygen sensitive reactants, the following method was used.

To a stirring solution of MPbP(NCS)₂(CF₃SO₃)₂ (0.0003mol) in acetonitrile (200ml) at 55°C, a solution of transition metal triflate (0.00029mol) in acetonitrile was added dropwise. After heating for 3 hours at 55°C the reaction mixture was filtered and reduced in volume. Ethanol was added and products were filtered after cooling on ice.

The results of the experiments are presented in Table 1. Products have been identified, where possible, by CHN analysis, fast atom bombardment mass spectroscopy, magnetic measurements, ESR and infrared spectroscopy.
<table>
<thead>
<tr>
<th></th>
<th>MnPb(NCS)₂(CF₃SO₃)₂</th>
<th>FePb(NCS)₂(CF₃SO₃)₂</th>
<th>NiPb(NCS)₂(CF₃SO₃)₂</th>
</tr>
</thead>
<tbody>
<tr>
<td>Incoming ion</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cu(II)</td>
<td>Blue-green crystals</td>
<td>Brown oil</td>
<td>Blue-green crystals</td>
</tr>
<tr>
<td></td>
<td>Cu₂P(NCS)₂(CF₃SO₃)₂·2H₂O</td>
<td>No products isolated</td>
<td>Cu₂P(NCS)₂(CF₃SO₃)₂</td>
</tr>
<tr>
<td></td>
<td>Calc C 37.10 H 4.09 N 10.82</td>
<td></td>
<td>infrared spectrum</td>
</tr>
<tr>
<td></td>
<td>Found 36.92 3.50 11.30</td>
<td></td>
<td>identical to previous</td>
</tr>
<tr>
<td></td>
<td>μ = 2.0686 per Cu(II)</td>
<td></td>
<td>sample</td>
</tr>
<tr>
<td></td>
<td>yellow crystals MnPbP(NCS)₄</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Pale yellow powder, became green in air. Fab mass spec</td>
<td>Purple/black powder</td>
<td>Fawn powder i.r. shows</td>
</tr>
<tr>
<td></td>
<td>m/e 642(45%) [Cu₂P(NCS)]⁺</td>
<td>Fab</td>
<td>MeCN, NCS and ClO₄ from</td>
</tr>
<tr>
<td></td>
<td>700(40%) [Cu₂P(NCS)₂]⁺</td>
<td>521(20%) [CuP]+</td>
<td>Cu(MeCN)₄(ClO₄)₂, Fab m/e</td>
</tr>
<tr>
<td></td>
<td>936(25%) [CuPbP(NCS)(CF₃SO₃)]⁺</td>
<td>586(10%) [Cu₂P]+</td>
<td>939(100%) [NiPbP(NCS)₂(ClO₄)₄]+</td>
</tr>
<tr>
<td></td>
<td>.1144(30%) [CuPbP(NCS)(CF₃SO₃)₂]⁺</td>
<td>693(20%) [FeCuP(NCS)]⁺</td>
<td>794(15%) [NiCuP(NCS)₂(ClO₄)₄]+</td>
</tr>
<tr>
<td></td>
<td>No evidence of Mn</td>
<td>784(25%) [FeCuP(CF₃SO₃)]⁺</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>842(15%) [FeCuP(NCS)(CF₃SO₃)₂]+</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>no evidence of FePbP</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>or CuPbP</td>
<td></td>
</tr>
<tr>
<td>Ni(II)</td>
<td>Yellow-green powder</td>
<td>Brown oil</td>
<td></td>
</tr>
<tr>
<td></td>
<td>m/e 839(30%) [NiPbP(NCS)₂]+ or</td>
<td>No products isolated</td>
<td></td>
</tr>
<tr>
<td></td>
<td>[Ni₂P(NCS)₂(CF₃SO₃)]⁺</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>938(30%) [NiPbP(NCS)(CF₃SO₃)]⁺</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>[Ni₂P(NCS)(CF₃SO₃)₂]⁺</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>probably NiPbP</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Co(II)</td>
<td>Brown oil</td>
<td>Brown oil</td>
<td>Brown needle crystals, CHN analysis</td>
</tr>
<tr>
<td></td>
<td>No products isolated</td>
<td>No products isolated</td>
<td>fits CoNiP, Ni₂P, Co₅P, based on</td>
</tr>
<tr>
<td>Mn(II)</td>
<td></td>
<td></td>
<td>CoNiP(NCS)₂(CF₃SO₃)₂·2H₂O</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Calc C 32.76 H 4.12 N 8.19</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Find C 32.96 H 3.67 N 9.28</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>χ = 4.417x10⁶ gives μ = 3.4386 mol per CoNiP</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>complex; 2.43 for Ni₂P, 3.65 for PbNiP</td>
</tr>
</tbody>
</table>

TABLE 1 ATTEMPTED SYNTHESIS OF HETEROBINUCLEAR TRANSITION METAL COMPLEXES OF MACROCYCLE P
TEMPLATE SYNTHESIS OF THE MACROCYCLE MC.

The reactants \(\text{CeH}_10\text{C(CH}_2\text{NH}_2\text{)}_2 \) \([1,3\text{-cyclohexanedis(methylamine)}] \) and 2,6-Diacetylpyridine were obtained from Aldrich Chemical Company Ltd. and were used without further purification.

The macrocycle MC

![Diagram of the macrocycle MC]

\(\text{(Pb}_2\text{MC(OCS)}_2)_4 \): EtOH

\(\text{Pb(OCS)_2} \) (0.01mol), 2,6-diacetylpyridine (0.01mol) and \(\text{CeH}_10\text{C(CH}_2\text{NH}_2\text{)}_2 \) (0.01mol) were stirred together vigorously in acetonitrile(600ml) and ethanol(200ml) at 60°C for 5 hours. The reaction mixture was filtered and the yellow filtrate was reduced in volume to about 600ml. Slow evaporation gave yellow crystals suitable for X-ray diffraction. Further crops of product were obtained (81% yield).

Analysis.

Calculated: C 39.01 H 4.26 N 11.37

Found: C 39.09 H 4.17 N 11.84

Synthesis of the MC complex was successful in acetonitrile/methanol solvent mixture, however the yellow colour of the complex did not develop in acetonitrile alone.
FAB Mass Spec.

m/e Formula % of base peak at 804

537 (MC-H)^+ (65)

744 (PbMC+2H)^+ (60)

804 (PbMC(NCS))^- (100)

1068 (Pb2MC(NCS)_2+2H)^+ (45)

1128 (Pb2MC(NCS)_3)^+ (65)

ANION EXCHANGE REACTIONS OF Pb2MC(NCS)_2

[Pb2MC(CIO4)_4]^-: H2O

Pb2MC(NCS)_4 (0.0005mol) and AgClO4 (0.003mol) were stirred in acetonitrile (150ml) for ¾ hour at 45°C. A fine precipitate of AgNCS was filtered off and the filtrate was reduced in volume to ca. 15ml. Addition of ethanol followed by cooling on ice produced cream coloured microcrystals.

Analysis.

Calc: C 29.83 H 3.53 N 6.14

Found: C 29.98 H 3.47 N 5.95

[Pb2MC(NCS)](CF3SO3)_2

Pb2MC(NCS)_4 (0.0005mol) was dissolved in 150ml acetonitrile at 50°C. AgCF3SO3 (0.0015mol) in acetonitrile solution was added dropwise. After about 45 minutes at 50°C the reaction mixture was filtered and reduced in volume to 40ml cooling and slow evaporation gave cream microcrystals.

Analysis.

Calc: C 31.29 H 3.18 N 6.72

Found: C 31.33 H 2.79 N 6.41
The complex \([\text{Pb}_2\text{MC}(\text{NCS})](\text{CF}_3\text{SO}_3)_2\) has also been formed in an attempt to transmetallate \(\text{Pb}_2\text{MC}(\text{NCS})_4\) using \(\text{Ni}(\text{CF}_3\text{SO}_3)_2\).

\([\text{Pb}_2\text{MC}(\text{NCS})_2](\text{CF}_3\text{SO}_3)_2\); MeCN EtOH.

\(\text{Pb}_2\text{MC}(\text{NCS})_4\) (0.0005mol) was dissolved in 150ml acetonitrile at 50°C. \(\text{AgCF}_3\text{SO}_3\) (0.001mol) was added and the reaction mixture was stirred at 50°C for 14 hour. After filtration, the filtrate was reduced in volume to 50ml. Ethanol was added and cooling on ice produced pale yellow microcrystalline product. The infrared spectrum of the complex showed vMeCN.

Analysis.

Calc: \(\text{C} 34.66\) \(\text{H} 3.81\) \(\text{N} 8.67\)

Found: \(\text{C} 35.10\) \(\text{H} 4.07\) \(\text{N} 8.91\)

\(\wedge = 227 \text{ S cm}^2 \text{ mol}^{-1}\)

FAB Mass Spec.

<table>
<thead>
<tr>
<th>(m/e)</th>
<th>Formula</th>
<th>% of base peak at 804</th>
</tr>
</thead>
<tbody>
<tr>
<td>537</td>
<td>[MC-H]⁺</td>
<td>(80)</td>
</tr>
<tr>
<td>744</td>
<td>[PbMC+2H]⁺</td>
<td>(75)</td>
</tr>
<tr>
<td>804</td>
<td>[PbMC(NCS)]⁺</td>
<td>(100)</td>
</tr>
<tr>
<td>895</td>
<td>[PbMC(CF₃SO₃)]⁺</td>
<td>(45)</td>
</tr>
<tr>
<td>1068</td>
<td>(Pb₂MC(NCS)₂+2H)⁺</td>
<td>(40)</td>
</tr>
<tr>
<td>1128</td>
<td>[Pb₂MC(NCS)]⁺</td>
<td>(45)</td>
</tr>
<tr>
<td>1219</td>
<td>(Pb₂MC(NCS)₂(CF₃SO₃))⁺</td>
<td>(65)</td>
</tr>
<tr>
<td>1310</td>
<td>[Pb₂MC(NCS)(CF₃SO₃)₂]⁺</td>
<td>(15)</td>
</tr>
</tbody>
</table>
(Pb₂NC)(CF₃SO₂)₄: EtOH MeCN

Pb₂NC(NO₃)₄ (0.0005mol) was dissolved in 150ml acetonitrile at 60°C. AgCF₃SO₃ (0.002mol) was dissolved in acetonitrile and added. The reaction mixture was stirred for two hours at 60°C and AgNCS was removed by filtration. The filtrate was reduced in volume to about 20ml and ethanol was added. Further reduction in volume and cooling on ice gave pale cream coloured crystals. The infrared spectrum of the complex showed ν(κetCN).

Analysis

Calculated: C 30.82 H 3.39 N 5.99
Found: C 30.93 H 3.26 N 5.69

TRANSITION METAL COMPLEXES OF MC

(a) Homobinuclear complexes of MC.

[Cu₂NC(NO₃)₂](CF₃SO₂)₆·2H₂O

Pb₂NC(NO₃)₄ (0.0005mol) and Cu(CF₃SO₃)₂ (0.002mol) were stirred together in ethanol (150ml) at 40-45°C for one hour and stirred for another hour at room temperature. A green semicrystalline product was removed by filtration. Recrystallisation from acetonitrile/ethanol solvent mixture gave crystalline product in 67% yield.

Analysis

Calculated: C 40.69 H 4.52 N 10.04
Found: C 41.01 H 4.27 N 9.63
\([\text{Ni}_2\text{MC(NCS)}_2(\text{NO}_3)_2]\)

Pb_{2}\text{MC(NCS)}_4(0.0005\text{mol}) was dissolved in acetonitrile (100ml)/ethanol(100ml) solvent mixture with stirring at 55-60°C and Ni(\text{NO}_3)_2:6\text{H}_2\text{O} (0.002\text{mol}) was added as the solid. After heating for 4 hours at 55°C, cream coloured precipitate was filtered off and the green filtrate was reduced in volume. A sage green powder was obtained in 35% yield on cooling on ice.

Analysis.

Calc: C 46.24 H 5.17 N 15.63

Found: C 46.05 H 4.99 N 17.05

This product was not adequately soluble for recrystallisation. Despite repeated preparation, acceptable CHN analysis figures were not obtained.

FAB mass spec

\[\text{m/e} \quad \text{Formula} \quad \% \text{ base peak at } 841.\]

713 \([\text{Ni}_2\text{MC(NCS)}+\text{H}]^+ \text{ or } [\text{NiMC(NCS)}_2+\text{H}]^+ \quad (50)\]

775 \([\text{Ni}_2\text{MC(NCS)}(\text{NO}_3)+\text{H}]^+ \quad (90)\]

841 \([\text{Ni}_2\text{MC(NO}_3)_2+\text{H}]^+ \quad (100)\]

Species containing \([\text{NiPbMC}]\) or \([\text{Pb}_2\text{MC}]\) were absent from the FAB mass spectrum.

Microcrystalline sage green heterobinuclear \(\text{NiPbMC(NCS)}_2(\text{NO}_3)_2\) product was obtained in 10% yield as a second crop from the reaction.

Use of a 1:1 stoichiometric quantity of \(\text{Ni(NO}_3)_2\) to Pb_{2}P complex did not stop formation of the dinickel MC complex. Attempts to transmetallate Pb_{2}MC using \(\text{Ni(CF}_3\text{SO}_3)_2\) were unsuccessful. Attempted transmetallation with NiCl_{2} gave a mixture of insoluble products.
(b) Heterobinuclear complexes of NC.

\[\text{Pb}_2\text{MnNC(NCS)}_2\text{Mn(NO}_3\text{)}_2 \cdot 2\text{H}_2\text{O} \]

\(\text{Pb}_2\text{MnNC(NCS)}_2 \) (0.0005mol) was suspended in 100ml ethanol/50ml acetonitrile solvent mixture and heated to about 55°C. \(\text{Mn(NO}_3\text{)}_2 \text{H}_2\text{O} \) (0.002mol) was dissolved in acetonitrile 20ml and added to the reaction mixture. The reactants were stirred together for 3 hours at 60°C. A white precipitate was removed by filtration and the yellow filtrate was reduced in volume to ca. 75ml. On cooling on ice yellow crystals were obtained.

Analysis.

Calc: C 40.14 H 4.68 N 13.00

Found: C 40.59 H 4.30 N 12.62

FAB Mass Spec.

<table>
<thead>
<tr>
<th>m/e</th>
<th>Formula</th>
<th>% of base peak at 979</th>
</tr>
</thead>
<tbody>
<tr>
<td>916</td>
<td>(\text{MnPbNC(NCS)}_2\text{H}^+)</td>
<td>(65)</td>
</tr>
<tr>
<td>979</td>
<td>(\text{MnPbNC(NCS)}_2\text{(NO}_3\text{)}^+)</td>
<td>(100)</td>
</tr>
</tbody>
</table>

This \(\text{Pb}_2\text{MnNC(NCS)}_2 \) complex was unstable and was stored in a freezer. On storage at room temperature, the complex became brown and lost the N-only bridging thiocyanate ligand. Preparation of the complex in a solvent mixture containing a higher proportion of acetonitrile gave a product that became brown more quickly. Transmetallation of \(\text{Pb}_2\text{MnNC(NCS)}_2 \) using manganese triflate or perchlorate gave heterobinuclear product mixed with dilead anion exchange products.
(MnPbMC(NCS)₄)₂: H₂O

This complex was made by an analogous method to that outlined for (Pb₂MC(NCS)₄)(NO₃)₂·2H₂O except that an excess of NaHCS was added to the filtrate before reduction in volume. Orange crystals suitable for X-ray diffraction were obtained on slow cooling.

Analysis

<table>
<thead>
<tr>
<th></th>
<th>Calc:</th>
<th>Found:</th>
</tr>
</thead>
<tbody>
<tr>
<td>C</td>
<td>43.42</td>
<td>43.09</td>
</tr>
<tr>
<td>H</td>
<td>4.60</td>
<td>4.32</td>
</tr>
<tr>
<td>N</td>
<td>13.32</td>
<td>13.15</td>
</tr>
</tbody>
</table>

Pb₂MC(NCS)₄·MeOH·H₂O.

Pb₂MC(NCS)₄ (0.0005mol) was dissolved in acetonitrile(100ml) and methanol(100ml) solvent mixture. MnO(C₂H₅COO)₂ (0.002mol) and one pellet of KOH was dissolved in methanol (50ml). The brown manganese acetate solution was added dropwise to the solution containing the macrocyclic complex. The reactants were refluxed together gently for 5 hours. A small amount of brown solid was filtered off and excess NaHCS was added to the filtrate. Concentration to approximately 30ml followed by cooling on ice produced brown microcrystalline solid in 54% yield. ESR spectral evidence suggests that this is a Mn(II) complex.

Analysis

<table>
<thead>
<tr>
<th></th>
<th>Calc:</th>
<th>Found:</th>
</tr>
</thead>
<tbody>
<tr>
<td>C</td>
<td>43.28</td>
<td>43.42</td>
</tr>
<tr>
<td>H</td>
<td>4.75</td>
<td>4.60</td>
</tr>
<tr>
<td>N</td>
<td>12.94</td>
<td>13.32</td>
</tr>
</tbody>
</table>
(PbFeNC(NCS)_2)(CF_3SO_3)_2 · 2H_2O

Pb_2NC(NCS)_4 (0.0005 mol) and Fe(CF_3SO_3)_2 (0.0005 mol) were stirred together in dry deoxygenated acetonitrile under nitrogen at 55 °C for two hours. The reaction mixture was filtered under nitrogen to remove grey Pb(NCS)_2 precipitate. The dark purple filtrate was reduced in volume, without heating, by passing a stream of nitrogen through it. Dry deoxygenated ethanol was added and the solution was concentrated further until a blackcurrant coloured solid appeared. Cooling on ice yielded further product which was filtered and dried under nitrogen. (Yield 40%)

Analysis.
Calc: C 36.45 H 4.03 N 8.95
Found: C 36.61 H 3.78 N 9.02

FAB Mass Spec.

<table>
<thead>
<tr>
<th>m/e</th>
<th>Formula</th>
<th>% of base peak at 143</th>
</tr>
</thead>
<tbody>
<tr>
<td>918</td>
<td>[FePbNC(NCS)_2]^+</td>
<td>(15)</td>
</tr>
<tr>
<td>976</td>
<td>[FePbNC(NCS)_3]^+</td>
<td>(15)</td>
</tr>
<tr>
<td>1008</td>
<td>[FePbNC(NCS)(CF_3SO_3)+H]^+</td>
<td>(10)</td>
</tr>
<tr>
<td>1057</td>
<td>[FePbNC(NCS)_2(CF_3SO_3)]^+</td>
<td>(60)</td>
</tr>
<tr>
<td>1158</td>
<td>[FePbNC(NCS)(CF_3SO_3)_2]^+</td>
<td>(10)</td>
</tr>
</tbody>
</table>

NiPbNC(NCS)_2(NO_3)_2

PbNiNC(NCS)_4(NO_3)_2 has been obtained as a minor product of the transmetallation of Pb_2NC(NCS)_4 using Ni(NO_3)_2.

Analysis.
Calc: C 40.68 H 4.55 N 13.12
Found: C 40.95 H 4.83 N 13.82
FeCuMC\((\text{NCS})_2(\text{CF}_3\text{SO}_3)_2\)

This reaction was performed under nitrogen using dry deoxygenated solvents throughout. FePbMC\((\text{NCS})_2(\text{CF}_3\text{SO}_3)_2\) \((0.0003\text{mol})\) was dissolved in dry deoxygenated acetonitrile and Cu\((\text{MeCN})_2(\text{CF}_3\text{SO}_3)_2\) \((0.0003\text{mol})\) was added as a solid. After 3 hours at 45°C, the reaction mixture was filtered and the filtrate was bubbled down in volume. Ethanol was added and on further reduction in volume, brown solid was filtered off and dried with a nitrogen stream. Fab mass spec showed that the brown powder contained a mixture of heterobinuclear [CuFeMC] macrocyclic complex and [Cu₂MC] species. It may be possible to isolate the [CuFeMC] complex using ion exchange chromatography. The mixture of products dissolve in acetonitrile. The esr spectrum of the product mixture suggests that Cu(II) is present.

FAB mass spec.

<table>
<thead>
<tr>
<th>m/e</th>
<th>Formula</th>
<th>% base peak at 474</th>
</tr>
</thead>
<tbody>
<tr>
<td>773</td>
<td>([\text{FeCuMC(\text{NCS})}_2]^+)</td>
<td>(50)</td>
</tr>
<tr>
<td>809</td>
<td>([\text{FeCuMC(\text{CF}_3\text{SO}_3})]^+) or ([\text{CuPbMC}]^+)</td>
<td>(20)</td>
</tr>
<tr>
<td>952</td>
<td>([\text{PbFeMC(\text{CF}_3\text{SO}_3})]^+)</td>
<td>(15)</td>
</tr>
<tr>
<td>1108</td>
<td>([\text{CuPbMC(\text{CF}_3\text{SO}_3})_2+\text{H}]^+) or ([\text{FeCuMC(\text{CF}_3\text{SO}_3})_2]^+)</td>
<td>(25)</td>
</tr>
</tbody>
</table>
TEMPLATE SYNTHESIS OF COMPLEXES OF THE CRYPTAND GT.

The tripod amine tris(2-aminooethyl)amine (tren) was obtained from Aldrich Chemical Company. Ethanedial (glyoxal) was obtained from Fluka AG. Both compounds were used without further purification.

\[
\begin{align*}
\text{NH}_2 & \quad 2 \quad \text{NH}_2 \\
\text{NH}_2 & \quad + \quad 3 \quad \text{OHC} - \text{CHO} \quad \xrightarrow{\text{Ba}^{2+},\text{Sr}^{2+},\text{Ca}^{2+}} \\
\end{align*}
\]

The cryptand GT

<table>
<thead>
<tr>
<th>Proton Shift /ppm</th>
<th>Multiplicity</th>
<th>Integral</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>8.0</td>
<td>s</td>
</tr>
<tr>
<td>2</td>
<td>3.7</td>
<td>t</td>
</tr>
<tr>
<td>3</td>
<td>2.8</td>
<td>t</td>
</tr>
</tbody>
</table>

BaGT(ClO₄)₂(BPh₄)·2H₂O (Template synthesis.)

Glyoxal (0.003mol), Ba(ClO₄)₂ (0.001mol) and NaBPh₄ (0.002mol) were refluxed together gently in methanol (200ml) for 15 minutes and cooled to 40-45°C. Tris(2-aminooethyl)amine, N(CH₂CH₂NH₂)₃, tren (0.002mol) in 50ml methanol was added dropwise and the reaction mixture was stirred at 45°C for 4 hours. Cream coloured solid was filtered off. Further crops of product were obtained on concentration of the filtrate (Yield 58%). The product was recrystallised from acetonitrile/ethanol solvent mixture.

Analysis

<table>
<thead>
<tr>
<th>Calc:</th>
<th>Found:</th>
</tr>
</thead>
<tbody>
<tr>
<td>C 53.07</td>
<td>C 58.95</td>
</tr>
<tr>
<td>H 5.73</td>
<td>H 5.90</td>
</tr>
<tr>
<td>N 11.79</td>
<td>N 11.95</td>
</tr>
<tr>
<td>Ba 14.4</td>
<td>Ba 10.4</td>
</tr>
</tbody>
</table>
Despite recrystallisation and analysis of various samples of BaGT(CIO₄)(BPh₄), satisfactory CHN analysis was not obtained on this complex.

SrGT(BPh₄)₂: 2H₂O (Template synthesis)

Glyoxal (0.003 mol) and Sr(ClO₄)₂ (0.001mol) were refluxed gently in methanol (200 ml) for 15 minutes. Tren (0.002mol) in 50ml methanol was added dropwise and the reaction mixture was refluxed gently for 45 minutes. NaBPh₄ (0.002 mol) was added and the cream coloured precipitate was filtered off. Further product was obtained on concentration of the filtrate and later crops contained both perchlorate and tetraphenylborate counterion. The product was recrystallised from acetonitrile/ethanol solvent mixture in the presence of NaBPh₄. Concentration of the filtrate and cooling on ice gave cream microcrystalline product (yield 61%).

Analysis:
Calc: C 70.74 H 6.66 N 10.00 Sr 7.8
Found: C 69.84 H 6.65 N 10.54 Sr 7.7

FAB Mass Spec.

m/e Formula % of base peak at 359
359 [GT+H]⁺ (100)
446 (SrGT)⁻ (99)

CaGT(BPh₄)₂: 2H₂O (Template synthesis)

Ca(NO₃)₂ (0.001mol) and glyoxal (0.003mol) were refluxed together in methanol (200ml) for 10-15 minutes. NaBPh₄ (0.002 mol) was added as a solid. Tren (0.002mol) in 50ml methanol was added dropwise to the reaction
mixture with stirring at 50°C. After three hours at 50°C, cream coloured solid was filtered off in 66% yield.

Analysis.

Calc:
C 73.82
H 6.95
N 10.43
Ca 3.8

Found:
C 72.66
H 6.83
N 10.57
Ca 4.3

MgGT(\text{BPh}_4)_2: 2H_2O (Template synthesis)

Mg(NO_3)_2 (0.001mol), glyoxal (0.003mol) and NaBPh_4 (0.002mol) were refluxed together in methanol (200ml) for approximately 15 minutes. The solution was cooled to 45-50°C and tren (0.002mol) in 50ml methanol was added dropwise. The reaction mixture was stirred at 45°C for 3 hours. Yellow solid was filtered off. Attempts to recrystallise the product failed.

Analysis.

Calc:
C 74.98
H 7.06
N 10.60

Found:
C 68.56
H 7.01
N 16.60

Despite analysis of many different samples of MgGT(\text{BPh}_4)_2, acceptable CHN analysis was not obtained.

Fab mass spec.

m/e
Formula
% base peak at 359

<table>
<thead>
<tr>
<th>359</th>
</tr>
</thead>
<tbody>
<tr>
<td>(GT+H)^+</td>
</tr>
<tr>
<td>(100)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>382</th>
</tr>
</thead>
<tbody>
<tr>
<td>(MgGT)^+</td>
</tr>
<tr>
<td>(6)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>700</th>
</tr>
</thead>
<tbody>
<tr>
<td>(MgGT(\text{BPh}_4)-H)^+</td>
</tr>
<tr>
<td>(4)</td>
</tr>
</tbody>
</table>
LaGT(BPh₄)₃(NO₃) (Template synthesis)

Glyoxal (0.003 mol) was refluxed in ethanol (200 ml) for 15 minutes. La(NO₃)₃·6H₂O (0.002 mol) was dissolved in ethanol (100 ml) and brought to gentle reflux. A solution of tren (0.002 mol) in ethanol (300 ml) and the glyoxal solution were added dropwise simultaneously to the stirring lanthanum nitrate solution. After 3 hours at gentle reflux the reaction mixture was filtered and excess NaBPh₄ was added to the filtrate. On reduction in volume, followed by cooling on ice, a mixture of pale yellow powder and yellow microcrystals was obtained.

Analysis.

Calc: C 64.25 H 6.05 N 10.22
Found: C 61.36 H 5.99 N 12.06

Despite recrystallisation, acceptable CHN analysis was not obtained.

FAB Mass Spec

m/e Formula % base peak at 169
496 [LaGT-H]⁺ (4)
558 [LaGT(NO₃)-H]⁺ (2)

All attempts to synthesise the GT cryptate without a template metal ion failed. Various metal ions have been tried as templates. Ag⁺ was not successful as a template ion and only oil was obtained. Use of praseodymium (III) nitrate as source of template ion gave yellow powder. The infrared spectrum of the yellow product was broad and showed νNH absorptions in addition to ν(C=N). Metal ions Co(II) and Fe(II) were used as possible template ions but only oil was obtained. Pb(II) appeared to act as a template in that Pb(NCS)₂ dissolved to give a yellow solution but products obtained did not give acceptable CHN analysis.
TRANSMETALLATION OF GT COMPLEXES.

Strontium or barium GT complexes have been used in transmetallation with transition metal ions. Product from the template process was used without prior recrystallisation.

(a) Transition metal cryptates of GT.

Mononuclear cryptates

\[\text{[MnGT]}(\text{BPh}_4)_2 \cdot 2\text{H}_2\text{O}. \]

SrGT(\text{BPh}_4)_2 (0.0005mol) was suspended in acetonitrile (250ml) and warmed to 50°C. \(\text{Mn(NO}_3\text{)}_2 \cdot 4\text{H}_2\text{O} \) (0.0015mol) was dissolved in MeCN (30ml.) and added dropwise. \(\text{NaBPh}_4 \) (0.001mol.) was added and the reaction mixture was stirred at 45-50°C for 3 hours. A fawn coloured solid was filtered off and the filtrate was reduced in volume to about 150ml. Ethanol was added and cooling on ice gave yellow microcrystals in 44% yield.

Analysis.

Calc: C 72.87 H 6.35 N 10.30

Found: C 73.21 H 6.49 N 10.08

FAB Mass Spec.

\[m/e \text{ base peak} \]

413 \[\text{[MnGT]}^- \] (100)

\(\Lambda = 223 \text{ S cm}^2\text{mol}^{-1} \)

MnGT(\text{BPh}_4)_2 has also been made by the following method.

SrGT(\text{BPh}_4)_2 (0.0003mol.) , \(\text{Mn(O}_2\text{CCCH}_3\text{)}_2 \) (0.0006mol.) and \(\text{NaBPh}_4 \) 0.001 mol.) were stirred together in acetonitrile (200ml) for 2 hours at 50°C. The reaction mixture was filtered and the brown filtrate was reduced in volume
until yellow product began to crystallise. Cooling on ice gave yellow microcrystalline product.

\[\text{[NiGT]}\text{(BPh}_4\text{)}_2 \cdot \text{MH}_2\text{O}\].

\[\text{SrGT}(\text{BPh}_4\text{)}_2 (0.0005\text{mol.})\] was suspended in acetonitrile (200ml.) and warmed to 45°C. \(\text{Ni(ClO}_4\text{)}_2 : 6\text{H}_2\text{O}\) was dissolved in acetonitrile and added dropwise. \(\text{NaBPh}_4\) (0.001mol.) was added and the reaction mixture was stirred for 2 hours at 50°C. After filtration the yellow filtrate was reduced in volume until solid was starting to crystallise out (ca. 130ml.) Addition of ethanol and cooling gave orange microcrystals in 39% yield.

Analysis.

Calc: C 74.46 H 6.72 N 10.53

Found: C 74.37 H 7.13 N 10.73

\(\text{\bar{\lambda}} = 219 \text{ S cm}^2\text{mol}^{-1}\)

\[\text{[CoGT]}\text{(BPh}_4\text{)}_2 \cdot 3\text{H}_2\text{O}\].

\[\text{SrGT}(\text{BPh}_4\text{)}_2 (0.0005\text{mol.})\] was suspended in acetonitrile (250ml.) and warmed to 50°C. \(\text{Co(ClO}_4\text{)}_2 : 6\text{H}_2\text{O}(0.0015\text{mol.})\) was dissolved in MeCN (30ml.) and added dropwise giving a rust-brown reaction mixture. \(\text{NaBPh}_4\) (0.001mol.) was added and the reaction mixture was stirred at 45-50°C for 3 hours. Fawn coloured solid was filtered off and the filtrate was reduced in volume to ca. 150ml. Ethanol was added and cooling on ice gave rust coloured microcrystals in 49% yield.

Analysis.

Calc: C 71.42 H 6.90 N 10.10 Co 5.3

Found: C 71.60 H 6.63 N 9.92 Co 5.3

\(\text{\bar{\lambda}} = 236 \text{ S cm}^2\text{mol}^{-1}\)
Ba(ClO₄)₂ (0.001 mol.) and glyoxal (0.003 mol.) were refluxed together in methanol (200 ml.) for 15 minutes. The solution was cooled to 45°C and tren (0.002 mol.) in 50 ml methanol was added dropwise. The reaction mixture was stirred at 40–50°C for 3 hours. Co(ClO₄)₂·6H₂O (0.001 mol.) was added and the reactants were stirred together for 2 hours at 50–55°C. A small amount of fawn solid was filtered off and the rust-brown filtrate was reduced in volume until solid started to come out of solution. Cooling on ice gave a rust powder which was recrystallised from acetonitrile/ethanol solvent mixture. Slow evaporation gave rust hexagon-shaped crystals which were suitable for X-ray diffraction. (23% yield)

Analysis:
Calc: C 34.08 H 5.08 N 17.66
Found: C 34.29 H 4.94 N 16.73
\lambda = 254 \text{ S cm}^{-2}\text{mol}^{-1}

The reaction was also successful when Sr(ClO₄)₂ was used in place of Ba(ClO₄)₂. Attempts to produce MgGT(ClO₄)₂ by this method gave crystalline product, but in 10% yield. Attempted preparation of MnGT(CF₃SO₃)₂ and FeGT(CF₃SO₃)₂ by template of GT on Ba(CF₃SO₃)₂, followed by addition of the transition metal triflate gave oily mixtures from which product could not be isolated.
SrGT(BPh₄)₂ (0.0005 mol) and AgClO₄ (0.001 mol) were stirred together in acetonitrile for about 30 minutes. AgBPh₄ precipitate was filtered off and Ni(ClO₄)₂:4H₂O (0.00075 mol) was added to the filtrate. After 1-2 hours at ca 50°C the reaction mixture was filtered, reduced in volume and cooled on ice. Orange microcrystalline product was obtained.

Analysis.

<table>
<thead>
<tr>
<th>Calc:</th>
<th>Found:</th>
</tr>
</thead>
<tbody>
<tr>
<td>C 34.09</td>
<td>C 34.64</td>
</tr>
<tr>
<td>H 5.09</td>
<td>H 5.30</td>
</tr>
<tr>
<td>N 17.67</td>
<td>N 16.72</td>
</tr>
</tbody>
</table>

CoGT(ClO₄)₂ has been obtained by an analogous method in 30% yield.

[ZnGT](ClO₄)₂: H₂O

This complex was made by an analogous method to that outlined above. Zn(ClO₄)₂: 4H₂O was added in place of Ni(ClO₄)₂. Pale orange microcrystalline product resulted.

Analysis.

<table>
<thead>
<tr>
<th>Calc:</th>
<th>Found:</th>
</tr>
</thead>
<tbody>
<tr>
<td>C 34.82</td>
<td>C 34.35</td>
</tr>
<tr>
<td>H 5.55</td>
<td>H 5.17</td>
</tr>
<tr>
<td>N 16.24</td>
<td>N 15.82</td>
</tr>
</tbody>
</table>

Attempted synthesis of ZnGT(BPh₄)₂ by the method described for CoGT(BPh₄)₂ gave orange product which contained both perchlorate and tetraphenyloborate counterions, acceptable CHN analysis was not obtained.

FeGT(ClO₄)₂: 2H₂O

This reaction was carried out under nitrogen and dry deoxygenated solvents were used throughout. SrGT(BPh₄)₂ and AgClO₄ were stirred together in acetonitrile. AgBPh₄ precipitate was filtered off and Fe(ClO₄)₂ was added as a solid. After 1-2 hours at 40°C the blackcurrant coloured solution was
bubbled down in volume without heating. Addition of ethanol and cooling on ice gave deep blackcurrant coloured product which was filtered and dried under nitrogen. Acceptable CHN analysis was not obtained.

CAUTION! this compound is potentially explosive. The frit used to collect the product should not be scraped to loosen the solid.

Analysis

Calc:
- C 33.30
- H 5.28
- N 17.58

Found:
- C 28.59
- H 4.75
- N 14.16

FeGTCBPlLela: 2H2O

This experiment was performed under nitrogen and dry deoxygenated solvents were used. SrGT(BPh4)2 was dissolved in acetonitrile with stirring at 40-45°C. Fe(CF3SO3)2·6H2O was added as a solid and a wine coloured reaction mixture resulted. NaBPh4 (0.002mol) was added and the mixture was stirred at 45°C for 2 hours. The solution was filtered and the filtrate was reduced in volume by bubbling nitrogen. Dry deoxygenated ethanol was added and further concentration gave blackcurrant coloured solid which was filtered off and dried under nitrogen.

Analysis

Calc:
- C 72.80
- H 6.85
- N 10.29

Found:
- C 72.34
- H 6.72
- N 10.36

CuGT(ClO4)2·4H2O

SrGT(BPh4)2 (0.0005mol) and AgClO4 (0.001mol) were stirred together in acetonitrile 200ml./ethanol 50ml. solvent mixture. AgBPh4 was filtered off and Cu(O2CCH3)2·2AgClO4 (0.0004mol) and Cu(ClO4)2·6H2O (0.0002mol) were added to the filtrate. After 3 hours at 40-45°C the solution was
filtered and the filtrate was reduced in volume. Cooling on ice gave bottle
green hexagon-shaped microcrystals.

Analysis.
Calc: C 31.20 H 5.53 N 16.17
Found: C 31.32 H 4.77 N 15.89

FAB Mass Spec.
m/e Formula % of base peak at 421
421 [CuGT]+ (100)
520 [CuGT(ClO₄)]⁺ (40)
585 [Cu₂GT(ClO₄)⁺₂H]⁺ (10)

CuGT(ClO₄)₂ is soluble in water but the solution becomes yellow within an
hour.

Binuclear cryptates.

Cu₂GT(ClO₄)₂: 2H₂O

SrGT(BPh₄)₂ (0.0005mol) and AgClO₄ (0.001mol) were stirred together in
100ml MeCN/MeOH solvent mixture. AgBPh₄ precipitate was filtered off and
Cu₂(O₂CCH₃)₂ (0.001mol) was added and the mixture was refluxed for 15
minutes. After filtration the green filtrate was reduced in volume to 30ml,
green crystals were obtained on cooling.

Analysis.
Calc: C 23.51 H 3.72 N 12.18
Found: C 23.52 H 3.52 N 11.85

FAB Mass Spec.
m/e Formula % base peak at 136
585 [Cu₂GT(ClO₄)+₂H]⁺ (95)
484 [Cu₂GT]⁺ (43)
421 [CuGT]+ (40)
Cu₂GT(BPh₄)₂

SrGT(BPh₄)₂ (0.0004mol) was suspended in acetonitrile (200ml) Cu(ClO₄)₂:6H₂O (0.0004mol) and Cu(O₂CCH₃)₂ (0.0004mol) were added and the mixture was stirred at room temperature for 3-4 hours. Green colour developed on adding Cu²⁺ and gradually yellow/brown colour appeared. After filtration the yellow/brown filtrate was reduced in volume and ethanol was added. Cooling on ice gave bronze coloured microcrystals.

Analysis:
Calc: C 70.53 H 6.28 N 9.97
Found: C 69.46 H 6.35 N 9.96

Attempts to obtain a dicopper(I) cryptate with perchlorate counterion by transmetallation of SrGT(ClO₄)₂ with Cu(MeCN)₄(ClO₄) failed.

Transmetallation of SrGT(BPh₄)₂ using Cu(MeCN)₄(CF₃SO₃) gave only impure and insoluble brown powder that did not analyse correctly. The percentages of carbon, hydrogen and nitrogen found suggested Cu₂GT(BPh₄)₂ rather than the monocopper CuGT(BPh₄) cryptate. The product was too insoluble for recrystallisation and did not give a Fab mass spectrum (too insoluble in fab matrix).

Attempts preparation of CuZnGT(ClO₄)₂ and CuNiGT(ClO₄)₂ by reflux of the mononuclear CuGT(ClO₄)₂ with an equimolar equivalent of M(ClO₄)₂ failed. Fab mass spectroscopy of the products showed that only copper GT cryptate was present.
Anion exchange.

\[\text{NiGT(HCS)₂ : 2H₂O} \]

\[\text{NiGT(BPh₄)₂ (0.0002mol) was suspended in acetonitrile. AgClO₄(0.0002mol) was added as a solution in acetonitrile and the suspension was stirred at 45°C for 1/4 hour. The cream coloured precipitate was filtered off and excess NaHCS was added to the filtrate. The solution was filtered again to remove traces of AgHCS and reduced in volume. Cooling on ice gave orange microcrystals.} \]

Analysis

Calc: \(\text{C 42.19 H 6.02 N 24.60} \)

Found: \(\text{C 41.96 H 6.31 N 24.73} \)

Attempts to obtain products with NO₃⁻ or CF₃SO₃⁻ counterions by analogous methods gave oils.
(b) Lanthanide (III) ion cryptates of GT.

LaGT(BPh₄)₂(NO₃)·H₂O

BaGT(BPh₄)(ClO₄) (0.0003mol) was suspended in acetonitrile (200ml) and warmed to 45°C. La(NO₃)₃·6H₂O was dissolved in MeCN (50ml) and added dropwise. NaBPh₄ (0.001mol) was added and the reaction mixture was stirred at 45°C for 5 hours and stirred 18 hr at room temperature. The reaction mixture was filtered and the filtrate was reduced in volume to about 40ml. Addition of ethanol followed by cooling on ice gave pale yellow microcrystals in 31% yield.

Analysis

Calc: C 64.25 H 6.05 N 10.22
Found: C 57.29 H 5.54 N 10.41

FAB Mass Spec.

m/e Formula % base peak at 723

496 [LaGT-H]+ (25)
559 [LaGT(NO₃)]⁺ (5)
876 [LaGT(NO₃)(BPh₄)·2H⁺]⁻ (10)

Synthesis of praseodymium, terbium and gadolinium cryptates was attempted by the following method.

BaGT(BPh₄)(ClO₄) (0.0003mol) was suspended in acetonitrile and warmed to 40-45°C. M(NO₃)₃·6H₂O was dissolved in MeCN (50ml) and added. A fine suspension formed gradually. NaBPh₄ (0.001mol) was added and the reaction mixture was stirred at 35-40°C for 5 hours. After filtration the pale yellow filtrate was reduced in volume to ca. 20ml and ethanol was added dropwise until cloudiness appeared. Cooling on ice gave pale yellow microcrystals in ca. 20% yield. Attempts to recrystallise the lanthanide
cryptates failed. Magnetic measurements confirmed the presence of the paramagnetic lanthanide ion in the following complexes.

Analysis.

PrGT(BPh₄)(NO₃)₂: 2H₂O.

<table>
<thead>
<tr>
<th></th>
<th>Calc:</th>
<th>Found:</th>
</tr>
</thead>
<tbody>
<tr>
<td>C</td>
<td>51.58</td>
<td>52.08</td>
</tr>
<tr>
<td>H</td>
<td>5.56</td>
<td>5.30</td>
</tr>
<tr>
<td>N</td>
<td>14.32</td>
<td>13.18</td>
</tr>
</tbody>
</table>

TbGT(BPh₄)₂(NO₃): 2H₂O

<table>
<thead>
<tr>
<th></th>
<th>Calc:</th>
<th>Found:</th>
</tr>
</thead>
<tbody>
<tr>
<td>C</td>
<td>63.22</td>
<td>62.16</td>
</tr>
<tr>
<td>H</td>
<td>5.94</td>
<td>4.83</td>
</tr>
<tr>
<td>N</td>
<td>10.05</td>
<td>10.10</td>
</tr>
</tbody>
</table>

GdGT(BPh₄)₂(NO₃)

<table>
<thead>
<tr>
<th></th>
<th>Calc:</th>
<th>Found:</th>
</tr>
</thead>
<tbody>
<tr>
<td>C</td>
<td>65.18</td>
<td>71.25</td>
</tr>
<tr>
<td>H</td>
<td>5.80</td>
<td>7.01</td>
</tr>
<tr>
<td>N</td>
<td>10.36</td>
<td>10.00</td>
</tr>
</tbody>
</table>

FAB Mass Spec.

<table>
<thead>
<tr>
<th>m/e</th>
<th>% base peak at 337</th>
</tr>
</thead>
<tbody>
<tr>
<td>359</td>
<td>[GT+H]⁺</td>
</tr>
<tr>
<td>515</td>
<td>[GdGT-H]⁺</td>
</tr>
<tr>
<td>835</td>
<td>[GdGT(BPh₄)]⁺</td>
</tr>
</tbody>
</table>

EuGT(BPh₄)₂: 4H₂O.

BaGT(BPh₄)(ClO₄) (0.0003mol) was suspended in acetonitrile (100ml.) and warmed to 35°C. EuCl₃·6H₂O (0.00035mol) was dissolved in ethanol (50ml.) and added. NaBPh₄(0.0015mol) was added and the reaction mixture was stirred at 35-40°C for 5 hours and stirred overnight at room temperature. After filtration the pale yellow filtrate was reduced in volume to
approximately 30ml. Addition of ethanol and cooling gave pale yellow microcrystals in 21 % yield.

Analysis

Calc:
C 70.90
H 6.41
N 7.28

Found:
C 70.13
H 6.94
N 7.65

FAB Mass Spec.

<table>
<thead>
<tr>
<th>m/e</th>
<th>Formula</th>
<th>% base peak at 308</th>
</tr>
</thead>
<tbody>
<tr>
<td>510</td>
<td>[EuGT-H]^-</td>
<td>(40)</td>
</tr>
</tbody>
</table>

Preparation of EuGT(BPh₄)₂ has also been carried out in dry solvents under nitrogen in the presence of dimethoxypropane. This improved the yield of EuGT complex to 27%.

CeGT(BPh₄)₂(NO₃): H₂O

BaGT(BPh₄)(CIO₄) (0.00015mol) was suspended in MeCN (200ml) at 40°C. Ce(NO₃)₂·6H₂O was dissolved in MeCN and added. After 3 hours at 40-45°C, the reaction mixture was filtered and the filtrate was reduced in volume to 50ml. Cooling on ice produced rust coloured crystals which were separated from accompanying beige powder (34% yield).

Analysis

Calc:
C 65.13
H 5.96
N 10.40

Found:
C 66.40
H 6.08
N 10.74

The cerium cryptate did not recrystallise successfully.

FAB Mass Spec.

<table>
<thead>
<tr>
<th>m/e</th>
<th>Formula</th>
<th>% base peak at 136</th>
</tr>
</thead>
<tbody>
<tr>
<td>497</td>
<td>[CeGT-H]+</td>
<td>(30)</td>
</tr>
<tr>
<td>561</td>
<td>[CeGT(NO₃)+H]+</td>
<td>(10)</td>
</tr>
</tbody>
</table>
Transmetallation using Ru(II) or Group 1 ions

The following experiment was performed under nitrogen using dry deoxygenated solvents.

Attempted preparation of RuGT(BPh$_4$)$_2$

SrGT(BPh$_4$)$_2$ (0.0003mol) was suspended in acetonitrile and brought to reflux. Ru(Cl)$_2$(P(C$_6$H$_5$)$_3$)$_3$ was added as a solid and the reaction mixture was refluxed for 2-3 hours. The orange reaction mixture was filtered and reduced in volume to ca. 15ml. Cooling on ice gave orange microcrystals.

Analysis

<table>
<thead>
<tr>
<th></th>
<th>Calc:</th>
<th>Found:</th>
</tr>
</thead>
<tbody>
<tr>
<td>C</td>
<td>72.19</td>
<td>71.00</td>
</tr>
<tr>
<td>H</td>
<td>6.43</td>
<td>6.51</td>
</tr>
<tr>
<td>N</td>
<td>10.21</td>
<td>9.67</td>
</tr>
</tbody>
</table>

Fab mass spectroscopy did not show peaks attributable to RuGT, SrGT or GT, although the infrared spectrum showed that the GT cryptand was present in the complex.

NaGT(BPh$_4$)$_2$2H$_2$O

BaGT(BPh$_4$)(ClO$_4$) (0.0003mol) was suspended in MeCN (200ml.) and heated to 50-55°C. Na$_2$SO$_4$(0.0009mol) was dissolved in a minimum of hot water and added dropwise. After 2-3 hours at 50°C BaSO$_4$ precipitate was filtered off. Ethanol was added to the pale yellow filtrate and this was reduced to 10ml. Cooling on ice gave pale yellow microcrystals in 14% yield.

Analysis

<table>
<thead>
<tr>
<th></th>
<th>Calc:</th>
<th>Found:</th>
</tr>
</thead>
<tbody>
<tr>
<td>C</td>
<td>68.91</td>
<td>68.20</td>
</tr>
<tr>
<td>H</td>
<td>7.43</td>
<td>7.55</td>
</tr>
<tr>
<td>N</td>
<td>15.31</td>
<td>14.36</td>
</tr>
</tbody>
</table>

FAB Mass Spec.

<table>
<thead>
<tr>
<th>m/e</th>
<th>Formula</th>
<th>% base peak</th>
</tr>
</thead>
<tbody>
<tr>
<td>359</td>
<td>[(GT+H)$^-$]</td>
<td>(25)</td>
</tr>
<tr>
<td>381</td>
<td>[NaGT]$^-$</td>
<td>(15)</td>
</tr>
</tbody>
</table>
The fab mass spectrum of NaGT(BPh₄) showed no evidence of [BaGT]+ at m/e 496.

KGT(BPh₄)

Attempted exchange of barium ion for K⁺ by an analogous method, using K₂SO₄ gave pale yellow crystals surrounded by oil.

Fab Mass Spec

\[m/e \ 397 \quad [\text{KGT}]^+ \quad (80) \]

The fab mass spectrum showed no evidence of [BaGT]+ or [GT]+ at m/e 358.

PbGT(BPh₄)₂·3H₂O.

\[\text{BaGT}(\text{BPh}_4)_2 \ (0.0003 \text{mol}) \] was suspended in methanol/acetonitrile solvent mixture (100 ml/50 ml) at 50°C. \[\text{Pb(NO}_3)_2 \ (0.0006 \text{mol}) \] was ground finely, dissolved in hot methanol and added dropwise. After four hours at 55°C the barium nitrate precipitate was filtered off and excess NaBPh₄ was added to the filtrate. Concentration and cooling on ice gave pale yellow microcrystals.

Analysis

Calc: C 63.00 H 6.08 N 8.90

Found: C 63.35 H 5.71 N 8.06

FAB Mass Spec.

\[m/e \ \text{Formula} \quad \% \ \text{base peak at 399} \]

566 [PbGT]+ \quad (35)

884 [PbGT(BPh₄)−H]+ \quad (8)
ATTEMPTED PREPARATION OF REDUCED METAL-FREE GT LIGAND

Pb(NCS)$_2$ (0.002 mol) and glyoxal (0.006 mol) were refluxed together in methanol (150 ml) for 15 minutes. Tren (0.004 mol) in 100 ml of methanol was added dropwise with stirring. The lead thiocyanate dissolved and yellow colour developed. After 3 hours at 50-55°C, an excess of NaBH$_4$ was added in portions. After each addition, an instant black lead precipitate formed which dissolved within minutes to give yellow solution again. After 2-3 hours at 55°C, NaBH$_4$ was added in portions and lead was filtered off under suction. The cream coloured filtrate was brought to dryness, NaOH, 8 pellets in ca. 15 ml deionised H$_2$O was added. The solution was extracted with six portions of chloroform. The extracts were combined, washed with deionised water and dried with Na$_2$SO$_4$. After filtration the filtrate was brought to dryness, the oil obtained was redissolved in methanol, filtered and rotary evaporated to dryness. The product was dried in vacuum overnight and remained a pale yellow oil.

Mass spec.

<table>
<thead>
<tr>
<th>m/e</th>
<th>Formula</th>
<th>%height of base peak</th>
</tr>
</thead>
<tbody>
<tr>
<td>370</td>
<td>[GT]+ (GT + 12 H)</td>
<td>1.61</td>
</tr>
<tr>
<td>369</td>
<td>[GT + 11 H]$^+$</td>
<td>0.91</td>
</tr>
<tr>
<td>368</td>
<td>[GT + 10 H]$^+$</td>
<td>1.54</td>
</tr>
<tr>
<td>367</td>
<td>[GT + 9 H]$^+$</td>
<td>0.70</td>
</tr>
<tr>
<td>366</td>
<td>[GT + 8 H]$^+$</td>
<td>0.91</td>
</tr>
<tr>
<td>365</td>
<td>[GT + 7 H]$^+$</td>
<td>0.49</td>
</tr>
<tr>
<td>364</td>
<td>[GT + 6 H]$^+$</td>
<td>0.63</td>
</tr>
<tr>
<td>358</td>
<td>[GT]$^-$</td>
<td>0.91</td>
</tr>
</tbody>
</table>

Fully reduced GT, partially reduced GT and unreduced GT ligand gave 7.7% of the height of the base peak in total.
BaGT(BPh₄)(ClO₄) (0.002mol) and Pb(NO₃)₂(0.003mol) were stirred together in methanol for 3 hours at 55°C. Ba(NO₃)₂ was not filtered off as PbGT(BPh₄)₂ was only slightly soluble in methanol. NaBH₄ was added giving lead precipitate which dissolved again. The reaction mixture was refluxed gently for 4 hours. Cream coloured solid, containing MGT(BPh₄)₂ and Ba(NO₃)₂, was filtered off. Work up of the filtrate as outlined above gave an oil.

Mass spec.

<table>
<thead>
<tr>
<th>m/e</th>
<th>Formula</th>
<th>% height of base peak</th>
</tr>
</thead>
<tbody>
<tr>
<td>370</td>
<td>[RGT]⁺</td>
<td>0.63</td>
</tr>
</tbody>
</table>

Reduction of manganese (II) GT cryptate was attempted. It was hoped that reduced manganese would not be solubilised by the cryptand. MnGT(BPh₄)₂(0.0015mol) and NaBH₄(excess) were refluxed together in ethanol(400ml) for 4-5 hours. Fawn coloured solid was filtered off and the cream coloured filtrate was brought to dryness and worked up in the usual way.

Mass spec.

<table>
<thead>
<tr>
<th>m/e</th>
<th>Formula</th>
<th>% height of base peak</th>
</tr>
</thead>
<tbody>
<tr>
<td>370</td>
<td>[RGT]⁺</td>
<td>1.1</td>
</tr>
</tbody>
</table>

The following attempt avoided the presence of tetraphenylborate counterion.

GT was templated on Ba(ClO₄)₂ in methanol as previously described. Mn(NO₃)₂ was added giving a yellow solution. After 2 hours at 50°C excess NaBH₄ was added. The reaction mixture was stirred for 3 days. Fawn precipitate was filtered off and the filtrate was worked up as outlined
earlier. Mass spectroscopy showed no evidence of RGT, GT or semireduced GT cryptand.

Attempts to obtain a silver cryptate for use in the reduction were unsuccessful. Both template attempts on silver (I) and transmetallation with silver(I) failed.

It is possible that reduced GT is unstable in the conditions of the mass spectrometer, this may account for the low peak percentage in mass spec. However there are additional problems in that the reduced cryptand appears to complex lead. The complex does not go into the chloroform layer and is lost in the work up procedure.
COMPLEXES OF THE CRYPTAND 3Bp.

Terephthalicarboxaldehyde \(\text{C}_8\text{H}_4\text{O}_2\text{CHO} \) (terephthalaldehyde) was obtained from Aldrich Chemical Company Ltd. and was used without further purification. Template synthesis of the 3Bp cryptand was reported previously. The complexes \(\text{Pb}_2\text{3Bp(SCN)}_4 \) and \(\text{Ag}_2\text{3Bp(CF}_3\text{SO}_3)_4 \) were obtained.

The cryptand 3Bp

\[
\begin{align*}
\text{Ag}_2\text{3Bp(CLO}_4)_4 : 4\text{H}_2\text{O}
\end{align*}
\]

Tren (0.002mol) was dissolved in methanol (100ml) and terephthalaldehyde (0.003mol) was dissolved in methanol (100ml). The two solutions were added simultaneously and dropwise to a solution of \(\text{AgNO}_3 \) (0.002mol) in methanol (200ml) stirring at 35°C. The reactants were stirred together for 3 hours at 35°C. After filtration excess \(\text{NaClO}_4 \) was added and the filtrate was reduced in volume. Slow evaporation gave yellow-brown cube shaped microcrystals in 73% yield.

Analysis.

<table>
<thead>
<tr>
<th>Comp.</th>
<th>Calc</th>
<th>Found</th>
</tr>
</thead>
<tbody>
<tr>
<td>C</td>
<td>40.28</td>
<td>40.47</td>
</tr>
<tr>
<td>H</td>
<td>4.69</td>
<td>4.32</td>
</tr>
<tr>
<td>N</td>
<td>10.44</td>
<td>10.40</td>
</tr>
</tbody>
</table>
Ag$_2$3Bp(BPh$_4$)$_2$ and Ag$_2$3Bp(CF$_3$SO$_2$)$_2$ were prepared by analogous methods, with addition of NaBPh$_4$ and LiCF$_3$SO$_2$ respectively.

Ag$_2$3Bp(BPh$_4$)$_2$:H$_2$O.

Analysis

Calc: C 69.15 H 5.80 N 7.68

Found: C 69.52 H 5.17 N 7.33

Ag$_2$3Bp(CF$_3$SO$_2$)$_2$

Analysis

Calc: C 41.47 H 3.95 N 10.52

Found: C 41.35 H 3.96 N 10.18

Pb$_2$3Bp(SCN)$_4$

This complex was made by modification of the method reported by D.Narrs.27 Pb(SCN)$_2$(0.004mol) and terephthalaldehyde (1,4-C$_6$H$_4$(CHO)$_2$)(0.006mol) were stirred together vigorously in absolute alcohol (300ml) at 60°C. TREN(0.004mol, 60ml.) in 100ml. absolute alcohol was added dropwise. The reaction mixture was stirred at 60°C for 4 hours. Pale yellow coloured semicrystalline solid was filtered off. Further crops of crystalline product were obtained on concentration of the filtrate and cooling on ice.

Satisfactory CHN analysis was not obtained for this starting material thus the formula of the complex is uncertain. The infrared spectrum of the product shows that the 3Bp cryptand is present.
TRANSMETALLATION OF 3BP COMPLEXES.

Co₂3BP(SCN)₄

Pb₂3BP(SCN)₄ (0.0003mol) was suspended in acetonitrile (200ml) with stirring at 50-55°C. Co(NCS)₂ (0.00065mol) was dissolved in ethanol (50ml) and added dropwise, giving a turquoise coloured reaction mixture. After one hour, a turquoise powder was filtered off. The product did not give satisfactory CHN analysis and was not adequately soluble for recrystallisation.

Analysis

Calc: C 49.00 H 4.32 N 17.14
Found: C 39.18 H 3.38 N 14.40

FAB Mass Spec

m/e Formula % of base peak
387 [3BP+H]+ (100)
703 [Co3BP(NCS)]^- or [Co₂3BP-H]+ (50)
759 [Co₂3BP(NCS)-3H]- or [Co3BP(NCS)₂-2H]+ (55)

Many attempts were made to transmetallate didecad or disilber 3BP complexes, most resulted in anion exchange or ring opening. Conditions employed in the various attempts and the results are summarised in table 2.

SYNTHESIS OF THE METAL-FREE CRYPTAND 3BP.

3BP: 6H₂O

Synthesis of this cryptand was reported previously by D.Marrs².²

Terephthalaldehyde (0.003mol) was warmed to 50°C in methanol (100ml). A solution of tren (0.002mol) in methanol (50ml) was added dropwise. The
reaction mixture was stirred at 50 °C for 2-3 hours. The yellow solution was filtered and reduced in volume to ca. 50 ml. Acetonitrile was added and slow evaporation gave pale yellow crystals in 58% yield.

Analysis

Calc:
C 62.1
H 7.8
N 16.1

Found:
C 61.7
H 7.9
N 16.5

Infrared spectrum: 3650-3000 ν(O-H), 2841 ν(C-H), 1643 ν(C=N), 1450, 1437, 1375, 1338, 1077, 1033, 907, 823, 742, 722 and 514 cm⁻¹.

COMPLEX FORMATION USING THE METAL-FREE CRYPTAND 3Bp

\[
\text{Cu}_2\text{3Bp}(\text{CF}_3\text{SO}_3)_2
\]

3Bp (0.0002 mol) was dissolved in ethanol (100 ml), Cu(\text{CF}_3\text{SO}_3)_2 (0.0004 mol) was dissolved in acetonitrile (100 ml) and added. The green solution was stirred for 3 hours at 40-45 °C, filtered and reduced in volume. Orange crystals were obtained on slow evaporation.

Analysis

Calc:
C 45.10
H 4.18
N 11.07

Found:
C 45.09
H 4.19
N 10.70

\[\Lambda = 247 \text{ S cm}^2\text{mol}^{-1}\]

\[\text{Cu}_2\text{3Bp}(\text{CF}_3\text{SO}_3)_2\] has also been obtained by metal insertion into 3Bp using Cu(MeCN)_4\text{CF}_3\text{SO}_3.

Attempts to precipitate a Cu(II) complex by mixing a solution of 3Bp in dichloromethane/ethanol solvent mixture with a solution of Cu(\text{CF}_3\text{SO}_3)_2 in ethanol, gave pale green precipitate. The infrared spectrum of the green product showed a carbonyl frequency suggesting ring opening.
Cu$_2$3Bp(SCN)$_2$: MeCN

3Bp (0.0002mol) and Cu(CF$_3$SO$_3$)$_2$ (0.0004mol) were stirred together in acetonitrile/ethanol solvent mixture at 40°C. NaNCS (0.0006mol) was dissolved in acetonitrile (100ml) and added dropwise. Orange-red colour developed and product crystallised out of solution. Mustard coloured microcrystals were isolated by filtration. The infrared spectrum showed v(MeCN).

Analysis

Calc:
C 54.99
H 5.10
N 16.88

Found:
C 55.07
H 5.17
N 17.29

Co$_2$3Bp(NCS)$_4$·3H$_2$O

3Bp (0.0002mol) was dissolved in ethanol (75ml). Co(CF$_3$SO$_3$)$_2$ (0.0001mol) in acetonitrile was added, giving a pale brown colour. A solution of Co(NCS)$_2$ (0.0001mol) in acetonitrile (100ml) was added dropwise with stirring giving a green-blue solution. After 4 hours at room temperature the solution was filtered and reduced in volume. Cooling on ice gave turquoise powder which was recrystallised from dma/MeOH/Et$_2$O in low yield.

Analysis

Calc:
C 48.48
H 4.88
N 16.96

Found:
C 49.28
H 5.19
N 16.28

Anion exchange was attempted to try to obtain a more soluble dicobalt 3Bp complex. Co$_2$3Bp(NCS)$_4$ when stirred with AgClO$_4$ or AgCF$_3$SO$_3$ in acetonitrile gave rust coloured solution after filtration. Complexes with perchlorate or triflate counterions could not be isolated. Addition of sodium cyanate to the filtrate gave a blue-green solution, only green oil resulted.
\[3\text{Bp}+2\text{H}^+\text{(CF}_3\text{SO}_3)^2\]

Attempted insertion of Fe(II) into 3Bp using Fe(CF$_3$SO$_3$)$_2$ gave the doubly protonated ligand.

Analysis

Calc: \[\begin{array}{c}
\text{C} 48.50 \\
\text{H} 5.35 \\
\text{N} 11.90 \\
\text{Fe} 0.0
\end{array}\]

Found: \[\begin{array}{c}
\text{C} 48.73 \\
\text{H} 4.56 \\
\text{N} 12.36 \\
\text{Fe} 0.2
\end{array}\]

The attempted preparation of metal ion complexes of 3Bp are summarised in table 3.

SYNTHESIS OF THE REDUCED CRYPTAND R3Bp

The reduced 3Bp cryptand was produced by modification of the method reported previously.\(^{27e}\)

The cryptand R3Bp

Pb$_3$Bp(SCN)$_4$ (0.001mol) was suspended in ethanol (200ml.) and brought to gentle reflux. A large excess of NaBH$_4$ was added in portions which produced fizzing and a black precipitate of lead. The black suspension was refluxed for 5 hours and the black precipitate was filtered off. The cream coloured filtrate was taken to dryness and the resulting solid was dissolved in NaOH solution (10 NaOH pellets in 15ml. deionised water). The resultant R3Bp solution was extracted with six portions of chloroform and
the extracts were combined, washed with deionised water and dried with
Na₂SO₄. After filtration, the filtrate was brought to dryness. The solid
obtained was redissolved in methanol, filtered and rotary evaporated to
dryness. The solid was dried in vacuo overnight and to give a cream
powdery solid in 69% yield.

Mass Spec.
m/e 598 [R3Bp]+ base peak 100%

Peaks due to partially reduced ligand were absent from the mass spectrum.
Infrared spectrum : 3273, 3231, 3041, 2797, 1623, 1513, 1458, 1362,
1326,1295, 1127, 1054, 1017, 799,772cm⁻¹ inter alia.

COMPLEX FORMATION USING THE REDUCED CRYPTAND R3Bp

Cu₂R3BpμOH(ClO₄)₃: MeCN: 3H₂O.

R3Bp (0.0001mol) was dissolved in ethanol (50ml) and Cu(ClO₄):6H₂O
(0.0003mol) was dissolved in acetonitrile (100ml) and added giving a green
solution. The reaction mixture was stirred at 50°C for 2 hours, filtered
and reduced in volume to ca. 100ml. Slow evaporation gave green
microcrystals in 81% yield.

Analysis.

Calc: C 40.16 H 5.41 N 11.09

Found: C 39.64 H 5.15 N 11.49

∧ = 311 S cm²mol⁻¹
Co$_2$R$_3$BpOH(CF_3SO_3)$_2$

R$_3$Bp (0.0001 mol) and Co(CF_3SO_3)$_2$ (0.0003 mol) were stirred together in acetonitrile/ethanol solvent mixture for 2 hours at 45°C. Slow evaporation of the filtrate gave pale green microcrystalline product.

Analysis.

Calc:

\[
\begin{align*}
\text{C} & \quad 39.67 \\
\text{H} & \quad 4.69 \\
\text{N} & \quad 9.49
\end{align*}
\]

Found:

\[
\begin{align*}
\text{C} & \quad 39.63 \\
\text{H} & \quad 4.66 \\
\text{N} & \quad 9.14
\end{align*}
\]

FAB Mass Spec.

\[
\begin{array}{c|c}
\text{m/e} & \text{Formula} & \% \text{ base peak at 151} \\
\hline
657 & [\text{CoR}_3\text{Bp}]^+ & (40) \\
867 & [\text{Co}_2\text{R}_3\text{Bp}(\text{CF}_3\text{SO}_3)^+2\text{H}]^- & (20) \\
1178 & [\text{Co}_2\text{R}_3\text{Bp}(\text{CF}_3\text{SO}_3)^3\text{OH}-2\text{H}]^- & (90)
\end{array}
\]

Addition of a few drops of water to the preparation outlined above gave a darker green solution and improved the yield of the dicobalt R$_3$Bp μOH complex. Apple-green microcrystals were obtained.

Co$_2$R$_3$BpμOH(ClO_4)$_2$: 2H$_2$O.

R$_3$Bp (0.0001 mol) and Co(ClO_4)$_2$6H$_2$O (0.0003 mol) were stirred together in MeCN/EtOH solvent mixture for 2 hours at 50°C. The green solution was filtered and reduced in volume, cooling on ice gave green microcrystals in 89% yield.

Analysis.

Calc:

\[
\begin{align*}
\text{C} & \quad 40.48 \\
\text{H} & \quad 5.57 \\
\text{N} & \quad 10.49
\end{align*}
\]

Found:

\[
\begin{align*}
\text{C} & \quad 40.44 \\
\text{H} & \quad 5.22 \\
\text{N} & \quad 10.90
\end{align*}
\]
Co₂R₃B₃p(NCS)₄·2H₂O

R₃B₃p(0.0001mol) was dissolved in methanol and a solution of Co(NCS)₂, in methanol, was added. The green precipitate was filtered off and recrystallised from acetonitrile/ethanol solvent mixture. Petrol blue microcrystals were obtained. Acceptable CHN analysis was not obtained.

Analysis
Calc: C 48.77 H 5.93 N 17.06
Found: C 42.98 H 5.16 N 16.51

Cu₂R₃B₃p(CF₃SO₃)₂·H₂O

R₃B₃p(0.0002mol) was dissolved in dry deoxygenated ethanol under nitrogen. Cu(MeCN)₄(CF₃SO₃)(0.0005mol) was added as a solid and gave an instant cream precipitate. On addition of dry deoxygenated MeCN, the precipitate dissolved. The solution was stirred at 45°C for 2 hours, reduced in volume and cream coloured microcrystalline solid was filtered off and dried with a nitrogen stream. The complex became slightly green on storage.

Analysis
Calc: C 43.80 H 5.42 N 10.75 Cu 12.20
Found: C 42.08 H 4.99 N 10.12 Cu 12.26

\(\lambda = 241 \text{ S cm}²\text{mol}⁻¹ \)

FAB Mass Spec.

<table>
<thead>
<tr>
<th>m/e</th>
<th>Formula</th>
<th>% base peak at 107</th>
</tr>
</thead>
<tbody>
<tr>
<td>599</td>
<td>[R₃B₃p+H]⁺</td>
<td>(10)</td>
</tr>
<tr>
<td>659</td>
<td>[CuR₃B₃p-2H]⁺</td>
<td>(55)</td>
</tr>
<tr>
<td>721</td>
<td>[Cu₂R₃B₃p-3H]⁺</td>
<td>(15)</td>
</tr>
<tr>
<td>873</td>
<td>[Cu₂R₃B₃p(CF₃SO₃)]⁺</td>
<td>(90)</td>
</tr>
</tbody>
</table>
Ni$_2$E3Bp(NO$_3$)$_4$: 4H$_2$O.

R3Bp(0.00015mol) and Ni(NO$_3$)$_2$:6H$_2$O(0.0006mol) were refluxed together in EtOH/MeCN solvent mixture for 4 hours. The solution was filtered and allowed to evaporate down slowly. Turquoise microcrystals resulted.

Analysis

Calc: C 41.72

Found: C 41.68

H 6.02

H 5.45

N 16.22

N 16.38

[R3Bp+4H$^+$](CF$_3$SO$_3$)$_4$

R3Bp(0.0001mol) and Mn(CF$_3$SO$_3$)$_2$(0.0003mol) were stirred together in MeCN/EtOH solvent mixture for 2 hours at 50°C. The reaction mixture changed from yellow to brown. After filtration the brown filtrate was left to evaporate down slowly. Dark brown powder (inorganic) was filtered off and the filtrate gave colourless crystals on slow evaporation.

Analysis

Calc: C 39.47

Found: C 39.69

H 4.97

H 5.32

N 9.21

N 9.15

Attempted insertion of Fe(II) into R3Bp using Fe(CF$_3$SO$_3$)$_2$ gave protonated ligand complex [R3Bp+4H$^+$](CF$_3$SO$_3$)$_4$.

Fab mass spec showed peaks due to protonated R3Bp and there was no evidence of the iron R3Bp complex.
SYNTHESIS OF THE METAL-FREE CRYPTAND 3Bm.

Synthesis of the 3Bm cryptand was reported previously.

The cryptand 3Bm

Isophthalaldehyde (0.006mol) was brought to gentle reflux in methanol (300ml) and tren (0.004mol) was added dropwise in concentrated form. The reaction mixture was refluxed gently for 2 hours and the yellow solution was then filtered and reduced in volume by rotary evaporation. Several crops of crystalline product were filtered off (Yield 91%).

Analysis
Calc: C 73.7 H 7.2 N 19.1
Found: C 73.9 H 7.3 N 19.2

Infrared spectrum: 3281, 3042, 2900-2800, 1643, 1432, 1354, 1336, 1290, 1065, 1034, 926, 799, 693 cm⁻¹ inter alia

Ni₂L(NO₃)₆: 2H₂O: EtOH

Ligand 3Bm was dissolved in ethanol (150ml) with stirring at 50°C. Ni(NO₃)₂·6H₂O (0.0002mol) was dissolved in acetonitrile (150ml) and added dropwise. The reaction mixture became dark green initially and gradually changed to blue. After 2 hours at 50°C, the reaction mixture was filtered
and reduced in volume to ca. 50ml. Purple microcrystals were obtained on slow evaporation.

Analysis.

Calc: C 37.36
H 5.15
N 18.67

Found: C 37.29
H 4.90
N 17.83

FAB Mass Spec

<table>
<thead>
<tr>
<th>m/e</th>
<th>Formula</th>
<th>% base peak at 266</th>
</tr>
</thead>
<tbody>
<tr>
<td>790</td>
<td>(Ni2L(NO3)3)−</td>
<td>(70)</td>
</tr>
<tr>
<td>845</td>
<td>(Ni2L(NO3)2)L+</td>
<td>(5)</td>
</tr>
<tr>
<td>908</td>
<td>(Ni2L(NO3)3)L+</td>
<td>(15)</td>
</tr>
</tbody>
</table>

SYNTHESIS OF THE REDUCED CRYPTAND E3Bm

The cryptand 3Bm was reduced by modification of the method reported by D. Marrs. The cryptand E3Bm was brought to reflux in ethanol and a large excess of NaBH₄ was added in portions. The reaction mixture was refluxed strongly for 6 hours and stirred for 48 hr at room temperature. After filtration, the filtrate was taken to dryness. The product was worked up as described in the
reduction of Pb₂3Bp(NO₃)₄. The 3Bm ligand was more difficult to reduce thoroughly.

Mass Spec.

<table>
<thead>
<tr>
<th>m/e</th>
<th>Formula</th>
<th>% base peak</th>
</tr>
</thead>
<tbody>
<tr>
<td>598</td>
<td>[R3Bm]⁺</td>
<td>100</td>
</tr>
</tbody>
</table>

COMPLEX FORMATION USING THE REDUCED CRYPTAND 3Bm

Co₂R₃Bm(ClO₄)₄: StOH

R₃Bm(0.0002mol) was dissolved in ethanol (100ml) and a solution of Co(ClO₄)₂: 6H₂O(0.0006mol.) in acetonitrile (100ml.) was added, dropwise giving a green solution. After 1 hour at 50°C, the reaction mixture was filtered and the filtrate was reduced in volume. Cooling on ice gave green microcrystals.

Analysis

Calc:
C 39.33
H 5.21
N 9.65

Found:
C 39.32
H 5.48
N 9.35

FAB Mass Spec

<table>
<thead>
<tr>
<th>m/e</th>
<th>Formula</th>
<th>% base peak at 875</th>
</tr>
</thead>
<tbody>
<tr>
<td>656</td>
<td>[CoR₃Bm]⁺</td>
<td>(35)</td>
</tr>
<tr>
<td>710</td>
<td>[Co₂R₃Bm·4H]⁺</td>
<td>(35)</td>
</tr>
<tr>
<td>813</td>
<td>[CoR₃Bm(ClO₄)]⁺</td>
<td>(75)</td>
</tr>
<tr>
<td>1003</td>
<td>[Co₂R₃Bm(ClO₄)₃·7H]⁺</td>
<td>(95)</td>
</tr>
</tbody>
</table>
R3Bm(0.0002 mol) and Ni(NO₃)₂·6H₂O (0.0005 mol) were stirred together in acetonitrile/ethanol solvent mixture at 50°C for 2 hours. The blue-green solution was filtered and reduced in volume to 100 ml. Slow evaporation gave turquoise microcrystals.

Analysis

<table>
<thead>
<tr>
<th>Element</th>
<th>Calc.</th>
<th>Found.</th>
</tr>
</thead>
<tbody>
<tr>
<td>C</td>
<td>41.72</td>
<td>42.18</td>
</tr>
<tr>
<td>H</td>
<td>6.03</td>
<td>6.23</td>
</tr>
<tr>
<td>N</td>
<td>16.50</td>
<td>15.85</td>
</tr>
</tbody>
</table>

FAB Mass Spec.

<table>
<thead>
<tr>
<th>m/e</th>
<th>Formula</th>
<th>% base peak at 290</th>
</tr>
</thead>
<tbody>
<tr>
<td>654</td>
<td>[NiR₃Bm]⁺</td>
<td>(25)</td>
</tr>
<tr>
<td>775</td>
<td>[Ni₂R₃Bm(NO₃)]⁺</td>
<td>(50)</td>
</tr>
<tr>
<td>838</td>
<td>[Ni₂R₃Bm(NO₃)₂]⁺</td>
<td>(40)</td>
</tr>
<tr>
<td>901</td>
<td>[Ni₂R₃Bm(NO₃)₃]⁺</td>
<td>(60)</td>
</tr>
</tbody>
</table>

Cu₂R₃Bm(ClO₄)₂: 2H₂O

This complex was made by an analogous method. Green microcrystals were obtained on slow evaporation.

Analysis

<table>
<thead>
<tr>
<th>Element</th>
<th>Calc.</th>
<th>Found.</th>
</tr>
</thead>
<tbody>
<tr>
<td>C</td>
<td>37.28</td>
<td>37.47</td>
</tr>
<tr>
<td>H</td>
<td>5.04</td>
<td>5.52</td>
</tr>
<tr>
<td>N</td>
<td>9.66</td>
<td>9.50</td>
</tr>
</tbody>
</table>

Attempts to produce a copper(I) cryptate by metal insertion into R₃Bm using Cu(MeCN)₄(CF₃SO₃) gave dicopper(II) cryptate despite nitrogen protection. Only impure product was obtained from the reaction. Reaction of R₃Bm and Mn(NO₃)₂ gave [R₃Bm+2H⁺](NO₃)₂.

Attempted insertion of Fe(II) into R₃Bm failed. Only orange gel resulted.
TABLE 2 - ATTEMPTED TRANSMETALLATION OF 3Bp COMPLEXES

<table>
<thead>
<tr>
<th>METAL</th>
<th>CONDITIONS</th>
<th>SOLVENT</th>
<th>RESULT</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pb₂3Bp(NO₃)₄</td>
<td>3hr 60°C</td>
<td>MeCN</td>
<td>Pb₂3Bp(NO₃)₄</td>
</tr>
<tr>
<td>Co(NO₃)₂</td>
<td>3hr 60°C</td>
<td>MeCN</td>
<td>brown inorganic powder + Pb₂3Bp(NO₃)₄ crystals</td>
</tr>
<tr>
<td>Mn(NO₃)₂</td>
<td>2hr 60°C</td>
<td>MeCN/EtOH</td>
<td>pale green powder, weak C=O 1695</td>
</tr>
<tr>
<td>Ni(NO₃)₂</td>
<td>3hr 60°C</td>
<td>"</td>
<td>lilac powder, strong C=O.</td>
</tr>
<tr>
<td>NiCl₂</td>
<td>3hr 55-60°C</td>
<td>"</td>
<td>green oil</td>
</tr>
<tr>
<td>MnCl₂</td>
<td>3hr 55-60°C</td>
<td>"</td>
<td>Brown powder and Pb₂3Bp(NO₃)₄</td>
</tr>
<tr>
<td>Ag₂3Bp(BPh₄)₂</td>
<td>3hr reflux</td>
<td>"</td>
<td>pale coloured solution, some ring opening</td>
</tr>
<tr>
<td>Ag₂3Bp(CF₃SO₃)₂</td>
<td>2hr 60°C</td>
<td>MeCN</td>
<td>insoluble, ir no C=O</td>
</tr>
</tbody>
</table>

TABLE 3 - ATTEMPTED METAL INSERTION INTO 3Bp

Free 3Bp starting material

<table>
<thead>
<tr>
<th>METAL</th>
<th>CONDITIONS</th>
<th>SOLVENT</th>
<th>RESULT</th>
</tr>
</thead>
<tbody>
<tr>
<td>Co(NO₃)₂</td>
<td>3hr 60°C</td>
<td>MeCN/EtOH</td>
<td>rust coloured solution gave brown oil only</td>
</tr>
<tr>
<td>Co(CF₃SO₃)₂</td>
<td>3hr 60°C</td>
<td>"</td>
<td>rust coloured solution gave brown oil</td>
</tr>
<tr>
<td>Co(CF₃SO₃)₂</td>
<td>3hr 40°C</td>
<td>"</td>
<td>gave brown oil</td>
</tr>
<tr>
<td>Mn²⁺ present</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Co(NCS)₂</td>
<td>1hr 50°C</td>
<td>"</td>
<td>green precipitate</td>
</tr>
<tr>
<td>Ni(NO₃)₂</td>
<td>5hr 60°C</td>
<td>"</td>
<td>pale coloured solution complex not formed</td>
</tr>
<tr>
<td>NiCl₂</td>
<td>6hr reflux</td>
<td>"</td>
<td>complex not formed</td>
</tr>
<tr>
<td>Fe(CF₃SO₃)₂</td>
<td>2hr 55°C</td>
<td>dry deoxy</td>
<td>protonated 3Bp-CF₃SO₃</td>
</tr>
<tr>
<td>Mn(NO₃)₂</td>
<td>3hr 50°C</td>
<td>MeCN/EtOH</td>
<td>brown solution gave cream crystals, protonated 3Bp nitrate fab. mass spec - no Mn present</td>
</tr>
</tbody>
</table>
ATTEMPTED CRYPTATE SYNTHESIS USING GLUTARALDEHYDE, TREN AND TEMPLATE ION

Glutaraldehyde (OHC(CH$_2$)$_3$CHO) was extracted with chloroform from a 50% solution in water. The solution in chloroform was dried, filtered and reduced in volume to yield a yellow oil.

Infrared spectrum, 2960(s), 2900(s), 1720(s) $inter alia$. Glutaraldehyde oil polymerises to give a hard plastic-like material within a month.

The experimental method used in the following attempts involved reflux of glutaraldehyde (0.003mol) with template species (0.002mol) in (200ml) solvent for 10-15 minutes. A solution containing tren (0.002mol) was added dropwise with stirring.

TABLE 4

<table>
<thead>
<tr>
<th>TEMPLATE SPECIES</th>
<th>CONDITIONS</th>
<th>SOLVENT</th>
<th>RESULT</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ba(ClO$_4$)$_2$</td>
<td>45°C 2hr</td>
<td>MeOH</td>
<td>Flocculent solid formed beige colour, MeCN insol. i.r. spectrum broad, polymer.</td>
</tr>
<tr>
<td>Ba(ClO$_4$)$_2$</td>
<td>45°C 2hr</td>
<td>MeCN/EtOH</td>
<td>Fawn powder, MeCN sol. i.r. strong NH$_2$, no C=O. Ba-tren complex didnt solubilise Ba(ClO$_4$)$_2$ -polymer.</td>
</tr>
<tr>
<td>Ba(NO$_3$)$_2$</td>
<td>40°C 3hr</td>
<td>MeCN/MeOH</td>
<td>Addition of NaBPh$_4$ did not give precipitate</td>
</tr>
<tr>
<td>Ba(ClO$_4$)$_2$</td>
<td>reflux 2hr</td>
<td>MeOH</td>
<td>Flocculent solid formed i.r. broad -polymer</td>
</tr>
<tr>
<td>Ba(ClO$_4$)$_2$</td>
<td>40-45°C 3hr</td>
<td>MeCN/MeOH</td>
<td>Silver precipitate formed black oil and a few colourless crystals were obtained, i.r. C=N, C=O, NH$_2$ mustard coloured solid i.r. some NH$_2$, possible C=N 1600, 1659 Fab m/e 700 Agcage 5% Pb(NCS)$_2$ dissolved, gave yellow solution, BPh$_4$- gave cream precipitate. i.r. C=N 1615, 1635 some NH$_2$, but hopeful. i.r. broad over C=N, no NH$_2$ polymer, crop 2 Pb-tren complex</td>
</tr>
<tr>
<td>AgNO$_3$</td>
<td>30°C 3hr</td>
<td>MeOH</td>
<td>Silver precipitate formed black oil and a few colourless crystals were obtained, i.r. C=N, C=O, NH$_2$ mustard coloured solid i.r. some NH$_2$, possible C=N 1600, 1659 Fab m/e 700 Agcage 5% Pb(NCS)$_2$ dissolved, gave yellow solution, BPh$_4$- gave cream precipitate. i.r. C=N 1615, 1635 some NH$_2$, but hopeful. i.r. broad over C=N, no NH$_2$ polymer, crop 2 Pb-tren complex</td>
</tr>
<tr>
<td>AgClO$_4$</td>
<td>50°C 4hr</td>
<td>MeOH</td>
<td>AgClO$_4$ dissolved, gave cream precipitate. i.r. C=N 1625, BPh$_4$- gave cream precipitate.</td>
</tr>
<tr>
<td>Pb(NCS)$_2$</td>
<td>50°C 1hr</td>
<td>MeOH</td>
<td>Cream crystals, i.r. sharp strong NH$_2$, sharp C=O, sharp 1601 peak.</td>
</tr>
<tr>
<td>Pb(NCS)$_2$</td>
<td>reflux 3hr</td>
<td>MeOH</td>
<td>Cream solid, Sr-tren complex. crop 2 pale yellow crystalline, pendant arm macrocycle?</td>
</tr>
<tr>
<td>Sr(NO$_3$)$_2$</td>
<td>40-45°C 3hr</td>
<td>MeOH</td>
<td>Sr(NO$_3$)$_2$ dissolved. Cream crystals, i.r. sharp strong NH$_2$, sharp C=O, sharp 1601 peak.</td>
</tr>
<tr>
<td>Sr(ClO$_4$)$_2$</td>
<td>40-50°C 3hr</td>
<td>EtOH</td>
<td>Cream solid, Sr-tren complex, crop 2 pale yellow crystalline, pendant arm macrocycle?</td>
</tr>
</tbody>
</table>

(i.r. frequency/cm$^{-1}$)
ATTEMPTED CRYPTATE SYNTHESIS USING PYRUVIC ALDEHYDE, TREN AND TEMPLATE

Pyruvic aldehyde (CH₃COCCHO) was extracted from aqueous solution. CH₃COCCHO (0.003 mol) and template species (0.001 mol) were refluxed together in solvent for 15-20 minutes. A solution of tren (0.002 mol) was added dropwise with stirring.

TABLE 5

<table>
<thead>
<tr>
<th>TEMPLATE</th>
<th>CONDITIONS</th>
<th>SOLVENT</th>
<th>RESULT</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sr(Clo₄)₂</td>
<td>45-50°C 3 hr</td>
<td>MeOH</td>
<td>Orange colour developed, gave ginger solid, soluble in MeCN, i.r. C=O 1610, 1650, NH₂, ClO₄⁻ BPh₄⁻ present</td>
</tr>
<tr>
<td>Sr(Clo₄)₂</td>
<td>45°C 6 hr</td>
<td>MeOH</td>
<td>Fawn powder, i.r. broad no C=O present</td>
</tr>
<tr>
<td>Sr(Clo₄)₂</td>
<td>Reflux 3 hr</td>
<td>MeOH</td>
<td>NaBPh₄ added no precipitate, fawn powder, i.r. broad</td>
</tr>
<tr>
<td>Ca(NO₃)₂</td>
<td>45-50°C 5 hr</td>
<td>MeOH</td>
<td>gave beige solid at reduced volume, recryst MeCN/EtOH, i.r. possible C=O 1632. Fab - no cage/macrocycle</td>
</tr>
<tr>
<td>Ba(ClO₄)₂</td>
<td>50°C 1 hr, overnight stir</td>
<td>MeOH</td>
<td>Crop 2 yellow crystalline i.r. NH₂ sharp C=O 1615, 1655, BPh₄⁻ strong, -pendant arm macrocycle?</td>
</tr>
</tbody>
</table>

ATTEMPTED CRYPTATE SYNTHESIS USING 2,3-BUTANEDIONE, TREN AND TEMPLATE

CH₃COCOCH₃ (0.003 mol) and template species (0.001 mol) were heated in solvent (250 ml). A solution of tren (0.002 mol) was added dropwise with stirring.

TABLE 6

<table>
<thead>
<tr>
<th>TEMPLATE</th>
<th>CONDITIONS</th>
<th>SOLVENT</th>
<th>RESULT</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sr(Clo₄)₂</td>
<td>50°C 5 hr, overnight stir</td>
<td>MeOH</td>
<td>Ginger solid, i.r. slight NH₂, broad 1700-1300 recryst from MeCN still broad over C=O region</td>
</tr>
<tr>
<td>Ba(Clo₄)₂</td>
<td>40-50°C 5 hr, overnight stir</td>
<td>MeOH</td>
<td>Ginger solid, broad i.r. spectrum</td>
</tr>
<tr>
<td>Pb(NCS)₂</td>
<td>Reflux</td>
<td>MeCN/EtOH</td>
<td>Pb(NCS)₂ dissolved yellow solution, became brown, gave brown oil.</td>
</tr>
</tbody>
</table>
CHAPTER 3
The discussion of the binuclear complexes of macrocycles P and XC is preceded by a brief review of the role and characteristics of the copper ion in relevant metalloproteins. A short section on bonding modes of the thiocyanate ligand is included, as the thiocyanate ligand is present in many of the metal ion complexes of P and XC.

The activity of many metalloproteins is associated with the binding of pairs of metal ions within a protein molecule. Consequently, there is considerable interest in the synthesis of model systems; binucleating ligands which are capable of binding metal ions. Table 7 summarises some of the pairs of metal ions bound in the active sites of enzymes and indicates their biological function.

TABLE 7

<table>
<thead>
<tr>
<th>BINUCLEAR SITE</th>
<th>ENZYME</th>
<th>FUNCTION</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cu Cu</td>
<td>Haemocyanin</td>
<td>reversible O₂ carrier</td>
</tr>
<tr>
<td>Cu Cu</td>
<td>Tyrosinase</td>
<td>monooxygenase</td>
</tr>
<tr>
<td>Cu Cu</td>
<td>Laccase</td>
<td>oxidase</td>
</tr>
<tr>
<td>Cu Cu</td>
<td>Ceruloplasmin</td>
<td>oxidase</td>
</tr>
<tr>
<td>Cu Cu</td>
<td>Ascorbate oxidase</td>
<td>oxidase</td>
</tr>
<tr>
<td>Cu Fe</td>
<td>Cytochrome-c-oxidase</td>
<td>electron transport</td>
</tr>
<tr>
<td>Cu Zn</td>
<td>Superoxide dismutase</td>
<td>O₂⁻ disproportionation.</td>
</tr>
<tr>
<td>Fe Fe</td>
<td>Haemerythrin</td>
<td>reversible O₂ carrier</td>
</tr>
<tr>
<td>Fe Fe</td>
<td>Rubredoxin</td>
<td>O₂⁻ transfer in photosynthesis</td>
</tr>
</tbody>
</table>

It is apparent that the copper ion is involved in a wide range of biological processes. Copper(II) sites in proteins can be classified into three types based on their spectral properties.276,277
TYPE 1 COPPER

These intensely blue copper proteins are characterised\(^{27a-27b}\) by a visible absorption band close to 600nm with a high extinction coefficient, typically around 3000M\(^{-1}\)cm\(^{-1}\). In addition type 1 copper proteins have an ESR spectrum with unusually small hyperfine coupling constant, and high positive redox potential indicating appreciable stability of the copper(I) state (e.g. plastocyanin).

TYPE 2 COPPER

This type of copper has less intense electronic spectral absorptions than type 1 copper proteins. Copper proteins of this type exhibit normal Cu(II) ESR spectra. Type 2 copper is often found in association with type 3 copper.

TYPE 3 COPPER

Type 3 copper(II) exhibits an intense 330nm absorption with extinction coefficient in the range 3000-5000M\(^{-1}\)cm\(^{-1}\). This type is also characterised by the presence of two copper ions in close proximity. The copper(II) is ESR inactive as a result of strong antiferromagnetic coupling interactions between the copper ions. The site can act as a two electron donor/acceptor centre, and is essential to the reduction of dioxygen.

In addition to the three types outlined above, there are non-blue copper proteins. Although these exhibit similar properties to those of type 2 copper proteins, they differ significantly with respect to prosthetic groups, quaternary structure and reactivity.\(^{27e}\) (e.g. haemocyanin)

HAEMOCYANIN

The oxygen-carrying non-heme proteins have very high molecular weights and are found in various molluscs and arthropods. Deoxyhaemocyanin
contains copper(I) and is capable of binding one mol of dioxygen per pair of copper ions. An early crystal structure of the copper(I) dinuclear active site of *Panulirus interruptus* haemocyanin indicated coordination of copper by three histidine ligands, a Cu–Cu separation of 3.7Å was reported. A more recent crystal structure of the deoxy form of *Panulirus interruptus* haemocyanin at 3.2Å resolution showed that each copper is coordinated by two tightly bound histidine and one distant histidine residue. The two distant histidine ligands are located in apical positions and are on opposite sides with respect to the approximate plane defined by the four more tightly bound histidine ligands and the two copper ions. The copper to copper distance is between 3.5 and 3.6Å in four of the subunits, but this distance deviates considerably in two other subunits. A view of the dinuclear copper site of haemocyanin is shown in figure 1. The copper coordinating histidine residues are shown in thick lines and the copper ions are shown by crosses.

Figure 1 The dinuclear copper site of *Panulirus Interruptus* haemocyanin

Resonance raman studies have shown that haemocyanins bind oxygen between the copper(II) ions as μ-1,2-peroxide and the oxidation state of the copper ions change from (I) to (II). Oxidation results in a change in both coordination sphere and geometry to give two tetragonally
coordinated copper(II) ions in an environment of 6 histidine ligands.202 The dinuclear Cu(II) site remains epr silent after oxygenation as a result of strong antiferromagnetic coupling between the Cu(II) ions. As a result of this property haemocyanins are classed as type 3 copper proteins. It has been suggested that a μ-OH ligand exists in copper(II) forms of haemocyanin204,205 and in related dinuclear copper proteins207, though this is not certain.

Haemocyanin shows cooperativity in binding O\textsubscript{2} which is probably triggered by the structural changes involved in the change in oxidation state that results from dioxygen binding.208 A structure intermediate to that preferred by Cu(I) and that preferred by Cu(II) may exist in one or both of the oxy and deoxy forms.209 High co-operativity of carbon monoxide binding at high oxygen activity has been reported.

TYROSINASE

Tyrosinase catalyses both the 2-electron oxidation of o-diphenols to o-quinones and the monoxygenation of phenols to o-diphenols. The dinuclear type 3 copper active site found in tyrosinase210 is similar to the active site of haemocyanin.

THE BLUE COPPER OXIDASES.

The blue copper oxidases, laccase, ceruloplasmin and ascorbate oxidase contain copper(II) of each of the major types listed. Laccase is the simplest of the blue oxidases and contains a type 1, a type 2 and a type 3 copper(II) site. The type 2 and 3 sites are in close proximity and a strong dependence of the geometric and electronic structure of the type 2 copper(II) ion on the oxidation state of the type 3 copper centre was noted. Studies of the binding of small anions to laccase suggest that a trinuclear copper active site comprising type 2 and 3 copper ions may be
active in the irreversible binding and multielectron reduction of dioxygen to water.309 It was suggested that the trinuclear copper cluster assists in oxygen reduction by providing rapid three-electron transfer leading to irreversible cleavage of the O-O bond.

The structure and nature of the copper active sites in ceruloplasmin are not fully established. The enzyme is thought to contain seven copper ions, two type 1, one type 2 and two pairs of type 3 copper sites.296 Ascorbate oxidase contains a trinuclear active site in which type 2 and 3 copper ions may work together to achieve the reduction of dioxygen.297 It was for this work that, among other contributors, Huber was awarded the 1988 Nobel Prize for Chemistry. The trinuclear site is shown in figure 2 and contains a pair of type 3 copper ions each with three histidyl ligands. The remaining ion is a type 2 copper(II) which has two histidyl ligands.297

Figure 2 The trinuclear active site of ascorbate oxidase

Dioxygen is known to bind at the tricopper cluster. The proximity of the three copper ions in the active site may facilitate cooperative donation
of three electrons enabling cleavage of the O-O bond. In addition to the trinuclear site, ascorbate oxidase contains a site where a copper ion is bound in a strongly distorted tetrahedral geometry (approaching trigonal pyramidal geometry) by two histidine ligands, a cysteine and a methionine ligand.

CYTOCHROME-C-OXIDASE

Cytochrome-c-oxidase is a heteronuclear Cu/Fe containing metalloprotein. The enzyme is the terminal member of the electron transport chain in mitochondria and couples the respiration process to oxidation by molecular oxygen. The enzyme functions by accepting electrons from ferrocytochrome c and then donating them to dioxygen. Although the enzyme is difficult to study because it is anchored to the mitochondrial membrane, it is known that four metal centres, two copper and two iron ions are present. The magnetic properties of the components of cytochrome-c-oxidase suggest that one heme centre and one copper centre are antiferromagnetically coupled. Only one copper centre has been detected by epr spectroscopy and the other is undetectable by both epr and electronic spectroscopy. The fully oxidised cytochrome-c-oxidase is believed to contain high spin iron. The temperature dependence of the paramagnetic susceptibility of the oxidised form was studied in the temperature range 200-7K and 4.2-1.5K. The results are consistent with a model in which two isolated $S = \frac{3}{2}$ centres and a spin-coupled $S = 2$ centre are present, corresponding to low-spin Fe(III)(d^7)Cu(II)(d^9) and high-spin Fe(III)/Cu(II) respectively. A model in which the iron and copper centres are linked by an imidazolate bridge has been proposed for the antiferromagnetically coupled Fe/Cu centre.
SUPEROXIDE DISMUTASE

Bovine superoxide dismutase is a heterobinuclear Cu/Zn metalloprotein which catalyses dismutation of superoxide anion to dioxygen and hydrogen peroxide.

\[2O_2^- + 2H^+ \rightarrow H_2O_2 + O_2 \]

An X-ray structure of the metalloprotein at 3Å has been reported. The metalloprotein contains a copper(II) ion which is coordinated by four histidine ligands and a water molecule in a slightly distorted square pyramidal geometry.\(^{28}\) The coordination about the zinc ion is pseudotetrahedral.

![Figure 3 Schematic drawing of active site of bovine superoxide dismutase](image)

Superoxide dismutase has been structurally characterised only in the Cu(II) oxidation state.\(^{28}\) The electronic spectrum of the enzyme shows an absorption at 680nm which has an extinction coefficient of 300M\(^{-1}\)cm\(^{-1}\) as is typical of a type 2 copper(II) ion.

PLASTOCYANIN

Although plastocyanin does not contain a binuclear active site, it is included here due to its relevance to some of the work described later
in this thesis. The structure of oxidised poplar plastocyanin has been determined at 2.7Å resolution. In the blue copper protein plastocyanin, the copper(II) ion is bound in an unusual distorted tetrahedral coordination geometry provided by two unsaturated N-donors from two histidine ligands, and two sulphur donors one from a cysteine and the other from a methionine ligand. The interaction between copper and methionine is weak at 2.9Å.

The donor groups provide a compromise between the preference of Cu(I) for soft donors and the preference of Cu(II) for harder donors. The coordination sphere around the copper ion is intermediate between the square planar and tetrahedral geometries favoured by Cu(II) and Cu(I) respectively, which further suggests enhancement of electron transfer. Nuclear magnetic resonance studies reveal that the active site is relatively inaccessible to solvent molecules.
THIOCYANATE: AN AMBIDENTATE LIGAND

X-ray structural studies of crystalline KSCN derivatives indicate that the free thiocyanate ion is linear and exists as a hybrid of \(-\text{S} = \text{C}=\text{N}\) and \(\text{S}=\text{C}=\text{N}^-\) canonical forms. The stabilization of one canonical form relative to another depends on the chemical environment, thus formally, charge may be located at either end of the ion resulting in ambidentate character.

The thiocyanate anion displays various bonding modes, which are illustrated in figure 4.

(a) \(\text{N}-\text{terminal}\) \[M \rightarrow \text{NCS}\]

(b) \(\text{S}-\text{terminal}\) \[M \rightarrow \text{SCN}\]

(c) 3-atom bridges \[\text{SCN} \rightarrow M\]

(d) 3-atom bridges \[M \rightarrow \text{SCN} \rightarrow M\]

(e) \(\text{N}-\text{only}\) \[M \rightarrow \text{NCS} \rightarrow M\]

(f) \(\text{S}-\text{only}\) \[M \rightarrow \text{SCN} \rightarrow M\]

Figure 4 Bonding modes of the thiocyanate ligand

The terminal nitrogen or sulphur bonding modes are common and the choice of nitrogen or sulphur donor is normally dependent on the hardness (\(\text{N}-\text{bonding}\)) or softness (\(\text{S}-\text{bonding}\)) of the metal ion. In addition to electronic factors, steric factors are often involved. In a crowded complex steric interactions may cause coordination of the NCS through nitrogen. The \(\text{M}-\text{N}-\text{CS}\) arrangement has a bond angle of about 170° which is almost linear whereas the alternative \(\text{M}-\text{S}-\text{CN}\) bonding has a bond angle which is close to 100°.

The three-atom bridging mode of thiocyanate is often found in binuclear metal complexes and in heterobinuclear systems the soft \(\text{S}-\text{donor}\) tends to bind to the softer metal ion. By contrast, coordination in a
single atom bridging mode is relatively rare. Relatively few examples of the S-only bridging mode of thiocyanate have been described. In 1977 Eivekas et al described a complex containing both a 1,1-μ-S bonded thiocyanate and a terminal thiocyanate. A structurally determined example of an S-only bridge between copper(I) ions bound within a macrocycle was reported by Nelson and coworkers (figure 5).

The S-only bridging thiocyanate occurs at internuclear separation of 2.87 Å. The mode of coordination of the thiocyanate ligand is presumably determined both by the soft nature of Cu(I) and the cavity space available between the metal ions bound by the macrocycle. More recently another example of a 1,1-μ-S bonded thiocyanate has been reported in a didecadmium complex.

The N-only bridging bonding mode of thiocyanate was first reported by Cotton in 1979 in an X-ray structural determination of a dirhenium complex anion \([\text{Re}_2(\text{NCS})_6]^-\) and subsequently in 1982 by Reedijk in a dication complex. However the first example of N-only bridging within a macrocyclic complex was reported by Nelson the following year. Shortly afterwards Lindoy reported the N-only bridge in a macrocyclic \(
\text{Ni}^{2+}\) dimer.

Observation of thiocyanate in a bridging mode is indicative of the separation of two metal centres. At internuclear separation greater than
bridging configurations are impossible and terminal -HCS or -SCN depending on the hard/soft nature of the metal ion is observed. The formation of two long bridges between metal ions is often found. The arrangement shown in figure 4(c) typically occurs at internuclear distances in the range 5.3-5.8Å. Alternatively, two long bridges can be accommodated in the manner shown in figure 4(d) where both S-donors bond to the same metal ion. This arrangement is common in heterobinuclear systems where difference in the hard/soft nature of the two metal ions determine the orientation of the thiocyanate 3-atom bridge. The internuclear distance required for accommodation of the two bridging units is reduced in this arrangement.

There are fewer examples of structurally determined N-only bridging thiocyanate. An example of bridging between lead ions via the N-atom only of the thiocyanate occurs in the macrocycle L' shown in figure 6. The internuclear separation of the lead ions was 4.34Å.

![Figure 6](image)

Figure 6 Macrocycles that bind the N-N(CS)-N assembly

Recently, N-only bridged binuclear complexes of all five members of the first transition series from Mn(II) to Cu(II) were reported. The presence of the N-only bridging thiocyanate was detected by infrared spectroscopy of binuclear tetrakis- or bis-(thiocyanato) complexes of Mn(II), Fe(II), Co(II), Ni(II) with macrocycle L² (figure 6), and in
binuclear Co(II) and Ni(II) complexes of macrocycle L². The dicopper(II) **N-only** bridged assembly was observed with the macrocycle shown in Figure 5. Two **N-only** bridging thiocyanates have been found between Ni(II) ions, in a structurally characterised complex. The internuclear separation of the Ni(II) ions was 3.28Å. Various reports of **N-only** bridging thiocyanate have appeared in recent years.***"""".

The infrared spectroscopy of coordinated thiocyanate was reviewed in 1971.**31** Despite the small number of structurally defined examples of **N-only** bridging, a simple physico-structural correlation based on infrared data has emerged. There are three normal vibrations of thiocyanate, v(CN), v(CS) and v(NCS). The v(CN) vibration is most studied as it is normally a strong vibration that occurs around 2050cm⁻¹ which is a region that is normally free of ligand vibrations. By contrast the lower energy v(NCS) and v(CS) vibrations appear at around 470 and 700-800cm⁻¹ respectively regions where there is often interference from ligand vibrations.

The v(CN) frequency ranges of the various bonding modes of thiocyanate, with the first row transition metals, along with that of the free ion are summarised in Figure 7.

![Figure 7: Infrared spectral v(CN) and their structural assignments](image)

Examination of Figure 7 shows that there is overlap of the absorptions of the various types of coordination involving sulphur. Absorption due to
terminal nitrogen bonded thiocyanate occurs at lower frequency between 2030-2080 cm\(^{-1}\). However the most striking feature is that N-only bridging thiocyanates exhibit v(C\(\equiv\)N) absorption at frequencies below 2030 cm\(^{-1}\) and usually below 2000 cm\(^{-1}\). The lowest recorded frequency for the N-only bonded thiocyanate is 1885 cm\(^{-1}\).\(^{213}\)

The bonding of the higher alkaline earth metal ions to the thiocyanate anion is relatively ionic in character and thus higher values for v(C\(\equiv\)N) are observed in both N- and S-terminal bonding. For example, the Ca\(^{2+}\) complex of benzo-15-crown-5, CaL(ICS)_2·H_2O has absorption bands at 2100 and 2075 cm\(^{-1}\) for the N-bonded anions.\(^{27}\) The free ion value occurs at ca. 2100 cm\(^{-1}\). X-ray crystallographic data show that different Ca-N-CS angles for the two thiocyanates result in the non-equivalence that causes the splitting of the infrared spectral frequency.

In some cases the use of C-S stretching frequencies can aid in further assignment of the thiocyanate bonding mode. N-bonded terminal thiocyanates have C-S stretching in the range 780-860 cm\(^{-1}\), whereas S-terminal thiocyanate absorbs in the range 690-720 cm\(^{-1}\). The N-C-S bending mode occurs in the range 465-480 cm\(^{-1}\) for N-terminal thiocyanate or between 410 and 470 cm\(^{-1}\) for S-bonded terminal thiocyanate. In view of the occurrence of N-S linkage switches in metal isothiocyanate complexes caution is advisable in applying these assignment criteria.
COMPLEXES OF THE MACROCYCLIC LIGANDS P AND MC

Macrocycles P and MC were prepared by template methods in the presence of Pb(NCS)$_2$, as described in the experimental section. Template synthesis of the P macrocyclic complex, Pb$_2$P(NCS)$_4$ (1), was reported previously274 and the structure of the complex was determined by X-ray crystallography.

![Figure 8 The X-ray crystal structure of Pb$_2$P(NCS)$_4$.](image)

The X-ray structure demonstrated that 2+2 Schiff-base condensation had taken place to form the dilead macrocyclic complex and that the unusual N-only bridging mode of thiocyanate is found between the metal ions. A weakly bonded and very disordered thiocyanate was located between the two lead ions. Each lead ion was also bonded to an S-terminal thiocyanate.

The series of complexes of macrocycle P has been extended to include triflate derivatives. Triflate anion (CF$_3$SO$_3^-$) was used as an alternative to the potentially hazardous perchlorate anion, which was used in the original work reported by B.Murphy.125 The macrocyclic ligand offers three equatorial donors to each metal ion, leaving the metal ions coordinatively unsaturated and capable of binding small bridging ligands. Triflate anion has relatively little tendency to act as a ligand214 and
Improves the solubility of the complex in polar solvents. Vacant coordination sites on the metal ion are available to anions, such as thiocyanate which coordinates more strongly. The thiocyanate anion, (NCS⁻) coordinates the metal ion and has various bonding modes, which have been outlined in the introduction to this chapter.

Infrared spectral data for the various didead P complexes is listed in Table 8. The presence of v(C=N) and the absence of (C=O) and (NH₂) frequencies in the infrared spectra imply that the macrocyclic ligand remains intact throughout the various transformations.

TABLE 8 PHYSICAL DATA FOR THE DIDEAD COMPLEXES OF MACROCYCLE P

<table>
<thead>
<tr>
<th>COMPLEX</th>
<th>COLOUR</th>
<th>v(C=N)</th>
<th>v(pyr)</th>
<th>v(NCS)</th>
<th>v(CF₃SO₃⁻)</th>
<th>v(OH)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 [Pb₂P(NCS)₄]</td>
<td>yellow</td>
<td>1642</td>
<td>1582</td>
<td>2090 (s)</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>2 Pb₂P(NCS)₂(CF₃SO₃)₂</td>
<td>primrose</td>
<td>1644</td>
<td>1586</td>
<td>2097 (s)</td>
<td>1278 (s)</td>
<td>-</td>
</tr>
<tr>
<td>3 Pb₂P(NCS)(CF₃SO₃)₂:EtOH</td>
<td>cream</td>
<td>1645</td>
<td>1586</td>
<td>1943 (s)</td>
<td>1273 (s)</td>
<td>3430</td>
</tr>
<tr>
<td>4 Pb₂P(NCS)(CF₃SO₃)₂:2H₂O</td>
<td>cream</td>
<td>1647</td>
<td>1587</td>
<td>2097 (s)</td>
<td>1273 (s)</td>
<td>3435</td>
</tr>
<tr>
<td>5 Pb₂P(CF₃SO₃)₄:MeCN</td>
<td>white</td>
<td>1649</td>
<td>1590</td>
<td>-</td>
<td>1272 (s)</td>
<td>-</td>
</tr>
</tbody>
</table>

Complex 5 shows v(MeCN) at 2322 cm⁻¹.
The pseudo-asymmetric ν(NCS) region of the spectra is of interest and is illustrated in figure 9. The complex $[\text{Pb}_2\text{P(NCS)}_4] (1)$ shows four bands in the ν(NCS) region. The strong absorptions at 1970 and 2090 cm$^{-1}$ are assigned to a single atom N-only bridging thiocyanate and a weakly bonded thiocyanate respectively. The absorptions at 2046 and 2025 cm$^{-1}$ are attributed to two S-terminal thiocyanates in slightly different environments, one bound to each lead ion. The slightly different environments may arise from the twisting of the structure that is apparent in the X-ray structure (figure 8).

Anion exchange provides a series of complexes in which the number of thiocyanate anions vary. Replacement of thiocyanate anion in the tetrathiocyanate complex with triflate anion was achieved by use of silver triflate. It proved necessary to use the silver salt as this gave a silver thiocyanate precipitate which was easily filtered off. Attempted anion exchange by use of lithium triflate gave only starting material. The tetrathiocyanate P complex was less soluble than the triflate derivatives and crystallised out of solution in preference to triflate containing products.

On proceeding to the bis- and mono-thiocyanato complexes, a progressive removal of the various bonding modes of thiocyanate is observed as illustrated in figure 9. Infrared spectral data shows which bonding mode is replaced. In complex (2), $[\text{Pb}_2\text{P(NCS)}_2](\text{CF}_3\text{SO}_3)_2$ only the thiocyanates giving rise to the absorptions at 1964 and 2097 cm$^{-1}$ remain. The lower frequency absorption is due to the N-only bridging thiocyanate and the absorption at 2097 cm$^{-1}$ is assigned to the weakly coordinated disordered NCS that lies between the lead ions. The residual 2+ charge is
Figure 9 The ν_{a}(NCS) stretching region of dilead P thiocyanates
balanced by two triflate anions. On replacement of another thiocyanate by triflate, only the N-only bridging thiocyanate remains.

Progressive lowering of the frequency of absorption of the thiocyanate N-only bridge is observed in the series of complexes, 1970 cm\(^{-1}\) in the tetrathiocyanate (1), 1964 cm\(^{-1}\) in the dithiocyanate (2) and 1943 cm\(^{-1}\) in the monothiocyanate (3). This indicates a progressive weakening of the CsN bond in the thiocyanate ligand which may indicate stronger coordination of the N atom to the two lead ions.

Fast atom bombardment mass spectroscopy has been done on complexes (2) and (3). The fab mass spectrum of the monothiocyanate complex (3) gave seven peaks attributable to mono or diplead P containing fragments, which are listed in the experimental section. The peak corresponding to \([\text{Pb}_2\text{P}(\text{NCS})(\text{CF}_{3}\text{SO}_3)_2]^+\) was the most intense of the diplead P fragment ions. However a low intensity peak (5%) at m/e 1139 corresponding to \([\text{Pb}_2\text{P}(\text{CF}_{3}\text{SO}_3)(\text{NCS})_2]^+\) was observed. It is possible that the dithiocyanate forms during fab mass spectroscopy or there may be some contamination of the monothiocyanate complex with the dithiocyanate complex. However, if the latter is the case, the CHN analysis did not suggest the presence of impurity and the infrared spectrum did not show a strong absorption due to another bonding mode of thiocyanate. The intensity of the peak in the mass spectrum need not necessarily reflect the percentage of the parent species in the material, as peak intensity is also dependent on the stability of the fragment ion.

The fab mass spectrum of the dithiocyanate (2) shows the fragment ion \([\text{PbP}(\text{CF}_{3}\text{SO}_3)]^-\) as the base peak. The peak due to the dithiocyanate \([\text{Pb}_2\text{P}(\text{NCS})_2(\text{CF}_{3}\text{SO}_3)]^+\) was of moderate intensity, however a relatively low intensity peak due to \([\text{Pb}_2\text{P}(\text{CF}_{3}\text{SO}_3)_3]^+\) was observed. Analysis of the
percentage of carbon, hydrogen and nitrogen in the complex did not suggest impurity.

Although the N-only bridge is retained throughout all of the thiocyanate derivatives, this configuration is not introduced first when a triflate anion in the tetra triflate P didelead complex (5) is exchanged for a thiocyanate anion. The infrared spectrum of Pb₂P(SCS)(CF₃SO₃)₃ (4) exhibits ν(C≡N) of thiocyanate at 2097 cm⁻¹, this frequency suggests that the weakly bonded thiocyanate was introduced. It is possible that formation of this bonding mode of thiocyanate is kinetically favoured.

The infrared spectrum of the tetra triflate (5) shows an increase in the number of absorptions due to the triflate group on comparison of the infrared spectrum of the complex with that of the triflate salt. Coordination of metal ions by triflate has been reported and induces only slight anion structural changes. Ionic triflate has strong asymmetric stretch of (SO₃) at ca. 1278 cm⁻¹ and νₐ (SO₃) in bound triflate has been reported to occur at 1248 cm⁻¹. Therefore it is possible that triflate coordinates the lead ion in the absence of adequate numbers of more strongly coordinating ligands.

It is likely that the lead ion in complex (5) is coordinated by acetonitrile. A ν(NeCN) absorption at 2322 cm⁻¹ was observed in the infrared spectrum of this complex. There appears to be a trend in the νC=H frequencies in the series towards higher frequency imine absorption in the derivatives that have fewer thiocyanate ligands. The tetrathiocyanate ν(C≡N) occurs at 1642 cm⁻¹, ν(C≡N) for the monothiocyanate occurs at 1645 cm⁻¹ and ν(C≡N) for the tetra triflate occurs at 1649 cm⁻¹ in the infrared spectrum.
HOMOBINUCLEAR TRANSITION METAL COMPLEXES OF MACROCYCLE P

Transmetallation of Pb₂P(NCS)₄ using copper(II) triflate as described in the experimental section gave the complex, \([\text{Cu}_2\text{P(NCS)}_2\text{](CF}_3\text{SO}_3)_2\text{H}_2\text{O})\). Attempted preparation of the analogous dicobalt complex by a similar method gave mixtures of relatively insoluble products. The difficulty was solved by limiting the amount of thiocyanate present in the reaction mixture. This was achieved by use of dioxid P tetratrilflate (5) as starting material, addition of cobalt triflate and two equivalents of sodium thiocyanate gave crystalline dicobalt complex (7), \([\text{Co}_2\text{P(NCS)}_2\text{(H}_2\text{O})_2\text{](CF}_3\text{SO}_3)_2\) as the product. Physical data for the homobinuclear complexes of macrocycle P is shown in Tables 9 and 10.

TABLE 9 PHYSICAL DATA FOR THE HOMOBINUCLEAR COMPLEXES OF MACROCYCLE P.
Infrared spectral data /cm⁻¹.

<table>
<thead>
<tr>
<th>COMPLEX</th>
<th>ν(C=每位)</th>
<th>ν(pyri)</th>
<th>ν(NCS)</th>
<th>ν(CF₃SO₃)</th>
<th>ν(OH)</th>
</tr>
</thead>
<tbody>
<tr>
<td>6 (\text{Cu}_2\text{P(NCS)}_2\text{_2\text{H}_2\text{O}))</td>
<td>1627(m)</td>
<td>1589</td>
<td>2116(s)</td>
<td>1280(s)</td>
<td>3420</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1256(s)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1224(s)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1162(m)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1029(s)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>638(s)</td>
<td></td>
</tr>
<tr>
<td>7 (\text{Co}_2\text{P(NCS)}_2\text{(H}_2\text{O})_2\text{_2)</td>
<td>1634(w, br)</td>
<td>1586</td>
<td>2133(s)</td>
<td>1286(s)</td>
<td>3430</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1241(s)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1221(s)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1160(m)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1029(s)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>636(s)</td>
<td></td>
</tr>
</tbody>
</table>
TABLE 10 Magnetic, electronic spectral and conductivity data

<table>
<thead>
<tr>
<th>COMPLEX</th>
<th>COLOUR</th>
<th>(\mu_{\text{eff}}) / BM (g)</th>
<th>293K</th>
<th>93K</th>
<th>ELECTRONIC SPECTRAL DATA</th>
</tr>
</thead>
<tbody>
<tr>
<td>6 (\text{Cu}_2\text{P(NCS)}_2_2\cdot\text{H}_2\text{O})</td>
<td>blue-</td>
<td>1.85</td>
<td>1.81</td>
<td>218</td>
<td>26,700sh</td>
</tr>
<tr>
<td>green</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>7 (\text{Co}_2\text{P(NCS)}_2(\text{H}_2\text{O})_2_2)</td>
<td>black-</td>
<td>3.5</td>
<td>2.1</td>
<td></td>
<td>23,200sh</td>
</tr>
<tr>
<td>brown</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

(a) moment per transition metal ion. \(\epsilon \) in mol\(^{-1}\) l cm\(^{-1}\)
\(\land \) in S cm\(^{-2}\) mol\(^{-1}\)

The infrared spectra of the dicopper (6) and dicobalt (7) complexes show significant differences. The dicopper complex (6) displays a medium intensity, sharp and unsplit \(v(\text{C}=\text{N}) \) absorption at 1627 cm\(^{-1}\), which is a frequency typical of the imine group when coordinated to a transition metal ion. Although the dicobalt P complex (7) shows an absorption at similar frequency to the \(v(\text{C}=\text{N}) \) absorption of the dicopper complex, a markedly different intensity of the \(v(\text{C}=\text{N}) \) absorption is observed. The \(v(\text{C}=\text{N}) \) absorption is weak, broad and jagged in appearance and is likely to include a contribution from \(\delta(\text{OH}) \). The infrared spectrum of the dicobalt P complex (7) is shown in figure 10.

Similar low intensity absorptions of the coordinated imine have been noted in complexes where the metal ion was in spin equilibrium. The \(v(\text{C}=\text{N}) \) absorption is often absent or strongly reduced in intensity in trimethine complexes of low spin Co(II) or Fe(II). The intermediate intensity band observed for complex (7) suggests operation of a \(^4T_{1g} \rightarrow ^2E_g \) spin equilibrium, with appreciable occupation of both states at room
Figure 10 The infrared spectrum of $\text{Co}_2\text{P(NCS)}_2(\text{H}_2\text{O})_2\text{CF}_3\text{SO}_3$
temperature. The black-brown colour of complex (7) is not found for high spin Co(II) complexes and suggests the presence of the low spin isomer.

The appearance of the e.s.r spectrum of (7) as a frozen glass in MeCN (figure 11) is another indication of the accessibility of the low spin state of the complex.

![EPR Spectrum](image)

Figure 11: The e.s.r. spectrum of \(\text{[Co}_{2} \text{P(\text{NCS})}_{3} \text{(H}_{2}\text{O})_{2} \text{(CF}_{3}\text{SO}_{3})_{2} \text{ as MeCN glass at 173K.} \)

The dicobalt complex has the simple e.s.r spectrum expected for spin-paired cobalt(II) instead of the broad zero-field split spectrum characteristic of high-spin Co(II). There was no indication of splitting of the eight hyperfine components into fifteen, with reduction of the hyperfine splitting to 40-50G as might be expected if the two cobalt ions were strongly interacting via the thiocyanate bridges. The spectrum (figure 11) shows a \(g = 2 \) signal with eight broad components in the parallel band appearing to high field of \(g_{z} \) indicating an axially extended Jahn-Teller distorted tetragonal geometry for the cobalt(II) ion.
Variable temperature magnetic susceptibility measurements over the temperature range 293-93K support this interpretation. The room temperature moment of 3.5 BM per cobalt(II) ion is intermediate between that expected for the high-spin $^4T_{2g}$ and low-spin 2E_g ground states and a further reduction in moment with temperature demonstrates the existence of a thermally controlled $^4T_{2g} + ^2E_g$ spin equilibrium. The dicobalt complex displays two ν(NCS) absorptions in the range typical of the long -NCS- bridging mode of thiocyanate. These are presumably disposed in centrosymmetric axial/equatorial fashion as illustrated in figure 12.

Figure 12 Suggested arrangement of thiocyanate ligands in dicobalt P

A solvent H$_2$O molecule completes each donor set, leading to 6-coordination of each cobalt (II) ion.

The dicopper complex (6) shows only one thiocyanate frequency, at 2116cm$^{-1}$ in the thiocyanate ν(CN) region of the infrared spectrum. The absorption is strong and slightly broadened when compared to either of the thiocyanate ν(CN) absorptions observed for the dicobalt complex (7). The analytical data for the dicopper complex (6), when considered in conjunction with the infrared spectrum, suggests two thiocyanates in approximately equivalent environments. The macrocyclic ligand supplies three donors to each copper ion and the two bridging -NCS- groups supply two donors to each Cu(II), as shown schematically in figure 13.
Thus donors filling five positions of a square pyramid provide a geometry that is acceptable to the Cu(II) ions. The residual 2+ charge is balanced by the triflate counterions.

The electronic spectrum of the dicopper complex is not particularly helpful in assigning a coordination geometry to the metal ions. One unsplit d-d absorption is observed, which is at least consistent with square based geometry. The DMF frozen glass esr spectrum of the dicopper (II) complex is shown in figure 14. The g = 2 spectrum shows $g_{II} > g_\perp$ ($g_{II} = 2.24$ and $g_\perp = 2.05$) which suggests axially extended D_{4h}, and eliminates the possibility of trigonal bipyramidal geometry. The small hyperfine splitting ($A_{II} = 75G$) together with the observation of 6 lines of the correct intensity ratio for a seven-line pattern on the low field wing of g_\perp suggests weak interaction between the copper(II) ions. The observation of the 'forbidden' $\Delta M = 2$ signal at 10³ times the sensitivity used to record the main band signal, provides further evidence that the two copper(II) ions bound in macrocycle P are weakly antiferromagnetically coupled. The half-band signal shows 6 of the 7 lines expected and has hyperfine splitting of $\approx 80G$. However the variable temperature magnetic susceptibility data over the temperature range 293-93K suggest only weak antiferromagnetic interactions (Table 10).

The magnetic and esr data for complexes (6) and (7) indicate that the long -NCS- bridge is not a good transmitter of magnetic exchange interactions. Indication of only weak interactions were observed in the
ear and magnetic data for the dicopper complex. The temperature
dependance of μ was not pronounced and only slight lowering of μ was
observed with decreasing temperature. The presence of appreciable zero-
field splitting in the ear spectrum further suggests that interaction is
weak. The conclusion that the thiocyanate ligand is a poor transmitter of
magnetic interactions is similar to that found in related studies of the
thiocyanate ligand as a mediator of magnetic interactions.12,30

Figure 14 The DMF frozen glass e.s.r. spectrum of \([\text{Cu}_2\text{P(HCS)}_2]^{2+}\)
Transmetallation of Pb₂P(NCS)₄ with K(CF₃SO₃)₂ as described in the experimental section produced a series of heterobinuclear complexes that contain one Pb²⁺ ion and one transition metal ion M(II), where M = Mn, Fe, Ni. The complexes analysed as the heterobinuclear bis-thiocyanato-ditriflates [PbM(NCS)₂][CF₃SO₃]₂·xH₂O. Fast atom bombardment mass spectral data for the complexes is listed in the experimental section and confirms their heterobinuclear nature. Good agreement is obtained between the observed and calculated isotopic cluster pattern as shown in figure 15.

The fab mass spectra of the iron-lead (9) and nickel-lead (10) complexes show no evidence of the presence of either ditransition metal P or dilead P complexes. The base peak for these is due to [PbM(NCS)₂(CF₃SO₃)]⁺ species and clusters due to other [PbM]⁺-containing fragments appear in the spectra. The fab mass spectrum of the
manganese complex (8) shows no evidence of the presence of the dimanganese P complex. The base peak is due to \([\text{MnPbP(NCS)}_2(\text{CF}_3\text{SO}_3)]^+\)
and various other clusters due to MnPbP containing fragments are evident. However there are also peaks at m/e 1230 and 1139 which are due to the
dilead fragment ions \([\text{Pb}_2\text{P(NCS)}_2(\text{CF}_3\text{SO}_3)]^-\) and \([\text{Pb}_2\text{P(NCS)}_3]^-\)
respectively. This suggests contamination of the heterobinuclear product
with product resulting from anion exchange alone and possibly with
starting material. Initially, difficulties were encountered in obtaining
the pure heterobinuclear MnPb complex, as became evident from CHN
analysis. The magnetic measurements obtained were low for a high spin
manganese complex. It was this product which was sent for fast mass
spectroscopy. Subsequently, it was found that increased reaction
temperature and isolation by slow evaporation gave pure heterobinuclear
product and acceptable CHN analysis was obtained for complex (8).

The physical data obtained for the heterobinuclear complexes is
summarised in tables 11 and 12.
Table 1: Infrared spectral data /cm⁻¹.

<table>
<thead>
<tr>
<th>COMPLEX</th>
<th>ν(C=N)</th>
<th>ν(NCS)</th>
<th>ν(CF₃SO₃)</th>
<th>ν(OH)</th>
</tr>
</thead>
<tbody>
<tr>
<td>8 [MnPbP(NCS)₂(CF₃SO₃)₂:2H₂O</td>
<td>1646</td>
<td>2101</td>
<td>1249</td>
<td>3430</td>
</tr>
<tr>
<td></td>
<td>1633</td>
<td>2080</td>
<td>1030</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>637</td>
<td></td>
</tr>
<tr>
<td>9 FePbP(NCS)₂(H₂O)₂</td>
<td>1646</td>
<td>2104</td>
<td>1248</td>
<td></td>
</tr>
<tr>
<td></td>
<td>1630</td>
<td>2078</td>
<td>1032</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>636</td>
<td></td>
</tr>
<tr>
<td>10 NiPbP(NCS)₂(H₂O)₂₂:2H₂O</td>
<td>1640</td>
<td>2103</td>
<td>1248</td>
<td>3435</td>
</tr>
<tr>
<td></td>
<td>1635</td>
<td>2124</td>
<td>1030</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>636</td>
<td></td>
</tr>
<tr>
<td>11 [NiPbP(NCS)₄]:H₂O</td>
<td>1645</td>
<td>2112</td>
<td>-</td>
<td>3449</td>
</tr>
<tr>
<td></td>
<td>1634</td>
<td>2082</td>
<td>2058</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>2023</td>
<td></td>
</tr>
<tr>
<td>12 MnPb(NCS)₃(OC₃CH₃):3H₂O</td>
<td>1640</td>
<td>2070</td>
<td>-</td>
<td>3434</td>
</tr>
<tr>
<td></td>
<td>1634</td>
<td>2033</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Complex 12 shows acetate absorptions at 1581(s,br) and 1417(s,br) cm⁻¹. Triflate has a rich spectrum, only the strongest peaks attributable to triflate are tabulated. There is uncertainty regarding coordination of water or triflate in these complexes.

The presence of ν(C=N) and absence of amine or carbonyl frequencies in the infrared spectra confirm that the macrocyclic ligand remains intact on transmetallation. The ν(C=N) absorption is split into two equal intensity peaks in the MnPbP and FePbP complexes (8) and (9). The peak at 1646 cm⁻¹ is typical of imine groups that are coordinated to a lead ion whereas the peak at lower frequency ca. 1630cm⁻¹ did not appear in the spectrum of the dilead starting material (see Table 1). This peak is assigned to the imine groups that are coordinated to the transition metal ion.
The magnetic susceptibility data obtained for the complexes support the heterobinuclear formulation. The magnetic moments found per transition metal ion for the complexes fall in the ranges expected for high spin Mn(II), Ni(II) and Fe(II) complexes (Table 12).

Analysis of the FePbP complex (9) combined with the presence of a weak OH absorption in the mull infrared spectrum suggests that one water of crystallisation is present. This water molecule may coordinate the iron ion of the complex. In the previously reported work on heterobinuclear P perchlorate salts, a thermally controlled quintet-singlet spin equilibrium was observed in the Fe/Pb complex which led to intermediate values of magnetic moment over the temperature range 293-93K. However in complex (9) it appears that change of solvation or counterion has altered the relative stability of quintet and singlet states to the extent that the first signs of reduced magnetic moment only begin to appear at 93K. Presumably replacement of coordinated MeCN, in
the perchlorate salt, with coordinated water or triflate oxygen in the triflate salt is the major factor affecting the temperature at which the
$^4T_2 \rightarrow \ ^4A_g$ transition of coordinated Fe(II) occurs. The electronic spectrum gives some indication of the accessibility of the low spin state, in that a pair of intense metal to ligand charge transfer bands at around 20,000 cm$^{-1}$ are observed, as are normally observed in low spin Fe(II) trimethine complexes. The presence of the 1630 cm$^{-1}$ v(C=N) peak in the iron complex (9) fits well with the high spin nature of iron in this complex as shown by the magnetic measurement. In a low spin iron complex the v(C=N) of the coordinated imine is often not visible in the infrared spectrum due to reduction in intensity or shifting of position, or both. The conductivity measurement for the iron-lead complex falls in the range expected for a 2 : 1 electrolyte in acetonitrile. This suggests that the thiocyanates remain coordinated in solution whereas the triflates are ionic.

The HfPb complexes (10) and (11) do not show such clear splitting of the C=N frequency and have a strong peak at ca. 1635 cm$^{-1}$ and just a shoulder for the imine groups coordinated to the lead ion. Complex (10) shows a strong broad absorption at 3300 - 3500 cm$^{-1}$ in both the mull and the KBr disc infrared spectra. This supports the presence of 4H$_2$O as suggested by the CHN analytical figures.

The infrared spectrum of the dark brown MnPbP complex (12) shows strong absorptions due to the acetate counterion. A strong absorption at ca. 1580 cm$^{-1}$ is assigned to v$_{\text{as}}$(COO) and an absorption at 1417 cm$^{-1}$ is assigned to the v$_{\text{sym}}$(COO) asymmetric and symmetric stretching modes respectively. Thiocyanate present in the complex gives strong absorptions at 2070 and 2030 cm$^{-1}$. The fab mass spectrum of complex
(12) showed m/e 895 as the base peak. This peak is presumably attributable to the \([\text{MnPbP(NCS)}_3]^-\) fragment ion. A strong cluster around m/e 949 may be attributed to \([\text{MnPbP(NCS)}_3(\text{Cl}_2\text{CCH}_3)]^+\) (85%). E.s.r suggests that the manganese ion in (12) is Mn(II) as opposed to Mn(III) which is e.s.r silent. A 6-line Mn(II) e.s.r signal was observed in the dmf glass spectrum, which is shown in figure 16. Forbidden lines due to quadrupole interactions give weak signals between the allowed hyperfine lines. As expected, the hyperfine was absent in the e.s.r spectrum of the solid and a broad \(g = 2\) signal was observed. The fine structure observed on the low field wing of the dmf glass spectrum is unusual and will be investigated further. It is possible that the complex could contain manganese clusters in which the manganese ions are linked by acetate.

The dithiocyanato- heterobinuclear complexes show two \(v_{\text{NCN}}(\text{NCS})\) thiocyanate absorptions in the infrared spectrum. The absorptions fall in the range typical of 1,3-\(\mu\)-NCS bridging. The X-ray crystal structure of PbMnP(NCS)\(_4\) was solved previously and shows that two long bridging thiocyanates can be accommodated between lead and the manganese ion within the cavity of the \(\text{P} \) macrocycle (figure 17).

![Figure 17 The X-ray crystal structure of PbMnP(NCS)\(_4\)](image)
The bridging thiocyanates and the three macrocyclic donors make up five of the donors to manganese in the complex. The MnPb F complex (8) gives a magnetic moment in the range expected for an isolated high-spin Mn(II) ion. Absorptions due to d-d transitions are not observed in the electronic spectrum of the manganese complex, which is as expected as a result of the selection rules \(\Delta S = 0 \) and \(\Delta L = \pm 1 \). The esr spectrum of (8) displays a strong isotropic signal at \(g = 2 \) which is split into six lines by hyperfine coupling of 94G.Forbidden lines due to quadrupole interactions appear weakly between the allowed hyperfine lines which are normally observed in Mn(II) esr spectra. The MnPb complex (8) analyses as the dihydrate and the mull spectrum indicates the presence of \(\text{H}_2\text{O} \), though the water absorption is relatively less intense than in the mull spectrum of the NiPb complex (10).

Six coordination is confirmed for Ni(II) in complex (10) by electronic spectral measurements and magnetic susceptibility measurements. Absorption bands due to the three transitions expected for Ni(II) in octahedral symmetry are observed in the electronic spectrum. The highest energy transition appears as a shoulder at 25,000 cm\(^{-1}\) on the intense charge transfer absorption above 24,000 cm\(^{-1}\). This shoulder is due to the \(^3\text{A}_{2g} \rightarrow \text{^3T}_{1g} (\text{F}) \) transition. Absorption bands at 17,200 and 10,300 cm\(^{-1}\) are attributed to \(^3\text{A}_{2g} \rightarrow ^3\text{T}_{1g}(\text{F}) \) and \(^3\text{A}_{2g} \rightarrow ^3\text{T}_{2g} \) transitions respectively. The extinction coefficient of the lowest energy transition is typical of 6-coordinate Ni(II) and is much too low for tetrahedrally coordinated Ni(II). The room temperature magnetic moment (3.17 BM) is close to the spin-only value for octahedral Ni(II) ion and shows no hint of the orbital contribution expected in \(T_d \) symmetry.
It is not clear why heterobimetallic complexes form on transmetalation of Pb₂P(NCS)₄ with metal ions, Mn(II), Fe(II), and Ni(II). The formation of heterobinuclear complexes on transmetalation with these ions may occur as a result of lower solubility of the heterobinuclear complex causing this to crystallise out of solution in preference to homobinuclear transition metal complexes. Alternatively, it is possible that the macrocycle is only capable of providing a suitable site geometry to one of these transition series ions, while the less demanding lead ion can tolerate the irregular coordination geometry offered by the second binding site. Another possibility is that formation of heterobinuclear products with Mn(II), Fe(II) and Ni(II) may be a size effect. The P macrocyclic cavity is capable of accommodating the non-centrosymmetric bridge between Pb and Mn(II) but may not be able to accommodate the longer centrosymmetric bridge that may be more suitable for homobinuclear transition metal complexes. The centrosymmetric bridge requires 5.3-5.8Å between the metal centres whereas the Pb-Mn distance in the non-centrosymmetrically bridged complex was 4.85Å.

The isolation of the heterobinuclear lead/transition metal P complexes offers the possibility of replacing the lead ion in heterobinuclear complexes of P with another transition metal ion to form heterobi-transition metal complexes. The various attempts to substitute the lead ion in heterobinuclear complexes of P for a transition metal ion are summarised in Table 1 in the experimental chapter. This is preliminary work which has indicated potentially productive systems. The Cu(I) ion was considered to be a suitable metal ion for the transmetalation. Due to the d¹⁰ electronic configuration of Cu(I), the ion does not have marked stereochemical preferences, and therefore may be
suited to binding at the possibly irregular site occupied by the lead ion. In addition, the Fe/Cu heterobinuclear complex was the most sought after combination of transition metal ions, due to the potential of such a complex as a model for the Fe/Cu containing enzyme cytochrome-c-oxidase (see introduction to chapter 3).

Transmetallation of Fe/PbP with Cu(I) as described in the experimental chapter afforded a deep purple/black powder. Conveniently, the masses of Fe and Cu are sufficiently different for fab mass spectroscopy to be of use in determining the products present. The product consisted of a mixture of the heterobinuclear Fe/Cu P complex and a dicopper P complex. The fab spectrum exhibits peaks due to several Fe/CuP containing fragment ions. The clusters around m/e 693 (20%), 784 (25%) and 842 (15%) correspond to [FeCuP(NCS)₂]⁺, [FeCuP(NCS)(CF₃SO₂)]⁺ and [FeCuP(NCS)₂(CF₃SO₂)]⁺ respectively. Clusters due to dicopper containing fragments were also present, m/e 586 (10%) which corresponds to [Cu₂P +2H]⁺. Fab mass spectroscopy is not particularly helpful in determining the oxidation state of Cu in the product as redox changes can occur in the fast atom bombardment process. There was no evidence of either FePbP or CuPbP containing fragments in the fab spectrum.

The epr spectrum of the product was recorded as a dmf glass and is shown in figure 18. The dmf was deoxygenated before use. The spectrum shows a strong copper(II) signal indicating that oxidation to Cu(II) had occurred. The presence of six hyperfine lines on the low field wing of g₁ suggests that there is some interaction between the metal ions of the complex. The observation of a forbidden half-band ΔM = 2 signal provides further evidence of coupling. The small hyperfine splitting (75G) is typical of interacting dicopper(II) complexes. The epr spectrum is likely
Figure 18 The dmf glass esr spectrum of the product of [FeCuP]^{-}-

attempted synthesis
to be mainly due to the dicopper(II)P complex that gave fragment ions in the fab spectrum of the product. The relative intensities of the hyperfine lines do not match those expected for the seven line pattern of interacting dicopper(II), and may indicate the presence of some non-interacting Cu(II) complex.

The product from the attempted FeCuP synthesis was darker in colour than the FePbP parent complex. The dark colour may be due to metal-ligand charge transfer absorptions involving the iron ion and may indicate accessibility of the low spin state of the iron ion. Recrystallisation of the mixture under nitrogen did not adequately separate the products and requires a relatively large amount of material. Separation of the products by ion exchange chromatography may be more successful.

Transmetallation of the NiPbP complex (10) using cobalt (II) triflate gave brown crystalline product. The fab mass spectrum showed a cluster at m/e 516 (75%) which is attributed to [NiP]^+. The isotopic pattern for this cluster closely matched that observed for [NiP]^+ in the fab spectrum of complex (10). A cluster at m/e 691 (10%) could be due to either [CoNiP(NCS)2] or [Ni2P(NCS)2+H]2+. As Co and Ni have similar mass these alternatives are distinguishable only by 4% Ni peaks present in high abundance fragments. It is unlikely that this cluster is due to dinickel P as previous fab spectra of the NiPbP heterobinuclear complex did not show any trace of dinickel P complex. A cluster observed at m/e 840 (30%) may be due to CoNiP(NCS)(CF3SO3) or NiPbP(NCS)2. However NiPbP seems more probable as a cluster observed at m/e 840 in the fab spectrum of the starting complex showed a similar isotopic cluster pattern. Clusters at m/e 931 and 989 were also observed in both fab spectra and are presumably due to [NiPbP(NCS)(CF3SO3)]^+ and
The relative intensities of the peaks at 840, 931 and 989 are similar in both spectra. The cluster at 989 (100%) could possibly be due to $\text{NiCoP(NCS)}_2\text{(CF}_3\text{SO}_3)_2^-$, generally in the fab spectra of the P complexes loss of a triflate anion from the complex gives a fragment ion that corresponds to the base peak. The isotopic cluster pattern for the base peak matches both formulations fairly well and does not provide firm evidence. The brown colour of the complex does not disprove the NiPbP possibility as samples of brown NiPbP(NCS)$_2$(CF$_3$SO$_3$)$_2$: MeCN have been obtained. It appears that coordination of MeCN can lead to brown colouration of the NiPbP complex.

Magnetic susceptibility measurements gave $\chi_\omega = 4.417 \times 10^{-5}$ cgsu which on the basis of the formulation NiPbP(NCS)$_2$(CF$_3$SO$_3$)$_2$ led to $\mu = 3.43$BM per complex for CoNiP, $\mu = 2.43$ per Ni for Ni$_2$P and $\mu = 3.65$ per Ni for NiPb. The ranges of magnetic moments usually observed for these ions are as follows, Ni(II) Q, 2.8-3.3, Co(II) bs 4.5-5.2, ls 1.8BM. Calculation of χ for the NiCoP alternative using the Ni(II) and Co(II) ranges above, can give a value that is close to the observed value. The NiPbP and Ni$_2$P alternatives do not fit the expected values.

Transmetallation of NiPbP (10) using Cu(MeCN)$_2$(ClO$_4$) gave mainly anion exchange products. The fab mass spectrum of the product showed m/e 939 [PbNiP(NCS)$_2$(ClO$_4$)]$^+$ as the base peak. A weak cluster was observed around m/e 794 this may indicate the presence of the fragment ion [NiCuP(NCS)$_2$(ClO$_4$)]$^+$. Attempted exchange of the lead ion in Mn/PbP complex (8) for Cu(I) gave pale yellow product which showed a tendency to become green in air suggesting the presence of Cu(I) in the product and its subsequent oxidation to Cu(II). However, fab mass spectroscopy indicated that both
the Mn(II) and Pb(II) ions of the P starting material were substituted by copper ion. Intense clusters due to dicopper P containing fragment ions were observed. The fab mass spectrum of the product shows peaks due to

\[[\text{Cu}_2\text{P}^{(\text{MCS})}]^{+} \quad m/e \quad 642 \quad (100\%) \],
\[[\text{Cu}_2\text{P}^{(\text{MCS})}_2]^{+} \quad m/e \quad 700 \quad (80\%) \],
\[[\text{Cu}_2\text{P}^{(\text{MCS})(\text{CF}_3\text{SO}_3)}]^{+} \quad m/e \quad 793 \quad (70\%) \], and
\[[\text{Cu}_2\text{P}^{(\text{MCS})}_2(\text{CF}_3\text{SO}_3)]^{+} \quad m/e \quad 894 \quad (65\%) \].

The presence of less intense clusters at 8-9 m/e (10-15 \%) lower than the dicopper peaks may indicate the presence of some of the heterobinuclear MnCuP complex.

Attempted exchange of the lead ion in MnPbP for Ni(II) was unsuccessful. The fab mass spectrum shows peaks at m/e 838 and 986. These are likely to correspond to \([\text{NiPbP}^{(\text{MCS})}_2-\text{H}]^{+}\) and \([\text{NiPbP}^{(\text{MCS})}_2(\text{CF}_3\text{SO}_3)-\text{H}]^{+}\) fragment ions.

Attempts to exchange the lead ion in heterobinuclear MnPb and NiPb complexes of P for a copper(II) ion resulted in formation of the dicopper complex \(\text{Cu}_2\text{P}^{(\text{MCS})}_2(\text{CF}_3\text{SO}_3)_2\). The product was characterised by infrared spectroscopy, CHN analysis and magnetic measurements. The product had the same blue-green colour as the dicopper complex of P (6) which was obtained previously. The infrared spectra of the two were identical and magnetic measurements gave results that were close to those expected for Cu(II) (2.06BM/Cu(II)) and unlike the value for \(\mu\) expected for Ni(II) or Mn(II) complexes. The formation of dicopper(II) complex as the product of these reactions, necessitates both the replacement of the lead ion and the transition metal ion of the starting material. Thus both the transition metal ion and the lead ion bound in heterobinuclear complexes of P must be reasonably labile.
DILEAD COMPLEXES OF MACROCYCLE MC

The MC macrocyclic complex has the 5-carbon link between coordination sites elaborated by incorporating a 1,3 cyclohexyl unit. The major reason for investigating the 1,3 cyclohexyl containing macrocycle was the possibility that the cyclohexyl ring would offer increased steric protection to the binuclear bridged assembly. The increased hydrocarbon content of the macrocycle leads to superior solubility of the MC complex in polar organic solvents, relative to the analogous P complex. Template synthesis of the MC macrocyclic complex proceeded in a similar fashion to synthesis of the P complex. In both, the insoluble Pb(HCS)2 template species dissolved to give a yellow coloured solution and product was isolated as yellow crystals. The similarity between the infrared spectrum of the MC complex and that of the P complex suggested that 2+2 Schiff-base condensation had occurred. The presence of ν(C=N) at ca. 1640 cm⁻¹ and the absence of amine absorptions in the region 3200-3400 cm⁻¹ or carbonyl frequencies around 1700 cm⁻¹ in the infrared spectrum implied that Schiff-base condensation was complete. In addition the presence of four strong thiocyanate absorptions, including a frequency due to a bridging mode, suggested that two template ions were bound in the macrocycle. Such factors, combined with the crystalline nature of the product and its solubility in acetonitrile suggested macrocyclic rather than polymeric product. Subsequent CHN analysis and FAB mass spectroscopy showed that the 2+2 macrocycle had formed and that two lead ions were bound by the macrocycle. The various Pb(II) complexes of MC together with selected infrared spectral data are listed in Table 13.
Physical Data for the Diload Complexes of Macrocycle MC.

Table 13 Infrared Spectral Data /cm⁻¹.

<table>
<thead>
<tr>
<th>Complex</th>
<th>Colour</th>
<th>ν(C=N)</th>
<th>ν(NCS)</th>
<th>ν(CF₃SO₃)</th>
<th>ν(OH)</th>
</tr>
</thead>
<tbody>
<tr>
<td>13 Pb₂MC(NCS)₄·EtOH</td>
<td>yellow</td>
<td>1640</td>
<td>2091(s)</td>
<td>-</td>
<td>3430</td>
</tr>
<tr>
<td>14 Pb₂MC(NCS)₂(CF₃SO₃)₂·EtOH MeCN</td>
<td>primrose</td>
<td>1644</td>
<td>2077(s)</td>
<td>1278(s)</td>
<td>3420</td>
</tr>
<tr>
<td></td>
<td>yellow</td>
<td>1988(s)</td>
<td>1238(s)</td>
<td>1027(s)</td>
<td>638(m)</td>
</tr>
<tr>
<td>15 Pb₂MC(NCS)(CF₃SO₃)₃</td>
<td>cream</td>
<td>1645</td>
<td>1955(s)</td>
<td>1273(s)</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1238(s)</td>
<td>1027(s)</td>
</tr>
<tr>
<td>16 Pb₂MC(CF₃SO₃)₄·EtOH MeCN</td>
<td>white</td>
<td>1646</td>
<td>-</td>
<td>1272(s)</td>
<td>3420</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1219(s)</td>
<td>1012(s)</td>
</tr>
<tr>
<td>17 Pb₂MC(ClO₄)₄·H₂O</td>
<td>cream</td>
<td>1647</td>
<td>-</td>
<td>-</td>
<td>3420</td>
</tr>
</tbody>
</table>

All of the complexes showed ν(pyridine) at ca. 1587 cm⁻¹. Complexes 14 and 16 showed νMeCN at ca. 2280 cm⁻¹.

The presence of a ν(C=N) absorption and absence of amine or carbonyl frequencies indicates that the macrocyclic ligand remains intact throughout the various transformations. The tetrathiocyanate (13) shows four bands in the pseudo-asymmetric ν(NCS) region. The strong absorption at 1969 cm⁻¹ is assigned to the single atom N-only bridging mode of thiocyanate. The two absorptions at 2048 and 2007 cm⁻¹ are attributed to two S-terminal thiocyanates in different environments. Subsequent X-ray crystallographic evidence confirming the presence of the N-only bridge was supplied by Dr. V. McKee of the University of Canterbury, New Zealand.
THE X-RAY STRUCTURE OF Pb₂MC(NCS)_4

The X-ray crystal structure of Pb₂MC(NCS)_4 is shown in figure 19. The structure confirms that 2+2 Schiff-base condensation has taken place to give the dilead macrocyclic complex. The cyclohexyl rings adopt chair conformations and are folded away from the coordination site. Therefore the cyclohexyl rings do not provide additional steric protection to the coordination site. Each lead ion is bonded to two imine N donors and to a N of the pyridine head unit. In addition, each lead ion is coordinated by an S-terminal thiocyanate. The S-terminal coordination mode is expected for the relatively 'soft' lead ion on the basis of Pearson's hard/soft acid/base theory. This Pb₂MC(NCS)_2 fragment fits C₂ symmetry. There is also one thiocyanate which is bridged through the N atom only to both lead ions. The nitrogen atom of this thiocyanate lies on the two-fold axis, though the carbon and sulphur atoms are disordered to either side of the axis. Both orientations are shown in the crystal structure. Each pyridine 2,6-diimine subunit of the macrocycle is planar and is folded up like butterfly wings on either side of the N-only bridging thiocyanate. The fourth thiocyanate was severely disordered and is best considered only weakly coordinated. This thiocyanate is located somewhere between the lead ions on the exposed lower face of the macrocyclic complex. It is assumed that the fourth NCS does not form part of the coordination sphere. As a result each lead ion is assumed to be 5-coordinate. The geometry of the lead ion in the coordination sphere is a distorted trigonal bipyramid. The three macrocyclic donors fill the equatorial sites, though there is distortion as a result of steric constraints. The terminal -SCN and the N-only bridge fill the axial positions. The Pb-Pb
distance was found to be 4.44Å which is remarkably similar to the Pb-Pb distance of 4.34Å in the analogous P complex.

Thus the N-only bridging mode of thiocyanate, which was suggested by the infrared spectrum of the dilead MC complex, was confirmed by X-ray structural analysis. The complex adds to the number of structurally defined compounds containing the unusual N-only bridging thiocyanate. The results strengthen the correlation between structure and infrared spectral frequency ($<2000\text{cm}^{-1}$) for this bonding mode.

TABLE 14 Selected X-ray crystallographic data

<table>
<thead>
<tr>
<th>BOND</th>
<th>BOND DISTANCE/Å</th>
<th>BOND</th>
<th>BOND ANGLE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pb-N1</td>
<td>2.44</td>
<td>N1-Pb-N2</td>
<td>64°</td>
</tr>
<tr>
<td>Pb-N2</td>
<td>2.48</td>
<td>N1-Pb-S21</td>
<td>83°</td>
</tr>
<tr>
<td>Pb-S21</td>
<td>2.9</td>
<td>N2-Pb-S21</td>
<td>81°</td>
</tr>
<tr>
<td>Pb-N31</td>
<td>2.7</td>
<td>N1-Pb-N31</td>
<td>76°</td>
</tr>
<tr>
<td>Pb-N3</td>
<td>2.5</td>
<td>N2-Pb-N31</td>
<td>82°</td>
</tr>
<tr>
<td></td>
<td></td>
<td>S21-Pb-N31</td>
<td>158°</td>
</tr>
<tr>
<td></td>
<td></td>
<td>N1-Pb-N3</td>
<td>64°</td>
</tr>
<tr>
<td></td>
<td></td>
<td>N2-Pb-N3</td>
<td>128°</td>
</tr>
<tr>
<td></td>
<td></td>
<td>S21-Pb-N3</td>
<td>89°</td>
</tr>
<tr>
<td></td>
<td></td>
<td>N31-Pb-N3</td>
<td>88°</td>
</tr>
</tbody>
</table>

Pb...Pb = 4.44Å
The pseudo-asymmetric ν(NCS) region of the spectra of dilead MC complexes are shown in figure 20. The tetrathiocyanate (13) shows four bands, the N-only bridging NCS at 1969cm⁻¹ and two S-terminal thiocyanates in different environments at 2048 and 2007cm⁻¹. The weakly coordinated thiocyanate which was not precisely located in the crystal structure determination gives the absorption at 2091cm⁻¹. This frequency is somewhat higher than the free ion value. Treatment of the tetrathiocyanate MC complex (13) with AgCF₂SO₃ results in replacement of thiocyanate by triflate anion. The replacement can be carried out sequentially, substituting triflate for 2, 3, or 4 of the thiocyanate groups. A similar trend to that observed in the P series unfolds. In the complex Pb₂MC(NCS)₂(CF₃SO₃)₂ the two terminal thiocyanates have been replaced leaving the N-only bridging thiocyanate and an NCS that gives a 2077cm⁻¹ absorption. Replacement of another thiocyanate leaves only the N-bonded thiocyanate.

In both the dilead P and dilead MC series replacement of NCS with triflate results in a gradual lessening of yellow colour as the number of thiocyanate groups decrease. This suggests that the strong yellow colour of the tetrathiocyanates is due to charge transfer processes involving the thiocyanate group. Removal of the coordinated thiocyanates create vacant coordination sites on the metal ion.

The tetrapерchlorate (17) was obtained by treatment of complex (13) with silver perchlorate. The infrared spectrum of the tetrapерchlorate MC complex (17) is informative. Splitting of the ν₃ perchlorate mode suggests that perchlorate is coordinated to the metal ion. The tetrapерchlorate MC complex shows ν₃ perchlorate absorptions at 1101, 1012 and whereas the ν₄ absorption at 622cm⁻¹ is unsplit. The
Figure 20 The ν(CS) stretching region of dilead NC thiocyanates
splitting of the v_3 absorption suggests some reduction in symmetry of the perchlorate.

THE HOMOBINUCLEAR COMPLEXES OF MC

Transmetallation of Pb$_2$MC(NCS)$_4$ with Cu(II) or Ni(II) as described in chapter 2 resulted in formation of the dicopper and dinickel MC complexes (18) and (19) respectively. Physical data for the homobinuclear complexes is listed in Tables 15 and 16.

PHYSICAL DATA FOR THE HOMOBINUCLEAR COMPLEXES OF MACROCYCLE MC

TABLE 15 Infrared spectral data /cm$^{-1}$.

<table>
<thead>
<tr>
<th>COMPLEX</th>
<th>v(C=H)</th>
<th>v(NCS)</th>
<th>v(CF$_3$SO$_3$)</th>
<th>v(NO$_3$)</th>
<th>v(OH)</th>
</tr>
</thead>
<tbody>
<tr>
<td>18 Cu$_2$PbMC(NCS)$_2$(CF$_3$SO$_3$)$_2$·2H$_2$O</td>
<td>1627 (m)</td>
<td>2111 (s)</td>
<td>1276 (s)</td>
<td>-</td>
<td>3420</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>1255 (s)</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>1157 (s)</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>1030 (s)</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>638 (s)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>19 Ni$_2$MC(NCS)$_2$(NO$_3$)$_2$</td>
<td>1629 (m)</td>
<td>2143 (s)</td>
<td>-</td>
<td>1383 (s)</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1325 (m)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1292 (s)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>805 (w)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>810 (w)</td>
<td></td>
</tr>
</tbody>
</table>

The infrared spectra show a medium intensity unsplit v(C=N) absorption and amine and carbonyl frequencies are absent indicating that the macrocyclic ligand remains intact in the transition metal complexes. The dicopper complex (18) shows a strong absorption at 2111cm$^{-1}$ which is probably due to the long -NCS- bridging mode of thiocyanate. Consideration of the infrared spectral information along with the CHN analytical data suggests that the complex contains two thiocyanates in approximately equivalent environments.
The frozen glass ESR spectrum of the dicopper complex (18) suggests that there is weak interaction between the copper centres, presumably via bridging thiocyanate. Although the frozen glass ESR spectrum is not well resolved, five lines can be discerned on the side of the g_\perp signal. Examination of the 1500-1600G region of the spectrum at high sensitivity reveals the forbidden 'half-band' $\Delta M = 2$ signal, which appears approximately 10^{-2} times the intensity of the $g = 2$ signal. The half-band signal is split by hyperfine coupling and five lines of the correct intensity ratio for a seven line pattern are observed, suggesting weak interaction between the copper(II) centres. Variable temperature magnetic susceptibility measurements also indicate weak interaction between the metal centres (table 16). A reduction in magnetic moment from 2.03BM at 300K to 1.66BM at 80K was observed.

TABLE 16 Magnetic, electronic spectral and conductivity data.

<table>
<thead>
<tr>
<th>COMPLEX</th>
<th>COLOUR</th>
<th>μ_{eff} (a) 300K 80K</th>
<th>\wedge ELECTRONIC SPECTRAL DATA ν ϵ</th>
</tr>
</thead>
<tbody>
<tr>
<td>18 Cu$_2$(NCS)$_2$(CF$_3$SO$_3$)$_2$2H$_2$O</td>
<td>green</td>
<td>2.03 1.66</td>
<td>238 14,600 105</td>
</tr>
<tr>
<td>19 Ni$_2$NC(NCS)$_2$(NO$_3$)$_2$</td>
<td>sage</td>
<td>3.06 2.70</td>
<td>insol 28,000 mull</td>
</tr>
<tr>
<td></td>
<td>green</td>
<td></td>
<td>22,200 (sh)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>16,900</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>10,270</td>
</tr>
</tbody>
</table>

(a) moment per transition metal ion in BM.
\wedge in S cm2 mol$^{-1}$
ν in cm$^{-1}$, ϵ in 1 mol$^{-1}$cm$^{-1}$.

The electronic spectrum of the dicopper complex (18) shows a single unsplit d-d transition at $14,600\text{cm}^{-1}$, $\varepsilon = 185 \text{ mol}^{-1}\text{cm}^{-1}$, which does not reveal much information on coordination geometry of the complex. However the presence of this absorption is consistent with tetragonal geometry.

The conductivity measurement for the complex in acetonitrile falls in the range expected for a 2:1 electrolyte. This suggests that the thiocyanate anions remain coordinated in acetonitrile solution and that the triflate anions are ionic.

The dinickel complex (19) was synthesised as described in the experimental section. It was found that use of nickel nitrate as source of Ni(II) ion facilitated removal of lead ion from the dilead NC complex as Pb(NO$_3$)$_2$ precipitate. The precipitate formed relatively quickly and was removed by filtration before the macrocyclic products were obtained. By contrast, transmetallation attempts using nickel triflate, nickel perchlorate or nickel chloride presented problems. Either only anion exchange took place or a mixture of insoluble sage-green products contaminated with lead thiocyanate was obtained.

The electronic spectrum of the dinickel complex (19) suggests octahedral coordination of the Ni(II) ions. The absorptions at $10,270\text{cm}^{-1}$ and $16,900\text{cm}^{-1}$ are attributable, respectively, to the $^3A_{2g} \rightarrow ^3T_{2g}$ and $^3A_{2g} \rightarrow ^3T_{1g}(F)$ transitions expected in octahedral symmetry. The highest energy band expected $^3A_{2g} \rightarrow ^3T_{1g}(F)$ appears as a shoulder at $22,200\text{cm}^{-1}$ on the side of the intense charge transfer absorption. Due to the insolubility of the complex, only the mull spectrum is available and thus extinction coefficients were not obtained.

The suggested octahedral geometry may be obtained by coordination of the Ni(II) ion by three macrocyclic donors, the two bridging
thiocyanates and a nitrate. Coordination of nitrate is suggested by strong splitting of the nitrate absorption in the infrared spectrum.320 Nitrate absorption bands occur at 1383, 1325, 1292, 805 and 810 cm-1. The magnetic susceptibility measurements for the dinickel NC complex fall in the range expected for high-spin 6-coordinate Ni(II), and confirm 6-coordination of the metal ion. A reduction in moment per Ni(II) ion from 3.0 to 2.7BM over the temperature range 300-80K was observed.

All attempts to produce a cobalt NC macrocyclic complex failed. Only dilead macrocyclic products incorporating the Co(NCS)\textsubscript{4} complex anion were obtained on attempted transmetallation using cobalt(II) thiocyanate or Co(II) nitrate. Strong reflux of the tetratriflate (16) complex with cobalt(II) triflate in acetonitrile gave only ring-opened species, as shown by the presence of amine and carbonyl frequencies in the infrared spectrum of the product.

\textbf{THE HETEROBINUCLEAR COMPLEXES OF NC}

Transmetallation of Pb\textsubscript{2}NC(NCS)\textsubscript{4} (13) with transition metal ions Fe(II) and Mn(II), as described in the experimental section, produced heterobinuclear complexes that contain one lead ion and one transition metal ion. Fast atom bombardment mass spectroscopy verifies the heterobinuclear nature of the Mn/Pb and Fe/Pb macrocyclic complexes (21) and (23). The fab mass spectrum of the iron/lead macrocyclic complex showed a strong peak due to [FePbNC(NCS)\textsubscript{4}(CF\textsubscript{3}SO\textsubscript{3})+ and various other peaks due to iron/lead fragment ions. These are listed in the experimental section. Peaks due to either Pb\textsubscript{2}NC or Fe\textsubscript{2}NC species did not appear in the spectrum. The fab mass spectrum of the heterobinuclear manganese/lead complex (21) showed MnPbNC(NCS)\textsubscript{4}(NO\textsubscript{3})+ as the base peak.
and peaks due to dimanganese or diplead species were not observed. The complexes analysed as the heterobinuclear MC bi thiocyanato- complexes, FePbMC(NCS)$_2$(CF$_3$SO$_3$)$_2$ and MnPbMC(NCS)$_2$(NO$_3$)$_2$.

Nitrate was used as the counterion in transmetallation with Mn(II) as it proved impossible to obtain pure heterobinuclear products on use of Mn(CF$_3$SO$_3$)$_2$ or Mn(ClO$_4$)$_2$. Metal exchange attempts using manganese triflate gave mixtures of heterobinuclear MC and diplead MC anion exchange products. Use of Mn(NO$_3$)$_2$ in transmetallation resulted in relatively rapid and complete formation of lead nitrate precipitate which was filtered off before reduction in volume to yield the heterobinuclear product. By contrast, the lead thiocyanate formed in the transmetallation of diplead MC with manganese triflate, formed more slowly and contaminated the macrocyclic products. Presumably the greater insolubility of lead nitrate in acetonitrile assists in driving the metal exchange forward.

The transmetallation of diplead MC with Fe(CF$_3$SO$_3$)$_2$ proceeded without difficulty, lead thiocyanate formed quickly and was removed by filtration before the heterobinuclear product was obtained. It appears to be more difficult to exchange the lead ion for manganese(II) than for iron(II). (This may be a size effect, due to manganese(II) being larger than iron(II), it may be more difficult to accommodate Mn and bridging thiocyanates in the macrocyclic cavity. Infrared spectral data for the heterobinuclear complexes of the MC macrocycle is shown in Table 17.
PHYSICAL DATA FOR THE HETEROBINUCLEAR COMPLEXES OF MACROCYCLE MC

TABLE 17 Infrared spectral data /cm⁻¹.

<table>
<thead>
<tr>
<th>COMPLEX</th>
<th>(\nu(C=H))</th>
<th>(\nu(NCS))</th>
<th>(\nu(CF_3SO_3))</th>
<th>(\nu(NO_3))</th>
<th>(\nu(OH))</th>
</tr>
</thead>
<tbody>
<tr>
<td>20 MnPbMC(NCS)₂·H₂O</td>
<td>1643 (m)</td>
<td>2056 (s)</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td></td>
<td>1632 (m)</td>
<td>2005 (s)</td>
<td>1999 (s)</td>
<td>1977 (s)</td>
<td></td>
</tr>
<tr>
<td>21 MnPbMC(NCS)₂(NO₃)₂·2H₂O</td>
<td>1647 (m)</td>
<td>2054 (s)</td>
<td>-</td>
<td>1424 (m, br)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>1635 (m)</td>
<td>1975 (s)</td>
<td>-</td>
<td>1383 (s)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>(21)</td>
<td></td>
<td></td>
<td>1285 (m)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>821 (s)</td>
<td></td>
</tr>
<tr>
<td>22 MnPbMC(NCS)₄·NaOH·H₂O</td>
<td>1647 (m)</td>
<td>2067 (s)</td>
<td>-</td>
<td>1424 (m, br)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>1634 (m)</td>
<td>2005 (s)</td>
<td>1980 (s)</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>23 FePbMC(NCS)₃(CF₃SO₃)₂·2H₂O</td>
<td>1651 (m)</td>
<td>2061 (s)</td>
<td>1296 (s)</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td></td>
<td>1627 (m)</td>
<td>1961 (s)</td>
<td>1258 (s)</td>
<td>1237 (s)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1169 (s)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1026 (s)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>636 (s)</td>
<td></td>
</tr>
<tr>
<td>24 HiPbMC(NCS)₃(NO₃)₂</td>
<td>1628 (m)</td>
<td>2137 (s)</td>
<td>-</td>
<td>1425 (br)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>2079 (s)</td>
<td>-</td>
<td>1382 (s)</td>
<td>1285 (m)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>820 (m)</td>
<td></td>
</tr>
</tbody>
</table>

The presence of \(\nu(C=H) \) and the absence of frequencies attributable to amine or carbonyl groups in the infrared spectra of the heterobinuclear complexes implies that the macrocyclic ligand remains intact on transmetallation. The imine absorption is split into two equal intensity peaks in the MnPbMC and FePbMC complexes (21) and (23). The \(\nu(C=H) \) absorption at ca. 1630 cm⁻¹ is typical of an imine that is coordinated to a transition metal ion and the peak at ca. 1640 cm⁻¹ is at similar frequency to the \(\nu(C=H) \) of the didead starting material, and can be attributed the imines coordinated to the lead ion.
The presence of the imine absorption when coordinated to Fe(II) in the iron complex suggests that the Fe(II) ion is high spin as was confirmed by magnetic measurements in the temperature range 300-80K (table 18). There was no indication of a high-spin low-spin crossover in this temperature range. The ν(CN) of thiocyanate in the infrared spectra of MnPbMC and FePbMC bis-thiocyanato-complexes each display two strong absorptions. The infrared spectrum of MnPbMC, complex (21) shows an absorption at 1975 cm⁻¹ which is attributed to the N-only bridging mode of thiocyanate. Likewise the infrared spectrum of the FePbMC complex (23) (figure 21) shows an absorption which suggests the presence of an N-only bridge, at 1961 cm⁻¹. The infrared spectrum of the complexes also show an absorption at ca. 2055 cm⁻¹ which may be due to a long bridging or terminal thiocyanate. The presence of a terminal thiocyanate is considered more probable as to date there are no reports of a structurally determined example of a complex that has both a N-only bridging thiocyanate and a long -NCS- bridge between the same two metal ions. This combination may not be feasible.

TABLE 18 Magnetic, electronic spectral and conductivity data.

<table>
<thead>
<tr>
<th>COMPLEX</th>
<th>COLOUR</th>
<th>μ eff"" 300K</th>
<th>90K</th>
<th>ELECTRONIC SPECTRAL DATA</th>
<th>v</th>
<th>ε</th>
</tr>
</thead>
<tbody>
<tr>
<td>21 MnPbMC(NCS)₂(NO₃)₂:2H₂O yellow -</td>
<td>221</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>23 FePbMC(NCS)₂(CF₃SO₃)₂:2H₂O purple</td>
<td>4.98 4.48 -</td>
<td>19950 3300 16300sh</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>24 NiPbMC(NCS)₂(NO₃)₂ green -</td>
<td>3.2 2.8 insol</td>
<td>25500 17100 10300</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

(a) moment per transition metal ion in BM, \(\text{\(\epsilon \)} \) in S cm² mol⁻¹.
The ESR spectrum of the MnPbXC complex (21) as a DMA glass showed a strong \(g = 2 \) signal which is split into six lines by hyperfine coupling. Forbidden lines due to quadrupole interactions appear weakly between the hyperfine lines. The MnPbXC complex (21) proved to be unstable. In solution at room temperature the complex becomes brown within days. The solid sample also becomes brown if not stored at low temperature. The infrared spectrum of the resultant brown solid shows that the N-only bridging thiocyanate is lost. Although crystals of the MnPbXC complex (21) which were suitable for X-ray diffraction were obtained, these disintegrated while the data was being collected.

Preparation of the MnPbXC tetrathiocyanate complex (20) was attempted in the hope that crystals suitable for X-ray diffraction would result. The infrared spectrum of the orange tetrathiocyanate MnPbXC complex (20) displays four \(v(CN) \) thiocyanate frequencies. The strong absorption at 1977 cm\(^{-1}\) is attributed to an N-only bridging thiocyanate. The absorptions at 1999 and 2005 cm\(^{-1}\) were thought unlikely to be bridging although they fall in the range associated with the N-only bridge. The remaining thiocyanate gives an absorption at 2056 cm\(^{-1}\), similar to that found in the dithiocyanato MnPb complex (21). The X-ray crystal structure of the complex has been determined by Dr. John Malone. The crystal was protected from the atmosphere while the data was collected.
The X-ray crystal structure of MnPbMC(NCS)₄ is shown in figure 22 and selected X-ray crystallographic data is shown in table 19. The lead and the manganese ions are bound to a trimethine site at either end of the macrocycle. The manganese ion is coordinated by two terminal thiocyanates which are bound via the nitrogen atom. Coordination of the thiocyanate ligand through nitrogen is expected for the manganese ion on the basis of Pearson's hard/soft acid/base theory. A thiocyanate anion bridges the metal ions through the nitrogen atom only.

The manganese ion is six co-ordinate and has an irregular geometry, being bonded to the three macrocyclic N-donors which are coplanar (Mn-N3, Mn-N4, Mn-N5) and an N-terminal thiocyanate, the nitrogen of which is close to this plane. The remaining N-terminal thiocyanate and the N-only bridge occupy approximate axial positions. The coordination around manganese is represented below.

![Figure 23 The coordination around manganese](image)

Figure 23 The coordination around manganese

The lead ion in the complex is five coordinate and has an irregular coordination geometry. Irregular coordination sites have been reported in many lead ion macrocyclic complexes. The lead ion is quite adaptable and tolerates a range of coordination geometries.
Figure 22 The X-ray structure of MnPb₂NC(WCS)₄.
<table>
<thead>
<tr>
<th>BOND</th>
<th>BOND DISTANCE</th>
<th>BOND</th>
<th>BOND ANGLE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pb-H1</td>
<td>2.60 Å</td>
<td>N1-Pb-N2</td>
<td>68°</td>
</tr>
<tr>
<td>Pb-H2</td>
<td>2.54 Å</td>
<td>N1-Pb-N6</td>
<td>64°</td>
</tr>
<tr>
<td>Pb-H6</td>
<td>2.47 Å</td>
<td>N1-Pb-N7</td>
<td>78°</td>
</tr>
<tr>
<td>Pb-N7</td>
<td>2.62 Å</td>
<td>N1-Pb-N10</td>
<td>82°</td>
</tr>
<tr>
<td>Pb-N10</td>
<td>2.55 Å</td>
<td>N2-Pb-N6</td>
<td>131°</td>
</tr>
<tr>
<td></td>
<td></td>
<td>N2-Pb-N7</td>
<td>84°</td>
</tr>
<tr>
<td></td>
<td></td>
<td>N2-Pb-N10</td>
<td>83°</td>
</tr>
<tr>
<td></td>
<td></td>
<td>N6-Pb-N7</td>
<td>94°</td>
</tr>
<tr>
<td></td>
<td></td>
<td>N6-Pb-N10</td>
<td>83°</td>
</tr>
<tr>
<td></td>
<td></td>
<td>N7-Pb-N10</td>
<td>159°</td>
</tr>
<tr>
<td>Mn-N3</td>
<td>2.34 Å</td>
<td>N3-Mn-N4</td>
<td>70°</td>
</tr>
<tr>
<td>Mn-N4</td>
<td>2.34 Å</td>
<td>N3-Mn-N5</td>
<td>140°</td>
</tr>
<tr>
<td>Mn-N5</td>
<td>2.42 Å</td>
<td>N3-Mn-N7</td>
<td>87°</td>
</tr>
<tr>
<td>Mn-N7</td>
<td>2.53 Å</td>
<td>N3-Mn-N8</td>
<td>86°</td>
</tr>
<tr>
<td>Mn-N8</td>
<td>2.25 Å</td>
<td>N3-Mn-N9</td>
<td>109°</td>
</tr>
<tr>
<td>Mn-N9</td>
<td>2.00 Å</td>
<td>N4-Mn-N5</td>
<td>70°</td>
</tr>
<tr>
<td></td>
<td></td>
<td>N4-Mn-N7</td>
<td>81°</td>
</tr>
<tr>
<td></td>
<td></td>
<td>N4-Mn-N8</td>
<td>85°</td>
</tr>
<tr>
<td></td>
<td></td>
<td>N4-Mn-N9</td>
<td>176°</td>
</tr>
<tr>
<td></td>
<td></td>
<td>N5-Mn-N8</td>
<td>92°</td>
</tr>
<tr>
<td></td>
<td></td>
<td>N5-Mn-N9</td>
<td>86°</td>
</tr>
<tr>
<td></td>
<td></td>
<td>N7-Mn-N8</td>
<td>111°</td>
</tr>
<tr>
<td></td>
<td></td>
<td>N7-Mn-N9</td>
<td>167°</td>
</tr>
<tr>
<td></td>
<td></td>
<td>N8-Mn-N9</td>
<td>95°</td>
</tr>
</tbody>
</table>

The coordination of the lead ion by N-terminal thiocyanate contrasts with the structure of Pb$_2$MC(NCS)$_4$ (Figure 19), in which the lead ion is coordinated to an S-terminal thiocyanate. Coordination of lead by N-terminal thiocyanate is quite unusual. Generally lead is coordinated through the S atom of the thiocyanate ligand, in agreement with Pearson's hard/soft acid/base theory. It is possible that in the PbMnMC complex coordination of lead by S of the thiocyanate may result in steric interaction between the thiocyanate ligand and the macrocycle. Interaction may involve the macrocycle that binds the Pb-NCS subunit or the neighbouring macrocyclic complex in the crystal lattice. The N-N-CS arrangement has a bond angle of approximately 170° which is close to
linear whereas the alternative N-S-CN arrangement has a bond angle which is close to 100°. Steric interactions have previously been suggested to be responsible for coordination of thiocyanate through nitrogen to a 'soft' metal ion in sterically crowded complexes.

The X-ray structural determination provides the first example of an N-only bridging thiocyanate in a heterobinuclear complex. The structure confirms the inference, from the infrared spectrum of the complex, that the N-only bridging thiocyanate is present. In addition the structure lends further support to the correlation between 'low' infrared absorption frequency and the N-only bonding mode of thiocyanate. Normally the N-only bridging mode of thiocyanate when found in a dilead parent complex would not exist after transmetallation with a transition metal ion. The change in size of the metal ion often results in an internuclear separation that is no longer suitable for binding a single atom bridge. The relatively large size of the manganese(II) ion, compared to that of the other transition metal ions, is likely to provide the smallest internuclear separation in the complex and is more likely to permit binding of the single atom bridge between the metal ions. However, comparison of the internuclear separation found in the parent Pb₂NC complex (13) with that found in the MnPbNC complex (20) shows that the internuclear separation is smaller in the MnPbNC case. The manganese-lead internuclear distance is 4.16Å which contrasts with the internuclear separation of 4.44Å found for the dilead parent NC complex.

The MnPbNC structure (figure 22) contrasts with the structure of MnPbF(NCS)_2 (figure 16) which shows two long -NCS- bridges between the manganese and lead ions. The lead and manganese ions of the P structure have a separation of 4.85Å. Each metal is six coordinate and is bonded to
three nitrogens of the macrocycle, a nitrogen atom of a terminal NCS group and two atoms of the bridging thiocyanate group. The lead ion is bonded to the sulphur atoms of the bridging thiocyanates and the manganese is bonded to the nitrogens of the bridging thiocyanates.

The brown manganese complex \(\text{MnPbMC(NCS)}_2: \text{MeOH} \cdot \text{H}_2\text{O} \) (22) as the solid gave a broad ESR signal indicating that the manganese ion is Mn(II). A six-line hyperfine splitting was observed in the spectrum of the complex as a dmf glass. The electronic spectrum of complex (22) shows that the tail of the intense charge transfer absorption extends across the visible region, accounting for the brown colour of the complex. As expected, d-d bands were not observed.

The heterobinuclear NiPb complex (24) was obtained as a small second crop from the reaction that formed the dinickel MC complex (19). The infrared spectrum of the heterobinuclear PbNiMC complex showed thiocyanate absorptions at 2137 and 2079 cm\(^{-1}\) which fall in the range for long bridging thiocyanate. Absorptions due to nitrate counterion were typical of uncoordinated nitrate. Bands at 1382, 815 and 721 cm\(^{-1}\) were observed due to the three infrared active modes of ionic \(\text{D}_{3h}, \text{NO}_3^- \). The electronic spectral data for the complex suggests six coordination of the Ni(II) ion as the three bands expected for Ni(II) in octahedral symmetry were observed. The infrared spectrum did not show an absorption due to acetonitrile therefore it is probable that the sixth coordination position on the nickel (II) ion is occupied by a water molecule.

The formation of the heterobinuclear Fe/Cu complex with macrocycle P suggested that the Fe/Cu complex of macrocycle MC may be obtainable. This was the only preparation of a heterobinuclear transition metal complex of the MC macrocycle which was attempted. The reaction between FePbMC
complex (23) and Cu(OeCN)_4(CF_3SO_3) as described in the experimental section gave a mixture of products. Fab mass spectroscopy indicated that the mixture included the heterobinuclear Fe/Cu MC complex, FePbMC starting material and possibly PbCuMC complex. The fab mass spectrum of the product showed a cluster at m/e 773 (50%) which is attributable to [FeCuMC(NCS)_3]^+. The cluster around m/e 809 (20%) may be due either to [FeCuMC(CF_3SO_3)]^+ or to [CuPbMC]^-, likewise the cluster at 1108 (25%) may be due to [FeCuMC(CF_3SO_3)]^+ or to [PbCuMC(CF_3SO_3)_2+H]^+. The cluster around m/e 952 (15%) can be assigned to [FePbMC(CF_3SO_3)]^-.

Esr showed that the product contains Cu(II). The dmf glass spectrum showed a non-interacting Cu(II) signal, with hyperfine splitting of 150G. The dmf glass esr spectrum of the product is shown in figure 24. The product mixture was soluble in acetonitrile and separation by ion exchange chromatography may be possible.
Figure 24: The dmf glass esr spectrum of the product of $[\text{FeCuNC}]^{4-}$ synthesis
CHAPTER 4
INTRODUCTION

Transition metal complexes of ligands containing the α-diamine group (–N=C–C=N–) have been studied extensively for the past thirty-five years. The distinctive nature of the α-diamine group was first recognised by Krumholz in 1953. By comparison of complexes of phenanthroline and bipyridyl with those of simpler α-diamine ligands he concluded that it was only of secondary importance whether or not the α-diamine group belonged to a conjugated heterocyclic system.

The α-diamine group has excellent chelating ability and complexes of α-diamines with metals from each group of the periodic table are known. The chemical and physical properties of α-diamine complexes have been reviewed. One of the most striking properties of these ligands is their ability to stabilise metals in low oxidation states. The infrared spectra of transition metal complexes of α-diamines show significant shifts of v(C=N) to lower frequencies on coordination as a result of the ligands ability to act as electron acceptors. The electronic spectral bands which are responsible for the intense colours of the transition metal complexes of α-diamine ligands have been assigned to metal to ligand (d – π*) charge transfer bands. The delocalised character of the chelate rings can be represented as a resonating system as confirmed by nmr studies on diamagnetic tris α-diamine Fe(II) complexes and ear spectra of tris bipy complexes of V and Cr. Low oxidation states of the metal are stabilised by a resonance system in which there is some charge transfer of the metal t electrons into the px* orbitals of the chelate ring. Although the metal is formally in a low oxidation state, some of its electron density is delocalised over the chelate rings. The strength of this interaction is
shown by the high ligand field strengths of \(\alpha \)-diimines, lying between ethylenediamine and cyanide in the spectrochemical series.\(^{226}\)

The relative magnitudes of of the infrared spectral \(\nu(C=\lambda) \) shifts on coordination, Fe(II) >> Co(II) » Ni(II) has been interpreted as indicating greater \(\pi \)-cloud delocalisation for the iron complex.\(^{229}\) This is reflected in the relatively large number of spin-paired iron(II) complexes of \(\alpha \)-diimine ligands.

GROUP II METAL ION CRYPTATES

Schiff-base \([2+3]\) condensation of the tripod amine tren with glyoxal on Group II metal ion template produces the metal ion cryptate of the hexaamino cryptand GT as shown in figure 25.

![Figure 25.](image)

Metal ions Ba\(^{2+}\), Sr\(^{2+}\), Ca\(^{2+}\) and Mg\(^{2+}\) were effective as template species. Physical data for the complexes is shown in table 20. The infrared spectra of the cryptates show a medium intensity \(\nu(C=N) \) absorption at ca. 1610cm\(^{-1}\) and frequencies attributable to unreacted carbonyl or amine were absent from the spectra. This indicated that Schiff-base condensation was complete and had formed the cryptate rather than a pendant arm macrocyclic complex. A medium intensity, sharp absorption is observed at ca. 1650cm\(^{-1}\). The origin of this band is uncertain, however this may be a combination tone arising from coupling of the \(\nu(C=N) \) stretching vibration.
with other ring deformations. The infrared spectra also display strong absorptions due to the tetraphenylborate counterion, suggesting that the metal complex has formed, as opposed to the metal-free Schiff-base cryptand. The presence of a quite sharp absorption at ca. 3510 cm⁻¹ in the v(OH) region of the infrared spectra suggests the presence of non hydrogen bonded water (or alcohol), which may be coordinated to the metal ion. The infrared spectrum of SrGT(BPh₄)₂:2H₂O is shown in figure 26.

PHYSICAL DATA FOR TEMPLATED GT COMPLEXES

TABLE 20 Infrared spectral data / cm⁻¹

<table>
<thead>
<tr>
<th>COMPLEX</th>
<th>COLOUR</th>
<th>vC=N</th>
<th>vBPh₄</th>
<th>vClO₄</th>
<th>vOH</th>
</tr>
</thead>
<tbody>
<tr>
<td>25 BaGT(BPh₄)(ClO₄):2H₂O</td>
<td>cream</td>
<td>1609(m)</td>
<td>1577(m)</td>
<td>1120(s)</td>
<td>3517(sh)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>1476(m)</td>
<td>1072(s)</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>1425(m)</td>
<td>1032(s)</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>734(s)</td>
<td>622(s)</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>706(s)</td>
<td>611(s)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>26 SrGT(BPh₄)₂:2H₂O</td>
<td>cream</td>
<td>1610(s)</td>
<td>1575(m)</td>
<td>-</td>
<td>3503(sh)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>1476(m)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>1425(m)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>734(s)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>707(s)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>27 CaGT(BPh₄)₂:2H₂O</td>
<td>cream</td>
<td>1610(s)</td>
<td>1575(m)</td>
<td>-</td>
<td>3513(sh)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>1476(m)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>1424(m)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>734(s)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>704(s)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>28 MgGT(BPh₄)₂:2H₂O</td>
<td>yellow</td>
<td>1634(m)</td>
<td>1577(m)</td>
<td>-</td>
<td>3327(br)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>1477(m)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>1425(m)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>734(s)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>705(s)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>29 LaGT(BPh₄)(NO₃)₂:2H₂O</td>
<td>yellow</td>
<td>1608(s)</td>
<td>1576(s)</td>
<td>-</td>
<td>3430(br)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>1478(m)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>1425(m)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>734(s)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>705(s)</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
The infrared spectra of the metal ion GT cryptates show an unexplained absorption at ca. 1650 cm\(^{-1}\) which is possibly a combination tone. Skeletal absorptions of the GT cryptate occur at ca. 1450, 1385 and 740 cm\(^{-1}\) in the infrared spectra of all of the cryptates. A C-H stretch of GT occurs at ca. 2848 cm\(^{-1}\) in the spectra.

It proved necessary to use tetraphenylborate as the counterion in order to isolate the cryptate from the reaction mixture. In addition, the insolubility of the cryptate as a tetraphenylborate may cause a shift in the equilibrium towards the cryptate product. However, the use of BPh\(^{-}\) as counterion has led to problems in obtaining satisfactory CHN analysis. Presumably, as a result of the high molecular weight of the counterion and the large numbers of C and H present, presence of even small amounts of perchlorate counterion impurity, or a small amount of metal ion tetraphenylborate mixed with the cryptate make large differences to the analysis figures. Nevertheless, reasonable CHN analysis has been obtained for the calcium and strontium cryptates.

The barium cryptate retains perchlorate anion, even after recrystallisation in the presence of excess tetraphenylborate. This may be a result of the preference of the barium ion for a high coordination number due to its large ionic radius combined with the ionic nature of the bonding in the group 2 metal ion cryptates. Trends in the coordination number of group 2 metal ions have been reported and tend to increase in coordination number down the group\(^{227}\). The perchlorate anion appears to supplement the donors provided to barium by the cage ligand. The infrared spectrum of the barium complex (25) shows splitting of the \(\nu_s\) absorption of perchlorate into four bands, 1135, 1120, 1072 and 1032 cm\(^{-1}\) the \(\nu_s\) absorption is split into two bands at 611 and 623 cm\(^{-1}\). The presence of
four ν_5 absorptions may indicate that both $\text{BaGT(BPh}_3\text{)}(\text{ClO}_4\text{)}$ and $\text{BaGT(ClO}_4\text{)}_2$ are present. If the anions present in alkaline earth metal complexes are disposed in different environments or display different bonding modes complex infrared spectra can result. In the absence of x-ray crystallographic evidence, assignment of anion disposition must remain tentative. Acceptable CHN analysis was not obtained for the barium complex. Although the precise formula of the BaGT complex is uncertain, the complex has proved a useful starting material for further reactions.

The GT cryptand appears to show some selectivity for Group II metal ions. Strontium and calcium cryptates appear to be relatively stable, these are easily recrystallised from acetonitrile and the solutions can be heated at gentle reflux without damage to the complex. The barium cryptate can be recrystallised, though the complex is not stable on strong heating. The magnesium complex is the least stable and does not recrystallise successfully even at room temperature, attempted recrystallisation attempts gave oils. Fast atom bombardment mass spectroscopy of the magnesium templated product showed the protonated GT ligand at m/e 359 as the base peak. A very weak peak due to $[\text{MgGT}]^+$ (6%) was observed. As a result of the uncertainty of the formula of this complex, further physical data was not collected for the complex. By contrast the fab spectrum of the SrGT cryptate showed a strong cluster at m/e 446 (99%) which is attributable to $[\text{SrGT}]^-$ and reflects the stability of this cryptate in the conditions of the mass spectrometer. The base peak was due to the protonated GT ligand at m/e 359.

Presumably the stability sequence observed in the series of group(II) metal ion cryptates is due to size effects. A relationship between the stability of alkaline-earth metal macrocyclic complex and the closeness of
fit between the cation and the macrocyclic cavity has been established.\(^5\) The preferred cation is generally the one that fits the cavity most closely. The match of ionic radius of the metal ion to the cavity size of the GT cryptand determines the strength of the electrostatic interactions between the metal ion and the cryptand. The barium ion appears to be slightly too large for the cavity of the GT cryptand whereas the magnesium ion seems to be too small for the cryptand cavity. Both the strontium and the calcium ion appear to fit the cavity relatively well.

The complexes were sufficiently soluble in CD\(_2\)CN for \(^1\)H n.m.r. spectra to be measured. Spectra of the calcium, strontium and barium cryptates were similar and the \(^1\)H nmr spectrum of CaGTC(BPh\(_4\))\(_2\) is shown in figure 27. The \(^1\)H nmr spectra consisted of three resonances with relative intensities 1:2:2 at approximately 8.0, 3.7, and 2.8 p.p.m. downfield from SiMe\(_3\). These are assigned to the imine H at 8.0, the CH\(_2\) adjacent to the imine group at 3.7 and the neighboring CH\(_2\) group at 2.8 p.p.m. Strong signals due to the tetraphenylborate counterion were observed at (7.3, 7.0, and 6.8). The protons of the methylene groups were coupled to each other. Additional slight splitting of the three cryptand resonances was observed. The imine resonance was split into three closely spaced peaks with J = 1.2 Hz (0.004 ppm) The methylene triplet around 3.7 was also split further, each peak of the triplet was split into two with J = 1.2 Hz (0.004 ppm.) There appears to be some coupling between the imine proton and the protons of the nearest methylene group. The resonance around 2.8 ppm also showed slight splitting of the peaks, though this was not so well defined. The appearance of just three sets of resonances in the nmr spectra suggest that the cation is bound within the molecular cavity. In addition the simplicity of the spectra may be taken as evidence
Figure 27 The n.m.r. spectrum of CaGT(BPh₄)ₓ:2H₂O
against any significant dissociation of the complexes in CD$_3$CN solution into the free metal ion and the cryptand.

The electronic spectra of the calcium and strontium complexes showed little dependence on the nature of the Group (II) cation. The spectra both showed a strong bond at ca. 35,500 cm$^{-1}$ ($\epsilon \approx 1800$). A shoulder on the low energy side of the main band was assigned to a $\pi - \pi^*$ transition of the complexed cryptand. The insensitivity of the energy of the transition is in keeping with a predominantly coulombic (ion - dipole) metal - cryptand interaction.

Attempted synthesis of the GT cryptand without use of a template metal ion failed. In the absence of metal ions only viscous oils were recovered, which from their nature are probably polymeric. Various solvents and reaction conditions were employed using relatively dilute solutions and controlled addition of the reactants, yet only oil resulted. The effect of the template ion in the cryptate synthesis may arise from an ability to hold the dicarbonyl glyoxal in a cis conformation suitable for reaction to form the cryptate. The free glyoxal is likely to be predominantly in the trans conformation and reaction of the trans form with the amine is likely to form polymer.

Several lanthanide ions were tested as template ions for the GT synthesis. Of the ions La$^{3+}$ and Pr$^{3+}$, the lanthanum ion proved the better template species. The infrared spectrum of the lanthanum templated product showed the presence of the characteristic GT peaks and peaks attributable to amine or carbonyl groups were absent from the spectrum. The fast atom bombardment mass spectrum contained clusters at m/e 496 (4%) and 558 (2%) due to [LaGT]$^+$ and [LaGT(NO$_3$)]$^+$ respectively.
A series of mononuclear transition metal cryptates was obtained by transmetallation of the barium or strontium GT template complexes as described in the experimental section. Product from the template reaction was used without further purification for the synthesis of transition metal GT tetraphenyliborates.

The perchlorate salts of the cryptates were prepared for two reasons. Firstly, the crystals of the cobalt cryptate as a tetraphenyliborate showed extensive disorder and the X-ray structure was impossible to solve. Secondly the tetraphenyliborate counterion is electrochemically active in a region that could possibly overlap with the 2+/3+ redox couple of the cryptate, thus an alternative counterion was required for electrochemical studies. The transition metal GT perchlorates were accessible by two routes. In one route the SrGT tetraphenyliborate was isolated and treated with AgClO₄ to remove the tetraphenyliborate counterion prior to reaction of SrGT(ClO₄)₂ with transition metal perchlorate. Alternatively an in situ method was used which involved template synthesis of Sr or Ba GT perchlorate which was not isolated followed by addition of the transition metal perchlorate to the template solution. This reaction was carried out in methanol. Transition metal cryptate obtained by the latter method required recrystallisation from acetonitrile/ethanol solvent mixture and the overall yields were generally lower.

Infrared spectral data for the mononuclear transition metal cryptates is listed in tables 21 and 22.
PHYSICAL DATA FOR NONONUCLEAR TRANSITION METAL GT COMPLEXES

TABLE 21 Infrared spectral data /cm⁻¹

<table>
<thead>
<tr>
<th>COMPLEX</th>
<th>COLOUR</th>
<th>νC=H</th>
<th>νBPh₄</th>
<th>νOH</th>
</tr>
</thead>
<tbody>
<tr>
<td>30 MnGT(BPh)₂:2H₂O</td>
<td>yellow</td>
<td>1605(m)</td>
<td>1577(m)</td>
<td>3439(br)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>1476(m)</td>
<td>1423(m)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>733(s)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>706(s)</td>
<td></td>
</tr>
<tr>
<td>31 CoGT(BPh)₂:3H₂O</td>
<td>rust</td>
<td>1591(m)</td>
<td>1576(m)</td>
<td>3434(br)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>1476(m)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>1421(m)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>734(s)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>706(s)</td>
<td></td>
</tr>
<tr>
<td>32 NiGT(BPh)₂:4H₂O</td>
<td>orange</td>
<td>1594(m)</td>
<td>1575(m)</td>
<td>3434(w,br)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>1476(m)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>1421(m)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>733(s)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>706(s)</td>
<td></td>
</tr>
<tr>
<td>33 FeGT(BPh)₂:2H₂O</td>
<td>deep-purple</td>
<td>absent</td>
<td>1575(m)</td>
<td>3465(br)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>1476(m)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>1421(m)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>734(s)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>707(s)</td>
<td></td>
</tr>
</tbody>
</table>

With the exception of the Fe(II) GT cryptates, the infrared spectra of the metal ion GT cryptates show an unexplained absorption at ca. 1650cm⁻¹. The absorption is not sensitive in position and is believed to be a combination tone. Skeletal absorptions of the GT cryptate occur at ca. 1450, 1385 and 740cm⁻¹ in the infrared spectra of all of the cryptates. A C-H stretch of GT occurs at ca. 2848cm⁻¹ in the spectra.
TABLE 22 Infrared spectral data /cm⁻¹

<table>
<thead>
<tr>
<th>COMPLEX</th>
<th>COLOUR</th>
<th>νC=H</th>
<th>νC=O</th>
<th>νHCS</th>
<th>νOH</th>
</tr>
</thead>
<tbody>
<tr>
<td>34 ZnGT(C10₄)₂·2H₂O</td>
<td>orange</td>
<td>1620(m)</td>
<td>1171(s)</td>
<td>1100(m)</td>
<td>999(m)</td>
</tr>
<tr>
<td>35 CoGT(C10₄)₂·2H₂O</td>
<td>rust</td>
<td>1609(m)</td>
<td>1090(s)</td>
<td>622(m)</td>
<td>-</td>
</tr>
<tr>
<td>36 NiGT(C10₄)₂·EtOH·H₂O</td>
<td>orange</td>
<td>1608(m)</td>
<td>1086(s)</td>
<td>622(m)</td>
<td>-</td>
</tr>
<tr>
<td>37 NiGT(NCS)₂·2H₂O</td>
<td>orange</td>
<td>1601(m)</td>
<td>-</td>
<td>2091</td>
<td>2075</td>
</tr>
<tr>
<td>38 FeGT(C10₄)₂·2H₂O</td>
<td>deep-purple</td>
<td>absent</td>
<td>1100(s)</td>
<td>622(m)</td>
<td>-</td>
</tr>
</tbody>
</table>

In the infrared spectra of the complexes skeletal GT absorptions occur at ca. 1450, 1388 and 740 cm⁻¹. The Fe(II) cryptate does not show the combination tone absorption at ca. 1650 cm⁻¹ which is present in the spectra of the other metal ion cryptates.

The infrared spectra of the complexes show a sharp ν(C=H) absorption at ca. 1595 cm⁻¹. The absence of amine or carbonyl frequencies indicates that the cryptand remains intact throughout the series of cryptates. The slight shift of the ν(C=H) from ca. 1610 cm⁻¹ in the group (II) metal ion cryptate to ca. 1600 cm⁻¹ reflects the change in the nature of the metal ion-ligand bonding in the transition metal cryptates.

The exceptions are the Fe(II)GT cryptates (33) and (38), the infrared spectra of the iron complexes do not exhibit a ν(C=H) absorption in the region 1590 - 1660 cm⁻¹, although the other characteristic peaks of the GT complex such as ν(C-H) of GT at 2846 cm⁻¹ and skeletal vibrations of the cryptand at 1443, 1387 and 740 cm⁻¹ are present. The absence of the νC=H
absorption in the expected region of the Fe\textsubscript{GT} infrared spectrum may be due to a reduction in intensity or a coordination shift of the absorption. Such changes are indicative of strong coupling of the Fe(N=\text{C-C=N}) chelate ring vibrations or metal d\alpha to ligand p\epsilon\gamma back coordination.223,232 Related studies have noted that the v(C=\text{N}) stretch in the tris(\text{\alpha-diimine}) complexes is absent or very weak for low-spin Fe(II) but relatively intense for Co(II), Ni(II) and Cu(II).223,232 The medium intensity peak at ca. 1650\text{cm}^{-1}, which is present in the infrared spectrum of the other cryptates, is absent in the spectra of the iron cryptates.

The absence of the v(C=\text{N}) absorption in the spectra of the iron cryptates suggested that the iron(II) ion is low spin. The low spin nature of the iron ion was confirmed by magnetic susceptibility measurements (table 23). The magnetic moment obtained for Fe\textsubscript{GT} tetraphenylborate (33) clearly rules out a high-spin ground state; the small paramagnetism observed at 293K could be attributed either to the presence of paramagnetic impurity or to the presence of a small quantity of the high-spin form at this temperature. Recrystallisation of the iron cryptate gave lower magnetic moments as purer samples were obtained, suggesting that at least some of the observed paramagnetism was due to paramagnetic impurity. Spin-pairing in the iron GT cryptates may arise from a combination of the strong ligand-field of the GT cryptand, a particularly good fit of the Fe(II) ion for the GT cavity and a coordination geometry around the Fe(II) ion which is not far from octahedral.
Table 23 Magnetic, electronic spectral and conductivity data

<table>
<thead>
<tr>
<th>COMPLEX</th>
<th>(\mu_{\text{eff}})</th>
<th>(\angle)</th>
<th>ELECTRONIC SPECTRA</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>293K</td>
<td>93K</td>
<td>(v_{\text{max}})</td>
</tr>
<tr>
<td>MnGT(BP$_4$)$_2$:2H$_2$O</td>
<td>5.99</td>
<td>5.98</td>
<td>223</td>
</tr>
<tr>
<td>CoGT(BP$_4$)$_2$:3H$_2$O</td>
<td>4.30</td>
<td>4.20</td>
<td>236</td>
</tr>
<tr>
<td>NiGT(BP$_4$)$_2$:4H$_2$O</td>
<td>3.04</td>
<td>3.01</td>
<td>219</td>
</tr>
<tr>
<td>FeGT(BP$_4$)$_2$:2H$_2$O</td>
<td>0.95</td>
<td>0.40</td>
<td>-</td>
</tr>
<tr>
<td>Cl$_4$O$_4$FeGT</td>
<td>4.43</td>
<td>3.95</td>
<td>254</td>
</tr>
<tr>
<td>CuGT(Cl$_4$O$_4$)$_2$</td>
<td>dia</td>
<td>dia</td>
<td>-</td>
</tr>
<tr>
<td>CuGT(Cl$_4$O$_4$)$_2$:4H$_2$O</td>
<td>1.86</td>
<td>1.61</td>
<td>-</td>
</tr>
</tbody>
</table>

\(\mu\) in BM, \(\angle\) in S cm2 mol$^{-1}$

\(v_{\text{max}}\) in cm$^{-1}$

\(\epsilon\) in 1 mol$^{-1}$ cm$^{-1}$

The electronic spectra of the FeGT complexes (33) and (38) show a pair of intense absorptions close to 20,000 and 17,000 cm$^{-1}$. Since a pair of intense bands found in the electronic spectrum of [Fe(bipy)$_2$]$_{2}^{3+}$ were assigned to \(\pi + \pi^*\) transitions, it is assumed that the pair of absorptions observed in the FeGT spectra are due to \(\pi + \pi^*\) charge transfer transitions. The presence of one or more intense bands in the visible region of the spectrum is characteristic of iron(II)-tris (a-diimine) complexes. The splitting into two charge transfer absorptions has been attributed to separation of the \(T_{2g}\) level into \(e\) and \(\epsilon\) components.
b₂ levels as the symmetry diminishes from octahedral. The spectrum did not show any evidence of d-d transitions. In comparison with the α-diimine complexes [Fe(bipy)₃]²⁺ and [Fe(phen)₃]²⁺, vmax for the FeGT complexes occurs at lower energy. For example for [Fe(bipy)₃]²⁺ vmax = 19,100 cm⁻¹, [Fe(phen)₃]²⁺ vmax = 19,600 cm⁻¹. The extinction coefficients of vmax for FeGT are somewhat greater than those for the bipy and phen complexes of Fe(II).

The CoGT perchlorate (35) shows remarkable stability in water. Complexes of Schiff-base macrocycles and cryptands are often susceptible to hydrolysis, yet water proved to be one of the best solvents for recrystallisation of CoGT perchlorate. The CoGT cryptate appears to be kinetically inert with respect to removal of the Co(II) ion. Treatment of an aqueous solution of the cobalt (II) cryptate (35) with an excess of NaCN in aqueous solution failed to generate a Co(CN)₂ precipitate over a period of several weeks. During this time there was no reduction in the orange/rust (CoGT) colour of the solution.

The Co, Fe and Ni GT perchlorates (35), (38), and (32) show the strong ν₃ and ν₄ absorptions typical of uncoordinated perchlorate at ca. 1100 cm⁻¹ and 620 cm⁻¹ respectively. The infrared spectrum of CoGT(ClO₄)₂ is shown in figure 28. The electronic spectrum of both the tetraphenylborate and the perchlorate salt of CoGT is dominated by the broad and intense charge transfer absorption which extends into the visible region of the spectrum. Nevertheless a low intensity band around 11,000 cm⁻¹ is observed and is attributed to the lowest energy transition ⁴T₁g(F) → ⁴T₂g allowed in approximate octahedral symmetry for cobalt(II). Similarly the electronic spectrum of the NiGT complex (32) shows a broad and intense charge transfer absorption and only the lowest energy band expected for Ni(II) in
approximate octahedral symmetry \(^2A_g \rightarrow ^2T_{1g}(F) \) is observed. Presumably the higher energy transitions expected are masked by the much stronger charge transfer absorption, which accounts for the intense orange colour of the complex.

The manganese GT cryptate (30) showed \([\text{MnGT}]^+\) at m/e 413 as the base peak in the fast mass spectrum. Peaks attributable to SrGT starting material were not present. The electronic spectrum of the MnGT complex showed a strong charge transfer absorption at 29,400 cm\(^{-1}\) \((\varepsilon = 930 \text{ dm}^2\text{mol}^{-1}\text{cm}^{-1})\), as expected d-d bands were not observed. The formation of the Mn(II)GT cryptate on use of a Mn(III) salt as the source of manganese ion demonstrates the ability of the GT cryptand to stabilise the lower oxidation state. The tetraphenylborate counterion which was present during the reaction is likely to act as a mild reducing agent in the Mn(III)/Mn(II) reduction.

Despite the low ionic mobility of the tetraphenylborate counterion, the conductivity measurements for the Mn(II), Co(II) and Ni(II) cryptate tetraphenylborates fall in the range expected for 2 : 1 electrolytes. The perchlorate derivatives were also 2 : 1 electrolytes which is consistent with ionic ClO\(_4^-\) in solution.

The mononuclear cryptates show little dependence of magnetic moment on temperature, as expected. The manganese cryptate has a magnetic moment in the range expected for a high spin d\(^{7}\) ion. Both the Ni(II) and Co(II) cryptates are high-spin. The relatively low magnetic moment measured for high-spin six co-ordinate cobalt(II) in the GT cryptate presumably results from the reduction in orbital contribution on deviation from regular octahedral geometry. Subsequent X-ray crystallographic confirmation was supplied by Dr. Vickie Mc Kee of the University of Canterbury, New Zealand.
THE CRYSTAL STRUCTURE OF CoGT(ClO₄)₂

The structure of the cation is shown in figure 29. The intimate twinning of the crystals prevented accurate determinations of bond lengths and angles, however the main features of the structure are clear. The cobalt ion is coordinated to the six imino donors of the cryptand and has D₃ symmetry. Only two of the six imino donors are crystallographically independent. The cobalt ion and the two bridgehead N atoms, which are not coordinated, lie on a crystallographic 3-fold axis. The Co-N (imine) distances of ca. 2.16Å are very similar to those in the analogous [Co(sep)]²⁺ cryptate.²¹ The X-ray structures of [Co(sep)]²⁺ and [Co(sep)]³⁺ are shown in figure 30.

Figure 30 The X-ray structures of [Co(sep)]²⁺ and [Co(sep)]³⁺

In the X-ray structure of [CoGT]²⁺, the amino N bridgehead atoms lie ~ 3 Å from the metal ion within near-planar arrangement of adjacent methylene carbons, suggesting near sp² hybridization of tertiary amine nitrogens, as observed in [Ni(sep)]²⁺.²⁰ The methylene caps of [CoGT]²⁺ are staggered with a twist angle (α) of 55°. The disorder observed mainly affects the diimino links and therefore only tentative conclusions are possible. The α-diimino links appear to be oblique rather than parallel. The perchlorate anions lie with one Cl-O bond along a threefold-axis and do not coordinate to the metal ion.
Figure 29 The X-ray crystal structure of $\text{CoGT(ClO}_4\text{)}_2$.
Isomorphous powder patterns for \(\text{NiGT(BPh}_4\text{)}_2 \) (32) and \(\text{CoGT(BPh}_4\text{)}_2 \) (31) were obtained, however \(\text{FeGT} \) (33) and \(\text{MnGT} \) (30) are not isostructural with the nickel or cobalt cryptates or with each other. The degree of distortion from octahedral geometry may reflect the varying influence of LFSE effects in favouring trigonal anti-prismatic over the less strained trigonal prismatic geometry in the order \(\text{Fe(II) low spin} > \text{Co(II)} > \text{Mn(II) high spin} \). Wentworth et al.\(^{240}\) suggested that the tendency toward an octahedral rather than a trigonal prismatic geometry should decrease in the order \(d^{\text{low-spin}} > d^0 > d^7 > d^{\text{high-spin}} \). However, the ionic radii of the metal ions also vary in the same order for Fe, Co and Ni (Fe(II) 0.83, Co(II) 0.82, Ni(II) 0.68, Mn(II) 0.91\(\text{Å} \)). It is therefore difficult to separate LFSE effects from size effects. Since the Fe(II) cryptates are in the \(1\text{~A}_g \) low spin state at ambient temperature, it is probable that distortion from octahedral geometry is not large for the Fe(II) cryptates.

COPPER GT CRYPTATES.

The CHN analysis figures for the monocopper GT cryptate suggest the presence of four waters of crystallisation. The mull infrared spectrum shows a broad and strong OH absorption. The \(\delta(\text{OH}) \) bending vibration occurs at similar frequency to the \(\nu(\text{C=\text{N}}) \) absorption and has the effect of broadening and intensifying the absorption in this region of the infrared spectrum. Fast atom bombardment mass spectroscopy showed a cluster at m/e 421 as the base peak. Presumably this is attributable to the \([\text{CuGT}]^+ \) ion. A cluster around m/e 520 corresponds to \([\text{CuGT(ClO}_4\text{)}]^+ \) (40% of base peak), however a weak cluster at m/e 585 (10% of base peak) is probably due to the dicopper GT ion \([\text{Cu}_2\text{GT(ClO}_4\text{)}]^+ \). It is probable that there is some contamination of the monocopper GT cryptate with dicopper GT
cryptate. The presence of a small amount of the dicopper cryptate was confirmed by electronic spectroscopy. In addition to the CuGT absorption, a weak absorption which has been assigned to intervalence transfer in dicopper GT was observed. An intense band at this position is observed in the electronic spectrum of the dicopper cryptate.

<table>
<thead>
<tr>
<th>COMPLEX</th>
<th>COLOUR</th>
<th>vC=H</th>
<th>vBPh₄</th>
<th>vClO₄</th>
<th>vOH</th>
</tr>
</thead>
<tbody>
<tr>
<td>39 CuGT(ClO₄)₂:4H₂O</td>
<td>green</td>
<td>1595 (m)</td>
<td>-</td>
<td>1093 (s)</td>
<td>3439 (br)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>622 (m)</td>
<td></td>
</tr>
<tr>
<td>40 Cu₂GT(ClO₄)₄:2H₂O</td>
<td>green</td>
<td>1598 (m)</td>
<td>-</td>
<td>1090 (s)</td>
<td>3427 (br)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1472 (m)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>734 (s)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>705 (s)</td>
<td></td>
</tr>
<tr>
<td>41 Cu₂GT(BPh₄)₃</td>
<td>bronze</td>
<td>1597 (w)</td>
<td>1575 (m)</td>
<td>-</td>
<td>3418 (br)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>1474 (m)</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>1422 (m)</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>734 (s)</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>705 (s)</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

The electronic spectrum of the monocopper GT cryptate (39) shows a single d-d band at 15,500 cm⁻¹ (ε = 120 l mol⁻¹ cm⁻¹) and stronger charge transfer transitions at 24,300 (ε = 2150 l mol⁻¹ cm⁻¹) and 35,600 (ε = 2700 l mol⁻¹ cm⁻¹). After approximately 4 hour in solution in acetonitrile, the colour of the copper GT solution had changed from green to yellow. The electronic spectrum of the yellow solution showed a reduction in intensity of the d-d band and a shift in position of the vmax for this absorption to ca. 15,400 cm⁻¹. The reduction in intensity of the d-d band may indicate reduction of Cu(II) to Cu(I). The mononuclear copper(II) cryptate exhibits a four line EPR spectrum which is consistent with interaction of the odd
electron with just one copper centre ($I = 3/2$). The spectrum is shown in figure 31 and is the normal axial-type four line spectrum. The spectrum shows $g_{\parallel} (\approx 2.28) > g_{\perp} (\approx 2.07)$ and $A_{zz} 143 \text{ G}$, which indicates an extended tetragonal geometry for the Cu(II) coordination site.

DINUCLEAR COPPER GT CRYPTATES.

Initial attempts to obtain a copper(I) cryptate by transmetallation of SrGT(BPh$_4$)$_2$ using a copper(I) salt did not produce pure products. As a result of the low solubility of the copper(I) cryptate tetraphenylborate products precipitated too quickly and were too insoluble for recrystallisation. The products from these attempts did not give a fab mass spectrum, presumably as a result of the insolubility of the complex. Although acceptable CHN analysis was not obtained for the product, the elemental analysis (CHN) suggested that the product was a dicopper GT tetraphenylborate rather than a monocopper GT tetraphenylborate.

However, the formation of the dicopper(I) cryptate by transmetallation of SrGT(BPh$_4$)$_2$ using a copper (II) salt, as described in the experimental chapter, gave crystalline product which analysed as the dicopper(I) complex Cu$_2$GT(BPh$_4$)$_2$ (41). The tetraphenylborate counterion which was present during the reaction is known to be a mild reducing agent. The reduction of a copper (II) complex of a N$_3$E$_2$ Schiff-base ligand to the corresponding copper(I) complex by one equivalent of NaBPh$_4$ has been reported.24 In addition a dicopper(I) complex of an N$_4$O$_2$ Schiff-base macrocycle has been prepared by BPh$_4^-$ reduction.102

The formation of a dicopper(I) cryptate from Cu(II) starting material reflects the ease of reduction of copper (II) to copper (I) within the GT cryptand. The reaction mixture initially has the deep green colour
associated with the copper(II) cryptate, and only gradually becomes yellow-brown on slow formation of the copper(I) cryptate tetraphenylborate. Attempted preparation of $\text{Cu}_2\text{GT(ClO}_4\text{)}_2$ via transmetallation of $\text{SrGT(ClO}_4\text{)}_2$ with the copper(I) complex $\text{Cu(MeCN)}_4\text{ClO}_4$ was not successful. The liking of Cu(I) for a tetrahedral binding site which can be found in each tren based subunit of the GT cryptand may favour access to the Cu(I) state. It is known that distortion of a Cu(II) binding site from tetragonal to pseudo-tetrahedral thermodynamically favours access to the copper(I) oxidation state. The solid state electronic spectrum of the dicopper (I) GT cryptate shows an intense broad absorption in the region 25,000 - 19,000 cm$^{-1}$ which is probably attributable to Cu(I) - imine charge transfer transitions.

The dinuclear copper cryptate $\text{Cu}_2\text{GT(ClO}_4\text{)}_2\cdot 2\text{H}_2\text{O}$ (40) was produced by reflux of $\text{SrGT(ClO}_4\text{)}_2$ with an excess of Cu(II) salt in acetonitrile as described in the experimental section. Elemental analysis (CHN) suggests the formulation $\text{Cu}_2\text{GT(ClO}_4\text{)}_2\cdot 2\text{H}_2\text{O}$ and the mull infrared spectrum indicates the presence of hydrogen bonded OH. The fast mass spectrum shows a strong cluster around m/e 585 which is attributable to $[\text{Cu}_2\text{GT(ClO}_4\text{)}]^+$ (95% height of the base peak). A cluster at m/e 484 (40% height of base peak) corresponds to $[\text{Cu}_2\text{GT}]^+$. The presence of a cluster at m/e 421 (40% height of base peak) is presumably due to $[\text{CuGT}]^+$, the monocopper fragment ion probably forms from the dicopper GT parent species and does not necessarily imply contamination of the dicopper cryptate with the monocopper cryptate.

The dmf glass e.s.r. spectrum of the complex is shown in figure 32 and displays a seven line pattern which is characteristic of a mixed valence Cu(II)/Cu(I) complex. The seven line spectrum is indicative of
DMF GLASS -160 C

Figure 32 The dmf glass esr spectrum of Cu₂GT(CIO₄)₄·4H₂O.
interaction of the odd electron with both copper centres \(I = 3/2 \). The mixed valence species is valence detrapped down to 4K. The persistence of the seven line spectrum to such low temperatures indicates an unusual degree of valence delocalisation. The occurrence of seven-line esr spectra has been reported for mixed valence Cu(II)/Cu(I) complexes of phenoxo containing macrocycles shown in figure 33.\(^{103}\) At reduced temperature the odd electron became localised and four line esr spectra resulted.

![Diagram](image)

Figure 33 Formation of a mixed valent Cu(II)/Cu(I) macrocyclic complex

In the mixed valent complex shown above, the phenoxo bridges between the copper centres provide the pathway for delocalisation of the odd electron over the metal centres.\(^{103,103}\) It is significant that seven-line esr spectra have only been obtained for the macrocyclic complexes that incorporate unsaturated nitrogen donors, saturation of the azomethine groups leads to four-line spectra.\(^{103}\)

The seven-line spectrum observed for the dicopper GT complex may be due to direct metal-metal interaction between Cu(II) and Cu(I) if the metal ions are held within bonding distance within the cryptand. An intense near infrared band is observed in the electronic spectrum of the dicopper GT complex which we attribute to intervalence transfer (750nm \(\varepsilon = 5000 \) 1 mol\(^{-1}\) cm\(^{-1}\)). This decays rapidly in solution with a half-life of minutes in organic solvents and hours in water.
The solid state ESR spectrum of the dicopper GT complex showed a seven-line signal indicating that the complex is mixed-valence in the solid state. The CHN analysis figures however demonstrate the presence of four perchlorate counterions, therefore the Cu(II)/Cu(I) GT complex has to be protonated.

Copper was the only metal ion that was capable of forming dinuclear cryptates with the GT cryptand. The formation of a dinuclear cryptate of Cu(II) within GT may be a size effect. However crystal field stabilization effects may also be involved. The Fe(II), Ni(II) and Co(II) ions may strongly prefer the six-donor α-diiimine binding site whereas the d⁰Cu(II) ion may be less destabilised by binding towards one end of the cryptand. The Cu(I) ion will like the tetrahedral site. The Mn(II) ion may be too large to form dinuclear cryptates with the GT cryptand.

The relatively facile unwrapping of the cryptand from Cu(II) to accommodate a second copper(II) ion suggested experiments in which [CuGT]⁺⁺ is treated with a different transition metal ion with the aim of preparing heterobinuclear complexes. The monocopper GT complex was refluxed with Ni(II), Zn(II) however only copper GT was obtained. Fab mass spectroscopy showed only clusters due to copper GT, there was no evidence of the presence of nickel or zinc.

ELECTROCHEMICAL STUDIES.

Appendix 1 outlines the electrochemical parameters which are used to interpret the results. Table 25 lists the results of cyclic voltammetry studies on the mononuclear transition metal complexes of GT. The cyclic voltammetry was performed by M. McCann of St. Patrick's College, Maynooth. Figure 34 displays the cyclic voltammogram of CoGT(BPh₄)₂.
Table 25 Electrochemical data for the GT cryptates

<table>
<thead>
<tr>
<th>COMPLEX</th>
<th>EN</th>
<th>ΔE</th>
<th>EN</th>
<th>ΔE</th>
<th>EN</th>
<th>ΔE</th>
</tr>
</thead>
<tbody>
<tr>
<td>27 CaGT(BPh4)2:2H2O</td>
<td></td>
<td></td>
<td>no electrochemical activity in this range</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>30 MnGT(BPh4)2:2H2O</td>
<td>+1350</td>
<td>irr</td>
<td>-987</td>
<td>76</td>
<td>-1276</td>
<td>76</td>
</tr>
<tr>
<td>31 CoGT(BPh4)2:3H2O</td>
<td>+227</td>
<td>207</td>
<td>-847</td>
<td>87</td>
<td>-1402</td>
<td>87</td>
</tr>
<tr>
<td>32 NiGT(BPh4)2:4H2O</td>
<td>+1166</td>
<td>irr</td>
<td>-1105</td>
<td>61</td>
<td>-1838</td>
<td>91</td>
</tr>
<tr>
<td>33 FeGT(BPh4)2:2H2O</td>
<td>+714</td>
<td>irr</td>
<td>-962</td>
<td>61</td>
<td>-1332</td>
<td>77</td>
</tr>
<tr>
<td>35 CoGT(C1O4)2:3H2O</td>
<td>+740</td>
<td>irr</td>
<td>-815</td>
<td>61</td>
<td>-1371</td>
<td>77</td>
</tr>
<tr>
<td>38 FeGT(C1O4)2:2H2O</td>
<td>+810</td>
<td>127</td>
<td>-983</td>
<td>61</td>
<td>-1349</td>
<td>61</td>
</tr>
<tr>
<td>39 Cu2GT(C1O4)2:2H2O</td>
<td>+1216</td>
<td>irr</td>
<td>+282</td>
<td>77</td>
<td>-1197</td>
<td>96</td>
</tr>
</tbody>
</table>

10⁻²M in dmf, 0.1M Et₄NClO₄

Figure 34 The cyclic voltammogram of CoGT(BPh4)2 in dmf; scan rate 50mV/s vs Ag/AgCl
The ferrocene ferrocenium couple was used as a redox standard. This couple was observed at 10.362 vs Ag/AgCl and the peak to peak separation was 92mV. The difference in the anodic and cathodic peak potentials of the GT complex voltammograms exceeds the Nernstian requirement of 59mV for a reversible process, however by comparison with ferrocene which had a peak separation of 92mV the redox processes can be considered to be reversible or nearly so. An M(II) reversible reduction wave appears around -1.0V in the iron(II), nickel(II), cobalt(II) and manganese(II) cryptate cyclic voltammograms. The second reversible reduction process observed for the manganese, iron, cobalt and nickel cryptates may originate either in M(I) \rightarrow M(0) reduction or a metal ion promoted M(I)L \rightarrow M(II)L⁻ ligand reduction. ESR experiments are required to distinguish between these alternatives.

The calcium GT cryptate was found to be electroinactive, which suggests that the transition metal ion is involved to some extent in the redox processes observed for the transition metal cryptates.

Complexes of Co(III) with macrocyclic Schiff-base, dimethylglyoximato or vitamin B₁₂ ligands exhibit two one-electron steps to produce Co(I) (d⁶, square planar) complexes. Often no further reduction to cobalt metal is observed at accessible potentials. Limited electrochemical studies of the Co(II) α-dimine cryptate (structure 5, Chapter 1) were reported and electrochemistry comparable to that of Co(bpy)₃ (bpy = 2,2'-bipyridyl), which shows several reversible reductions, was observed. Unlike the electrochemistry found for complexes containing unsaturated ligands, the Co(II) sar and sep cryptates underwent a two-electron irreversible reduction at very negative potentials (\(< -2V\)), possibly involving cage rupture on generation of Co(1) and rapid reduction of the Co(1) transient to Co(0). The 3+/2+ couple for cobalt complexes of sar and sep is observed
at -200mV and -220mV respectively (vs SCE); which is approximately 470mV less positive than the analogous quasireversible couple in CoGT(BPh$_4$)$_2$ (adjusted to vs SCE for comparison).

In contrast to Sargeson's hexamino cryptands, the hexaimino donor set of the GT cryptand stabilises low oxidation states of the metal ion. The enhanced stability of the Co(I) state in the GT cryptand is presumably a result of π back-donation of electron density from filled d-orbitals of Co(I) to empty π^* orbitals of the ligand.

The FeGT cryptate shows marked stabilisation of the Fe(I) state. Comparison of EH of Fe bipy and Fe terpy complexes with the EH of FeGT complexes demonstrates that the Fe(I) state is considerably stabilised within the GT cryptand. For bipy and 2,2':6',2''-terpyridine (terpy) complexes of iron, the redox couples are as follows:

Fe(bpy)$_3^{2+} + e^- \rightarrow Fe(bpy)_3^{3+}$ $EH = -1.34V$ vs SCE in CH$_3$CN
Fe(bpy)$_3^{3+} + e^- \rightarrow Fe(bpy)_3^{4+}$ $EH = -1.53V$

Fe(terpy)$_2^{2+} + e^- \rightarrow Fe(terpy)_2^{3+}$ $EH = -1.25V$
Fe(terpy)$_2^{3+} + e^- \rightarrow Fe(terpy)_2^{4+}$ $EH = -1.42V$

$EH_{Fe^{2+/3+}} - EH_{Fe(bpy)_3^{2+/3+}} = + 0.38V$

More marked stabilisation of the Fe(I) state is found in the Fe catenate which was reported by Sauvage.115,116

$EH_{Fe^{2+/3+}} - EH_{Fe(bpy)_3^{2+/3+}} = + 0.6V$

For the iron bpy and terpy complexes the redox orbitals involved are ligand localised, with the Fe catenate and the FeGT cryptate the redox process is likely to involve the metal centre as previously reported for other Fe(II)/Fe(I) couples. The metal-localised redox process Fe(bpy)$_3^{2+/3-}$
occurs at \(E^\circ = +1.012 \text{V} \) whereas the redox process at +0.810 mV for FeGT may be due to \(\text{FeGT}^{2+/3+} \). The Fe complex of the catenate could not be oxidised to the 3\(^+\) state at accessible potential.

The copper GT electrochemistry is difficult to interpret as a result of the reactivity of the complex. However, it seems that the product of decomposition which is probably dicopper(I)GT has reversible electrochemistry as discussed below. The average of the potentials of the cathodic and the anodic peaks can be assumed as a good estimate of the formal electrode potential for the \(\text{Cu(II)/Cu(I)} \) couple and leads to a value of +282 mV vs. Ag/AgCl. The peak separation is 96 mV which exceeds the Nernstian requirement of 59 mV by 37 mV and exceeds the peak separation found for ferrocene in the same experimental conditions by 4 mV. It is likely that the quasi-reversibility of the process is largely due to the stereochemical changes accompanying the \(\text{Cu(II)/Cu(I)} \) redox process.\(^{242,243}\) In addition, the anodic to cathodic peak currents are not equal and disproportionate loss of anodic current is observed. The reason for this is uncertain but may be due to a slow chemical reaction or rearrangement subsequent to electron transfer.

The second redox process observed may be due to a \(\text{Cu(I)/Cu(0)} \) redox change. If this is so the copper metal complex does not appear to undergo demetallation as there was no sign of a copper stripping reoxidation peak in the reverse scan of the cyclic voltammogram. The copper metal reoxidation usually occurs as a relatively sharp peak at ca. -0.3 V vs. saturated calomel electrode. The \(\text{Cu(I)/Cu(0)} \) reduction has been observed in a series of \(\text{N2S2} \) open chain ligands. The ligands stabilise the \(\text{Cu(I)} \) state and redox potentials ranging from +0.23 to +0.35 were observed. The \(\text{Cu(I)/Cu(0)} \) reduction occurred between -0.70 and -1.40 and rapid
demetallation resulted in an irreversible process, the characteristic stripping peak was observed in the reverse scan. The positive potential recorded for the 2+/1+ reduction is of interest as the potential lies in the range spanned by the type 1 sites of blue copper proteins (from +0.18 to +0.78V vs standard hydrogen electrode.)

By contrast, the Cu(II) cryptate of Sargeson's amino substituted sar cage is irreversibly reduced to Cu(0) with full recovery of the cryptand.

The ease of reduction of the Cu(II) GT complex to Cu(I) suggests that the GT cryptand offers a coordination environment that favours tetrahedral geometry. The α-dilimine groups of the GT cryptand are likely to contribute to the elevation of the Cu(II)/Cu(I) redox potential since they can exert effective withdrawal of electron density from the metal through the π system. Often positive redox potentials for the 2+/1+ Cu redox change are observed in systems incorporating 'soft' sulphur donor groups. Sulphur donor ligands are often oxidisable at the sulphur site and the redox instability of Cu(II)-thiolate bonding with respect to Cu(I) and disulphide is evident in a number of recent studies on copper(II) aliphatic thiolate complexes.

LANTHANIDE ION GT COMPLEXES.
A series of lanthanide ion GT cryptates have been obtained by transmetallation of template GT tetraphenylborates. The barium GT cryptate was found to exchange the barium ion for the lanthanide ion on stirring in acetonitrile at temperature less than 50°C and crystalline product resulted on concentration of the filtrate to low volume. On stronger heating, only oils were obtained from the reaction mixture on reduction in volume. The strontium GT cryptate affords lanthanide ion cryptates on
transmetallation with lanthanide ion, however higher reaction temperatures are required to bring about the metal ion exchange. Product obtained from the SrGT transmetallation was less crystalline and did not analyse as well as that obtained from the barium GT starting material. Fab mass spectroscopy was required to verify that the metal exchange had occurred.

The differences observed on use of the different starting materials, BaGT and SrGT, may reflect their different stabilities. Strontium ion forms a more stable cryptate with GT than does the barium (II) ion. The barium exchange is also helped to proceed by the increased insolubility of the Ba(NO₃)₂ relative to Sr(NO₃)₂ in acetonitrile. It is possible that the differences may be due to differences in lability of the Ba and Sr cryptates, since increased temperature does cause exchange of strontium ion whereas unreacted SrGT is obtained at lower temperature.

Acetonitrile was the solvent of choice for the transmetallation reactions. Rare earth ions form quite stable solvates with polar solvents so that their complexes with neutral ligands are more readily isolated from from solvents with low to moderate donor strength, for example acetone or acetonitrile. The fairly high solubility of the group 2 cryptate and the lanthanide nitrate in acetonitrile combined with the insolubility of the barium nitrate product of the exchange improves the likelihood of metal exchange.

The lanthanide ion cryptate is more soluble in acetonitrile than the group 2 metal cryptate and addition of ethanol and cooling was required to encourage crystallisation of the lanthanide cryptate at low volume. Crystals of lanthanide cryptate were only obtained at low volume by cooling on ice. Slow evaporation at room temperature did not give crystalline product, often oily material resulted.
The infrared spectra of the complexes show a medium intensity $\nu\text{C}=\text{N}$ absorption at ca. 1610 cm$^{-1}$ and the absence of amine or carbonyl frequencies indicate that the cage ligand has remained intact on transmetallation. The imine absorption does not show the shift in position of ca. 10 cm$^{-1}$ that is observed on transmetallation with the transition metal ions. This suggests that the nature of the bonding of the imine to the lanthanide ion is similar to that found in the group (II) metal cryptates and relatively unlike the stronger coordinate type bond found in the transition metal cryptates. The combination tone at ca. 1650 cm$^{-1}$ is present in the spectra of the series of lanthanide cryptates.

Often the infrared spectrum shows the presence of nitrate counterion. The nitrate is likely to be coordinated to the metal ion. In principle ionic nitrate with D$_{3h}$ symmetry, possesses three infrared-active modes at ca. 1390 cm$^{-1}$ $\nu_3 (A_1)$, 830 cm$^{-1}$ ν_2 and 720 cm$^{-1}$ ν_4. Upon coordination of the anion, the symmetry is lowered, and the ν_3 splits into two components at 1530-1480 cm$^{-1}$ and 1290-1250 cm$^{-1}$. Six infrared absorptions should be observed, ν_4 at 710, 740 cm$^{-1}$, ν_2 at 820 cm$^{-1}$, ν_3 at 1030 cm$^{-1}$, ν_3 and ν_4 at 1500 cm$^{-1}$ and 1250 cm$^{-1}$. The absorptions at ca. 1515 cm$^{-1}$ and ca. 1250 cm$^{-1}$ are clearly present in the infrared spectra of nitrate containing products, however the lower energy absorptions expected are masked by tetraphenylborate and GT absorptions. Although there was perchlorate present in the BaGT starting material this does not appear in the spectra of the lanthanide GT cryptate.

The n.m.r. spectra of the paramagnetic lanthanide cryptates showed strongly broadened and shifted signals, as expected for paramagnetic complexes.
<table>
<thead>
<tr>
<th>COMPLEX</th>
<th>COLOUR</th>
<th>νC= N</th>
<th>νBPh₄</th>
<th>νNO₃</th>
<th>νOH</th>
</tr>
</thead>
<tbody>
<tr>
<td>42 LaGT(BPh₄)₂(NO₃)·H₂O</td>
<td>yellow</td>
<td>1605 (m)</td>
<td>1577 (m)</td>
<td>1520</td>
<td>3439 (br)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>734 (s)</td>
<td>1250</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>706 (s)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>43 CeGT(BPh₄)₂(NO₃)</td>
<td>rust</td>
<td>1606 (m)</td>
<td>1574 (m)</td>
<td>1515</td>
<td>3443 (br)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>734 (s)</td>
<td>1249</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>706 (s)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>44 PrGT(BPh₄)₂(NO₃)·2H₂O</td>
<td>yellow</td>
<td>1607 (m)</td>
<td>1575 (m)</td>
<td>1516</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>734 (s)</td>
<td>1256</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>706 (s)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>45 EuGT(BPh₄)₃·4H₂O</td>
<td>yellow</td>
<td>1608 (m)</td>
<td>1575 (m)</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>733 (s)</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>706 (s)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>46 GdGT(BPh₄)₂(NO₃)</td>
<td>yellow</td>
<td>1607 (m)</td>
<td>1575 (m)</td>
<td>1518</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>734 (s)</td>
<td>1257</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>705 (s)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>47 TbGT(BPh₄)₂(NO₃)·2H₂O</td>
<td>yellow</td>
<td>1606 (m)</td>
<td>1575 (m)</td>
<td>1516</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>732 (s)</td>
<td>1256</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>705 (s)</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
TABLE 27 Electronic spectral and magnetic data for [LnGT]^{3+} complexes

<table>
<thead>
<tr>
<th>COMPLEX</th>
<th>MAGNETIC DATA</th>
<th>ELECTRONIC SPECTRAL DATA</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>μ_{eff}/BM</td>
<td>v_{max}/cm$^{-1}$</td>
</tr>
<tr>
<td></td>
<td>300K 65K</td>
<td></td>
</tr>
<tr>
<td>42 LaGT(BPh*)$_2$(NO$_3$)$_2$:2H$_2$O</td>
<td>diamagnetic</td>
<td>25,700 CT</td>
</tr>
<tr>
<td>44 PrGT(BPh*)$_2$(NO$_3$)$_2$:2H$_2$O</td>
<td>3.58 2.82</td>
<td>25,600 CT</td>
</tr>
<tr>
<td></td>
<td></td>
<td>23,809 f-f</td>
</tr>
<tr>
<td></td>
<td></td>
<td>20,833 f-f</td>
</tr>
<tr>
<td>45 EuGT(BPh*)$_3$:4H$_2$O</td>
<td>3.47 1.97</td>
<td>25,700 CT</td>
</tr>
<tr>
<td>46 GdGT(BPh*)$_2$(NO$_3$)$_2$</td>
<td>8.49 8.32</td>
<td>25,700 CT</td>
</tr>
<tr>
<td>47 TbGT(BPh*)$_2$(NO$_3$)$_2$:2H$_2$O</td>
<td>9.73 9.58</td>
<td>25,700 CT</td>
</tr>
<tr>
<td></td>
<td></td>
<td>20,534 f-f</td>
</tr>
</tbody>
</table>

CT = charge transfer

The formation of the lanthanide cryptates was confirmed by fast atom bombardment mass spectroscopy and magnetic measurements. Magnetic susceptibilities have been measured for the lanthanide complexes and the calculated paramagnetic moments, corrected for diamagnetic susceptibility contributions are displayed in table 27.

The fast atom bombardment mass spectrum of lanthanum GT cryptate shows clusters at m/e 496 (20%), 599 (5%) and 876 (10%) which are attributable to [LaGT]$^+$, [LaGT(NO$_3$)$_2$]$^+$ and LaGT(NO$_3$)$_2$(BPh$_4$)$^+$. However the starting material for the transmetallation was BaGT and the relative atomic masses of Ba and La are very similar, Ba = 137.33 and La = 138.91. the relative isotopic abundance of the isotopes of the two are quite different though, Ba has three isotopes 136 (7.9%), 137 (11.2%) and 138 (71.7%) whereas La
has two ; 136 (0.1%) and 139 (99.9%). The relative intensities of these are so different that probably only the more intense peak would be observed. The isotopic abundance pattern in the fab mass spectrum is similar to the pattern expected for LaGT. The NMR spectrum of a sample of LaGT shows three sets of resonances due to GT protons. The imine protons give rise to the signal at 8.01ppm, the methylene protons adjacent to the imine function give a triplet at 3.81, the methylene protons next to the bridgehead nitrogens give the signal at 2.98ppm. The spectrum also shows strong resonances due to the tetraphenylborate counterion at 7.22m, 6.94t 6.75t, the tetraphenylborate signals integrate in the ratio 2:2:1. Signals due to coordinated ethanol appeared in the spectrum at 1.1t and 3.0q. Integration suggested the presence of three ethanol molecules per cryptate. The sample used for nmr was a different sample to that sent for CHN analysis and magnetic susceptibility measurements.

The formation of the gadolinium GT cryptate was verified by fab mass spectroscopy. Clusters due to [GdGT]⁺ at m/e 515 (45%), [GdGTNO3]⁻ at m/e 577 (10%) and [GdGT(BPh₄)]⁻ at m/e 835 (3%) were observed. Magnetic measurements and the presence of an esr spectrum for the complex provide further evidence that the Gd³⁺ ion is present. Magnetic measurements were taken in the range 300-60K and show a small decrease in magnetic moment from 8.49BM to 8.32BM. The esr spectrum of the complex was recorded as a dmf glass. A broad signal was observed.

Trivalent lanthanides have a 4f⁵ 5s² 6p⁶ electronic configuration which results in weak crystal field and directional effects. The forbidden f-f transitions are weak but with the exception of La³⁺, Ce³⁺ and Yb³⁺ the trivalent lanthanides give line-like absorptions that resemble the lines of emission spectra more closely than the broad
absorptions of d-d type transitions. In the lanthanide GT series f-f transitions are superimposed on the much stronger charge transfer absorption at ca. 25,500 cm⁻¹. Transitions (f-f) which occur on the tail of the charge transfer absorption are clearly visible, whereas transitions that appear to higher wavenumbers either form slight shoulders on the charge transfer absorption or are masked completely.

Fab mass spectroscopy of the europium GT cryptate shows a cluster at m/e 510 (40%) which is attributed to [EuGT]⁺. The magnetic measurements for the complex verify that Eu²⁺ is present. The europium cryptate displays a large decrease in magnetic moment as the temperature is decreased, as expected. Eu²⁺ has a ⁷F₆ ground state and its paramagnetism occurs as a result of population of low lying excited J states. The first second and third excited J states are sufficiently close to the ground state to be appreciably populated at room temperature. At reduced temperature a decrease in population of the excited states leads to marked reduction in the magnetic moment of the Eu²⁺ complex.

The europium cryptate was of particular interest in view of the possibility of luminescence from excited states of the cryptated europium ion. It was hoped that the GT cryptate might protect the europium ion from radiationless deactivation by solvent molecules, as reported for Lehn's europium cryptate.²⁴⁰ Luminescence studies on the EuGT cryptate are underway, in collaboration with Prof. J. Kelly, Trinity College, Dublin.

In view of the cost of the europium salt and the low yield of europium cryptate obtained, attempts were made to improve the synthesis. It is known that lanthanide ions form insoluble lanthanide hydroxide precipitates in the presence of water, thus anhydrous conditions were employed in later preparations of the cryptate.
Gansow and Triplett have developed a synthesis of lanthanide polyether cryptates. Although the lanthanide cryptates of polyether cryptands are highly kinetically inert towards dissociation in aqueous solution, their formation constant is not large enough to allow their synthesis in such a polar solvent. The hydrated lanthanide salt solution in weakly coordinating organic solvent e.g. acetonitrile is treated with a dehydrating agent such as triethylorthoformate prior to complexation with an equimolar quantity of the cryptand. Crystallisation of the complex is induced by concentration of the solution and addition of a non-polar solvent.

A similar idea was applied to the synthesis of the EuGT complex. Dried solvents were used and 2,2-dimethoxypropane was added to scavenge water from the hydrated europium salt. Although the yield of cryptate was improved by use of anhydrous conditions and the presence of dehydrating agent, the yield was not dramatically increased. It is noticeable that the europium GT cryptate is the only member of the lanthanide cryptate series that can be obtained as tritetraphenylborate. All of the others retain some nitrate counterion.

It has been reported that the synthesis of 1:1 cryptates of lanthanide ions is usually easier when a good coordinating anion is provided, one that can coordinate to the metal ion through the strands of the cryptand. Nitrate is often chosen as the counterion due to its strong coordinating properties which make the complexes less sensitive to moisture and more readily crystallised. Perchlorate is also used and a bidentate perchlorate coordinates to europium through the strands of the 2:2:2 cryptand. However attempts to obtain a europium GT cryptate as a nitrate or a perchlorate failed. Initial attempts involved removal of tetraphenylborate anion from EuGT(BPh₄)₃ using silver perchlorate or silver
nitrate. The precipitate of silver tetraphenylborate was removed and the filtrate concentrated to low volume. Toluene was added to encourage crystallisation of the cryptate, however only oil resulted.

GROUP 1 CRYPTATES.

Cryptates of Na⁺ and K⁺ were obtained by transmetallation of barium GT using the group 1 metal sulphate. Sulphate was chosen as the counterion because barium sulphate, a product of the metal exchange, is practically insoluble in acetonitrile. The formation of barium sulphate should therefore assist in driving the metal exchange forward. The group 1 metal sulphate was dissolved in a minimum of hot water and added dropwise to barium GT in acetonitrile. A precipitate formed slowly and was filtered off after 2-3 hours. The infrared spectrum showed that this was a sulphate, presumably mainly barium sulphate. Transmetallation with Na⁺ gave a mixture of pale yellow microcrystals and pale yellow powder at low volume. The infrared spectrum of the product showed that GT and the tetraphenylborate counterion was present. Fab mass spectroscopy verified that the sodium cryptate had been formed. The fab spectrum of NaGT(BPh₄) showed a cluster at m/e 381 (15%) which is attributed to [NaGT]⁺. A cluster at m/e 359 (25%) which is due to [GT+H]⁺ was also observed. The fab spectrum showed no evidence of the presence of barium GT starting material.

Transmetallation of BaGT(BPh₄)₂ with K⁺ gave pale yellow microcrystals which were surrounded by oil. The existence of the potassium cryptate was shown by fab mass spectroscopy. A strong cluster at m/e 397 (60%) due to [KGT]⁺ was observed. In this case [GT+H] at m/e 359 was absent from the spectrum, as was evidence of the presence of barium GT
starting material. Acceptable CHN analysis was not obtained for this complex. Only oil resulted from attempted recrystallisation. The difficulty in isolating group 1 GT cryptates is not surprising in view of the 'hard' nature of the group 1 ions and the relatively soft nature of the a-diimine donor groups of the GT cryptand. The synthesis of sodium cryptates of macrocyclic ligands containing bipyridine and phenanthroline groups has been reported\(^{28}\). The sodium ion was found to be an effective template metal ion in the synthesis of the cryptand. The inclusive nature of the sodium cryptates was demonstrated by nmr.

ATTEMPTED REDUCTIVE DEMETALLATION OF GT COMPLEXES

A fairly large amount of time and effort was invested in attempted reduction of the GT cryptates. Various possible routes to the metal-free reduced GT ligand were investigated, including template of GT on Pb(II) followed by sodium borohydride reduction and synthesis of PbGT(BPh\(_4\))\(_2\) via transmetallation followed by sodium borohydride reduction. The lead GT complex PbGT(BPh\(_4\))\(_2\) was prepared by transmetallation of barium GT using lead nitrate. A precipitate was removed by filtration and infrared spectroscopy showed that this was a nitrate, probably barium nitrate. Fab mass spectroscopy showed clusters due to the lead GT cryptate, m/e 566 [PbGT]\(^+\) (35%) and m/e 884 [PbGT(BPh\(_4\))]\(^+\) (8%)

The reduction attempts using lead GT starting material gave a black precipitate of lead metal on addition of NaBH\(_4\), as expected, though the lead precipitate was solubilised again within minutes. Removal of the lead precipitate by filtration under vacuum was only partly successful. It appears that the reduced cryptand complexes lead avidly. The work-up procedure for the product of the borohydride reduction involves extraction
of the cryptand into chloroform, the metal complex does not dissolve in the chloroform layer and is lost in the work-up procedure.

As a result of the problems encountered in attempts to reductively demetallate PbGT, various metal ion cryptates were investigated as starting materials for the reduction. Attempted preparation of a silver cryptate for use in the reduction failed. Both attempts to synthesise a silver GT cryptate by template methods and transmetallation of the group (II) cryptates with Ag⁺ were carried out. The manganese GT cryptate was used as starting material without success.

During the course of this work, the synthesis of the octaamino form of GT by traditional organic methods was published by Lehn and coworkers.

Attempted Synthesis of a Ruthenium Cryptate

Fab mass spectroscopy showed that early attempts to transmetallate SrGT(BPh₄)₂ using Ru(PC₆H₅)₃Cl₂ failed. Cream crystals of unreacted starting material SrGT(BPh₄)₂ was obtained and the fab spectrum displayed [SrGT]⁻ at m/e 446 as the base peak. A later attempt employing more vigorous conditions produced orange microcrystals. The infrared spectrum of the orange product indicated that the GT cryptand was present and intact. An imine absorption was observed at 1609cm⁻¹ and amine and carbonyl frequencies were absent from the spectrum. Strong absorptions due to the tetraphenylborate counterion were observed in the infrared spectrum. The CHN analysis is not reliable as a means of determining if metal exchange has occurred as Ru and Sr have similar atomic mass. If the ruthenium ion remained Ru²⁺, both RuGT and SrGT tetraphenylborates would give similar CHN analysis. Another possibility is that the ruthenium ion may oxidise to Ru(III). This need not affect the analysis to a great extent if the third anion was chloride.
The orange colour of the product was hopeful as the ruthenium cryptate of the large phenanthroline-based cryptand which was reported by de Cola was orange in colour. The fast mass spectrum of the product showed no trace of [RuGT]⁺. Despite the fact that the infrared spectrum clearly showed a complex of GT to be present, there was no evidence of [SrGT]⁺ from the starting material or [GT+H]⁺ in the spectrum.

ATTEMPTED SYNTHESIS OF CRYPTATES FROM ALIPHATIC DICARBONYLS

The success of the synthesis of GT from tren and glyoxal prompted attempts to extend the synthesis to reaction of other dicarbonyls with tren. The dicarbonyls pyruvic aldehyde, biacetyl and glutaraldehyde were used in attempted cryptate synthesis. Summaries of the synthesis attempts are presented in tabular form at the end of the experimental section.

Pyruvic aldehyde and biacetyl contain one and two ketone groups respectively and it was expected that as a result these would be less reactive towards Schiff-base formation than a dialdehyde such as glyoxal. Early attempts concentrated on the use of more vigorous reaction conditions. Glutaraldehyde is a dialdehyde and should not cause problems in terms of reactivity. However the relatively long and flexible aliphatic chain of glutaraldehyde may make cryptand formation unfavourable in entropy terms. The aliphatic chain of glutaraldehyde is too long to give favourable five or six membered rings on coordination of imines around a metal ion. It may be more feasible to form binuclear complexes from reaction of tren with glutaraldehyde.

Two-three months was spent on the GT synthesis before marked progress was made, thus it is possible that these attempts are not totally hopeless. The infrared spectra showed some indications of imine formation and often the product did not appear to be polymeric.
CHAPTER 5
There is interest in metal-ion complexes of small mono-nucleating cryptands because of their potential as redox reagents and their possible selectivity for metal-ions. Larger binucleating cryptands are of interest due to the possibility of coordination and activation of substrates between metal ions, or inclusion of small molecules or anions within the cryptand. The cryptand 3Bp is the largest of the series studied by us to date.

Tren, $\text{H}((\text{CH}_2\text{CH}_2\text{NH}_2)_3$, displays remarkable complexation properties towards transition metal cations.249,250 The tren molecule is a convenient building block which permits a controlled arrangement of cations within a cryptand. The linkage of two tren subunits by reaction with three dicarboxyls provides Schiff-base cryptands which have potential for transition metal ion encapsulation. The internuclear separation of the metal ions can be controlled to some extent by choice of the bridging fragments.

The cryptand 3Bp contains para-substituted benzene in the bridging arms and is shown in figure 35.

Figure 35 The cryptand 3Bp
Synthesis of the metal-free cryptand 3Bp and synthesis of the disilver and dilead cryptates by template methods was reported previously.275 The success of the synthesis of the 3Bp cryptand by a non-template method may reflect the rigidity of the dicarbonyl reactant and a possible internal hydrogen bonding template effect that tends to keep the amine in a suitable conformation for cryptand synthesis. The X-ray crystal structure of the metal-free cryptand has been determined276 and is shown in figure 36. The X-ray structure shows that the cryptand adopts a divergent conformation and forms hydrogen bonds to six water molecules lying outside of the molecular cavity.

Figure 36 The X-ray structure of 3Bp:6H\textsubscript{2}O
The water molecules are also hydrogen bonded to each other and link individual cryptands within the crystal.

Tasker has prepared a series of di-imine tetraaza macrocycles in metal-free form and has attributed the success of the synthesis to the formation of intramolecular hydrogen bonds in the product.261 In this product the imine functions are in the trans trans conformation and this is the predominant conformation found in the reactant dialdehyde, thus a template ion is not required to hold this reactant in a suitable
conformation for reaction. Similarly, Fenton has noted that conformer distribution is related to whether a template ion is required for macrocyclisation.**

The work previously reported by D. Mars has been extended here to the synthesis of transition metal ion cryptates of 3Bp. Both transmetallation of the templated disilver and dilead 3Bp complexes and metal ion insertion into the free 3Bp cryptand were investigated. The transition metal ion complexes of 3Bp and physical data for the complexes is listed in tables 28 and 29.

PHYSICAL DATA FOR TRANSITION METAL 3Bp COMPLEXES

TABLE 28 Infrared spectral data/cm⁻¹

<table>
<thead>
<tr>
<th>COMPLEX</th>
<th>COLOUR</th>
<th>vC=N</th>
<th>vCF₃SO₃</th>
<th>vNCS</th>
<th>vOH</th>
</tr>
</thead>
<tbody>
<tr>
<td>48 Cu₂3Bp(CF₃SO₃)₂</td>
<td>orange</td>
<td>1637ms</td>
<td>1276</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td></td>
<td>1620</td>
<td>1222</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>1159</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>1026</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>635</td>
<td></td>
<td></td>
</tr>
<tr>
<td>49 Cu₂3Bp(SCN)₂:MeCN</td>
<td>yellow</td>
<td>1640ms</td>
<td>-</td>
<td>2060</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td></td>
<td>1625sh</td>
<td></td>
<td>2048</td>
<td></td>
</tr>
<tr>
<td>50 Co₂3Bp(NCS)₄:3H₂O</td>
<td>blue</td>
<td>1642ms</td>
<td>-</td>
<td>2066</td>
<td>3400</td>
</tr>
<tr>
<td></td>
<td></td>
<td>1620br,sh</td>
<td></td>
<td>2040sh</td>
<td></td>
</tr>
</tbody>
</table>

Table 29 Magnetic, electronic spectral and conductivity data

<table>
<thead>
<tr>
<th>COMPLEX</th>
<th>μ eff.</th>
<th>∑</th>
<th>ELECTRONIC SPECTRAL DATA</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>/BM</td>
<td>/S cm² mol⁻¹</td>
<td>ν max /cm⁻¹</td>
</tr>
<tr>
<td>48 Cu₂3Bp(CF₃SO₃)₂</td>
<td>diamagnetic</td>
<td>247</td>
<td>27500</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>35500</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>300K 80K</td>
</tr>
<tr>
<td>50 Co₂3Bp(NCS)₄:3H₂O</td>
<td>4.5 4.2</td>
<td>-</td>
<td>16050</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>7030</td>
</tr>
</tbody>
</table>
Many attempts were made to transmetallate dilaed or disilver 3Bp complexes. Some of these attempts along with conditions employed, solvent and results are shown in table 2 in the experimental chapter. The only transition metal cryptate obtained by transmetallation was the dicobalt complex \(\text{Co}_23\text{Bp(NCS)}_4 \). Fab mass spectroscopy verified that the product was a dicobalt complex of 3Bp, however acceptable CHN analysis was not obtained for the product formed by transmetallation.

Various strategies were used in attempted transmetallation. Anions were chosen so that insoluble silver or lead precipitates might form and improve the chances of metal exchange. Elevated temperatures were used in some cases to find if this would increase the rate of metal exchange, however this often led to ring opening which was apparent from the presence of amine and carbonyl frequencies in the infrared spectra of the products. Generally only anion exchange resulted when reactions were attempted at temperatures of around 55°C. It was noted that the thiocyanate anion was required for formation of the dicobalt cryptate, so this was used in some of the attempts with different transition metals to investigate if a good coordinating anion might stabilise cryptates of other transition metal ions. Despite the presence of thiocyanate, transmetallation attempts with metal ions apart from Co(II) were unsuccessful.

Metal insertion into the metal-free 3Bp ligand was more successful. Copper(1) and cobalt(II) formed binuclear cryptates of cryptand 3Bp. Attempted insertion of iron(II) or manganese(II) into the metal-free 3Bp cryptand gave protonated 3Bp. Attempted insertion of Ni(II), in the absence of thiocyanate, gave unreacted starting material or anion exchange
products. However a [Ni₂3BP]₄⁺ complex has since been obtained in the presence of thiocyanate ligand.

The dicobalt 3BP complex Co₂3BP(HCS)₄:3H₂O (50) was obtained by metal insertion into the metal-free 3BP cryptand. The dicobalt complex (50) was insoluble in acetonitrile and precipitated out of solution on addition of a solution of cobalt thiocyanate to a solution of the starting material. Recrystallisation could only be achieved in low yield using a DMA/Et₂O/MeOH solvent mixture. Fab mass spectroscopy verified that the dicobalt complex had formed. Fab mass spectroscopy showed clusters due to fragment ions containing Co₂3BP. A cluster at m/e 703 (50%) is due either to [Co₂3BP]⁺ or to [Co3BP(HCS)]⁻ and another cluster observed at m/e 759 (55%) is assigned to either [Co₂3BP(HCS)]⁻ or [Co3BP(HCS)₂]⁻. Cobalt and thiocyanate both have mass close to 58, therefore alternative assignments fit the peaks observed in the fab spectrum. The isotopic cluster pattern suggests the presence of two cobalt ions. There was no evidence of the presence of a Co(HCS)₄ counterion in the fab spectrum of the product.

The infrared spectrum of the dicobalt 3BP complex (50) showed a strong v(C=N) absorption at 1634 cm⁻¹ and absorptions attributable to amine or carbonyl functions were absent indicating that the 3BP ligand had remained intact on metal insertion. A small shift in position of the v(C=N), to ca. 10 cm⁻¹ lower than that of the 3BP starting material, was observed on formation of the metal complex. A poorly resolved shoulder was observed on the low frequency side of the v(C=N) absorption in the infrared spectrum of the cobalt complex which suggests either that not all of the imine nitrogens of the cryptand are coordinated to the cobalt ion or a low symmetry environment for the Co(II) ion. A strong thiocyanate
absorption was observed at 2066 cm\(^{-1}\) in the infrared spectrum, suggesting N-terminal coordination of thiocyanate. The presence of a shoulder at ca. 2040 cm\(^{-1}\) indicates that there are two different symmetry environments for the thiocyanate groups. The infrared spectrum of HgCo(NCS)\(_4\) was taken to determine the position of the thiocyanate absorption for the cobalt tetrathiocyanate counterion and a strong absorption at 2095 cm\(^{-1}\) was observed. Thus this observation provides further evidence that the cobalt tetrathiocyanate counterion is not present.

The electronic spectrum of complex (50) is typical of tetrahedrally coordinated Co(II), consisting of a fairly intense band at 16050 cm\(^{-1}\) (\(\epsilon = 600 \ \text{1 mol}^{-1} \ \text{cm}^{-1}\)) and a less intense band at 7030 cm\(^{-1}\) (100 \(\text{1 mol}^{-1} \ \text{cm}^{-1}\)). The higher energy absorption is assigned to the transition \(^4\text{A}_2 \rightarrow ^4\text{T}_1\) (P) (in tetrahedral symmetry), while the lower energy band is assigned to the transition \(^4\text{A}_2 \rightarrow ^4\text{T}_1\) (F). The extinction coefficient, particularly of the higher energy band, is too high for octahedral coordination of the Co(II) ion and falls in the range expected for tetrahedral coordination.

Magnetic measurements for the complex provide further evidence of tetrahedral coordination of the Co(II) ion. A value for \(\mu\) of 4.5BM per Co(II) ion at 300K was recorded. This value falls in the range expected for tetrahedrally coordinated Co(II) (4.2-4.8). The relatively low value of \(\mu\), for high-spin Co(II), suggests that there is little orbital contribution to the moment, as expected for tetrahedrally coordinated Co(II).

The thiocyanate ligand appears necessary to provide the tetrahedral binding site for Co(II) in the complex Co\(_2\)3Ep(NCS)\(_4\)3H\(_2\)O. This factor combined with the observed splitting of the \(v(\text{C}=\text{N})\) absorption in the infrared spectrum suggests that the cobalt(II) ion may be coordinated by
two imine nitrogen donors of the cryptand and two N-terminal thiocyanate ligands in a tetrahedral arrangement.

Alternative counterions were used in an attempt to produce a more soluble dicobalt complex which might crystallise more slowly. On use of cobalt perchlorate, cobalt triflate or cobalt nitrate, only pale brown solutions resulted and brown oils were obtained at reduced volume. The brown colour of the solution suggests that the Co(II) ion is attempting to find six donors in solution. It appears that a small or linear coordinating anion is required to provide a suitable tetrahedral coordination site for the cobalt (II) ion within the 3Bp cryptand.

The potentially bridging anions, azide and cyanate, were investigated in an attempt to form Co$_2$3Bp complexes. Addition of an aqueous solution of azide to a pale brown solution of 3Bp and cobalt triflate, did not produce green colour. An oily rust-brown mixture was obtained on reduction in volume. Addition of Na$_3$N$_3$ as a solid to a solution of 3Bp produced green colouration, however the product obtained was impure. Addition of a solution of cyanate to a pale brown solution of 3Bp and cobalt triflate gave instant green colour however only a green oily mixture was obtained on reduction in volume.

Attempted insertion of Cu(II) into the metal-free cryptand 3Bp as described in the experimental section, gave a green solution from which orange crystals of the dicopper(I) complex Cu$_2$3Bp(CF$_3$SO$_3$)$_2$ were obtained on slow evaporation. The infrared spectrum of the dicopper(I) cryptate is shown in figure 37. A strong and split νC=N absorption was observed at ca. 1637 cm$^{-1}$ and absorptions attributable to amine or carbonyl functional groups were absent from the spectrum, indicating that the cryptand had remained intact on metal insertion. A shift in the frequency of the imine
absorption was observed on coordination to the Cu(I) ion, from 1643 cm\(^{-1}\) in the metal-free 3Bp cryptand to 1637 cm\(^{-1}\) in the complexed cryptand. The splitting of the imine absorption suggests either a low symmetry binding site for Cu(I) or that not all of the six imines are involved in coordination of the Cu(I) ion.

The electronic spectrum of the complex shows a strong charge transfer absorption at 27,500 cm\(^{-1}\) (\(\epsilon = 8000 \text{ l mol}^{-1} \text{ cm}^{-1}\)) which accounts for the intense orange colour of the complex. This is presumably a Cu(I) → imine charge transfer transition. A stronger absorption was observed at 38,500 cm\(^{-1}\) (\(\epsilon = 70,000 \text{ l mol}^{-1} \text{ cm}^{-1}\)), which is possibly a \(\pi-\pi^*\) absorption of the ligand. The conductivity measurement for the complex in acetonitrile falls in the range expected for a 2 : 1 electrolyte which indicates that the triflate anions do not coordinate the metal ions of the complex in acetonitrile solution.

Crystals of suitable size and quality for X-ray structural analysis were obtained and the complex was found to be isomorphous with the disilver 3Bp complex Ag\(_2\)3Bp(CF\(_3\)SO\(_3\))\(_2\). The X-ray structure of the disilver 3Bp complex was solved previously\(^2\) and is shown in figure 38.

Figure 38 The X-ray crystal structure of Ag\(_2\)3Bp(CF\(_3\)SO\(_3\))\(_2\)
In the metal ion cryptate the lone pairs point into the molecular cavity and coordinate to the metal ions which are bound inside the cryptand cavity. The imine nitrogens are in a mutually cis relationship in the metal complex. The bridgehead N-C bonds are eclipsed in the complex but are staggered in the free ligand. Each silver ion is four coordinate and is bonded to the bridgehead nitrogen and to three imine nitrogen donors of the tripodal tren based subunits located at either end of the cryptand. The silver ion lies outside the tetrahedron formed by the four nitrogens towards the centre of the cavity.

Complexation of the metal ion within 3Bp induces drastic conformational change in the cryptand. The X-ray structure of the metal-free 3Bp cryptand (figure 36) shows a divergent conformation with the imine nitrogens involved in hydrogen bonding to water molecules lying outside the molecular cavity. The imine nitrogens are trans to each other in the free ligand. On complexation, transformation to a convergent binding conformation is achieved (figure 38). In the metal-free and complexed forms of the 3Bp cryptand, the orientation of the benzene rings differ. The benzene rings of the silver complex are tilted so that hydrogen atoms on one side of each ring point towards the molecular cavity. Each silver ion has contacts with three hydrogens from the bridging benzene rings.

Lehn has reported a crystal structure of a dicopper(I) complex of a Schiff-base cryptand which is shown in figure 39.28
The crystal structure of Lehn's dicopper(I) cryptate showed that each copper(I) cation is tetracoordinate and lies 0.2 Å outside the tren based subunit to which it is bound. In Lehn's cryptate too, hydrogen atoms of the benzene rings are directed towards the copper (I) ions (figure 39).

It is unclear why the \(\nu(C=N) \) is split in the dicopper(I) complex. The infrared spectrum of the complex \(Ag_23Bp(CF_3SO_3)_2 \) whose crystal structure is shown in figure 38 exhibits a sharp and unsplit \(\nu(C=N) \) absorption at 1639 cm\(^{-1} \) in the infrared spectrum. It may be that the Cu(I) binding site is more irregular, perhaps the Cu(I)–N imine bond lengths are not equivalent. Crystallographically isomorphous complexes need not necessarily be precisely isostructural\(^{17a} \) and there may be slight differences in the coordination sphere of Cu(I) and Ag(I).

The dicopper(I) 3Bp complex (48) has been obtained by an alternative route involving metal ion insertion into 3Bp using Cu(WeCN)\(_2\)CF\(_3\)SO\(_3\). The orange product obtained by this method was not so crystalline as that obtained by use of Cu(CF\(_3\)SO\(_3\))\(_2\). The strong green colour which formed on stirring 3Bp with a Cu(II) salt in acetonitrile suggested that a copper (II) complex formed initially and could possibly be obtained as a solid if isolated quickly. However rotary evaporation of the green solution gave
only yellow Cu(I) containing products. Attempts to precipitate a copper(II) 3Bp complex by mixing a solution of 3Bp in methylene chloride with a solution of Cu(ClO₄)₂ in ethanol gave a pale green precipitate containing protonated 3Bp salt. It is probable that the 3Bp cryptand cannot provide a square-based coordination site which would stabilise Cu(II), whereas the tren-based subunits at either end of the 3Bp cryptand offer a coordination site which is acceptable to the Cu(I) ion. In addition the unsaturation of the cryptand will tend to stabilise the lower oxidation state further.

The complex Cu₂3Bp(SCN)₂ was prepared by metal insertion into 3Bp using Cu(ClO₄)₂ and a solution containing an excess of sodium thiocyanate was added to the filtrate. This caused an instant colour change of the reaction mixture from green to a deep orange-red colour and product started to crystallise out on stirring. The infrared spectrum of the product shows νC=N at 1640 cm⁻¹ and absorptions attributable to amine or carbonyl are absent from the spectrum. The presence of a shoulder on the low frequency side of the imine absorption, at ca. 1625 cm⁻¹ suggests either a low symmetry environment or that not all of the imines are coordinated to the Cu(I) ions.

Infrared spectral evidence suggests that the thiocyanate anions are coordinated. A strong absorption at 2084 cm⁻¹ and a shoulder at 2060 cm⁻¹ indicate that the thiocyanates exist in two different environments. The ν(νCS) absorptions fall at the low frequency end of the range expected for S-bonding of the thiocyanate ligand. Coordination of the Cu(I) by S-bonded thiocyanate is expected in view of the soft nature of Cu(I). Each copper(I) ion may be coordinated by two imine nitrogens and a thiocyanate ligand.
Attempted insertion of Fe(II) or Mn(II) into the metal-free 3Bp cryptand gave protonated 3Bp. The pale cream colour of the product suggested that the metal ion had not been inserted into the cryptand yet the infrared spectra showed strong absorptions due to the counterion, suggesting that the cryptand had become protonated. Fab mass spectroscopy of the product obtained from the manganese insertion attempts showed a peak at m/e 587 as the base peak which could be attributed to 3Bp or protonated 3Bp. However, higher mass peaks that might have shown protonated ligand/anion combinations were not observed in the fab mass spectrum. The crystalline nature of the cream product obtained from the manganese insertion attempt combined with the very strong nitrate absorptions in the infrared spectrum suggest that this was a pure sample of protonated ligand nitrate, as opposed to a mixture of 3Bp and manganese nitrate.

In the 3Bp series, there appears to be competition between the formation of the metal complex and formation of the protonated ligand. Proton n.m.r. shows that there is a strong hydrogen bond in the protonated ligand complex. This is probably intramolecular. Intramolecular hydrogen bonding within a small cryptand has been reported by Ciampolini et al.29 The cryptand behaves as a very strong base in the first protonation step. The exceptionally high basicity for the amine led to the proposal of a structure for the monoprotonated cryptand in which two NH hydrogens are involved in hydrogen bonds with tertiary nitrogens within the cyclic framework. The proposed structure is shown in figure 40.
Figure 40 The proposed structure of Ciampolini’s protonated cryptand

Alternatively, it may be that it is the small size of the coordination site in 3Bp that interferes with the ligand’s ability to complex a wider range of transition metal ions. In the Co(II) and Ni(II) complexes the thiocyanate ligand was required to provide an acceptable coordination site. Copper(I) and silver(I) ions may be more willing to tolerate coordination on one face of the ion and close approach of the benzene hydrogen atoms to the other face. The unusual geometry of the coordination site occupied by silver or copper (I) in the 3Bp complexes may not be acceptable to more stereochemically demanding transition metal ions.

The cryptand R3Bp was obtained by reductive demetallation of Pb₂3Bp(NCS)₄ with sodium borohydride in ethanol, by modification of the method previously reported.²⁷⁵

The infrared spectrum of the reduced ligand R3Bp shows a strong absorption due to \(\nu(N-H) \) stretching at 3231 cm\(^{-1} \). The strong sharp signal of the 3Bp parent imine at 1640 cm\(^{-1} \) is absent. A broad and weak absorption at ca. 1620 cm\(^{-1} \) which appears in the spectrum of the reduced
form, R3Bp, is attributed to δ(N-H) bending. The parent ion peak was observed in the mass spectrum at m/e 598 corresponding to [3Bp +12H$^+$], which is the octaamino derivative.

The metal-free R3Bp cryptand was used in complex formation with a range of transition metal ions. A series of binuclear transition metal ion cryptates was obtained and the infrared spectral data for the complexes is shown in tables 30 and 31.

PHYSICAL DATA FOR R3Bp COMPLEXES

Table 30 Infrared spectral data

<table>
<thead>
<tr>
<th>COMPLEX</th>
<th>COLOUR</th>
<th>νWH</th>
<th>νOH</th>
<th>νCF$_3$SO$_3$</th>
<th>νClO$_4$</th>
</tr>
</thead>
<tbody>
<tr>
<td>51 Cu$_2$R3Bp(CF$_3$SO$_3$)$_2$:H$_2$O</td>
<td>cream</td>
<td>3253(s)</td>
<td>3450(w, br)</td>
<td>1256(s)</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1157(s)</td>
<td>1028(s)</td>
</tr>
<tr>
<td>52 Cu$_2$R3BpμOH(ClO$_4$)$_3$:MeCN:3H$_2$O</td>
<td>green</td>
<td>3297(m)</td>
<td>3583(m, sp)</td>
<td>-</td>
<td>1091(s)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1040(s)</td>
</tr>
<tr>
<td>53 Co$_2$R3BpμOH(ClO$_4$)$_3$:2H$_2$O</td>
<td>green</td>
<td>3278(m)</td>
<td>3578(m, sp)</td>
<td>-</td>
<td>1092(s)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1075(s)</td>
</tr>
<tr>
<td>54 Co$_2$R3BpμOH(CF$_3$SO$_3$)$_3$</td>
<td>green</td>
<td>3271(m)</td>
<td>3585(m, sp)</td>
<td>1272(s)</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1258(s)</td>
<td>1028(s)</td>
</tr>
<tr>
<td>55 (R3Bp+4H$^+$)(CF$_3$SO$_3$)$_4$</td>
<td>colourless</td>
<td>3248(s, br)</td>
<td>-</td>
<td>1234(s)</td>
<td>1163(s)</td>
</tr>
</tbody>
</table>

Infrared spectra of the cryptates show a weak δ(N-H) at ca 1620 cm$^{-1}$.

sp = sharp absorption
Table 31 Infrared spectral data

<table>
<thead>
<tr>
<th>COMPLEX</th>
<th>COLOUR</th>
<th>v NH</th>
<th>v OH</th>
<th>v(\nu)O(_2)</th>
<th>v(\nu)CS</th>
</tr>
</thead>
<tbody>
<tr>
<td>57 (\text{Ni}_2\text{R3Bp(NO}_3)_4)</td>
<td>turquoise</td>
<td>3202(m)</td>
<td>3450(br)</td>
<td>1479(s)</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1445(s)</td>
<td>1322(s)</td>
</tr>
<tr>
<td>58 (\text{Co}_2\text{R3Bp(NCS)}_4)</td>
<td>petrol-blue</td>
<td>3235(m)</td>
<td>3400(br)</td>
<td>-</td>
<td>2067(s br)</td>
</tr>
</tbody>
</table>

The infrared spectra of the cryptates show a weak \(\delta(N-H)\) at ca. 1620 cm\(^{-1}\).

Table 32 Magnetic, electronic spectral and conductivity data

<table>
<thead>
<tr>
<th>COMPLEX</th>
<th>(\mu) eff.</th>
<th>(\mu) per transition metal ion in BM.</th>
<th>ELECTRONIC SPECTRAL DATA</th>
<th>(v) max in cm(^{-1})</th>
<th>(\epsilon) in S cm(^2) mol(^{-1})</th>
</tr>
</thead>
<tbody>
<tr>
<td>50 (\text{Cu}_2\text{R3Bp(CF}_3\text{SO}_3)_2:H}_2\text{O})</td>
<td>diamag. 241</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>52 (\text{Cu}_2\text{R3BpOH(CIO}_3)_3:MeCN:3\text{H}_2\text{O})</td>
<td>1.87 1.34 319</td>
<td>15400(sh) 11500</td>
<td></td>
<td>213</td>
<td></td>
</tr>
<tr>
<td>53 (\text{Co}_2\text{R3BpOH(CIO}_3)_3:2\text{H}_2\text{O})</td>
<td>- - -</td>
<td>21200 15800</td>
<td></td>
<td>84</td>
<td></td>
</tr>
<tr>
<td>54 (\text{Co}_2\text{R3BpOH(CF}_3\text{SO}_3)_3})</td>
<td>4.3 4.0</td>
<td>-</td>
<td>21200</td>
<td>131</td>
<td>15500</td>
</tr>
</tbody>
</table>

The infrared spectra of the metal complexes of R3Bp showed one or two fairly strong bands between 3200 and 3300 cm\(^{-1}\) which are attributable to \(v(N-H)\) vibrations. The dicobalt complexes exhibited two absorptions in the \(NH\) stretching region presumably symmetric and asymmetric stretching modes, whereas the copper complexes showed only one absorption due to
v(\text{NH}) stretching. A weak band at ca. 1620 cm\(^{-1}\) is assigned to the \text{NH} bending mode, the \text{OH} bending mode may also contribute to this absorption in complexes containing water of crystallisation. The infrared spectra of the complexes formulated as containing bridging \text{OH}\(^-\) (52), (53) and (54) exhibited a sharp v(\text{OH}) absorption in the range 3550-3600 cm\(^{-1}\). The sharp nature of the absorption suggests that the hydroxo is not hydrogen bonded and is possibly protected within the cryptand cavity.

Various dicopper cryptates of R3Bp were synthesised. The dicopper(1) cryptate \text{Cu}_2\text{R3Bp(CF}_3\text{SO}_3\text{)}_2 (51) analysed as the monohydrate. Both the analysis of the % copper in the product and the fast atom bombardment mass spectrum of the cream product verify that this is a copper cryptate and not just protonated R3Bp with triflate counterion. Figure 41 shows the infrared spectrum of complex (51). The fab mass spectrum showed a strong cluster around m/e 873 (90%) which is due to \text{[Cu}_2\text{R3Bp(CF}_3\text{SO}_3\text{)}\text{]}^+. Clusters due to other copper containing R3Bp ions were evident in the spectrum. The fab mass spectral data is listed in the experimental section. The conductivity measurement for the complex is typical of a 2 : 1 electrolyte and indicates that the triflate anions are not coordinated in solution in acetonitrile. The complex as a solid showed a slight tendency to surface oxidation and a solution of the complex showed a more marked green colour on exposure to air. This observation contrasts with that for the dicopper(I) 3Bp complexes which show no tendency to oxidise. Cyclic voltammetry was carried out on the dicopper(I) R3Bp complex, however the electrochemical processes observed were irreversible. A copper stripping peak was observed.

The conductivity measurement taken for the dicopper(II)\(\mu\text{OH}\) complex (51) falls in the range expected for 3 : 1 electrolytes, which suggests
that the hydroxo ligand remains coordinated to the metal ions in acetonitrile solution and the perchlorate anions are ionic. Variable temperature magnetic susceptibility measurements on the hydroxo-bridged dicopper complex showed a reduction in moment with temperature, indicating the presence of weak interaction between the copper(II) centres, presumably via the hydroxo bridge. The electronic spectrum shows a broad d-d band at ca. 11,500 cm\(^{-1}\) which is consistent with tetragonal coordination. The presence of a slight shoulder at 15,400 cm\(^{-1}\) may indicate some reduction in symmetry.

Lehn has reported the dicopper(II) cryptate of the bistren ligand (figure 18, Chapter 1) and it was observed that addition of water to a solution of the cryptate Cu\(_2\)Bistren\((\text{ClO}_4)\)\(_4\) in acetonitrile led to a strong decrease in the intensity of the esr signal.\(^26\) This was attributed to strong antiferromagnetic coupling of the two Cu(II) ions via a hydroxo bridge. Martell found that the coordination of \(\mu\) hydroxo group stabilised the binuclear cryptates of the bistren cryptate.\(^27\) The binding of the hydroxo group was considerably greater than that of the chloride anion. It was suggested that this was an indication of much stronger coordinate bonding and perhaps more favourable steric factors for hydroxide binding. In addition, hydrogen bonding of the hydroxo hydrogen to an ether oxygen of the cryptand may further stabilise the hydroxo complex within the polyether cryptand.\(^27\)

The infrared spectra of the dicobalt R3Bp complexes (53) and (54) show a sharp absorption at ca. 3585 cm\(^{-1}\) which is attributed to the bridging hydroxo ligand. The fast atom bombardment mass spectrum of the complex (54) shows a strong cluster at m/e 1178 (90%) which is presumably due to \([\text{Co_2R3BpμOH(CF_3SO_3)}]_3^+\). The magnetic susceptibility measurements
Indicate that the metal centres are weakly antiferromagnetically coupled. The electronic spectra of complexes (53) and (54) show two bands at 21,200cm\(^{-1}\) and ca. 15,600cm\(^{-1}\) and suggests that the cobalt ion is five coordinate.\(^{29,220}\)

The synthesis of a dicobalt R3Bp thiocyanate was attempted to discover if a bridging mode of thiocyanate could be accommodated between the cobalt ions. However the infrared spectrum of the product Co\(_2\)R3Bp(NCS)\(_4\) indicated that the thiocyanate was N-terminal. It is possible that steric hindrance between the aromatic rings of the cryptand and the thiocyanate ligand prevents bridging. The thiocyanate absorption was strong and relatively broad and may indicate slightly different environments for the thiocyanate ligands.

Attempted insertion of Mn(II) into R3Bp initially produced a strong yellow coloured solution which suggested that Mn(II) had been inserted into the cryptand, but gradually the solution became brown and on reduction in volume a brown solid came out of solution. The infrared spectrum of the solid showed that it was inorganic and probably a Mn(III) hydroxide, with some triflate anion also present. On slow evaporation the colourless filtrate gave colourless crystals of protonated R3Bp triflate which were of suitable quality and size for X-ray structural analysis.

The infrared spectrum of the crystals showed a broad absorption over the v(N-H) region of the spectrum. The broadening of the N-H stretching band may be a result of hydrogen bonding as well as overlapping of the individual N-H stretching bands. Several individual N-H stretching bands were present on the high frequency side of the broad absorption. Hydrogen bonding weakens the N-H bond and results in a shift of the N-H stretching absorption to lower frequencies.\(^{320}\) In addition, strong absorptions due to
the triflate anion were observed in the infrared spectrum. The CHN analysis of the product suggested the presence of four triflate anions to one cage molecule implying tetraprotonation of the R3Bp cage. This was later confirmed by X-ray structural analysis.

THE CRYSTAL STRUCTURE OF \([\text{R3Bp} + 4\text{H}^+ \text{]} (\text{CF}_3\text{SO}_3)^4\]

The X-ray crystal structure of \([\text{R3Bp}+4\text{H}^+] (\text{CF}_3\text{SO}_3)^4\) is displayed in figure 42. The structure shows that there are four triflate anions to one cation, the tetraprotonated R3Bp ion. The bridgehead nitrogens are not protonated and the lone pair points into the molecular cavity. Two of the six secondary nitrogen atoms have hydrogen atoms which are hydrogen bonded to triflate anions. Two other secondary nitrogen atoms have each got two hydrogens which are hydrogen bonded to an oxygen atom of a triflate and to the remaining two nitrogen atoms of the cryptand. There is one intramolecular hydrogen bond at each end and one external hydrogen bond to a triflate anion. The cation has twofold symmetry.

Protonation of the R3Bp ligand was expected to occur on the secondary nitrogen sites of the bridges. Tren itself forms a triprotonated species \(\text{N} (\text{CH}_2\text{CH}_2\text{NH}_3^+)_3\) and the crystal structure of the tren trichloride complex has been determined. Equilibrium constants for the reaction of tren with HCl have been determined. At 20°C \(\log K^1\) for the first protonation step was 10.15, \(\log K^2\) was 9.26 and \(\log K^3\) was 7.96, which is in accordance with expectations since the attraction for succeeding protons is decreased by electrostatic repulsion of those already bonded to the molecule. The basicity of the tertiary tren nitrogen is much lower than that of the primary amines.
Figure 42 The X-ray crystal structure of [R3Bp +4H+]([F3SO3])4.
Similarly the hexaprotonated bis-tren cryptand is protonated at the six secondary nitrogen sites and the bridgehead nitrogens are much more difficult to protonate. Lehn's fluoride anion sequestering cryptand (structure 104, Chapter 1) makes use of protonation of the secondary nitrogen sites to retain fluoride within the cryptand.269 The bridgehead nitrogens were not protonated.

We hope to be able to accommodate anions within the protonated R3Bp ligand. The reduced cryptand R3Bp was found to form a wider range of metal-ion complexes than the hexaimine cryptand 3Bp. The presence of the imine groups adjacent to the aromatic rings in 3Bp leads to a more rigid macrobicyclic framework and accompanying steric constraint. The increased flexibility of the reduced cryptand, relative to the hexaimine, enables the cryptand to provide a wider range of coordination geometries.
COMPLEXES OF LIGAND 3Bm

Ligand 3Bm was synthesised by 2+3 Schiff-base condensation of tren with isophthalaldehyde in methanol. The infrared spectrum of the white crystalline product showed a strong imine absorption at 1643 cm\(^{-1}\) and frequencies attributable to amine or carbonyl were absent from the spectrum indicating that Schiff-base condensation was complete.

The X-ray crystal structure of the 3Bm ligand has been determined previously and is shown in figure 43.\(^{275}\)

Figure 43 The X-ray crystal structure of the 3Bm ligand

The bridgehead N-C bonds are eclipsed as the view of the structure along the bridgehead N,N axis demonstrates. In this conformation there is little free space inside the molecule and the nitrogen donor atoms are divergent. However the 3Bm cryptand can adopt other conformations and complex formation with Cu(I), Cu(II) and Ag(I) has been described.\(^{275}\) Thus in the presence of a suitable metal ion it is energetically favourable for the cryptand to adopt the convergent conformation which is required to form metal ion cryptates.
Cryptate formation from 3Bm and other transition metal ions was not previously investigated.

Attempted insertion of Ni(II) into the 3Bm cryptand gave purple microcrystalline solid. On addition of a solution of nickel nitrate in acetonitrile to a solution of 3Bm in ethanol a deep green coloured solution results which gradually becomes blue. Purple microcrystals were obtained on reduction in volume. The infrared spectrum of the purple product showed strong absorptions at ca. 3360cm⁻¹ due to the presence of amine. In addition to the imine absorption at 1630cm⁻¹. A relatively weak peak at 1720cm⁻¹ was observed and was attributed to the presence of the carbonyl function. The fab mass spectrum verified that ring opening of the 3Bm cryptand had occurred and displayed strong peaks due to the dinickel complex of the diamino pendant arm macrocycle, 2Bm, which is shown in figure 44.

![Figure 44 The pendant arm macrocycle 2Bm](image)

Clusters due to [Ni₂2Bm(NO₃)₃]⁺ at m/e 790 (70%) and [Ni₂2Bm(NO₃)₂]⁺ at m/e 845 (5%) were observed in the fab spectrum. In addition a weak cluster due to a complex of 3Bm which had opened at one imine function was present [Ni₂L(NO₃)₃]⁺ at m/e 908 (15%). The colour change which occurred during the reaction may signify a change in coordination geometry about
the Ni(II) ion on ring opening of the cryptand. It is probable that 3Bm cannot fulfill the stereochemical requirements of the Ni(II) ion and the cryptand undergoes ring opening as a consequence. Perhaps strain generated on trying to provide a suitable coordination sphere for Ni(II) activates the ligand towards hydrolysis. Ligand rearrangement is often observed in cases where a ligand cannot provide an acceptable coordination geometry to a metal ion. Attempted metal ion insertion into 3Bm using Fe(II) and Mn(II) were not successful and led to protonation of the cryptand.

The 3Bm ligand has been reduced to the octaamino form by reflux with sodium borohydride in ethanol. A prolonged reflux with an excess of borohydride, followed by stirring for 48hrs at room temperature. The infrared spectrum of the product showed a strong N-H stretching absorption at 3298 cm⁻¹ and the absence of the strong and sharp ν(C=N) absorption of the parent imine 3Bm. However a broad and weak absorption around 1630 cm⁻¹ which is mainly attributed to δ(N-H) may mask the presence of residual ν(C=N) absorption. Mass spectroscopy was used to characterise the product and showed that the 3Bm ligand was difficult to reduce thoroughly. Although the base peak was m/e 598 [3Bm+12H]+, weak peaks were also observed at m/e 597 and 595.

The product from the reduction was used in transition metal ion complex formation. Binuclear complexes of Co(II), Ni(II) and Cu(II) were obtained.
The infrared spectra of the R3Bm complexes showed a broad δ(N-H) absorption at ca. 1630 cm$^{-1}$. The fab mass spectrum of the dinickel complex $\text{Ni}_2\text{R3Bm(NO}_3)_4$:4$\text{H}_2\text{O}$ showed peaks due to nickel complexes of R3Bm. Clusters were observed at m/e 901 (60%) which was attributed to ($\text{Ni}_2\text{R3Bm(NO}_3)_3$)$^-$, successive loss of nitrate produced the peaks at m/e 838, 775 and 654. The infrared spectrum of the dinickel product showed two sharp ν(N-H) absorptions at 3268 and 3212 cm$^{-1}$ which may be due to symmetric and asymmetric (N-H) stretching modes. A broad and strong ν(O-H) stretch was observed at 3514 cm$^{-1}$ which supports the presence of 4H_2O as suggested by the analytical figures. A broad absorption at ca. 1630 cm$^{-1}$ in the infrared spectrum was attributed to δ(N-H) combined with δ(O-H) bending. The electronic spectrum of the complex in solution showed three bands at 28,000 cm$^{-1}$ ($\epsilon = 52 \text{ l mol}^{-1}\text{ cm}^{-1}$), 17,100 ($\epsilon = .28 \text{ l mol}^{-1}\text{ cm}^{-1}$), 10,500 cm$^{-1}$ (49 l mol$^{-1}$cm$^{-1}$) as expected for Ni(II) in octahedral symmetry. The bands are assigned to the transitions $^3\text{A}_{2g} \rightarrow ^3\text{T}_{1g} (P)$, $^3\text{A}_{2g} \rightarrow ^3\text{T}_{1g} (F)$, and $^3\text{A}_{2g} \rightarrow ^3\text{T}_{2g}$ respectively. The relatively low intensity of the bands provide further
evidence of octahedral coordination. The mull electronic spectrum shows absorption bands in similar positions to the solution spectrum (28,000sh, 16,800 w, 10,200 cm⁻¹ w,) suggesting that coordination geometry in the solid state is similar to that in solution. The Ni(II) ion may achieve octahedral geometry by coordination of the four tren based donors and two water molecules. It is interesting that the Ni(II) ion can be accomodated within the R3Bm ligand whereas ring opening was observed in attempted insertion into 3Bm. Presumably the increased flexibility of the R3Bp ligand permits accomodation of the Ni(II) ion.

The infrared spectrum of the dicopper (II) cryptate Cu₂R3Bm(ClO₄)₂ shows a sharp ν(N-H) absorption at 3258 cm⁻¹ and a broad δ(N-H) absorption at 1632 cm⁻¹. The absorptions due to the perchlorate counterion were typical of ionic perchlorate, ν₃ and ν₄ were unsplit and were observed at 1098 and 622 cm⁻¹. The electronic spectrum of this complex displays a broad d-d band at 10,900 cm⁻¹ (ε = 230 l mol⁻¹ cm⁻¹), a slight shoulder at 14,300 cm⁻¹ was observed in addition to a stronger charge transfer transition at 33,900 cm⁻¹, ε = 7900. The electronic spectrum is consistent with a tetragonal coordination. The presence of a shoulder on the high energy side of the d-d band maximum may indicate some reduction in symmetry.

Surprisingly, and in contrast to the behaviour of R3Bp with Cu(I), attempted insertion of Cu(I) into the R3Bm cryptand gave oxidised Cu(II) containing products despite the use of dry and deoxygenated solvents and nitrogen protection from the atmosphere.

The infrared spectrum of complex Co₂R3Bm(ClO₄)₂:EtOH (61) showed a sharp ν(N-H) absorption at 3246 cm⁻¹. The absorptions due to the perchlorate counterion were observed at 1098 and 622 cm⁻¹ and are typical
of ν_3 and ν_4 of ionic perchlorate, respectively. A broad absorption at 1625 cm$^{-1}$ may be attributed to δ(N-H) bending, but may also include contributions from imine functions in the product. The fast mass spectrum displayed several clusters. A cluster at m/e 656 (35%) is attributed to [Co$_2$R$_3$Bm]$^-$ and m/e 813 (75%) to [CoR$_3$Bm(ClO$_4$)]$^-$ however peaks due to complexes of partially reduced 3Bm (ie 3Bm + xH) ligand were also observed. A strong cluster at m/e 1003 (95%) corresponds to [Co$_2$R$_3$Bm-7H (ClO$_4$)$_3$]$^+$ which suggests that there are imine functions remaining in the ligand. A less intense peak corresponding to [Co$_2$R$_3$Bm-4H]$^+$ m/e (35%) was also observed. The complex analysed correctly for the proposed structure however the presence of some of the partially reduced complex is not likely to affect the CHN analysis.

As the same batch of R$_3$Bm was used for synthesis of both the nickel and the cobalt cryptates, it is probable either that the ligand was not fully reduced and that the Ni(II) ion selects the fully reduced R$_3$Bm in preference to the partially reduced ligand or that Co(II) may be capable of introducing unsaturation into the R$_3$Bp ligand. With the redox active metals, cobalt and copper, there appears to be the possibility that oxidative dehydrogenation has occurred. It is necessary to repeat the synthesis of the dicobalt complex using ligand that is certain to be fully reduced. A new batch of R$_3$Bm has been prepared and proton n.m.r. was used to verify the absence of imine proton signals.

As observed in the 3Bp /R3Bp series reduction of the imine groups of the Schiff-base 3Bm cryptand enables complexation of a wider range of transition metal ions. The 3Bm ligand appeared to be unable to provide an acceptable coordination site for the Ni(II) ion yet a dinickel(II) R$_3$Bm complex was obtained. The increase in flexibility obtained on reduction of
the imines may account for the reduced ligands ability to provide an acceptable coordination geometry to the Ni(II) ion. The binuclear complexes of R3Bm do not appear to bind hydroxo as do the R3Bp series.

CONCLUSIONS
The aim of this project was to prepare a range of metal ion complexes of macrocycles and cryptands and to investigate their properties and structure. The binucleating macrocycles P and MC provided a range of homobinuclear and heterobinuclear complexes which were capable of binding small bridging ligands. It was hoped that the cyclohexyl groups of the MC macrocycle would provide additional steric protection to the binding site, however this hope was not realised.

The macrobicyclic ligands 3Bp, R3Bp, 3Bm and R3Bm provide a more sterically protected binding site. The 3Bp ligand appears to leave the divalent transition metal ions coordinatively unsaturated and other small ligands are required to stabilise Co(II) and Ni(II) complexes. This suggests the possibility of formation of bridged binuclear assemblies within 3Bp, possibly with ligands such as imidazolate that may give a stabilising stacking interaction with the substituted benzene of the cryptand.

The R3Bp cryptand has proven useful as a host for the hydroxo-bridged binuclear assembly. The protonated R3Bp ligand may be capable of forming anion cryptates and should provide a linear cavity suitable for binding linear anions such as azide for example.

The 3Bm ligand may be capable of forming a wider range of metal complexes if a small coordinating ligand such as thiocyanate is provided.
As was observed with in the 3Bp/R3Bp series the reduced ligand produces metal complexes readily, presumably due to the increase in flexibility resulting from reduction of the imine functions.

The work on the GT series has been productive, and a wide range of transition metal ion, lanthanide ion and group(1) cryptates have been obtained. Many interesting and potentially useful properties have been uncovered for these cryptates. The reversible electrochemistry found for the transition metal cryptates suggests potential use as reagents, whereas the kinetic and aqueous stability of some of the cryptates may enable uses in MRI, labelling or metal ion transport. An investigation of the possible luminescence of the europium cryptate, in collaboration with Prof. Kelly is underway. Nevertheless there are many areas worthy of development. A 23Na nmr study is planned for the NaGT cryptate. Further work on the copper GT cryptates is likely to be worthwhile, particularly on the mixed valence dicopper complex.

Further attempts at preparation of the reduced GT ligand would be desirable, particularly as this ligand appears to complex lead avidly and could have potential in detoxification.
APPENDIX 1 Fundamentals of cyclic voltammetry.

Cyclic voltammetry has become a popular technique in the study of electrochemical reactions during the last twenty years.\(^{354-359}\) The technique has been extended to the field of inorganic chemistry, where it is used to evaluate the effect of ligands on the oxidation-reduction potentials of metal ions in metal complexes and multinuclear clusters.

Cyclic voltammetry involves cycling the potential of the working electrode between the initial \(E_i\) and final \(E_f\) potential, at a constant scan rate, while measuring the current. The current response is plotted as a function of the applied potential to give a current-voltage curve or cyclic voltammogram, which indicates the potentials at which electrochemical processes (oxidation-reduction) occur. Since the experiment is performed at stationary electrodes in an unstirred solution over a short time interval, diffusion is the principal mode of moving the electroactive species to the electrode surface.

Figure 45 shows a typical cyclic voltammogram showing the important parameters that will be used to interpret the results.

The fundamental thermodynamic quantity assigned to an electrode process is the standard \(E^\circ\) or formal \((E^\circ')\) electrode potential.\(^{360}\) The formal electrode potential, \(E^\circ'\) is related to the cell potential, \(E_{\text{cell}}\), by an equation in which activities of the species taking part are replaced by any composition variable, (e.g. concentration), with the electrode reaction and reaction medium being clearly specified.

\[
E_{\text{cell}} = E^\circ' - (nF) \ln v, \ln C_i \quad ; \quad a_i \text{ replaced by concentration.}
\]

The electrochemical oxidation of ferrocene provides the basis for judging electrochemical reversibility and permits a quantitative comparison of
electrode potentials obtained using different reference electrodes or
different solvents. The redox potential of ferrocene is accepted as
a reference for reporting electrochemical oxidation-reduction systems.
Three main types of electrochemical processes have been identified, namely,
reversible, quasireversible and irreversible processes. These are briefly
described below.
Reversible processes are those in which the rate of electron transfer is
greater than the rate of mass transport and both the oxidisable and the
reducible species rapidly exchange electrons with the working electrode.
The reaction is therefore fast enough to maintain the concentration of the
oxidised (O) and reduced (R) forms in equilibrium with each other.

\[O + e^- \rightarrow R \]

The Nernst equation gives the equilibrium concentration ratio of O and R
at the electrode surface, at a given potential.

\[E = E^o + \frac{RT}{nF} \ln \left(\frac{[O]}{[R]} \right) \]

The peak currents (ip^* and ip^c) obtained from cyclic voltammograms are
described by the Randles-Sevcik equation:

\[i_p = (2.69 \times 10^{5}) n^{3/2} D^{1/2} C v^{1/2} \]

Where: n = number of electrons involved
D = diffusion coefficient
C = concentration of electroactive species
v = scan rate
Figure 45 Cyclic voltammogram for $10^{-3}M$ ferrocene in $\text{CH}_2\text{Cl}_2/0.2M \text{nBu}_4\text{NPFe}$

versus Ag/AgCl reference electrode, Pt wire working electrode and Pt auxiliary electrode. Scan rate $= 100\text{mV s}^{-1}$.

$E^a_p = \text{Anodic (oxidation) peak potential.}$

$E^c_p = \text{Cathodic (reduction) peak potential.}$

$i^a_p = \text{Anodic peak current.}$

$i^c_p = \text{Cathodic peak current.}$

$\Delta E = E^a_p - E^c_p = \text{Peak potential separation.}$

$\frac{\Delta E}{n} = 0.059$ for a reversible n electron system.

$i^c = \text{Peak current ratio} = 1 \text{ for a reversible reaction.}$

Plots of i_p versus $v^{1/2}$ and i_p are straight lines for reversible electrochemical systems. For a quasi reversible process, the anodic and
cathodic peak potentials shift further apart with increasing scan rate. The reverse peak may be shorter than the forward peak, probably as a result of an accompanying chemical reaction.

When the reaction is totally irreversible, the rate of electron transfer is much less than the rate of mass transport, resulting in a slow exchange of electrons at the working electrode. This results in either a complete separation of the forward and reverse peaks, or a complete disappearance of the reverse peak probably due to chemical reaction accompanying the electron transfer process.

Two problems have been identified in cyclic voltammetry. As a result of charge transfer across the solution interface, there is often an accumulation of charges on both sides of this double layer which then behaves as a capacitor. Since the potential is continually changing, a double layer charging current I_d always flows in addition to the faradaic current, $I_{faradaic}$. This double layer charging current distorts cyclic voltammograms recorded, especially at high scan rates. Secondly, as a result of the internal resistance drop, iR_w, caused by the solution and cell resistance between the reference and working electrodes, the applied voltage is often changed from the desired value, E, to $E + iR_w$. This results in a decrease in peak current heights, and an increase in peak potential separation.

These problems associated with cyclic voltammetry are often suppressed by using a supporting (or backing) electrolyte in the electrolyte solution. The supporting electrolyte therefore increases the conductivity of the solution, thus reducing the resistance between the working and reference electrodes, and hence eliminating migration as a mode of mass transport for the electroactive species.
electrolyte also suppresses the double layer effect on kinetics by minimizing the variation of the double layer charging potential with the applied potential.

ELECTROCHEMICAL STUDIES

The catalytic activity of many metalloproteins is associated with redox change of the metal ion, either in electron transfer processes or in oxidation or reduction of a substrate. The redox potential of the metal ion is obviously of fundamental importance and is highly dependant on the nature of its binding site within the protein. Complexes of synthetic macrocycles and cryptands have provided convenient systems for the evaluation of the dependance of oxidation reduction properties on the detailed structure of the ligand while imposing an approximately constant coordination geometry on a given metal ion. The complexes of tetraaza tetradeutate macrocycles have featured widely in such studies. Attention is focused on oxidation reduction processes involving the central metal ion and not involving redox changes of the ligand. Variation of macrocyclic structure while maintaining relatively fixed stereochemistry and constant donor set, has allowed the redox potential of the Ni²⁺/Ni³⁺ to be varied over a two volt range. Figure 46 shows selected macrocycles and their effect on the nickel (II)/(III) redox couple.

Sargeson and coworkers have investigated the effect of cage ligand structure on redox potential of the (II)/(III) couple for the encapsulated cobalt ion. The use of cryptands in such studies prevents the metal ion binding different axial ligands or moving out of the plane of the ring, as is possible in the macrocyclic studies. Various types of change in cryptand structure have been investigated, different bridgehead atoms
Figure 4b $E_{1/2}$ for the Ni$^{2+}$/Ni$^{3+}$ couple in tetraaza macrocyclic complexes vs. Ag/AgNO$_3$, 0.1 M, reference electrode in CH$_3$CN.
The factors influencing redox potential are summarised below.

(a) Negative charges in the ligand favour the higher oxidation state of the metal ion.

(b) Electron withdrawing substituents destabilise the higher oxidation state.

(c) Increase of cavity size favours the lower oxidation state.

(d) Strong δ-donor ligands favour high oxidation states.

(e) Strong π-acceptor ligands, or introduction of unsaturation into the ligand favours low oxidation states.

(f) Ring strain effects operate either way and favour the state in which strain is released.
APPENDIX 2 Electron spin resonance

The relative low symmetry of copper(II) coordination environments often makes interpretation of electronic spectra difficult. In such cases electron spin resonance (ESR) spectroscopy can be used to provide information about the electronic ground state and the coordination geometry.

In electron spin resonance the magnetic dipoles of unpaired electrons are normally aligned with the applied field causing the degeneracy of the spin states of the electron to be removed (Zeeman effect). The energy difference between the two states is \(gBH \), where \(g \) is the gyromagnetic ratio, \(B \) is the Bohr magneton and \(H \) the applied field strength. For a free electron the value of \(g \) is 2.0023.

If the electron is associated with a nucleus possessing spin then the energy of the electron will depend on which of the possible nuclear spin states it is coupled to (Nuclear Zeeman Effect). This gives rise to hyperfine structure consisting of \(2I + 1 \) \((I = \text{nuclear spin quantum number}) \) lines of equal intensity.

The \(d^9 \) configuration of the copper(II) cation means that one of the \(d \) orbitals contains an unpaired electron. When radiation of frequency \(v \) is applied to a copper(II) complex in a magnetic field a net absorption occurs when \(hv = gBH \). This results in an absorption peak and it is the first derivative of this peak that the ESR records. Figure 47 shows how the ESR signal arises for magnetically dilute copper(II). For the axially symmetric copper(II) ion only one transition is possible which obeys the selection rule \(\Delta ms = \pm 1 \). The \(g_{\parallel} \) signal is obtained when the magnetic field is oriented along the axial direction, the \(z \)-axis, and the \(g_{\perp} \) signal is obtained when the field is in the equatorial \(x,y \) plane. Since in the
Figure 47.

isotropic
(no hyperfine splitting)

D_4h or D_5h

g_{\perp}

g_{\parallel}

$g-2.0$

anisotropic
(with h.f.s.)

$m_{s} = \pm \frac{1}{2}$

H

E

M_{\parallel}

M_{\perp}

$M_{s} = \pm \frac{1}{2}$

$\pm \frac{3}{2}$

$\pm \frac{1}{2}$

$\pm \frac{3}{2}$

$\pm \frac{1}{2}$

$\pm \frac{3}{2}$

$\pm \frac{1}{2}$

$\pm \frac{3}{2}$

Figure 48.

NO FIELD | FIELD (H) | M_{s} | M_{\parallel} | M_{\perp} | coupling | coupling | 2nd nucleus

A

g

A
situation of axial symmetry, the \(\perp \) axes are doubly degenerate, the probability of transition is twice that in the \(\parallel \) and hence the \(g_\perp \) signal has approximately double the intensity of the \(g_{\parallel} \) signal.

When the unpaired electron couples to the copper nucleus, spin \(I = 3/2 \), a hyperfine pattern of four equally intense lines is produced. The hyperfine is usually observed in the \(g_{\parallel} \) region (\(A_{\parallel} > 130 \times 10^{-4} \text{cm}^{-1} \)) but is often unresolved in the \(g_{\perp} \) region.\(^{37}\) For rhombically symmetric copper(II) the \(x \) and \(y \) axes are not equivalent and therefore three signals, \(g_x \), \(g_y \) and \(g_z \) are observed. The type of esr spectrum of copper(II) complexes will be determined by several factors including the nature of the electronic ground state and the coordination geometry of the copper(II) ion.\(^{37}\)

Copper(II) complexes with square based geometry, have a \(d_{x^2-y^2} \) electronic ground state. When the applied magnetic field is along the \(z \)-axis, the \(d_{x^2-y^2} \) orbital can commute into the \(d_{xy} \) orbital. Thus there will be spin orbit coupling and

\[
g_{\parallel} = g_{\text{elec}} + \frac{2\lambda}{dx^2-y^2 - dxz yz}
\]

where \(\lambda \) is the spin orbit coupling constant.\(^{37}\) Rotation of \(dx-y \) about the \(x \) or \(y \) axis when the applied field is in an equatorial direction can lead to rotation of \(dx^2-y^2 \) into \(d_{xy} \) or \(d_{yz} \), and

\[
g_{\perp} = g_{\text{elec}} + \frac{2\lambda}{dx^2-y^2 - dxz yz}
\]

Thus for copper(II) complexes with square based geometry \(g_{\parallel} > g_{\perp} > g_{\text{electron}} = 2.0023 \) as the spin orbit coupling constant is positive. The \(g \) values are smaller for square planar complexes than for other square
The hyperfine splittings, A_{11}, are large for complexes with square based geometries and A_1 is often unresolved.

For trigonal bipyramidal\cite{37a, 37b} and seven-coordinate pentagonal bipyramidal copper(II) geometries, the dz^2 orbital contains the unpaired electron. An axial field (Z direction) cannot commute dz^2 into any other orbital geometry and so g_{11} will equal the free electron value of 2.0023.\cite{37c} When the applied magnetic field is in the equatorial (x, y) direction, dz^2 can rotate into dxy or dyz with

$$g_1 = 2.0023 + \frac{6 \lambda}{dx^2-y^2 -dxy yz}$$

and therefore $g_1 > g_{11} = 2.0023$. The A_{11} hyperfine splittings are usually lower than observed for complexes with a dx^2-y^2 electronic ground state\cite{37c, 37d} in copper(II). Thus ESR may be used to determine the ground state in copper(II) complexes.

For binuclear copper(II) complexes in which the copper centres are magnetically coupled through a bridging ligand, a zero-field splitting of the triplet state occurs. As a result of the splitting the forbidden 'half-band' $\Delta M = 2$ signal is observed in addition to the stronger $\Delta M = 1$ signal. The half-band signal may be resolved into a relatively isotropic seven line pattern ($2n+1$) due to hyperfine interaction. The intensity ratios of the line are often as simple as the expected 1:3:4:3:2:1 pattern. The hyperfine spacing of about 75G is approximately half of that found in mononuclear copper(II) spectra. The $\Delta M = 1$ region of the spectrum is often complicated by distortions from regular geometries and by hyperfine splitting patterns on components of the $\Delta M = 1$ transition. The intensity of the esr signal is dependent on the degree of electron pairing due to interaction between Cu(II) centres via the bridging ligand. As a result
strongly antiferromagnetically coupled Cu(II) centres may be esr silent. When there is no bridging ligand present between Cu(II) centres and the ions are not directly bonded, the only means of interaction is by dipolar coupling. The esr spectrum reflects the internuclear separation of two Cu(II) ions as the zero-field splitting is inversely proportional to \(r^3 \), where \(r \) is the internuclear separation. For \(r > 7 \text{Å} \), \(D \) is of the order of 0.01 cm\(^{-1}\) and a single transition is observed. At smaller internuclear distance, the zero-field splitting can dominate producing a split and broadened \(\Delta M = 1 \) signal and a narrower \(\Delta M = 2 \) half-band transition. The \(\Delta M = 1 \) signal can extend over a wide magnetic field range.

Figure 48 shows isotropic hyperfine coupling for mono copper(II) and binuclear Cu(II)
APPENDIX 3 Electronic spectra

Electronic transitions in copper (II) complexes give two main types of absorption, d-d transitions and charge transfer transitions. Transitions within the d subshell are Laporte forbidden, ($\Delta L = 0$). Several mechanisms for the breakdown of this selection rule exist and have the effect of enhancing the intensity of absorption due to d-d transitions. These mechanisms include:

1. d-p mixing in non-centrosymmetric systems.
2. Vibronic coupling in which strong metal-ligand coupling allows coupling of a vibrational mode of the molecule with the electronic excited state.
3. Intensity borrowing from an energetically near allowed transition (usually charge transfer in nature). This leads to extinction coefficients for a Cu(II) ion d-d transition in the range 50-200 M$^{-1}$ cm$^{-1}$.

Copper (II) has a d9 electronic configuration and is subject to Jahn Teller distortions if placed in a field of cubic symmetry. The distortions lead to tetragonal splitting of the e_g level so that dz^2 lies below $d_{x^2-y^2}$ as shown in figure 49. Thus for tetragonally distorted six coordinate Cu(II) complexes, three bands are expected due to the transitions, $dz^2 \rightarrow d_{x^2-y^2}$, $dxy + d_{x^2-y^2}$ and $dxz, yz \rightarrow d_{x^2-y^2}$. The three bands generally overlap giving one broad band.

Square planar Cu(II) complexes are assigned to the D$_{4h}$ point group and three transitions are expected from dz^2, dxz, yz and dyz to dx^2-y^2. Charge transfer processes are both Laporte allowed and spin allowed and are therefore much more intense ($\epsilon \approx 10^3$ M$^{-1}$ cm$^{-1}$) than d-d transitions. Figure 51 shows the splitting pattern for d9 Ni$^{2+}$ and d7 Co$^{2+}$ in octahedral and tetrahedral fields.
Figure 49 d-orbital splitting for Cu(II) in T_d, O_h, and D_{4h} symmetries

T_d: CuII, d^9

no ligand
field

Figure 50 d-orbital splitting for Cu(II) in C_{av} and D_{4h} symmetries

Figure 51 Orgel diagram for d^7 and d^8 ions in T_d and O_h ligand fields
In lanthanide complexes f-f bands are often observed.378,379 The electronic absorption spectrum of the tripositive ions (except La3+, Ce3+ and Yb3+) contain several sharply defined bands. Unlike the d-d bands observed in transition metal complexes, the bands resulting from transitions within the f subshell are not sensitive in position. This is a result of the f electrons being inner electrons which are shielded from ligand effects. In contrast, the absorption bands of the Ce3+ and Yb3+ ions result from 4f \rightarrow 4f'5d' or 4f \rightarrow 4f'5g' or a similar configuration, are broad and altered by complexing groups. The principal absorption bands of relevant Ln3+ ions are shown in Table 35.

Table 35 Principal f-f absorption bands

<table>
<thead>
<tr>
<th>Ion</th>
<th>Wavelength/\text{nm}</th>
</tr>
</thead>
<tbody>
<tr>
<td>La3+</td>
<td>none</td>
</tr>
<tr>
<td>Ce3+</td>
<td>210, 222, 238, 252</td>
</tr>
<tr>
<td>Pr3+</td>
<td>444, 469, 482, 588</td>
</tr>
<tr>
<td>Eu3+</td>
<td>375, 394</td>
</tr>
<tr>
<td>Gd3+</td>
<td>273, 273, 275, 276</td>
</tr>
<tr>
<td>Tb3+</td>
<td>369, 378, 487</td>
</tr>
</tbody>
</table>
APPENDIX 4 Intramolecular antiferromagnetism

In magnetically dilute systems the paramagnetic metal centres are isolated from each other and do not interact. However, paramagnetic metal centres may interact with each other either directly, when the distance between them is small, or through bridging ligands, as illustrated in figure 50.

\[\text{Ground state} = d\vec{x}^2\vec{y}^2 + d\vec{x}^2\vec{y}^2 \]

Interaction may be of a ferromagnetic \((S = 1)\) or an antiferromagnetic \((S = 0)\) nature. If the interaction is antiferromagnetic in nature a decreased magnetic moment is observed, and diamagnetism can result at low temperatures. Unpaired electrons from adjacent metal centres pair up by superexchange through a bridging ligand, or by covalent bond formation in the case of metal-metal bonds.

Antiferromagnetic behaviour can be confirmed by magnetic measurements taken over a range of temperatures and is shown by the presence of a maximum, termed the Neel point, in the plot of susceptibility against temperature. Below this temperature antiferromagnetic behaviour is
observed. As temperature is raised, thermal energy overcomes the magnetic interaction, resulting in normal paramagnetic behaviour and the Curie-Weiss law is followed. This differs from the normal Curie law. Although the plot of $1/\chi$ versus temperature is linear, there is a non-zero intercept on the temperature axis. The singlet-triplet separation is given by the exchange coupling parameter, $2J$, which is defined by the Hamiltonian operator $H = -2JS_1 S_2$ where S_1 and S_2 are the spins of the two nuclei involved. The value of J is negative for antiferromagnetic coupling and positive for ferromagnetic coupling as illustrated below.

\[
\begin{align*}
\text{Antiferromagnetic} & \quad \text{Ferromagnetic} \\
S = 0 & \quad S = 0 \\
J < 0 & \quad J > 0
\end{align*}
\]

Magnetic susceptibility varies with temperature as a function of $-J$ and the magnitude and sign of the coupling constant, J, is calculated from magnetic susceptibility χ vs. temperature data, using the Bleaney Bowers equation.\(^2\).

MAGNETIC CHARACTERISTICS OF LANTHANIDE ION COMPLEXES

Paramagnetism in lanthanide complexes arises as a result of the presence of unpaired 4f electrons. As the 4f orbitals are shielded from the influence of external forces by 5s\(^2\) and 5p\(^6\) shells, magnetic moments of the lanthanide series are only slightly affected by their surroundings.\(^3\) The states of the 4f\(^n\) configurations are given by the Russell-Saunders coupling scheme. Because the 4f electrons are shielded both their orbital
and spin motions contribute, and the observed moment results from coupling of these. The spin orbit coupling constants are quite large (order of 1000 cm\(^{-1}\)).

The lanthanides, with the exception of Eu\(^{3+}\) and Sm\(^{3+}\), have ground states with a single well defined value of the total angular momentum \(J\), with the next lowest \(J\) state at energies many times \(kT\) above.

For Eu\(^{3+}\) and Sm\(^{3+}\) excited states are close to the ground state and are appreciably populated at room temperature, thus the observed magnetic moments for Eu\(^{3+}\) and Sm\(^{3+}\) are higher than those calculated by considering the ground states only. The theoretical (Van Vleck) value is determined by the magnitudes of separation between the energy levels (produced by coupling of spin and orbital motion) and the term \(kT\). The theoretically calculated values match observed values well. Magnetic moments and electronic ground states for selected tripositive cations of the lanthanides are tabulated below.

<table>
<thead>
<tr>
<th>ION</th>
<th>GROUND STATE</th>
<th>THEORETICAL (Van Vleck)</th>
<th>OBSERVED (\text{La}_2(\text{SO}_4)_3\cdot8\text{H}_2\text{O})</th>
<th>OBSERVED (\text{Ln(CaH}_2\text{O})_3)</th>
</tr>
</thead>
<tbody>
<tr>
<td>La(^{3+})</td>
<td>(^1\text{S}_0)</td>
<td>0</td>
<td>-</td>
<td>0</td>
</tr>
<tr>
<td>Ce(^{3+})</td>
<td>(^2\text{F}_{5/2})</td>
<td>2.56</td>
<td>-</td>
<td>2.46</td>
</tr>
<tr>
<td>Pr(^{3+})</td>
<td>(^3\text{H}_4)</td>
<td>3.62</td>
<td>3.47</td>
<td>3.61</td>
</tr>
<tr>
<td>Eu(^{3+})</td>
<td>(^7\text{F}_6)</td>
<td>3.40-3.51</td>
<td>3.54</td>
<td>-</td>
</tr>
<tr>
<td>Gd(^{3+})</td>
<td>(^8\text{S}_{7/2})</td>
<td>7.94</td>
<td>7.9</td>
<td>7.98</td>
</tr>
<tr>
<td>Tb(^{3+})</td>
<td>(^7\text{F}_6)</td>
<td>9.7</td>
<td>9.6</td>
<td>-</td>
</tr>
</tbody>
</table>
APPENDIX 5 Instruments

Infrared spectra were recorded in the range 4000–3000 cm⁻¹ as KBr discs or nujol mulls using a Perkin-Elmer 983G infrared spectrophotometer.

Electronic spectra were recorded as solution or mull spectra using a Perkin-Elmer Lambda 9 UV/VIS/NIR spectrophotometer.

Conductivity measurements were obtained using a Metruhn Haisau conductometer E518 or a conductivity cell with a cell constant 0.0352, constructed from bright platinum electrodes, in conjunction with a conventional resistance/capacitance bridge.

\[
K = \frac{0.0352}{R} \quad \text{(where } R = \text{ resistance reading)}
\]

\[
K_{corr} = K - K_a \quad \text{(where } K_a = 0.0352\text{)}\]

Resistance of MeCN

Molar conductivity = \(1000K_{corr}/c\) (where \(c\) = molar concentration.)

Ranges in MeCN:
1:1 electrolyte \(120-160\) S cm² mol⁻¹ (92-199)
1:2 electrolyte \(220-300\) S cm² mol⁻¹ (145-336)
1:3 electrolyte \(340-420\) S cm² mol⁻¹ (variable)

Mass spectra were recorded at an ionising voltage of 70eV using either an ARI or an MS902 mass spectrometer. Fast atom bombardment mass spectrometry was carried out by the SEBC mass spectrometry service, Swansea. ¹H NMR spectra were run using a Bruker WM250 MHz Fourier transform NMR spectrometer or a 300MHz General electric QE300 spectrometer. Magnetic results were obtained either by the Gouy method using a Newport Instruments variable temperature (93-300K) magnetic balance or by use of an Oxford instruments resistance susceptibility balance, which provides results in the temperature range (65-300K).

ESR spectra were obtained as undiluted powders or as the frozen glass, using a Varian E10 instrument.

46 A. Anchini, L. Fabbrizzi, P. Paoletti, and R.M. Clay,

47 L. Fabbrizzi, P. Paoletti and R.M. Clay,

48 R.M. Clay, M. Micheloni, P. Paoletti and W.V. Steele,

51 S.K. Nelson in 'Copper Coordination Chemistry, Biochemical and

56 L. De Cola, D.L. Smailles and L.M. Vallarino,

57 D.H. Cook and D.E. Fenton,

58 D.H. Cook and D.E. Fenton,

59 D.H. Cook, D.E. Fenton, M.G.B. Drew, A. Rodgers, M. McCann and

60 N.A. Bailey, D.E. Fenton, P.B. Roberts and A.M. Walford,

61 N.A. Bailey, D.E. Fenton, R.J. Good, R. Moody and C.O. Rodriguez de

62 S.M. Nelson, F.S. Esho and M.G.B. Drew,

63 M.G.B. Drew, A. Rodgers, M. McCann and S.M. Nelson,

64 M.G.B. Drew, J. Nelson and S.M. Nelson,

84 P. Zanello, S. Tamburini, P.A. Vigato and G.A. Mazzochin,

Dalton Trans., 1979, 446.

86 D.E. Fenton, V. Castellato, P.A. Vigato and M. Vidali,

88 M.W. Hossein, J. Comarmond and J.M. Lehn,

90 P.K. Coughlin, J.C. Dewan, S.J. Lippard, E.I. Watanabe and

91 R.J. Motekaitis, A.E. Martell, B. Deitrich and J.M. Lehn,

92 P.K. Coughlin, J.C. Dewan, S.J. Lippard, E. Watanabe and J.M. Lehn,

93 A.E. Martell and R.J. Motekaitis, J. Am. Chem. Soc., 1988, 110,
8059.

1988, 915.

96 J.M. Lehn, S.H. Pine, E. Watanabe and A.K. Willard,

97 R.J. Motekaitis, A.E. Martell, J.M. Lehn and E. Watanabe,

98 R.J. Motekaitis, A.E. Martell, B. Dietrich and J.M. Lehn,

99 R.J. Motekaitis, A.E. Martell, I. Murase, J.M. Lehn and

1989, 1521.

1983, 105, 5693.

1990, 194.

143 P.L. Anelli, M. Grandi, F. Uggeri and P. Paoli, 7-123, XXVIII International Conference on Coordination Chemistry 1990.

273 M. McCann, Private communication.

322 P. Krumholz, Struct Bonding (Berlin), 1971, 9, 139.

345 B. Reilhammer and B.G. Malstrom, 'Blue Copper containing oxidases.'
347 T. Moeller,'The chemistry of the lanthanides.' Reinhold N.Y.

