The establishment of an infectivity assay for human parvovirus B19 to investigate the efficacy of protocols for the inactivation of pathogens from plasma products

Thesis

How to cite:

For guidance on citations see FAQs.

© 2005 Cécile Claire Chaput

https://creativecommons.org/licenses/by-nc-nd/4.0/

Version: Version of Record

For link to article on publisher’s website:
http://dx.doi.org/doi:10.21954/ou.ro.0000fe6b

Copyright and Moral Rights for the articles on this site are retained by the individual authors and/or other copyright owners. For more information on Open Research Online’s data policy on reuse of materials please consult the policies page.
The establishment of an infectivity assay for human parvovirus B19 to investigate the efficacy of protocols for the inactivation of pathogens from plasma products

Cécile Claire Chaput

The Open University

Sponsored by

NIBSC

National Institute for Biological Standards and Control

A thesis submitted for the degree of Doctor of Philosophy in the year 2006
بِسْمِ اللَّهِ الرَّحْمَٰنِ الرَّحِيمِ
Preface

My research work was supervised by Dr J. Saldanha and Dr B. Cohen.

This thesis is the result of my own work except where explicitly stated in the text. The contents have not been previously submitted for any degree, diploma or any qualification at the Open University or any other university.
Acknowledgements

I am very grateful to my sponsoring establishment, the National Institute for Biological Standards and Controls, for allowing me to work in such an inspiring place, surrounded by talented scientists.

Thank you to Dr J. Blümel (Paul Erhlich Institut, Germany) for welcoming me into his laboratory, for his advice on immunofluorescence and for providing some virus stock (JB isolate) and some anti-B19 antibodies. I am also grateful to Mrs P. Pipkin (NIBSC) for her useful recommendations for the immunofluorescence technique. Thank you to Dr. S. Doyle (National University of Ireland, Republic of Ireland) for his kind donation of rabbit polyclonal antibody against NS1 protein. Many thanks to Dr L. Peddada (University of California, USA) for her kind gift of some virus stock (isolate LP) and to both Dr J. Clewley and Dr B. Cohen for providing some baculovirus expressing parvovirus VP1 and VP2 proteins.

I would like to thank Dr M. Watts (UCH, UK) for giving a regular supply of mobilized peripheral blood and apheresis cells. For supplying the KU812 cell line, I would like to thank Dr Nakazawa (Niigata University, Japan). For providing the KU812Ep6 cell line and the mouse monoclonal antibody against VP1 and VP2 proteins, many thanks to Dr Miyagawa (Fujirebo, Japan). Thank you to Dr Komatsu (Jichi Medical School, Japan) for proving some UT-7/EPO cells and to Dr Morita (Tohoku University, Japan) for supplying the UT-7/EPO-S1 cell line.

I am grateful to Ms H. Appleton and Mr B. Megson (HPA, UK), for performing electron microscopy on parvovirus B19 stock and taking photographs, as well as to Dr R. Fleck (Department of Cell Biology and Imaging, NIBSC) for the photographs of the
UT-7/EPO-S1 cells. Thank you to Dr R. Stebbings (Department of Immunobiology, NIBSC) for performing the FACS.

Many thanks to Mr A. Heath (Department of Informatics, NIBSC) for kindly doing all the statistical analyses of my results, and always with a smile.

I would like to thank Dr S. Satoh (Asahi Kasei Pharma Corporation, Japan) and Mr T. Sato (Asahi Kasei Deutschland, Germany) for coming to NIBSC and performing the nanofiltration experiments for removal of parvovirus B19. I am very grateful to Dr P. Roberts (BPL, UK) for his collaboration and for performing the dry heat inactivation studies. A big thank you to Dr T. Castor for inviting me to present my infectivity assay results at Aphios Inc. (USA) and to all his colleagues for performing the virus inactivation studies using SuperFluids™. Thank you to Dr. J. Chapman and his team (Vitex, USA) for carrying out the INACTINE™ treatment on human parvovirus B19 for inactivation studies. Many thanks to Dr K. Dupuis and Dr L. Sawyer (Cerus Corporation, USA) for performing the inactivation experiments using the Helinx® technology and for long and helpful conversation via the e-mail.

A big thank you to all my colleagues at NIBSC, too many to name, for their kindness and for sharing their scientific knowledge, with special thanks to Mr D. Padley, Mrs N. Shah and Dr. S. Baylis for their patience and help. Thanks to Dr P. Minor (Department of Virology, NIBSC) for his support and to Dr A. Bristow for his great help regarding administrative matters.

I am so grateful to Dr Bernard Cohen, my external supervisor, for whom I have great respect. Thank you for your kindness, invaluable advice and support! Thank you also for training me in your lab and for kindly providing some B19-antibody negative serum. Dr John Saldanha, my director of studies... you have been my mentor and always will be! You are truly a brilliant scientist and I have learnt so much from you. I do apologise
for not always doing what you asked me to and would like to thank you for your patience and constant help! Thanks for always believing in me and pushing me! Thank you John!

Papa et Maman, je ne sais pas comment vous remercier! Non seulement pour votre soutien financier constant, mais aussi et surtout pour vos encouragements, vos paroles tendres, votre présence si proche malgré les kilomètres qui nous séparent... MILLE FOIS MERCI!!! Je vous aime... Merci aussi à mes amies et ma famille, surtout à Agnès, ma grande soeur que j’aime tendrement. “Shukran bzaaf” à ma belle-famille!

To my husband Hani, I would like to address a special thank you for making me realise what’s really important in life and for his patience and love. I will be there for you every step of the way for your PhD and for life, God willing.
À Marie-Madeleine Richard et à son arrière-petite-fille Houssna
Abstract

Erythrovirus B19 is the only parvovirus known to cause disease in humans and represents a concern in transfusion medicine since several blood products were shown to contain B19 despite various inactivation steps and some products have even transmitted viral infection. The aim of the study was to establish a reliable and reproducible infectivity assay that could be used to evaluate the efficiency of viral removal/inactivation methods. This assay was based on the detection of B19-specific mRNA transcripts from susceptible cells inoculated with virus: the human leukaemic cell line UT-7/EPO-S1. B19 DNA concentrations were also determined using an optimised quantitative real-time PCR assay. Both assays were used to assess the efficacy of one virus removal method, nanofiltration, and four virus inactivation techniques, dry heating treatment, supercritical fluids, INACTINE™ system and Helinx® technology. Nanofiltration of a spiked solution of 0.5% albumin with 15N and 20N filters resulted in the removal of more than $\log_{10} 5$ and $\log_{10} 6$ of infectious B19, respectively. Dry heat treatment of factor VIII showed a reduction of infectivity greater than $\log_{10} 2$ after 24 hours and below the limit of detection of the assay after 72 hours. The treatment of plasma with the SuperFluids™ system removed more than $\log_{10} 5$ infectious viruses. Two chemicals methods used novel small molecules which target and crosslink nucleic acids: PEN 110 (INACTINE™ system) and Psoralen S-59 (Helinx® technology). Treatment of red cells with PEN 110 showed a reduction of infectivity below the detection limit while platelet concentrates treated with S-59 resulted in a reduction greater than $\log_{10} 5$. Although chemical methods can be used on cells which do not have a nucleus (red cells and platelets), they also introduce potential toxicity. In contrast, physical methods of removal and inactivation are less toxic but would damage...
Abstract

Overall, this research work allowed the establishment of a reproducible infectivity assay that was successfully used to perform preliminary studies on the efficacy of various viral removal/inactivation methods.
Chapter I: Introduction

I.1. Human parvovirus B19

I.1.1. Discovery, classification and structure of human parvovirus B19

I.1.1.1. Discovery

I.1.1.2. Taxonomy

I.1.1.3. Morphology

I.1.1.4. Genomic organisation

I.1.1.5. Proteins

I.1.1.5.1. Protein synthesis

I.1.1.5.2. Role of structural proteins

I.1.1.5.3. Role of non-structural proteins

I.1.1.5.3.1. Role in DNA replication

I.1.1.5.3.2. Transactivation of the P6 promoter

I.1.1.5.3.3. Cytotoxicity

I.1.1.5.4. Role of small 11-kDa proteins

I.1.1.6. Sequence variability

I.1.2. Infection and cell tropism

I.1.2.1. Life cycle

I.1.2.1.1. Receptor and viral entry

I.1.2.1.2. Replication

I.1.2.1.3. Transcription
Contents

I.1.2.1.3.1. RNA transcripts ...62
I.1.2.1.3.2. Identification of promoter elements64
I.1.2.1.3.3. Regulation of RNA processing65
I.1.2.1.4. Translation regulation ..67
I.1.2.2 Cell tropism ...68

I.1.3. Epidemiology ...73
I.1.3.1. Seroprevalence ..73
I.1.3.2. Transmission ...73
 I.1.3.2.1. Route of transmission ...73
 I.1.3.2.2. Household infections ..74
 I.1.3.2.3. Nosocomial and occupational infections74
 I.1.3.2.4. Parenteral transmission ...75
I.1.4. Immune response ..75
 I.1.4.1. Antibody response in acute and past B19 infections75
 I.1.4.1.1. IgM response ..76
 I.1.4.1.2. IgA response ...77
 I.1.4.1.3. IgG response ...77
 I.1.4.2. Characteristics of the linear and conformational epitopes of VP1/
 VP2 and the VP1-unique region ...79
 I.1.4.2.1. Major capsid protein VP2 ..79
 I.1.4.2.2. VP1 and its unique region ...81
 I.1.4.3. Antibody response in persistent B19 infection and implication of
 immune response against the non-structural protein NS-181
 I.1.4.4. Cellular immunity ..83
I.1.5. Diagnosis ...85
 I.1.5.1. Diagnosis by cellular and blood markers86
 I.1.5.2. Diagnosis by antibody detection ..88
 I.1.5.2.1. Immunoblot assays ..88
 I.1.5.2.2. Enzyme immunoassays (EIA)89
 I.1.5.2.3. Immunofluorescence assay (IFA)91
 I.1.5.3. Diagnosis by B19 virus and viral antigens detection92
 I.1.5.3.1. B19 virus ...92
 I.1.5.3.2. B19 antigens ...92
 I.1.5.3.2.1. Counter-immunoelectrophoresis (CIE)92

- 11 -
1.1.5.3.2. Radioimmunoassays (RIA) and enzyme immunoassays (EIA) ...93
1.1.5.3.2.3. Blot immunoassays93
1.1.5.3.2.4. Receptor-mediated haemagglutination assay (RHA) ...94

1.1.5.4. Diagnosis by B19 DNA detection94
I.1.5.4.1. Dot-blot hybridisation assays94
I.1.5.4.2. In situ hybridisation assays (ISH)96
I.1.5.4.3. DNA amplification ...97

1.1.6. Clinical features ... 104

I.1.6.1. Asymptomatic infection ..104
I.1.6.2. Dermatologic manifestations ..105
I.1.6.2.1. Erythema infectiosum (EI) ..105
I.1.6.2.2. Papular purpuric “gloves-and-socks” syndrome (PPGSS) ..108
I.1.6.2.3. Other dermatologic manifestations109
I.1.6.3. Haematologic manifestations ...109
I.1.6.3.1. Transient red blood cell aplasia or aplastic crisis (TAC) ..109
I.1.6.3.2. Bone marrow failure ..111
I.1.6.3.2.1. Congenital immunodeficiency111
I.1.6.3.2.2. Lymphoproliferative disorders112
I.1.6.3.2.3. Transplant patients ..113
I.1.6.3.2.4. AIDS ..114
I.1.6.3.2.5. Virus-associated hemophagocytic syndrome (VAHS) ...115
I.1.6.3.3. Thrombocytopenia and neutropenia116
I.1.6.3.4. Vasculitis syndromes ...117
I.1.6.4. Rheumatologic manifestations ...117
I.1.6.5. B19 infection during pregnancy and hydrops fetalis123
I.1.6.6. Involvement of other organs ..127
I.1.6.6.1. Liver ..127
I.1.6.6.2. Lungs ..129
I.1.6.6.3. Heart ..130
Chapter II: Materials and methods

II.1. Materials

II.1.1. Agarose gel electrophoresis
II.1.2. Nucleic acid extraction
II.1.3. Nucleic acid amplification
 II.1.3.1. DNA amplification
 II.1.3.2. mRNA amplification
II.1.4. Purification of amplified products from agarose gels for sequencing
II.1.5. FACS analysis
II.1.6. Primary cells
 II.1.6.1. CD34+ cells
 II.1.6.2. Apheresis cells
II.1.7. Continuous human erythroid cell lines
II.1.8. Cell culture reagents
II.1.9. Immunofluorescent reagents
II.1.10. Antibodies
II.1.11. MACS
II.1.12. Sequencing
II.1.13. Human parvovirus B19 removal/inactivation studies
 II.1.13.2. Virus inactivation by SuperFluids™: Aphios Inc., USA
 II.1.13.3. Virus inactivation by the INACTINE™ system: Vitex, USA
 II.1.13.4. Virus inactivation by S-59: the Helinx® technology; Cerus Corporation, USA

II.2. Methods

II.2.1. Virus quantification
II.2.2. Detection of virus infectivity by indirect immunofluorescent assay (IFA)
 II.2.2.1. Preparation of microscope slides
 II.2.2.2. Protocol
II.2.2.3. Positive controls: baculovirus expressing B19 capsid antigens ..200

II.2.3. Primary cells ..200
 II.2.3.1. CD34+ cells ..200
 II.2.3.1.1. Isolation of CD34+ cells from PBMC ..200
 II.2.3.1.2. FACS analysis of isolated CD34+ cells ..203
 II.2.3.1.3. Infection of CD34+ cells ..203
 II.2.3.2. Apheresis cells ...204
 II.2.3.2.1. Determination of anti-B19 IgG status of apheresis cell donors by EIA ...204
 II.2.3.2.2. Determination of anti-B19 IgG status of apheresis cells donors by IFA ...205
 II.2.3.2.3. BFU-E reduction assay ...205

II.2.4. Nucleic acid extractions ..206
 II.2.4.1. Nucleic acid extraction using QIAamp DNA blood mini kit (Qiagen) ..206
 II.2.4.2. Oligotex direct mRNA kit (Qiagen) for extraction of poly A+ RNA from whole cells ...208
 II.2.4.3. Oligotex direct mRNA kit (Qiagen) for extraction of poly A+ RNA from cell cytoplasm ...209
 II.2.4.4. Nuclisens™ (Organon Teknika) extraction of total nucleic acids ...211
 II.2.4.5. QIAamp DNA mini kit (Qiagen) for extraction of total nucleic acids ...212

II.2.5. DNA quantification by LightCycler system (Roche Molecular Biochemicals) ...213

II.2.6. mRNA amplification by OneStep RT-PCR ...214

II.2.7. Statistical Analysis ..215
 II.2.7.1. LightCycler Standard curve ..215
 II.2.7.2. DNA extraction and amplification ...216
 II.2.7.3. Determination of 95% and 50% detection limits of the optimised infectivity assay ...216

II.2.8. Sequencing of PCR products ...217
II.2.8.1. Purification of amplified products from agarose gels for sequencing ...217
II.2.8.2. Sequencing protocol ..218
II.2.9. Human parvovirus B19 removal/inactivation studies219

Chapter III: Results ...223

III.1. Characterisation of the virus isolates used in this study224
 III.1.1. Electron microscopy on the virus stock (JS isolate)224
 III.1.2. DNA Quantification of B19 samples ...226
III.2. Detection of virus infectivity by IFA: controls ...226
III.3. Primary cells ..228
 III.3.1. CD34+ cells ...228
 III.3.1.1. FACS results ..228
 III.3.1.2. Detection of infectious parvovirus B19 particles in CD34+ cells by IFA ...234
 III.3.1.3. Detection of infectious parvovirus B19 particles in CD34+ cells by detection of mRNA transcripts235
 III.3.2. BFU-E reduction assay ..238
 III.3.2.1. Anti-B19 IgG status of apheresis cells donors238
 III.3.2.2. BFU-E reduction assay results ...240
 III.3.2.3. Detection of infectious parvovirus B19 in cells from BFU-E colonies by indirect IFA ...241
III.4. Continuous human erythroid cell lines ..246
 III.4.1. Growth curves ..246
 III.4.1.1. KU812Ep6 cell line ...246
 III.4.1.2. UT-7/EPO cell line ...248
 III.4.1.3. UT-7/EPO-S1 cell line ...250
 III.4.2. Cell attachment study ..251
 III.4.3. Detection of B19 proteins by indirect IFA in continuous cell lines ...254
 III.4.3.1. Comparison of KU812, KU812Ep6 and UT-7/EPO cell lines ...254
 III.4.3.2. KU812Ep6 cell line ...257
III.4.3.3. UT-7/EPO-S1 cell line ...258

III.4.4. B19 infectivity assay for the detection of B19-specific mRNAs in continuous cell lines ...262
 III.4.4.1. KU812 cell line ...262
 III.4.4.2. KU812Ep6 cell line ..265
 III.4.4.2.1. Concentration of erythropoietin (EPO)265
 III.4.4.2.2. Cell passage number ..267
 III.4.4.2.3. pH of diluent buffer270
 III.4.4.2.4. Incubation temperature274
 III.4.4.3. UT-7/EPO cell line ..276

III.4.4.4. Comparison of the susceptibility of the KU812, KU812Ep6 and UT-7/EPO cell lines to infection with B19 ..280
 III.4.4.4.1. B19 infectivity assays using the KU812Ep6, KU812 and UT-7/EPO cell lines ..280
 III.4.4.4.2. B19 infectivity assay using KU812 and KU812Ep6 cell lines ...283

III.4.4.4.3. Cell synchronisation ...285

III.4.5. Optimisation of B19 infectivity assay using UT-7/EPO-S1 cells288
 III.4.5.1. Virus diluent buffer ...290
 III.4.5.2. Cell passage number ..292
 III.4.5.3. Hypoxia studies ..295
 III.4.5.3.1. Growth curves ...295
 III.4.5.3.2. Hypoxia conditions296

III.4.6. Quantification of B19 DNA by LightCycler system298
 III.4.6.1. MgCl2 titration ...298
 III.4.6.2. Validation studies ..300
 III.4.6.2.1. B19 DNA Standard curve301
 III.4.6.2.2. Study 1: validation of DNA extraction and amplification on the LightCycler310
 III.4.6.2.3. Study 2: Validation of B19 LightCycler PCR311

III.4.6.3. Quantification of B19 samples used in this study312

III.4.7. Optimisation of mRNA isolation312
 III.4.7.1. Time course experiments312
 III.4.7.2. Comparison of different extraction protocols323
III.4.8. Optimisation of RT-PCR ...329
 III.4.8.1. Primer combinations ...329
 III.4.8.2. Multiplex RT-PCR ...333
 III.4.8.2.1. Q buffer ..333
 III.4.8.2.2. Concentration of actin primers335
 III.4.8.2.3. Annealing temperature ..343
III.4.9. Optimised human parvovirus B19 infectivity assay347
 III.4.9.1. Infectivity assay conditions ...347
 III.4.9.2. Validations studies ...348
III.4.10. Sequencing of PCR products ..350

III.5. Human parvovirus B19 removal/inactivation studies352
 III.5.1. Virus removal by nanofiltration using Planova® filters: Asahi Kasei Pharma ...352
 III.5.2. Virus inactivation by dry-heat treatment at 80°C on the freeze-dried 8Y product: Bioproducts Laboratory, UK364
 III.5.3. Virus inactivation by SuperFluids™: Aphios Inc., USA366
 III.5.4. Virus inactivation by the INACTINE™ system: Vitex, USA370
 III.5.5. Virus inactivation by S-59: the Helinx® technology: Cerus Corporation, USA ..373

Chapter IV: General discussion ..375

References ...402

Appendix 1: BFU-E reduction assay results ..445
Appendix 2: Cell counts for continuous cell lines growth curves457
Appendix 3: PCR data for viral removal study and RT-PCR data for viral inactivation studies ...465
 1. Planova study ..465
 2. BPL study ..468
 3. Aphios study ...473
 4. Vitex study ...492
 5. Cerus study ..502
Index of figures

Chapter I: General introduction

Figure 1.1: Organisation chart of the Parvoviridae family ...38
Figure 1.2: Secondary structure of parvovirus B19 ...43
Figure 1.3: B19 viral DNA showing terminal hairpin structures45
Figure 1.4: Human parvovirus B19 transcription map showing open reading frames and viral proteins ..47
Figure 1.5: Phylogenetic tree for erythroviruses ...57
Figure 1.6: A model for parvovirus B19 binding and entry into primary human erythroid cells ...60
Figure 1.7: General replication model for parovirus genomes62
Figure 1.8: Model of the transactivating complex ...67
Figure 1.9: Schematic model of NS gene expression in nonpermissive cells (NSP: NS protein) ...72
Figure 1.10: Time course of B19 viraemia and antibody response following B19 infection ..77
Figure 1.11: The LightCycler instrument ..101
Figure 1.12: Schematic of the LightCycler instrument ...102
Figure 1.13: Calculation of PCR efficiency ...104
Figure 1.14: Calculation of target concentration using the standard curve104
Figure 1.15: First picture of a child with EI ...107
Figure 1.16: Slapped cheek rash ...108

Chapter II: Materials and methods

Figure 2.1: Location of B19 primers on the genomic and transcription maps of B19 ...186
Figure 2.2: UT-7/EPO-S1 cell aggregates under the light microscope (x20)190
Figure 2.3: UT-7/EPO-S1 cell aggregate under the light microscope (x40)191
Figure 2.4: Photograph of 15N and 35N Planova® filters ...196
Figure 2.5: Capillary-void structure in a Planova® 15N (x 50,000)197
Figure 2.6: SuperFluids™ zones ..198
Index of figures

Chapter III: Results

Figure 3.1: IEM and EM of Human Parvovirus B19 .. 225
Figure 3.2: IFA in mock infected SF9 cells ... 226
Figure 3.3: IFA in SF9 cells infected by baculovirus expressing VP1 recombinant protein ... 227
Figure 3.4: IFA in SF9 cells infected by baculovirus expressing VP2 recombinant protein ... 227
Figure 3.5: Dot plot of the cell granulosity (SSC-H) versus cell size (FSC-H) for CD34 ... 229
Figure 3.6: Dot plot of CD34+ versus cell size (FSC-H) for CD34 test.001 229
Figure 3.7: Histogram of events versus CD34 fluorescence for CD34 test.001 230
Figure 3.8: Dot plot of the cell granulosity (SSC-H) versus cell size (FSC-H) for CD34 test.003 ... 230
Figure 3.9: Dot plot of CD34+ versus cell size (FSC-H) for CD34 test.003 231
Figure 3.10: Histogram of events versus CD34 fluorescence for CD34 test.003 231
Figure 3.11: Dot plot of the cell granulosity (SSC-H) versus cell size (FSC-H) for CD34 test.002 ... 232
Figure 3.12: Dot plot of CD34+ versus cell size (FSC-H) for CD34 test.002 232
Figure 3.13: Histogram of events versus CD34 fluorescence for CD34 test.002 233
Figure 3.14: Agarose gel with RT-PCR products amplified with actin-specific primers 237
Figure 3.15: Agarose gel with RT-PCR products amplified with B19-specific primers 238
Figure 3.16: Red colonies in a negative control of BFU-E reduction assay 240
Figure 3.17: IFA in differentiated cells from patient 7 infected with parvovirus B19, day 4 post-infection ... 243
Figure 3.18: IFA in differentiated cells from patient 7 infected with parvovirus B19, day 7 post-infection ... 243
Figure 3.19: IFA in uninfected differentiated cells from patient 6, day 3 post-infection 245
Index of figures

Figure 3.20: IFA in infected differentiated cells from patient 6, day 3 post-infection ...245

Figure 3.21: KU812Ep6 growth curves (n+19) ...247

Figure 3.22: KU812Ep6 growth curves (n+81) ..248

Figure 3.23: UT-7/EPO growth curves (n+19) ..249

Figure 3.24: UT-7/EPO growth curves (n+19) ..250

Figure 3.25: UT-7/EPO-S1 growth curves (n+14) ..251

Figure 3.26: IFA in UT-7/EPO cells inoculated with human parvovirus B19, 5 days post-infection ...255

Figure 3.27: IFA in KU812 cells inoculated with human parvovirus B19, 5 days post-infection ...256

Figure 3.28: IFA in KU812Ep6 cells inoculated with human parvovirus B19, 5 days post-infection ...256

Figure 3.29: IFA in KU812Ep6 cells inoculated with human parvovirus B19, 5 days post-infection (stained with mouse monoclonal anti-VP1/VP2) ...258

Figure 3.30: IFA in UT-7/EPO-S1 cells inoculated with human parvovirus B19 (2x10^10 IU/ml), 4 days post-infection ...260

Figure 3.31: IFA in UT-7/EPO-S1 cells inoculated with human parvovirus B19 (2x10^10 IU/ml), 4 days post-infection ...261

Figure 3.32: Analysis of mRNA products in KU812 cells ..264

Figure 3.33: Analysis of mRNA products in KU812Ep6 cells with increasing EPO concentrations ...267

Figure 3.34: Analysis of mRNA products in KU812Ep6 cells at various passages ...269

Figure 3.35: Analysis of mRNA products in KU812Ep6 cells with various pHs of diluent buffer ...271

Figure 3.36: Analysis of mRNA products in KU812Ep6 cells with various pHs of diluent buffer ...273

Figure 3.37: Analysis of mRNA products in KU812Ep6 cells using various incubation temperatures ...275

Figure 3.38: Analysis of mRNA products in UT-7/EPO cells amplified with B19-6 and B19-9 primers ...278

Figure 3.39: Analysis of mRNA products in UT-7/EPO cells amplified with XPP2 and B19-9 primers ...279
Figure 3.40: Analysis of mRNA products in various cell lines amplified with B19-6 and B19-9 ...282

Figure 3.41: Analysis of mRNA products in KU812 and KU812Ep6 cell lines amplified with B19-6 and B19-9 ..284

Figure 3.42: Analysis of mRNA products in various cell lines treated with hydroxyurea and amplified with B19-6 and B19-9287

Figure 3.43: Analysis of mRNA products in UT-7/EPO-S1 cells amplified with XPP2 and B19-9 ...289

Figure 3.44: Analysis of mRNA products in UT-7/EPO-S1 cells amplified with XPP2 and B19-9 ...291

Figure 3.45: Analysis of mRNA products in UT-7/EPO-S1 cells (passages n+5 and n+45) amplified with XPP2 and B19-9293

Figure 3.46: Analysis of mRNA products in UT-7/EPO-S1 cells (passages n+14 and n+53) amplified with XPP2 and B19-9294

Figure 3.47: Growth curves of UT-7/EPO-S1 cell line (n+17) in a 20% and 3% oxygen atmosphere ...295

Figure 3.48: Analysis of DNA products amplified by LightCycler for MgCl₂ titration ..300

Figure 3.49: Melting peaks of the standard curve samples ..303

Figure 3.50: Melting peaks of the 1:10⁴ dilution of the International Standard (1x10³ IU/ml) ...304

Figure 3.51: Melting peaks of the negative plasma sample ..305

Figure 3.52: Analysis of PCR products for the 1st validation study ...306

Figure 3.53: Example of a standard curve established with the B19 IS generated on the LightCycler ...309

Figure 3.54: Analysis of mRNA products extracted from KU812Ep6 cells315

Figure 3.55: Analysis of mRNA products extracted from UT-7/EPO cells ...318

Figure 3.56: Analysis of mRNA products extracted from KU812 cells ...320

Figure 3.57: Analysis of mRNA products extracted from UT-7/EPO-S1 cells amplified with XPP2 and B19-9 ...322

Figure 3.58: Analysis of mRNA products extracted from KU812 cells ...325
Index of figures

Figure 3.59: Analysis of mRNA products extracted from KU812Ep6 cells amplified by multiplex RT-PCR ...327
Figure 3.60: Analysis of mRNA products extracted from UT-7/EPO-S1 cells amplified by multiplex RT-PCR ...329
Figure 3.61: Analysis of mRNA products extracted from KU812Ep6 cells amplified with B19-6 and B19-9 primer combination ..331
Figure 3.62: Analysis of mRNA products extracted from KU812 cells amplified with XPP2 and B19-9 primer combination ..332
Figure 3.63: Analysis of mRNA products extracted from KU812Ep6 cells amplified by multiplex RT-PCR with and without Q buffer ..334
Figure 3.64: Analysis of mRNA products extracted from KU812Ep6 cells amplified by multiplex RT-PCR using various actin primers concentrations336
Figure 3.65: Analysis of mRNA products extracted from UT-7/EPO-S1 cells amplified by multiplex RT-PCR using various actin primers concentrations338
Figure 3.66: Analysis of mRNA products extracted from UT-7/EPO-S1 cells ...340
Figure 3.67: Analysis of mRNA products extracted from UT-7/EPO-S1 cells ..342
Figure 3.68: Analysis of mRNA products extracted from UT-7/EPO-S1 cells amplified by multiplex RT-PCR ...344
Figure 3.69: Melting curve of spiked albumin (sample C1 diluted 1:10,000) ..354
Figure 3.70: Dead-end and constant pressure Planova® filtration procedure ...355

Appendix 3:

Figure A3.1: LightCycler PCR products for Planova experimental controls and samples 1 to 13 (first 15N filter) ...465
Figure A3.2: LightCycler PCR products for Planova samples 17 to 41 (first 15N filter) ...466
Figure A3.3: LightCycler PCR products for Planova samples 17 to 41 (first 15N filter) ...467
Figure A3.4: LightCycler PCR products for Planova samples 68 to 86 (second 15N filter) ...468
Index of figures

Figure A3.24: Infectivity assay results for NIBSC-03 “before” and CFI-treated #2 samples ..488
Figure A3.25: Infectivity assay results for NIBSC-03 CFI-treated #3 samples ..489
Figure A3.26: Infectivity assay results for NIBSC-03 “time and temperature” sample ...490
Figure A3.27: Infectivity assay results for NIBSC-04 “before” sample ...491
Figure A3.28: Infectivity assay results for NIBSC-04 CFI-treated #1 samples ..492
Figure A3.29: Infectivity assay results for NIBSC-04 CFI-treated #2 sample ...493
Figure A3.30: Infectivity assay results for NIBSC-04 CFI-treated #3 and “time and temperature” samples494
Figure A3.31: Infectivity assay results for NIBSC-05 “before” sample ..495
Figure A3.32: Infectivity assay results for NIBSC-05 CFI-treated #1 samples ..496
Figure A3.33: Infectivity assay results for NIBSC-05 CFI-treated #2 samples ...497
Figure A3.34: Infectivity assay results for NIBSC-05 CFI-treated #3 samples ..498
Figure A3.35: Infectivity assay results for NIBSC-05 “time and temperature” sample ...499
Figure A3.36: Infectivity assay results for NIBSC-06 “before” sample ...500
Figure A3.37: Infectivity assay results for NIBSC-06 CFI-treated #1 samples ..501
Figure A3.38: Infectivity assay results for NIBSC-06 CFI-treated #2 samples ..502
Figure A3.39: Infectivity assay results for NIBSC-06 CFI-treated “time and temperature” sample503
Figure A3.40: Infectivity assay results for Vitex TS3A and TS6A samples ...504
Figure A3.41: Infectivity assay results for Vitex TS18A, TS22A and PC0A samples ..505
Figure A3.42: Infectivity assay results for Vitex PC22A and TS3B samples ..506
Figure A3.43: Infectivity assay results for Vitex TS6B, TS18B and TS22B samples ..507
Figure A3.44: Infectivity assay results for Vitex PC0B sample ..508
Figure A3.45: Infectivity assay results for Vitex PC22B and B19 1:20 dilution samples ..509
Figure A3.46: Infectivity assay results for Cerus untreated sample ...510
Figure A3.47: Infectivity assay results for Cerus treated 3J sample ...511
Index of tables

Chapter I: General introduction
Table 1.1: Summary of B19 NS1 and VP1, VP2 proteins identified in different expression systems ...46
Table 1.2: Summary of IgG antibody response in active and convalescent phases of parvovirus B19 infection ..80
Table 1.3: Summary of diagnostic and detection assays for B19 ...87
Table 1.4: Major diseases following B19 infection ..133
Table 1.5: Clinical manifestations possibly linked with B19 infection134
Table 1.6: Clinical manifestations unlikely to be linked with B19 infection135
Table 1.7: Incidence of parvovirus B19 viraemic sera ..156
Table 1.8: Characteristics of well-recognized viral removal procedures171
Table 1.9: Characteristics of well-recognized viral inactivation procedures172

Chapter II: Materials and methods
Table 2.1: B19 primer pairs used in this study ..187
Table 2.2: Actin primer pair used in this study ..187
Table 2.3: Human cell lines used in this study ..189
Table 2.4: Phosphate buffers composition ...193
Table 2.5: Acetate buffers composition ..194

Chapter III: Results
Table 3.1: Anti-B19 IgG status of some apheresis cells donors239
Table 3.2: Plate for cell attachment experiment ...252
Table 3.3: Conditions and samples names for hypoxia study297
Table 3.4: Hypoxia experiment results ...298
Table 3.5: Validation results for B19 standard curve ..307
Table 3.6: B19 standard curve statistics ...308
Table 3.7: Results of validation study 1 ...310
Table 3.8: Cell counts of infected and uninfected KU812Ep6 cells over time post-infection ...314
Table 3.9: Cell counts of infected and uninfected UT-7/EPO cells over time post-infection ...317
Table 3.10: Cell counts of infected and uninfected KU812 cells over time post-infection ..319
Table 3.11: Results of annealing temperature optimisation ..346
Table 3.12: Record of B19 specific transcripts presence (+) or absence (-) in the validation studies of the optimised infectivity assay ...349
Table 3.13 Infectivity results and DNA concentration to infectious unit ratio for the optimised infectivity assay ..350
Table 3.14: LightCycler runs and negative controls results for nanofiltration ..357
Table 3.15: Experimental controls for nanofiltration ..357
Table 3.16: Results for the first 15N Planova® filter ..358
Table 3.17: Results for the first 20N Planova® filter ..359
Table 3.18: Results for the second 15N Planova® filter ...360
Table 3.19: Results for the second 20N Planova® filter ...361
Table 3.20: Results for the third 15N Planova® filter ...362
Table 3.21: Results for the third 20N Planova® filter ...363
Table 3.22: Results summary ...364
Table 3.23: Results of virus inactivation by dry-heat treatment at 80ºC on freeze-dried factor VIII (8Y), including controls ..365
Table 3.24: Experimental Conditions for virus inactivation by SuperFluids™ 366
Table 3.25: Results for experiment NIBSC-01 ...367
Table 3.26: Results for experiment NIBSC-02 ...368
Table 3.27: Results for experiment NIBSC-03 ...368
Table 3.28: Results for experiment NIBSC-04 ...368
Table 3.29: Results for experiment NIBSC-05 ...369
Table 3.30: Results for experiment NIBSC-06 ...369
Table 3.31: Cell counts with cytotoxicity control 1 (CC1) ..371
Table 3.32: Cell counts with cytotoxicity control 2 (CC2) ..372
Table 3.33: Results of virus inactivation by INACTINE™ treatment, including controls ..372
Table 3.34: Results of photochemical inactivation with S-59374
Chapter IV: General discussion

Table 4.1: Summary of virus inactivation/ removal data ..398

Appendix 1: BFU-E reduction assay results

Table A1.1: BFU-E reduction assay results for patient 1 (a)445
Table A1.2: BFU-E reduction assay results for patient 1 (b)445
Table A1.3: BFU-E reduction assay results for patient 2 ..445
Table A1.4: BFU-E reduction assay results for patient 3 ..446
Table A1.5: BFU-E reduction assay results for patient 4 ..446
Table A1.6: BFU-E reduction assay results for patient 5 ..446
Table A1.7: BFU-E reduction assay results for patient 6 ..447
Table A1.8: BFU-E reduction assay results for patient 7 ..447
Table A1.9: BFU-E reduction assay results for patient 8 ..447
Table A1.10: BFU-E reduction assay results for patient 9 ..448
Table A1.11: BFU-E reduction assay results for patient 10 (a and b)448
Table A1.12: BFU-E reduction assay results for patient 11 ..449
Table A1.13: BFU-E reduction assay results for patient 12 ..449
Table A1.14: BFU-E reduction assay results for patient 13 ..449
Table A1.15: BFU-E reduction assay results for patient 14 ..450
Table A1.16: BFU-E reduction assay results for patient 15 ..450
Table A1.17: BFU-E reduction assay results for patient 16 ..451
Table A1.18: BFU-E reduction assay results for patient 17 ..451
Table A1.19: BFU-E reduction assay results for patient 18 ..451
Table A1.20: BFU-E reduction assay results for patient 19 ..452
Table A1.21: BFU-E reduction assay results for patient 20 ..452
Table A1.22: BFU-E reduction assay results for patient 21 ..452
Table A1.23: BFU-E reduction assay results for patient 22 ..453
Table A1.24: BFU-E reduction assay results for patient 23 ..453
Table A1.25: BFU-E reduction assay results for patient 24 ..453
Table A1.26: BFU-E reduction assay results for patient 25 ..454
Table A1.27: BFU-E reduction assay results for patient 26 ..454
Table A1.28: BFU-E reduction assay results for patient 27 ..455
Table A1.29: BFU-E reduction assay results for patient 28 ..455
Table A1.30: BFU-E reduction assay results for patient 29 ..456
Appendix 2: Cell counts for continuous cell lines growth curves

Table A2.1: Cell count results for KU812Ep6 cell line at 1x10^5 cells/ml starting concentration (n+19) ..457
Table A2.2: Cell count results for KU812Ep6 cell line at 5x10^4 cells/ml starting concentration (n+19) ..457
Table A2.3: Cell count results for KU812Ep6 cell line at 1x10^4 cells/ml starting concentration (n+19) ..458
Table A2.4: Cell count results for KU812Ep6 cell line at 1x10^5 cells/ml starting concentration (n+81) ..458
Table A2.5: Cell count results for KU812Ep6 cell line at 5x10^4 cells/ml starting concentration (n+81) ..459
Table A2.6: Cell count results for KU812Ep6 cell line at 1x10^4 cells/ml starting concentration (n+81) ..459
Table A2.7: Cell count results for UT-7/EPO cell line at 1x10^5 cells/ml starting concentration (n+19) ..460
Table A2.8: Cell count results for UT-7/EPO cell line at 5x10^4 cells/ml starting concentration (n+19) ..460
Table A2.9: Cell count results for UT-7/EPO cell line at 1x10^4 cells/ml starting concentration (n+19) ..461
Table A2.10: Cell count results for UT-7/EPO cell line at 1x10^5 cells/ml starting concentration (n+80) ..461
Table A2.11: Cell count results for UT-7/EPO cell line at 5x10^4 cells/ml starting concentration (n+80) ..462
Table A2.12: Cell count results for UT-7/EPO cell line at 1x10^4 cells/ml starting concentration (n+80) ..462
Table A2.13: Cell count results for UT-7/EPO-S1 cell line at 1x10^5 cells/ml starting concentration ..463
Table A2.14: Cell count results for UT-7/EPO-S1 cell line at 1x10^4 cells/ml starting concentration ..463
Table A2.15: Cell count results for UT-7/EPO-S1 cell line (n+17) in a 20% and 3% oxygen atmosphere464

Index of tables
Abbreviations

Å Angstrom
AABB American Association of Blood Banks
AAV Adeno-Associated Virus
ACS Acute Chest Syndrome
ADV Aleutian mink Disease Virus
AFLF Acute Fulminant Liver Failure
AIDS Acquired Immuno Deficiency Syndrome
ALF Acute Liver Failure
ANA Anti Nuclear Antibodies
aPL Anti-phospholipid
apoA-I Human Apolipoprotein A-I
ATP Adenosine Triphosphate
B19 Human parvovirus B19
BFU-E Burst-Forming Unit-Erythroid
β-ME β-mercaptoethanol
BMT Bone Marrow Transplant
BPL Bioproducts Laboratory
BPV Bovine Parvovirus
CAT Chloramphenicol acetyltransferase
CD Cluster of Differentiation
CE European Community
CFU-E Colony-forming unit-Erythroid
CHD Congenital Heat Disease
CIE Counte-immunoelectrophoresis
CMV Cytomegalovirus
CNS Central Nervous System
CPV Canine Parvovirus
CSF Cerebrospinal fluid
C_r Crossing point
CXCR4 Human CXC chemokine receptor 4
DID Double Immunodiffusion
DNA Deoxyribonucleic Acid
ds double-stranded
EBV Epstein Barr virus
EDTA Ethylenediamine tetraacetic acid
EI Erythema Infectiosum
EIA Enzyme Immunoassay
ELISA Enzyme Linked Immunosorbent Assay
ELISpot Enzyme Linked Immunosorbent spot Assay
EM Electron Microscopy
EPO Erythropoietin
EtBr Ethidium bromide
<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>EtOH</td>
<td>Ethanol</td>
</tr>
<tr>
<td>FACS</td>
<td>Fluorescence Activated Cell Sorter</td>
</tr>
<tr>
<td>FCH</td>
<td>Fibrosing Cholestatic Hepatitis</td>
</tr>
<tr>
<td>FCS</td>
<td>Fetal calf serum</td>
</tr>
<tr>
<td>FDA</td>
<td>Food and Drug Administration</td>
</tr>
<tr>
<td>FITC</td>
<td>Fluorescein Isothiocyanate</td>
</tr>
<tr>
<td>FPV</td>
<td>Feline Parvovirus</td>
</tr>
<tr>
<td>FSGS</td>
<td>Focal and Segmental Glomerulosclerosis</td>
</tr>
<tr>
<td>G-CSF</td>
<td>Granulocyte-Colony Stimulating Factor</td>
</tr>
<tr>
<td>GM-CSF</td>
<td>Granulocyte Macrophage-Colony Stimulating Factor</td>
</tr>
<tr>
<td>Grb2</td>
<td>Growth factor receptor-binding protein 2</td>
</tr>
<tr>
<td>H BsAg</td>
<td>Hepatitis B surface Antigen</td>
</tr>
<tr>
<td>HAART</td>
<td>Highly Active Antiretroviral Therapy</td>
</tr>
<tr>
<td>HAV</td>
<td>Hepatitis A Virus</td>
</tr>
<tr>
<td>HBV</td>
<td>Hepatitis B Virus</td>
</tr>
<tr>
<td>HCV</td>
<td>Hepatitis C Virus</td>
</tr>
<tr>
<td>HGV</td>
<td>Hepatitis G Virus</td>
</tr>
<tr>
<td>HIV</td>
<td>Human Immunodeficiency Virus</td>
</tr>
<tr>
<td>HLA</td>
<td>Human Leukocyte Antigen</td>
</tr>
<tr>
<td>HPA</td>
<td>Health Protection Agency</td>
</tr>
<tr>
<td>HPV</td>
<td>Human papilloma virus</td>
</tr>
<tr>
<td>HSV</td>
<td>Herpes Symplex Virus</td>
</tr>
<tr>
<td>IA-PCR</td>
<td>Immune Adherence PCR</td>
</tr>
<tr>
<td>ICTV</td>
<td>International Committee on Taxonomy of Viruses</td>
</tr>
<tr>
<td>ID</td>
<td>Immunodiffusion</td>
</tr>
<tr>
<td>IEM</td>
<td>Immune Electron Microscopy</td>
</tr>
<tr>
<td>IFA</td>
<td>Immunofluorescence assay</td>
</tr>
<tr>
<td>IFN-γ</td>
<td>Interferon gamma</td>
</tr>
<tr>
<td>Ig</td>
<td>Immunoglobulin</td>
</tr>
<tr>
<td>IL</td>
<td>Interleukin</td>
</tr>
<tr>
<td>ILD</td>
<td>Interstitial Lung Disease</td>
</tr>
<tr>
<td>IS</td>
<td>International Standard</td>
</tr>
<tr>
<td>ISH</td>
<td>In Situ Hybridisation assay</td>
</tr>
<tr>
<td>ITP</td>
<td>Idiopathic Thrombocytopenic Purpura</td>
</tr>
<tr>
<td>IU</td>
<td>International Units</td>
</tr>
<tr>
<td>IUFD</td>
<td>Intrauterine Fetal Death</td>
</tr>
<tr>
<td>IVIG</td>
<td>Intravenous Immunoglobulin</td>
</tr>
<tr>
<td>JCA</td>
<td>Juvenile Chronic Arthritis</td>
</tr>
<tr>
<td>JRA</td>
<td>Juvenile Rheumatoid Arthritis</td>
</tr>
<tr>
<td>LPV</td>
<td>Lapine Parvovirus</td>
</tr>
<tr>
<td>m.u</td>
<td>Map unit</td>
</tr>
<tr>
<td>MACRIA</td>
<td>IgM Antibody Capture Radioimmunoassay</td>
</tr>
<tr>
<td>MACS</td>
<td>Magnetic cell sorting</td>
</tr>
<tr>
<td>MB</td>
<td>Methylene Blue</td>
</tr>
<tr>
<td>Abbreviations</td>
<td>Description</td>
</tr>
<tr>
<td>---------------</td>
<td>-------------</td>
</tr>
<tr>
<td>M-CSF</td>
<td>Macrophage-Colony Stimulating Factor</td>
</tr>
<tr>
<td>MDS</td>
<td>Myelodysplastic syndrome</td>
</tr>
<tr>
<td>mRNA</td>
<td>Messenger ribonucleic acid</td>
</tr>
<tr>
<td>MsAFP</td>
<td>Maternal Serum Alpha-fetoprotein</td>
</tr>
<tr>
<td>MVM</td>
<td>Minute Virus of Mice</td>
</tr>
<tr>
<td>N</td>
<td>Nanometre</td>
</tr>
<tr>
<td>NAT</td>
<td>Nucleic acid amplification testing</td>
</tr>
<tr>
<td>NHS</td>
<td>National Health Service</td>
</tr>
<tr>
<td>NIRCA™</td>
<td>Non-Isotopic RNase Cleavage Assay™</td>
</tr>
<tr>
<td>NK</td>
<td>Natural Killer</td>
</tr>
<tr>
<td>NLS</td>
<td>Nuclear Localisation Signal</td>
</tr>
<tr>
<td>NS</td>
<td>Non Structural</td>
</tr>
<tr>
<td>nt</td>
<td>Nucleotide</td>
</tr>
<tr>
<td>NTP</td>
<td>Nucleotide Trisphosphate</td>
</tr>
<tr>
<td>OA</td>
<td>Osteoarthritis</td>
</tr>
<tr>
<td>OCD</td>
<td>Dilution buffer for mRNA extraction (Appendix 1)</td>
</tr>
<tr>
<td>OCL</td>
<td>Lysis buffer for mRNA extraction (Appendix 1)</td>
</tr>
<tr>
<td>ODB</td>
<td>Dilution buffer of the Oligotex direct mRNA kit (Qiagen)</td>
</tr>
<tr>
<td>OEB</td>
<td>Elution buffer of the Oligotex direct mRNA kit (Qiagen)</td>
</tr>
<tr>
<td>OL1</td>
<td>Lysis buffer of the Oligotex direct mRNA kit (Qiagen)</td>
</tr>
<tr>
<td>ORF</td>
<td>Open Reading Frame</td>
</tr>
<tr>
<td>OW1</td>
<td>Wash buffer 1 of the Oligotex direct mRNA kit (Qiagen)</td>
</tr>
<tr>
<td>OW2</td>
<td>Wash buffer 2 of the Oligotex direct mRNA kit (Qiagen)</td>
</tr>
<tr>
<td>PBMC</td>
<td>Peripheral Blood Mononuclear cells</td>
</tr>
<tr>
<td>PBS</td>
<td>Phosphate buffered saline</td>
</tr>
<tr>
<td>PCR</td>
<td>Polymerase Chain Reaction</td>
</tr>
<tr>
<td>PCT</td>
<td>Photochemical treatment</td>
</tr>
<tr>
<td>PHLS</td>
<td>Public Health Laboratory Services</td>
</tr>
<tr>
<td>PPGSS</td>
<td>Papular purpuric "gloves-and-socks" syndrome</td>
</tr>
<tr>
<td>PPV</td>
<td>Porcine Parvovirus</td>
</tr>
<tr>
<td>PRCA</td>
<td>Pure Red blood Cell Aplasia</td>
</tr>
<tr>
<td>PRP</td>
<td>Platelet-rich plasma</td>
</tr>
<tr>
<td>RA</td>
<td>Rheumatoid Arthritis</td>
</tr>
<tr>
<td>RBC</td>
<td>Red Blood Cell</td>
</tr>
<tr>
<td>RBCC</td>
<td>Red Blood Cell Concentrates</td>
</tr>
<tr>
<td>RE</td>
<td>Restriction Enzyme</td>
</tr>
<tr>
<td>RF</td>
<td>Replicative Form</td>
</tr>
<tr>
<td>RHA</td>
<td>Receptor-mediated haemagglutination assay</td>
</tr>
<tr>
<td>RIA</td>
<td>Radioimmuno-assay</td>
</tr>
<tr>
<td>RNA</td>
<td>Ribonucleic Acid</td>
</tr>
<tr>
<td>RPE</td>
<td>R. Phycoerythin</td>
</tr>
<tr>
<td>rRNA</td>
<td>Ribosomal ribonucleic acid</td>
</tr>
<tr>
<td>RSP</td>
<td>Restriction Site Polymorphism</td>
</tr>
<tr>
<td>RSV</td>
<td>Respiratory Syncytial Virus</td>
</tr>
</tbody>
</table>
Abbreviations

<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>RT-PCR</td>
<td>Reverse Transcriptase PCR</td>
</tr>
<tr>
<td>RV</td>
<td>Rat Virus</td>
</tr>
<tr>
<td>S/D</td>
<td>Solvent Detergent</td>
</tr>
<tr>
<td>SARS</td>
<td>Severe Acute Respiratory Syndrome</td>
</tr>
<tr>
<td>SDS</td>
<td>Sodium dodecyl sulfate</td>
</tr>
<tr>
<td>SH3</td>
<td>Src Homology 3</td>
</tr>
<tr>
<td>SIV</td>
<td>Simian Immunodeficiency Virus</td>
</tr>
<tr>
<td>SLE</td>
<td>Systemic Lupus Erythematosus</td>
</tr>
<tr>
<td>Spl</td>
<td>Promoter-specific transcription factor</td>
</tr>
<tr>
<td>SPLV</td>
<td>Serum parvovirus-like virus</td>
</tr>
<tr>
<td>SPV</td>
<td>Simian Parvovirus</td>
</tr>
<tr>
<td>ss</td>
<td>Single-stranded</td>
</tr>
<tr>
<td>SSCP</td>
<td>Single-Stranded Conformational Polymorphism</td>
</tr>
<tr>
<td>TAC</td>
<td>Transient Aplastic Crisis</td>
</tr>
<tr>
<td>TAE</td>
<td>Tris-HCl, glacial acetic acid, EDTA</td>
</tr>
<tr>
<td>TE</td>
<td>Tris-HCl, EDTA</td>
</tr>
<tr>
<td>TEC</td>
<td>Transient Erythroblastopenia of Childhood</td>
</tr>
<tr>
<td>Th</td>
<td>T helper cell</td>
</tr>
<tr>
<td>Th 1</td>
<td>T helper cell type 1</td>
</tr>
<tr>
<td>Th 2</td>
<td>T helper cell type 2</td>
</tr>
<tr>
<td>TNBP</td>
<td>Tri(n-butyl) phosphate</td>
</tr>
<tr>
<td>TNF-α</td>
<td>Tumour Necrosis Factor alpha</td>
</tr>
<tr>
<td>TSA</td>
<td>Tyramide signal amplification</td>
</tr>
<tr>
<td>UCH</td>
<td>University College Hospital</td>
</tr>
<tr>
<td>UTR</td>
<td>Untranslated region</td>
</tr>
<tr>
<td>UV</td>
<td>Ultraviolet</td>
</tr>
<tr>
<td>VAHS</td>
<td>Virus-Associated Hemophagocytic Syndrome</td>
</tr>
<tr>
<td>VLP</td>
<td>Virus-like particles</td>
</tr>
<tr>
<td>VP</td>
<td>Viral Protein</td>
</tr>
<tr>
<td>VZV</td>
<td>Varicella Zoster Virus</td>
</tr>
<tr>
<td>WHO</td>
<td>World Health Organisation</td>
</tr>
<tr>
<td>WNV</td>
<td>West Nile Virus</td>
</tr>
</tbody>
</table>
Chapter I: Introduction
I.1. Human parvovirus B19

I.1.1. Discovery, classification and structure of human parvovirus B19

I.1.1.1. Discovery

In 1975, during routine screening for hepatitis B surface antigen (HBsAg) of sera from healthy blood donors, Dr Y. Cossart and coworkers noticed abnormal results in the counterimmunoelectrophoresis (CIE) assay of several samples that tested negative for hepatitis B by confirmatory methods (radioimmunoassay and haemagglutination) (Cossart et al., 1975). The precipitin line from the CIE was cut out and electron microscopy showed the presence of spherical particles, with a diameter varying from 20.5nm to 25nm (mean 23nm). Their characteristic features included disrupted fragments and empty shells. Cossart et al. observed a resemblance with animal parvoviruses on account of the similar size and morphology of the particles, and because the antigen bands in caesium chloride were at a density within the parvovirus range (1.36 to 1.40) (Cossart et al., 1975; Siegl et al., 1985). Similar observations were later made in France in 1982, where the “Aurillac” virus (named after the town in which it originated) was described (Courcoucé et al., 1984a; Courcoucé et al., 1984b). Subsequently, both “Aurillac” and “Nakatani” (from Japan) viruses were shown to be identical to the “serum parovirus-like virus” (SPLV) discovered by Cossart and colleagues (Cossart et al., 1975; Courcoucé et al., 1984a; Courcoucé et al., 1984b; Okochi et al., 1984).

For some time, the isolates could not be related to naturally occurring diseases (Harley and Rotbart, 1990). However, in 1980, a brief publication reported the detection by electron microscopy (EM) of human parvovirus in the sera of two soldiers from the same unit, who presented with an uneventful and self-limited febrile episode (Shneerson et al., 1980). In 1981, B19 was also detected in two children with sickle cell anemia.
hospitalised for aplastic crisis (Pattison et al., 1981). A few years later, B19 was reported in association with an outbreak of erythema infectiosum (EI) in a London school, UK (Anderson et al., 1983). Moreover, the fetal damage in animals known to result from in utero infection with paroviruses encouraged research, which led to the first report of B19 as a cause of human hydrops fetalis (Brown et al, 1984). Additionally, investigations on the link between B19 and arthritis started in 1985 (White et al., 1985; Reid et al., 1985; Lefrère et al., 1985a). In the last twenty years, human parovirus has been associated with a wide range of clinical diseases, from EI to hydrops fetalis and new links between this infectious agent and various conditions are still being found.

I.1.1.2. Taxonomy

Since paroviruses are among the smallest DNA-containing viruses (18-26nm) able to infect mammalian cells, the Latin word for small, “parvum”, was used to designate this group of linear, single-stranded DNA viruses related by their morphology and functional characteristics (Berns, 1996). The International Committee on Taxonomy of Viruses (ICTV) has divided the family Paroviridae into two sub-families, the Parovirinae and Densovirusae, according to their ability to infect vertebrate or invertebrate cells, respectively (ICTV, 2005). Parovirinae is further divided into five genera, including Parovirus, Dependovirus, Erythrovirus, Andovirus and Bocavirus. The genus Parovirus comprises all animal paroviruses able to replicate autonomously in susceptible cells. These viruses do not require the presence of a helper virus (adenovirus, herpesvirus or even vaccinia virus) to undergo a complete cycle of replication. Most vertebrate disease-causing paroviruses belong to the Parovirus genus, including rat virus (RV): H-1 virus, minute virus of mice (MVM), porcine
Chapter I

(PPV), feline (FPV) and lapine (LPV) paroviruses (Siegl et al., 1985). The second genus, Dependovirus, consists of paroviruses that cannot replicate efficiently under standard in vitro culture conditions whereas they can multiply successfully when target cells are co-infected by either adenovirus or herpesvirus. Viruses in this genus have never been shown to cause disease, either in their natural host or under experimental conditions. The only member of the Amdovirus genus is Aleutian mink disease virus (ADV), which has been detected in most mustelids, skunks and racoons (ICTV, 2005). The Bocavirus genus includes bovine parovirus (BPV) and canine minute virus species. Finally, several members of the Densovirinae, the so-called densonucleosis viruses, have been isolated from a variety of insect host species and are autonomously replicating pathogenic paroviruses of insects. The organisation of the parvoviridae family is shown on figure 1.1.

Figure 1.1: Organisation chart of the Parvoviridae family (constructed using data from the ICTV 8th report of virus taxonomy, 2005)
In 1985, when human parvovirus B19 was officially recognised as a member of the Paroviridae family, it was classified in the Parovirus genus (Siegl et al., 1985). Although the acronym “HPV” for human parvovirus would have been in accordance with long-standing practice of the naming of autonomous paroviruses, the acronym was already in use for human papillomavirus. Therefore, in order to avoid confusion, the ICTV recommended the use of the name “B19”, which refers to the coding of this first isolate, number 19 in panel B (Cossart et al., 1975; Siegl et al., 1985). Since parvovirus B19 has a high erythroid tropism, it was reclassified in the genus Erythrovirus (ICTV, 2000). The other species recently classified in this genus are pig-tailed macaque parvovirus, rhesus macaque parvovirus and simian parvovirus (SPV) (ICTV, 2005) due to their predilection for host bone marrow in vitro and capacity to cause serious anaemia in infected animals, namely pig-tailed and rhesus macaques (Green et al., 2000) and cynomolgus monkeys (O’Sullivan et al., 1994; O’Sullivan et al., 1997), respectively. Moreover, a Korean group identified a parvovirus in Manchurian chipmunks highly similar to B19 and SPV on the molecular level (Yoo et al., 1999). This virus has thus been proposed as an additional member of the Erythrovirus genus.

I.1.1.3. Morphology

Parvovirus B19 has a simple structure made of only two capsid proteins, VP1 (~5%) and VP2 (~95%), and a linear, 5.5 kb single-stranded DNA molecule. Equal numbers of complementary DNA strands (positive and negative sense DNA) are packaged into separate virions (Summers et al., 1983). In contrast, most other autonomous paroviruses, such as LuIII (Muller and Siegl, 1983), and members of the Dependovirus genus (Berns and Adler, 1972), package only one type of complementary single-
stranded DNA, preferentially of negative polarity, in different types of particles. The B19 virus particles are non-enveloped and measure between 22 and 24 nm in diameter (Cossart et al., 1975). Negative staining and EM revealed that often both empty and full capsids are present in the host’s serum. The molecular weights of the mature virion and of empty particles are $5.5-6.2 \times 10^6$ and 4.2×10^6 Da, respectively (Agbandje et al., 1994). Moreover, the buoyant density of a full particle in a caesium chloride gradient is 1.43 g/mL (Clewley, 1984). Empty B19 capsids have been expressed from genetically engineered Chinese hamster ovary cell line (Kajigaya et al., 1989), as well as in baculovirus expression systems (Kajigaya et al., 1991; Brown CS et al., 1991; Kaufmann et al., 2004), and have been used as antigens for diagnosis assays, to develop a vaccine and for use in X-ray crystallographic analyses. A few years after successfully crystallising B19 empty capsids in a baculovirus expression system, Agbandje and coworkers established the structure of parvovirus B19 at 8Å resolution (Agbandje et al., 1991; Agbandje et al., 1994). More recently, the structure of B19-like particles was determined to about 3.5Å resolution (Kaufmann et al., 2004).

The three-dimensional X-ray crystal structures of canine parvovirus (CPV) and FPV had already been determined to the atomic resolution (Tsao et al., 1991; Agbandje et al., 1993). Although CPV and FPV have similar antigenic properties, there is no cross-reactivity of antibodies to CPV or FPV with B19, indicating different surface structures (Agbandje et al., 1994). However, sequence alignments suggest a distant, yet common origin of CPV, FPV and B19 (Chapman and Rossmann, 1993). Electron density maps of these viruses were therefore compared, keeping in mind that the resolution of the B19 map was lower than that of CPV and FPV (Agbandje et al., 1994). All three viruses consist of 60 copies of the capsid protein arranged in icosahedral symmetry. Although the polypeptide folds of CPV and FPV contain 8 anti-parallel β-barrel structural motifs
("jelly roll"), most of their structure is made of insertions between the strands of the β-barrel. These insertions form elaborate loops on the viral surface that are important as antigen recognition sites. The most prominent of these insertions forms a spike on the icosahedral threefold axes. A 15Å canyon-like depression circulates around the fivefold axis.

As far as parvovirus B19 is concerned, the central β-barrel structural motif is easily recognisable in the same region as that of FPV (Agbandje et al., 1994). However, the surface of B19 seems significantly different from the other paroviruses since the prominent spikes on the icosahedral threefold axes are lacking. These two findings were in agreement with the amino acid sequence analyses by Chapman and Rossmann, showing a greater conservation in the central β-barrel structure of parvoviruses than in the surface insertions (Chapman and Rossmann, 1993). Another region of density in B19 that was very similar to that of FPV and Adeno-Associated Virus (AAV) (Xie et al., 2002) was a hollow cylindrical structure about the fivefold icosahedral axis, which appears to penetrate inside the virion (Agbandje et al., 1994). It is formed by the DE loop (amino acids 129-148) shown on figure 1.2, but in B19, the tip of the loop is bent towards the central axis of the channel (Kaufmann et al., 2004). It was suggested that the unique region of the larger protein VP1 might extend through this cylinder to outside the virion. This hypothesis might be plausible since Bansal et al. had already suggested that at least part of the unique region of VP1 is exposed at the surface of the virion (Bansal et al., 1993). This proposition originated from an experiment performed using altered concentrations of VP1 and VP2 proteins in baculovirus-produced empty capsids. The authors showed that antisera specific for the unique region of VP1 was able to precipitate both plasma-derived virions and these recombinant empty capsids. It is also important to note that VP1 alone cannot form empty capsids whereas severely
Chapter I

shortened VP1 did not seem to alter the capsid formation (Wong et al., 1994). Although longer versions of VP1 also formed capsids, they did so less efficiently and the capsids were less ordered in appearance than the native empty capsids, recombinant empty capsids, VP2 only capsids and capsids formed by the truncated versions of VP1.

When the structure of recombinant B19 particles was investigated at 3.5 Å resolution, it was found to be most similar to that of AAV-2 (Kaufmann et al., 2004; Xie et al., 2002). Moreover, both viruses require an integrin as a coreceptor: αVβ1 integrin for AAV-2 (Summerford et al., 1999) and α5β1 for B19 (Weigel-Kelley et al., 2003). However, the degree of similarity between these two viruses (26% identity between major structural proteins) is much less than between B19 and other human paroviruses, such as LaLi (97%) and V9 (98%) -which will be detailed in section 1.1.6-, and SPV (67%) (Servant et al., 2002). Although AAV-2 and B19 share a common host (vertebrates), this low sequence similarity suggests a host-independent evolution (Kaufmann et al., 2004).

Figure 1.2 shows the ribbon diagram of VP2 (a) and the surface topography of parvovirus B19 (Kaufmann et al., 2004).
I.1.1.4. Genomic organisation

Particles found in viremic plasma contain single-stranded DNA, either positive or negative sense, each of which being fully capable of infection and replication (Summers et al., 1983, Cotmore and Tattersall, 1984). MVM DNA is known for its terminal palindromic sequences, which allows the formation of hairpin structures at both ends of single-stranded DNA (Bourguignon et al., 1976). The hairpin situated at the 3’ end of each DNA molecule could serve as a primer for various prokaryotic and eukaryotic
DNA polymerases, resulting in the synthesis of the complementary strand in vitro. Similar 3' terminal hairpin structures have been demonstrated in parvovirus B19, making cloning of the complete genome into plasmid vectors difficult (Cotmore and Tattersall, 1984). An incomplete clone was obtained from the serum of a child with homozygous sickle cell disease who was in the early phase of reticulocytopenic aplastic crisis (isolate Au) (Shade et al., 1986). The clone, named pYT103, was lacking the extreme left and right ends known as terminal hairpin structures. The nucleotide sequence of pYT103 suggested that the organisation of the B19 transcription units is similar, although not identical, to that of other parvoviruses. The Au isolate was also cloned using two expression constructs containing B19 sequences from different halves of the viral genome (Cotmore et al., 1986). These clones allowed the identification of the two major capsid proteins, VP1 and VP2, with apparent molecular weights of 83 kDa and 58kDa, respectively. These capsid sequences were located in a major stretch of open reading frame on the right-hand half of the viral genome. The next step in discovering the genomic structure of B19 was made by Mori and colleagues, who examined the virus by electron microscopy and observed double-stranded molecules with characteristic “fold-back” or forked ends, as shown in figure 1.3 (Mori et al., 1987; Anderson and Young, 1997). The latter were assumed to be due to the terminal hairpin structures which had previously been predicted to be substantially longer than those of AAV (125 nucleotides) (Shade et al., 1986; Lusby et al., 1980). This large size was therefore thought to account for the ability to visualise the “fold-back” termini by EM whereas this phenomenon cannot be observed with other parvoviruses.

The exact measurement and the structural analysis of the palindromic termini were only possible in 1990, when the instability of these termini in bacterial cells was overcome.
and the entire B19 genome cloned in plasmids (Deiss et al., 1990). The 383 terminal nucleotides at each end of the genome were found to be identical inverted repeats, the distal 365 nucleotides being an almost perfect palindrome that can fold over to give a hairpin structure. Due to some mismatching between nucleotides 147 and 217, it is typical for terminal hairpins to occur in two distinct sequence configurations, which have been referred to as “flip” and “flop”. These configurations, which are related since one is the inverted complement of the other, have been described in all parvoviruses analysed to date and are essential for viral replication. Thus the B19 genome consists of a linear, 5,596 nucleotides long, single-stranded DNA molecule that includes an internal coding sequence of 4830 nucleotides and flanked, on either ends, by inverted repeats of 383 nucleotides each (Deiss et al., 1990).

Figure 1.3: B19 viral DNA showing terminal hairpin structures (published by Anderson and Young, 1997)

A and B are electron microscopic views. A Both ends of the molecule are folded back to form hairpins (x57,000). B One end of the molecule is folded back and the other end is annealed in an extended form (x68,000). C and D are drawings of the plus and minus strands with terminal hairpin structures.
Chapter I

I.1.1.5. Proteins

I.1.1.5.1. Protein synthesis

The genome of human parvovirus B19 encodes only three proteins of known function, namely the capsid proteins VP1 (83 kDa) and VP2 (58 kDa) and the nonstructural protein NS1 (77 kDa). The VP1 and VP2 open reading frames (ORFs) overlap completely, with approximately 990 extra nucleotides included in the VP1 ORF.

The sizes of these proteins, which were identified in various cell expression systems, are summarised in table 1.1 (Astell et al., 1997), while figure 1.4 shows the transcription map described by Ozawa and colleagues (Ozawa et al., 1987a).

<table>
<thead>
<tr>
<th>NS1 (kDa)</th>
<th>VP1 (minor) and VP2 (major) (kDa)</th>
<th>Cell system</th>
<th>Authors, year</th>
</tr>
</thead>
<tbody>
<tr>
<td>71, 63, 52</td>
<td>83 (minor), 58 (major)</td>
<td>Clinical isolate</td>
<td>Cotmore et al., 1986</td>
</tr>
<tr>
<td>77, 52, 34</td>
<td>84 (minor), 58 (major)</td>
<td>B19-infected human erythroid bone marrow</td>
<td>Ozawa and Young, 1987</td>
</tr>
<tr>
<td>77, 68</td>
<td>N/A</td>
<td>HeLa cells transfected with B19 expression plasmid</td>
<td>Ozawa et al., 1988a</td>
</tr>
<tr>
<td>71, 63</td>
<td>83 (minor), 58 (major)</td>
<td>COS cells transfected with B19 expression plasmid</td>
<td>Beard et al., 1989</td>
</tr>
<tr>
<td>71, 55, 34</td>
<td>84 (minor), 58 (major)</td>
<td>COS cells transfected with B19 expresssion plasmid</td>
<td>Astell et al., 1997</td>
</tr>
</tbody>
</table>

Although the sizes for the VP1 and VP2 proteins were reasonably consistent (83 kDa and 58 kDa respectively), those of the NS1 protein were considerably different, ranging...
in size from 77 kDa to 71 kDa. It is probable that these are the same protein and the
difference in molecular weight is due to the use of different protein markers and/or gel
composition. In addition, several smaller proteins were detected (ranging in size from
34 kDa to 68 kDa). These smaller NS proteins might arise due to post-translational
cleavage or, less likely, internal initiation. It is also possible that they are degradation
products of NS1. However, in other parvoviruses (MVM and AAV), alternate splicing
generates mRNAs, which encode smaller NS or Rep proteins (Berns, 1990).
Nevertheless, the transcription map suggests that these splicing sites do not exist in B19.

Figure 1.4: Human parvovirus B19 transcription map showing open reading frames and viral proteins (proposed by Ozawa et al., 1987a)

Shown is the location of the P6 promoter, functional polyadenylation signals, splice donor and acceptor sites, ORF (boxes), ATG sequences (vertical lines).
In addition to structural and nonstructural proteins, some smaller proteins (11- and 7.5kDa) are translated from the small abundant mRNAs, which are unique among parvoviruses (Astell et al., 1995). Both size classes are polyadenylated RNAs with a small ORF (St Amand et al., 1991). The 700- to 800-nt class includes an 807- and 687-nt RNA while the 500- to 600-nt class includes the 638- and 518-nt RNAs. These last two RNAs express a family of three 11-kDa proteins (St Amand et al., 1991; St Amand and Astell, 1993) while the 807-nt RNAs express a 7.5kDa protein (Luo and Astell, 1993). Although the latter is within the NS coding region of the genome, it is in a different ORF to that of the NS protein. When transfected COS cells and infected human leukemic or peripheral blood mononuclear cells were investigated, the 11kDa proteins were found mainly in the nucleus, but also associated to a reticular network of the cytoplasm of COS cells (Luo and Astell, 1993). The 7.5kDa protein was both nuclear and cytoplasmic in COS cells whereas it was predominantly cytoplasmic in infected human peripheral blood mononuclear cells.

I.1.1.5.2. Role of structural proteins

Structural proteins have three important functions: to interact with the cellular receptor, to translocate the genetic material to appropriate sites of transcription and replication and to permit the assembly of infectious particles. The full B19 capsid is icosahedral and composed of 60 copies of the capsid proteins, 96% of which being VP2 and the remainder VP1 (Cotmore et al., 1986; Ozawa and Young, 1987). This difference in the relative percentages of VP1 and VP2 is thought to be due to a translational regulation of capsid protein production (Ozawa et al., 1988b). After translation of its mRNA in the cytoplasm, VP2 has to reach the nucleus where new B19 capsids are assembled (Pillet
Due to its molecular weight (58kDa), VP2 is unlikely to diffuse passively into the nucleus and is thus probably transported by specific cellular transporters called karyopherins. This kind of transport was described previously for many cellular and viral proteins (Macara, 2001). The karyopherins recognise the proteins to be transported through specific peptides present on the proteins surface called nuclear localisation signals (NLS) (Pillet et al., 2003). The latter have been found in the capsid proteins of several parvoviruses: within the N-terminal of the VP1 capsid protein of CPV (Vihinen-Ranta et al., 1997), in VP2 of AAV-2 (Hoque et al., 1999) and in both VP1 and VP2 of MVM, which are involved in cooperative cytoplasmic interactions for nuclear cotransport (Lombardo et al., 2000; Lombardo et al., 2002). The VP1 NLS was therefore shown to play a role in transport into the nucleus. However, no data has been reported to date regarding NLS in B19 VP1. A nonconsensus basic motif, KLGPRKATGRW, located in the C-terminal region of VP2, has been proposed as the main NLS of B19 VP2 capsid protein (Pillet et al., 2003). This conserved sequence was shown to be necessary for the nuclear localisation of VP2 and is exposed on the surface of an isolated VP2 subunit where it can be recognised by the cellular import (Kaufmann et al., 2004). Once in the nucleus, VP2 proteins are able to self-assemble alone or with VP1, whereas VP1 alone cannot self-assemble (Kajigaya et al., 1991). After assembly, the NLS is hidden because it is on the inner capsid surface (Kaufmann et al., 2004). In addition, the 226-amino acid unique terminal region of VP1 interferes progressively with particle assembly when more than 70 amino acids of that region are present (Wong et al., 1994). As far as the small 11-kDa proteins are concerned, they were shown not to affect the self-assembly of the viral particles (Cohen CS et al., 1991). Although predictions concerning the surface structure of B19 could be made from the resolution at the atomic level of canine parvovirus capsid, B19 VP proteins expressed in
insect cells using recombinant baculovirus expression vectors were crystallised and the three-dimensional structure was elucidated (Agbandje et al., 1991; Agbandje et al., 1994; Chapman and Rossmann, 1993).

Several studies have been carried out to identify neutralising epitopes on the virus capsid. Hemagglutination was inhibited by means of a monoclonal antibody directed against amino acids 57-77 of the VP2 protein. This epitope was found to contribute to the spike on the three-fold axes of the capsid (Brown et al., 1992). It is still not clear whether these regions represent viral attachment sites or whether deep canyons around the five-fold axes are the best candidates for interaction with the P receptor (Agbandje et al., 1994). The 226-amino acid unique amino-terminal region of VP1 is known to be on the surface of the virus particles (Rosenfeld et al., 1992) and antibodies to the capsid are directed predominantly against this region (Kurtzman et al., 1989a; Schwarz et al., 1988). Although neutralisation epitopes were also mapped to regions within VP2 protein, the latter is less immunodominant than VP1 (Sato et al., 1991a; Sato et al., 1991b; Yoshimoto et al., 1991). The influence of B19 virus structure on antibody responses is not well defined. A strongly cross-linking antigen can activate B cells in the absence of T-cell help, whereas poorly cross-linking antigens need T-cell help for B-cell activation. A CD4+ T-cell response was found to be directed against B19 capsid proteins (Von Poblotzki et al., 1996). This cellular immune response was restricted by HLA II molecules and might support specific B-cells in producing antibodies.

1.1.1.5.3. Role of non-structural proteins

Few functions for B19 NS1 have been directly demonstrated and a number of reports have suggested the important role of NS1 in the replication of viral DNA, as well as in the transactivation of promoter P6 and in cytotoxicity.
Chapter I

1.1.1.5.3.1. Role in DNA replication

Viral DNA replication is initiated from short double-stranded regions provided by self-annealed, terminal hairpin structures. DNA synthesis then proceeds from these palindromes to produce high molecular weight intermediates through a rolling hairpin model (Berns, 1990). By analogy with the major NS1 protein of MVM (Wilson et al., 1991; Jindal et al., 1994) and the nonstructural proteins Rep of AAV-2 (Im and Muzyczka, 1990; Synder et al., 1990), it is likely that the nucleotide binding fold domain is involved in ATP hydrolysis. The energy derived from it might be used to drive an intrinsic helicase activity. In addition, resolution of terminal (and internal dimer bridge) hairpin structures during MVM (Cotmore et al., 1992; Cotmore et al., 1993; Liu et al., 1994) and AAV (Snyder et al., 1990) replication was found to be dependent on the NS1 and Rep68 and 78 proteins. This resolution has been predicted to reside in a protein motif found in enzymes functional in rolling circle replication (Ilyina and Koonin, 1992). This motif is located within the first third of the NS proteins.

Overall, it seems that parvovirus NS1 has a direct role in viral replication by providing the activities required for the resolution of covalently joined B19 termini, namely endonuclease and helicase activities. In the work of Jindal et al., some of the mutants tested appeared to retain ATP-binding and ATPase activities but not helicase activities and some mutations in the NTP-binding site decreased viral replication but did not affect trans-activating activity (Jindal et al., 1994).

1.1.1.5.3.2. Transactivation of the P6 promoter

When the B19 P6 promoter was used to drive expression of a reporter CAT gene in transfected Hela cells, promoter activity was upregulated by the B19 NS1 protein (Doerig et al., 1990). In addition, in vitro translated B19 NS1 was shown to stimulate
transcription from the same promoter. Although studies to map the transactivational domain of the B19 NS protein have not been reported, the same activity in MVM NS1 protein was found in the C-terminal region (Legendre and Rommelaere, 1994). More recent studies showed that transcriptional regulation by the NS1 protein was likely to involve both the interaction with Sp1/Sp3 that can bind to the promoter region and direct binding of NS1 to the promoter DNA (Raab et al., 2002).

The roles of NS1 in replication and transcription seem to be consistent with the nuclear localisation of this protein in infected cells. In addition, a nuclear localisation signal (NLS) (i.e. KKPR) was described at amino acid positions 177-180 (Cotmore et al., 1986). However, the localisation of NS1 during the cell cycle may also be cytoplasmic, suggesting that it may be a shuttle protein (Morinet et al., 2000).

I.1.1.5.3.3. Cytotoxicity

Between 1988 and 1998, several papers were published regarding NS1 cytotoxicity. During an attempt to obtain stable transfected HeLa cell lines containing the B19 genome, transformation occurred only when NS1 protein expression was blocked by mutation (Ozawa et al., 1988a). Other studies using recombinant AAV-B19 particles showed that growth of megakaryocytic cells and erythroid progenitors was inhibited by NS1 (Srivastava et al., 1990). Thus, NS-1 cytotoxicity was suggested in both erythroid and non-erythroid cells. Additionally, viral replication did not seem necessary since no DNA replicative forms were detected in megakaryocytic cells. The link between cytotoxicity and apoptosis was suggested in erythroid lineage cells transfected with the NS1 gene (Moffatt et al., 1998). Caspase 3 participates in this process. In addition, the induction of erythroid cells apoptosis by human parvovirus B19 may involve the tumour necrosis factor alpha (TNF-α) receptor signalling pathway (Sol et al., 1999). Moreover,
infected cells showed ultrastructural features typical of apoptosis (Morey et al., 1993). Computer analysis allowed the identification of a NTP-binding motif in the middle of the B19 parvovirus nonstructural protein (Gorbalenya and Koonin, 1989). Studies have shown that mutations within this motif seem to moderate the cytotoxicity of NS1 (Momoeda et al., 1994a). Lysine 334 in this domain was shown particularly critical for cell killing. Similar results had already been observed for homologous NS1 protein of parvovirus H-1, also responsible for cytotoxicity of rat host cells (Li and Rhode, 1990) and in the MVM NS1 protein (Legendre and Rommelaere, 1992). However, the effects of the latter on cellular transformation, as an indirect measure of cytotoxicity, were found not only on the nucleotide binding fold motif but also localised within the amino- and carboxyl-terminal domains.

Some authors suggested that the functions of transactivation of the P6 promoter and cytotoxicity are not localised in the same protein domain (Moffatt et al., 1996; Moffatt et al., 1998). These results concern B19-infected and NS1-transfected erythroid cells. Until now, B19-induced apoptosis in HeLa cells and megakaryocytic progenitors, where cytotoxicity was also observed (Srivastava et al., 1990; Ozawa et al., 1988a; Leruez-Vill et al., 1997), has not been documented. NS1 mutants with a disruption of the NTP-binding domain have a dramatically suppressed cytotoxic activity, although complete abrogation of cell death was not observed (Moffat et al., 1998).

I.1.1.5.4. Role of small 11-kDa proteins

The function of both the 11- and 7.5-kDa proteins still remains to be determined. However, a recent study showed that the amino acid sequence of the 11-kDa proteins present an unusually high proportion (15%) of proline residues (Fan et al., 2001). Some of these residues can be grouped into three regions that share similarity with sequences
known to bind to Src homology 3 (SH3) domains in a variety of signal-transducing molecules. In addition, the B19 11-kDa proteins were shown to interact \textit{in vitro} with the growth factor receptor-binding protein 2 (Grb2), an adaptor protein implicated in receptor tyrosine kinase-mediated signalling of mitogenic and stress stimuli. Consequently, it was suggested that the 11-kDa proteins could be involved in viral pathogenesis through perturbation of normal cellular signalling pathways by binding Grb2 or another as yet unidentified SH3 domain-containing protein.

\textbf{I.1.1.6. Sequence variability}

Unlike other parvoviruses such as ADV, human parvovirus B19 was first thought to have a highly conserved genome (Gottschalck \textit{et al.}, 1991). One of the first attempts to explore the genetic variability of B19 virus was made in 1986 using restriction enzyme (RE) analysis to compare 17 isolates collected over a 12 year-period in France and Great Britain (Morinet \textit{et al.}, 1986). Variant patterns characterised by altered sites for at least one RE, were observed in only 5 of the 17 isolates. However, the remaining 12 isolates had the same map, suggesting a high genetic stability of the parvovirus B19 genome. Shortly after these findings, the DNAs of over 40 isolates were mapped with 13 REs and a classification into several genome types was proposed (Mori \textit{et al.}, 1987). Group I comprised blood donations collected between 1973 in Great Britain and 1979 in France and included the first published isolate (Cossart \textit{et al.}, 1975), as well as the Wi isolate (Cotmore and Tattersall, 1984). Some isolates in circulation from 1978 in France to 1986 in the UK were classified in group II genome type (Mori \textit{et al.}, 1987). A third restriction pattern was present in the UK from 1979 to 1986, namely group IIIa, while group IIIb genome type was first observed in a French blood donor in 1978 and from a case of aplastic crisis in Scotland in 1986. Only strains from Japan were included in group IV genome type while many strains remained unassigned. This classification of
Chapter I

Genotypes suggested a possible epidemiological relationship among strains, which was investigated further with the study of 12 strains of parvovirus B19 isolated in Japan at two different time periods: 1981 and between 1981 and 1986 (Umene and Nunoue, 1990). The former were similar to that of the group IV genome type whereas the latter were related to that of group II, indicating a correlation between the genome type and the time of isolation, or prevalence.

A later publication reported a single-stranded conformational polymorphism (SSCP) assay, which was able to detect a mutated nucleotide sequence as a change of mobility in polyacrylamide gel electrophoresis caused by an altered folded structure (Kerr et al., 1995a). These findings were consistent with those of Umene and Nunoue, since there was a correlation between the SSCP type and the country of origin, as well as time of isolation (Kerr et al., 1995a; Umene and Nunoue, 1990). Within the Japanese group, strains isolated from 1981 to 1987 consisted of SSCP types 1 (~13%), 2 (~7%), 3 (~53%) and 4 (~27%), whereas strains isolated from 1990 to 1994 were mostly of type 3 (~91%) (Kerr et al., 1995a). Type 3 strains were therefore predominantly found in Japan (~69%) but also in the UK (75%), whereas SSCP type 4 was mostly present in the USA (75%). Moreover, sequence analysis of the VP1/VP2 gene implied that the sequence variation was minimal among isolates obtained from a single community-wide B19 outbreak (Erdman et al., 1996). Investigations of the VP1 unique sequence and of the C terminal region of NS1 of Japanese isolates, both by direct nucleotide sequencing and a mismatch detection method using the Non-Isotopic RNase Cleavage Assay™ (NIRCA™) and by amino acid polymorphism, also indicated a correlation between genome type and prevalence (Haseyama et al., 1998, Fukada et al., 2000).

However, although restriction site polymorphism (RSP) analysis may prove useful to define such epidemiological correlations between viral isolates, it does not give much
information about the degree of variation of the B19 genome. Indeed, sequencing of the region of viral genome coding for structural proteins of isolates collected in Italy between 1989 and 1994 showed that this region was stably conserved (Gallinella et al., 1995a).

The first isolate of a divergent B19 sequence was reported in 1998 (Nguyen et al., 1998). This variant was isolated from a French child with transient aplastic anaemia and found to have greater than 11% nucleotide divergence in the VP1 unique region compared with other B19 virus isolates (compared with <6% divergence between B19 isolates). When the almost full-length sequence of this new isolate, termed V9, was determined, the genome variability was found to extend outside the VP1 unique region with more than 12% nucleotide divergence between the entire genomes of V9 and B19 virus isolates (Heegaard et al., 2001). Only one other V9-related isolate has been reported to date, namely the R1 isolate, which has sequence homology to the V9 isolate in a 346bp fragment of the VP1 unique region (Nguyen et al., 1999).

A second B19 variant, K71, was identified in skin biopsies in Finland and found to differ, within the protein-coding region, by 10.8% and 8.6% from the B19 reference sequences and the V9 variant respectively. The variation in the noncoding region (covering nucleotides 189-435 of the promoter region), was 26.5% and 17.2%, respectively (Hokynar et al., 2002). A further isolate found persistently in human skin was named LaLi (Hokynar et al., 2002).

In a search for additional parvovirus variants, 225 serum and bone marrow samples and 62 plasma pools were screened, resulting in the identification of a new atypical parvovirus sequence, A6, from an anaemic HIV-positive patient (Nguyen et al., 2002).
The A6 isolate exhibited 88% and 92% similarity to B19 and V9 respectively, compared with >98% overall similarity between reported B19 isolates.

Another variant, termed D91.1, was recovered in France from a child with transient aplastic crisis and, although related to V9 sequence, was found to be notably divergent (5.3% divergence) (Servant et al., 2002). A Phylogenetic tree for erythroviruses proposed by Servant and colleagues (figure 1.5) shows the isolates distributed into three very distinct clusters corresponding to genotype 1 (prototype strain Pvbaua), genotype 2 (prototype strain LaLi) and genotype 3 (prototype strain V9). Although the isolation of V9 revealed the need for specific and differential screening techniques, serologic cross-reactivity between V9 and B19 was demonstrated, suggesting that antibody response from both genotypes can be diagnosed equally well by ELISA using either V9 or B19 recombinant capsids as antigen source (Heegaard et al., 2002). As far as DNA of the variant erythroviruses is concerned, the commercial assay RealArt™ Parvo B19 LC PCR was found suitable for detection, quantification, and differentiation of all three B19 virus genotypes classified by Servant et al. (Hokynar et al., 2004; Servant et al., 2002).

Figure 1.5: Phylogenetic tree for erythroviruses (proposed by Servant et al., 2002)
Chapter 1

The other important issue discussed over the years has been the possible association of B19 variants with distinct clinical manifestations (Umene and Nunoue, 2002). Several groups failed to demonstrate a correlation between genome type and clinical illness (Morinet et al., 1986; Mori et al., 1987; Kerr et al., 1995a; Erdman et al., 1996). However, six of nine strains isolated from patients with hereditary spherocytosis and aplastic crisis were associated with skin rashes (Nunoue et al., 1987). An examination of the B19 genome from human fetal organs and fluids, as well as sera from leukaemia patients, showed that these genome types were similar to those from patients suffering from aplastic crisis and from an asymptomatic individual (Umene and Nunoue, 1993). However, the number of substitutions in the nucleotide sequence from the damaged fetuses was higher (6 to 11 substitutions) than that found in patients with leukaemia, aplastic crisis or in the asymptomatic person (none to 4 substitutions). Although these findings do not indicate a link between a specific B19 variant and any particular clinical outcome, they suggested a wider diversity of B19 virus in the fetus, perhaps due to the persistence of the infection. Comparisons between different virus isolates at the DNA and protein levels revealed that isolates from patients with persistent parvovirus B19 infection showed a tendency towards higher sequence variability (up to 4 and 8%) when compared to isolates derived from individuals with acute B19 infection (Hemauer et al., 1996). In addition, the genome type of three B19 isolates from patients with encephalopathy revealed two strains assigned to a new genome type, namely group V (Umene and Nunoue, 1995). A recent case study of children suffering from Henoch-Schönlein purpura could not find any link between this condition and either B19 or V9 (Heegaard and Taaning, 2002). While all these observations can serve as clues regarding connection between B19 genome types and clinical manifestations, further studies are needed in this field.
I.1.2. Infection and cell tropism

I.1.2.1. Life cycle

I.1.2.1.1. Receptor and viral entry

The receptor for human parvovirus B19 was first identified in 1993 as the blood group P antigen, or globoside (Brown et al., 1993). Target cells were indeed found to be protected from infection by preincubation with monoclonal antibodies to globoside. The very small proportion of the general population who does not bear the P antigen was shown to be naturally resistant to B19 infection (Brown et al., 1994). Globoside is distributed on erythrocytes and erythroblasts, but also on endothelial cells, placenta, fetal liver and heart cells (Rouger et al., 1987), which is consistent with the clinical outcomes of B19 infection. However, other nonerythroid cells presenting the P antigen are nonpermissive for the productive infection by B19 (Heegaard and Brown, 2002). Moreover, the high levels of globoside present on mature red blood cells (RBCs) would theoretically render them ideal targets for the virus, providing they had nuclei. Thanks to recombinant B19 vectors, the role of P antigen as the primary receptor for binding of B19 was confirmed (Weigel-Kelley et al., 2001). The level of P antigen expression did not correlate with the efficiency of viral binding, as seen in erythrocytes. Additionally, P antigen was shown to be necessary but not sufficient for parvovirus B19 entry into cells, suggesting that a cell surface coreceptor might be needed for entry. Soon after, parvovirus B19 entry was shown to be mediated by α5β1 integrins (Weigel-Kelley et al., 2003). This crucial role was demonstrated by inhibition of B19 entry into purified human erythroid progenitor cells following blocking of β1 integrin function by antibodies. The model shown on figure 1.6 was proposed by Weigel-Kelley and coworkers (Weigel-Kelley et al., 2003). On panel A, mature RBCs, which express high levels of P antigen but no α5β1 integrin coreceptor, are only able to bind parvovirus
B19, without internalisation. On the other hand, panel B shows that erythroid progenitor cells, which express both P antigen and α5β1 integrin coreceptor, are permissive for parvovirus entry.

Figure 1.6: A model for parvovirus B19 binding and entry into primary human erythroid cells (Weigel-Kelley et al., 2003)

Moreover, Ku80 autoantigen was recently suggested to be a novel coreceptor for B19 infection B19 (Munakata et al., 2005). This protein can be found on the surface of human bone marrow erythroid cells with glycophorin A or CD36, B cells with CD20, or T cells with CD3. When the Ku80 gene was transfected into HeLa cells, both binding of B19 and its entry into the cells were possible. Additionally, when the cell-surface expression of Ku80 was reduced in KU812Ep6 cells, a noticeable inhibition of B19 binding was observed (Munakata et al., 2005).

I.1.2.1.2. Replication

After infection of the target cell, the viral DNA is liberated in the nucleus. The precise mechanisms involved in nuclear delivery of the viral DNA still remain undefined. The
phospholipase A2 activity, which has been associated with a domain of the viral capsid protein, may play a role in decapsidation and liberation of the viral genomic DNA (Zádori et al., 2001).

Studies on the replication of B19 in human erythroid bone marrow cells isolated from individuals with haemolytic anemias suggested that B19 replicated through high molecular weight intermediate forms, linked through a terminal hairpin structure (Ozawa et al., 1986; Ozawa et al., 1987a). These replicative forms (RFs), both monomeric and dimeric, were found in the nuclear DNA of infected bone marrow cells, indicating a nuclear replication site. In addition, replication of B19 was shown to occur from both positive and negative strands. The fact that viral single-stranded DNA was converted to double-stranded RFs by host DNA polymerases has also been suggested (Astell et al., 1997) (figure 1.7).

The monomer length molecules are converted to a double-stranded dimer intermediate, which is resolved into two monomer RF molecules by a mechanism still to be elucidated. These structures are used to synthesise single-stranded plus and minus strands, which are packaged into viral particles. The dotted line on the right side of figure 1.7 implies that dimeric molecules, although detected during B19 replication (Ozawa et al., 1987b), are not absolutely required to explain replication (Astell et al., 1997). Since replication of the viral genome of animal parvoviruses such as AAV-2 and MVM was shown to require viral non-structural proteins (Berns, 1996), it is likely that these proteins are also required for replication of human parvovirus B19.
I.1.2.1.3. Transcription

I.1.2.1.3.1. RNA transcripts

One strand of parvovirus B19 DNA, by definition the plus strand, contains two large ORFs extending throughout almost the entire genome (Cotmore et al., 1986; Ozawa et al., 1988c). By comparison with the gene organisation of other members of the Parvovirinae subfamily, the major right hand ORF encodes the VP1 protein (3.1 and 2.9 kb mRNAs) and the smaller VP2 protein (2.2 and 2.1 kb mRNAs) while only one mRNA (2.3 kb mRNA) is derived from the left-hand side of the genome and encodes the NS protein. The proposed transcript map is shown in figure 1.4 (Ozawa et al., 1988).
The splice junctions were predicted from careful mapping. In contrast to other parvoviruses, B19 utilises a variant middle polyadenylation signal (ATTAAA at nucleotide (nt) 2639 or AATAAC at nt 2645) and hence its transcripts can terminate at either the middle or the extreme right side of the genome. However, it is likely that the polyadenylation signal at nt 2639, in the middle of the genome, may be the major processing signal (Liu et al., 1992). The main difference between B19 and other parvoviruses is the production by B19 of abundant smaller size RNA species during infection (Ozawa et al., 1987a; Beard et al., 1989). These small RNA transcripts can be categorised in two classes: the first containing RNA transcripts ranging from 700 to 800 nt in length and terminating at the middle polyadenylation signal and the second class containing RNA transcripts ranging from 500 to 600 nt in length and terminating at the extreme right-side of the genome (Ozawa et al., 1987a). At least nine of these polyadenylated RNAs have been identified and the proteins encoded by five of them have been described. All but one of the nine transcripts are alternatively spliced and all transcripts contained a 57 nt leader sequence. The only non-spliced mRNA encodes NS1 and could be categorised in the first class described above since the sequence corresponding to this transcript polyadenylation site is located in the middle of the genome. In contrast, the polyadenylation site of the two mRNAs encoding for each of the capsid proteins VP1 and VP2, is situated on the far right side of the genome (Ozawa et al., 1987a).

Libraries of cDNA clones from B19 infected CML cells (obtained from a chronic myelogenous leukemia patient) and COS-7 cells transfected with hybrid B19/SV40 plasmids were isolated and sequenced to establish unambiguously the splice junctions (St Amand and Astell, 1993). Two species of 11kDa proteins were identified and showed to be encoded by an ORF contained within the 500 to 600 nt RNAs class. On
the other hand, the 700 to 800 nt class was not detected in the COS-7 cell library, suggesting that the middle polyadenylation signal was not recognised in these cells (St Amand et al., 1991). However, later studies showed that the translation product of at least one of these RNAs, a 7.5kDa protein, was made in transfected COS-7 cells (Luo and Astell, 1993). It is therefore likely these mRNAs were present but of low abundance. The biological functions of these small RNAs and 7.5 and 11kDa proteins in the viral cycle remain undefined.

I.1.2.1.3.2. Identification of promoter elements

Studies of MVM and AAV-2 have shown that these viruses have separate promoters used to express the nonstructural and capsid proteins (Berns, 1996). In MVM, the RNAs are transcribed from two promoters, located at 4 (P4) and 39 (P39) map units (m.u.) on the viral genome (Pintel et al., 1983). Since the latter is 5,104 nt long, 1 m.u. corresponds to 51 nt. Transcripts overlap and all undergo 3' end processing at the most distal polyadenylation signal at the far right side of the genome (Clemens and Pintel, 1987). Alternate splicing generates mRNAs that encode NS and VP proteins (Pintel et al., 1983; Cotmore et al., 1983; Morgan and Ward, 1986; Jongeneel et al., 1986). On the other hand, AAV-2 has three promoters at P5, P19 and P40 (Morinet et al., 2000). This virus also uses alternate splicing and a polyadenylation signal at the far right side of the genome. While the P5 and P19 promoters trigger the expression of mRNAs that encode the NS proteins, the P40 promoter is used for VP expression.

In contrast, early studies of human parvovirus B19 transcription done by computer analysis of the virus sequence suggested that there could be a number of potential promoters able to express NS and VP proteins (Shade et al., 1986). However, a transcription assay using HeLa cell nuclear extracts allowed the identification of a
region between nt 258 and 321 that was necessary for in vitro transcriptional activity (Blundell et al., 1987). Moreover, RNA protection analysis of the 5' ends of transcripts indicated that all transcripts were initiated at a single strong left-hand promoter near m.u. 6, thus named P6 (Ozawa et al., 1988a). In addition, primer extension studies identified the start site of transcription at nt 350-351, 31-32 nt downstream of the TATATATA sequence at position 319 (Blundell et al., 1987). Although the presence of a second promoter at m.u. 44 (B19P44) was reported (Doerig et al., 1990), other investigations failed to establish its function as a promoter (Blundell et al., 1987; Doerig et al., 1987; Liu et al., 1991a). Nevertheless, both B19 P6 and P44 promoters may be transactivated by the adenovirus type 2 E1A protein in nonpermissive human cells, although the extent of transactivation of the P44 promoter was significantly lower than that of the P6 promoter (Ponnazhagan et al., 1995).

I.1.2.1.3.3. Regulation of RNA processing

Similar to other paroviruses, B19 nonstructural protein NS1 plays the role of a trans-activator protein that can up-regulate the P6 promoter (Doerig et al., 1990). Further studies revealed that the region from nt 100 to 160 was essential for NS-1-mediated transcriptional activation (Gareus et al., 1998). The P6 promoter region has been studied to establish the cis-acting signals required for its activity and their possible roles in limiting replication of this virus to human erythroid progenitor cells. Footprinting experiments showed that B19 promoter P6 includes a complex regulatory region containing multiple sequences which affect promoter strength and that the GC-box motif (nt 292 to 301) is a major controlling sequence for in vitro, and likely in vivo, transcription (Blundell and Astell, 1989). Analysis of sequences upstream of known promoters in MVM (Astell et al., 1983), H-1 virus (Rhode and Paradiso, 1983), AAV-2
Chapter I

and B19 (Shade et al., 1986) indicated sequences closely related to high-affinity transcription factor Sp1 sites. Blundell and Astell suggested that the HeLa cell nuclear factor that binds to the B19 virus GC-box might be Sp1 (Blundell and Astell, 1989). Additionally, transient reporter gene assays allowed the identification of a minimal promoter extending to -96 upstream of the transcription start and containing two tandem GC-boxes and TATA box (Liu et al., 1991b). The distal GC-box at -59 has the consensus binding sequence for Sp1, which would also suggest that this motif may be an important element in the minimal promoter in vivo and might bind Sp1. This minimal promoter lies within the terminal hairpin (from -249 to -157) and contains an area of tight protein binding with a 14 nt sequence that is protected by DNAaseI footprinting. This protein complex may be involved in the regulation of the promoter in vivo but it is probably not Sp1 that binds to this site (Liu et al., 1991b). However, fixation of the Sp1 factor to a GC-box placed just downstream of the transcription factor Ets binding site was demonstrated, suggesting the Sp1 does play a role in the regulation of transcription (Vassias et al., 1998). The palindromic terminal repeats of paroviruses were also shown to be required for viral DNA replication since they constitute the replication origin and are almost completely protected from Dnase I digestion by proteins (Im and Muzyczka, 1990).

Furthermore, NS-1-mediated transactivation was found to be dependent on the presence of two GC-rich elements arranged in tandem upstream of the TATA box (Gareus et al., 1998). Gareus and colleagues thus proposed a model of NS1-mediated P6 transactivation (figure 1.8) dependent on a multicomponent complex combining NS1 with ATF, NF-κB/c-Rel, and GC-box (Sp1) binding cellular factors.

In AAV, YY1, a multifunctional transcription factor, was found to act as a repressor of transcription from the AAV P5 promoter, which is relieved by E1A protein (Shi et al.,
YY1 was also found to be prominently bound to three different motifs in the terminal repeat region of parvovirus B19 (Momoeda et al., 1994b). However, in contrast to AAV, YY1 was shown to be a positive regulator of viral transcription in HeLa cells, although very weak (1.3-1.9-fold above basal transcription). When a different cell type was used, namely Drosophila SL2 cells, YY1 had no effect on the P6 promoter, suggesting that this transcription factor might be dependent on the cells transfected (Vassias et al., 1998). In the same study, the binding of the transcription factor hGABP (also named E4TF1) to the Ets binding site resulted in the regulation of the P6 promoter. A “3-fold sequence” containing YY1, Ets and Sp1 binding sites was defined and Sp1 and hGHBp were shown to activate transcription synergistically throughout this sequence (Vassias et al., 1998).

Figure 1.8: Model of the transactivating complex (proposed by Gareus et al., 1998)

Inr: transcription start site. The DNA segment in between could easily be lopped out.
I.1.2.14. Translation regulation

Translational regulation may also be a way of controlling the expression of B19 genes. Immediately upstream from the VP1 translation initiation site is an unusual sequence containing multiple ATG triplets (Shade et al., 1986; Ozawa et al., 1987a). During RNA processing, this sequence, from nt 2,184 to nt 3,044/3,050, is spliced out of VP2 RNA. It has also been noted that the upstream nontranslated region of both VP1 mRNAs has multiple AUG codons. These codons are apparently bypassed by ribosomes to allow initiation of VP1 at the AUG at nt 2,444. Since capsid proteins are produced in strikingly different quantities (VP1<4%; VP2>96%), the role of this AUG-rich region in translational control was studied (Ozawa et al., 1988b). Its removal from VP1 RNA greatly increased the efficiency of translation while the addition of the same AUG-rich sequence upstream of the initiation site of VP2 decreased its translation. Therefore, it seems likely that this upstream AUG-rich region acts as a negative regulatory element in the translational control of B19 capsid protein production. In addition, a noticeable fact is that all of the B19 mRNAs (except the unspliced NS1 messenger) exist as two related transcripts (Astell et al., 1997). Thus the selection of the splice acceptor site at nt 1,910 versus nt 2,030 might plays some subtle, although currently not well understood, role in the regulation of expression of both structural proteins and 11kDa proteins.

I.1.2.2 Cell tropism

Early in vitro studies indicated that parvovirus B19 can cause clonal inhibition of erythroid progenitor cells in methylcellulose cultures (Mortimer et al., 1983) and can productively infect progenitor cells from bone marrow (Ozawa et al., 1986). Further reports detected infection of cells from peripheral blood (Kurtzman et al., 1988; Schwarz et al., 1992), fetal liver (Yaegashi et al., 1989; Brown KE et al., 1991),
umbilical cord blood (Srivastava et al., 1992; Sosa et al., 1992), bone marrow cells from *M. fascicularis* (Gallinella et al., 1995b), as well as in myocardial cells (Porter et al., 1988) and megakaryocyte-enriched bone marrow fractions (Srivastava et al., 1990). However, most of these cells are very difficult to obtain due to ethics issues and/or availability. The suitability of apheresis cells for *in vitro* infection with B19 has also been shown (Hemauer et al., 1999). Apheresis is a technique that allows more of one particular part of the blood (platelets, granulocytes, etc.) to be collected than could be separated from a unit of whole blood. Using a special apheresis centrifuge, the blood can be fed into the system continually. As it spins, the components separate and the granulocytes (white blood cells) are drawn off. The plasma, erythrocytes and platelets are then recombined and returned to the donor. The whole procedure lasts about one hour. Apheresis may be therapeutically useful in cases of glomerulonephritis associated with antibody deposition, lupus erythematosus, antibody-mediated transplant rejection and in lowering the levels of preformed cytotoxic antibodies which may preclude transplantation (Smith et al., 2003; Kaplan, 2003).

Although the target cells for B19 virus are in the erythroid lineage from Burst-Forming Unit-Erythroid (BFU-E) to erythroblasts, with susceptibility to the virus increasing along with differentiation (Takahashi et al., 1990), some nonerythroid cells can also become infected. In addition, a number of human blast cell lines have also been infected with B19 virus, (either productively or non productively), namely TF-1 (Kitamura et al., 1989), UT-7 (Komatsu et al., 1991; Shimomura et al., 1992; Nicolis et al., 1993; Shimomura et al., 1993), UT-7/EPO (Komatsu et al., 1992; Erickson-Miller et al., 2000), KU812 (Nakazawa et al., 1989), KU812Ep6 (Miyagawa et al., 1999), MB-02 (Munchi et al., 1993), and JK-1 (Okuno et al., 1990; Takahashi et al., 1993). These cells have in common the fact that they all depend on the erythroid-specific hormone
erythropoietin (EPO) for growth or differentiation. EPO is necessary for viral replication, but it is not clear whether it represents a direct requirement. However, no system has been established that could be suitable for the large-scale production of infectious virus.

Studies of hypoxic culture conditions in France have suggested an enhancement of the B19 capsid protein synthesis, virus replication and virus production when human primary erythroid progenitor cells were exposed to severe hypoxia (1%) (Pillet et al., 2004). Caillet-Fauquet and coworkers also suggested that B19 infection of the cell line KU812F cultured in mild hypoxia (6%) might result in higher yields of infectious B19 progeny and to enhanced viral transcription compared to normal oxygen concentration (20%) (Caillet-Fauquet et al., 2004a). Severe hypoxia (1%) had previously been shown to have some positive effects on the maintenance and cloning efficiency of BFU-E, while inhibiting the terminal expansion and maturation of these clones (Cipolleschi et al., 1997). Moreover, the differentiation and amplification of the CFU-E pool observed in a mouse model during hypoxia might be due to an increase in EPO levels (Mide et al., 2001). These conditions might thus be sufficient for a more productive B19 infection.

At the transcriptional level, when a 100bp fragment containing the B19 P6 promoter replaced the authentic AAV promoter at m.u. 5 (AAV P5) in an infectious clone of AAV-2, this recombinant virus was able to replicate autonomously in primary human hematopoietic progenitor cells (Wang et al., 1995). It was therefore proposed that the promoter P6 might play a role in erythroid specificity. In contrast, using plasmid-mediated transfection of established human cell lines, the B19 P6 promoter was shown to be very active in nonpermissive cells including Hela, K562, Raji and Jurkat, and
Chapter I

highly active CEM cells, a T-lymphoblastoid cell line (Liu et al., 1991b). Because of this indiscriminate activity from the P6 promoter, the latter seemed unlikely to play a role in tropism of human parvovirus B19.

The different cellular permissiveness and regulation of B19 virus gene expression was assumed to lead to two different types of infection, according to a balance of production of NS or VP proteins, as shown on figure 1.9 (Liu et al., 1992). In the case of fully permissive cells such as erythroid precursor cells (Ozawa et al., 1987b), a full set of nonstructural and capsid proteins would be produced, leading to a productive infection. On the other hand, in the case of infection of nonpermissive cells, such as megakaryocytic precursor cells (Srivastava et al., 1990), the NS1 protein would be mainly produced, leading to an abortive infection and to cell death by reason of its cytotoxic and/or apoptosis-inducing characteristics (Moffatt et al., 1998; Ozawa et al., 1988a). Furthermore, when the 3’ processing signals located in the middle of the viral genome were removed, expression of the VP gene transcripts increased in nonpermissive cells. Therefore, Liu and colleagues proposed that “differential transcript accumulation might be controlled not at the level of promoter initiation but by RNA processing events or by recognition of variant termination signals” (Liu et al., 1992).
An obstacle at the translational level was first proposed by Leruez and colleagues (Leruez et al., 1994). In addition, in nonpermissive cells, it was suggested that the 3' untranslated region (UTR) of the capsid protein mRNAs repressed capsid protein synthesis by inhibiting ribosome loading (Pallier et al., 1997). Confirmation came from further studies comparing the infection of bone marrow cells and of different human blast cell lines with erythroblastoid (TF-1) and megakaryoblastoid (UT-7, M-07, B1647) phenotypic characteristics (Gallinella et al., 2000; Avanzi et al., 1990; Komatsu et al., 1993; Kitamura et al., 1989; Bonsi et al., 1997). Two patterns of restriction to replication were observed in those cells (Gallinella et al., 2000). In the first instance found in UT-7 cells, the ss viral DNA was converted into ds replicative intermediates similar to those found in bone marrow cells. In addition, a full set of viral transcripts...
Chapter I was produced. However, only a small proportion of cells supported replication and transcription, with no production of capsid proteins. In the second restriction pattern, which was observed in TF-1, M-07 and B1647, the ss viral DNA was not converted to ds replicative intermediates. In another study using the megakaryctic cell line MB-02, a novel splicing pattern was observed which lead to the fusion of the two first amino acid of NS1 with those of the small 7.5 kDa protein (Brunstein et al., 2000). This novel splicing pattern resulted in the functional inactivation of the viral structural genes and effectively blocked production of progeny virions. According to Brunstein and coworkers, this mechanism is “the crucial one in restricting viral tropism among bone-marrow-derived cells” (Brunstein et al., 2000).

In conclusion, since the susceptibility to infection and the permissiveness for infection are not directly linked, the spectrum of target cells may be wider than expected. Therefore, the presence of viral receptors on the cell surface and of intracellular permissiveness factors should be fully determined in various cell types.

I.1.3. Epidemiology

I.1.3.1. Seroprevalence

The prevalence of anti-B19 immunoglobulin G (IgG) antibodies in the general population ranges from 2 to 15% in children aged 1 to 5 years old, 15 to 60% in children aged 5 to 19 years old and from 30 to 78% in adults (Török, 1992; Kelly et al., 2000; Abraham et al., 2002).

When comparing prevalence in England, Wales and Australia to that in Singapore and South Africa, a variation among countries was observed, with B19 being more prevalent in temperate countries rather than tropical ones (Kelly et al., 2000). Kelly and
colleagues, who reported serology data in Australia from 1992 to 1998, also suggested that parvovirus tended to occur in 4-year cycles, with 2 epidemic years followed by 2 endemic years. In addition, infection might be season-related since it was often found associated with outbreaks of EI in schools in the late winter and spring (Anderson and Török, 1989). However, it can also occur any time of the year in either the presence or absence of an EI outbreak.

I.1.3.2. Transmission

I.1.3.2.1. Route of transmission

In a B19 school outbreak, parvovirus DNA was detected in the throat swap of the teacher of several of the affected children, indicating that transmission of the virus might occur via the respiratory tract (Plummer et al., 1985). In the same year, the respiratory route of transmission was confirmed by intranasal infection of volunteers (Anderson LJ et al., 1985). Moreover, at the same time as viremia, parvovirus B19 was detected in nasal washes and gargle specimens from 3 of the 4 infected individuals, identifying the upper respiratory tract, and most probably the pharynx, as the site of viral shedding. Vertical transmission may also occur from mother to foetus in about one third of cases with serologically confirmed maternal infection (Török, 1992).

I.1.3.2.2. Household infections

In a study of intrafamilial associations of B19 infection, no link was found between seropositivity of the parents and their children, neither between one spouse and the cospouse (Koch and Adler, 1989). However, when considering only the first and second siblings in the family, 50% of the younger siblings were infected if the older siblings were seropositive. Therefore, household infections represent a very high percentage of
B19 infections among children but also were found to be significant in adults, especially women. The transmission rate for susceptible household contacts of persons with EI or B19-associated aplastic crisis was found to be approximately 50%, regardless of age (Plummer et al., 1985; Chorba et al., 1986). The infection rate amongst susceptible pregnant housewives was 8.7%, (4 of 46) (Cartter et al., 1991). For pregnant women whose serological status is unknown, the chance of suffering fetal loss after household exposure is lower than 2.5% (Anderson et al., 1990).

I.1.3.2.3. Nosocomial and occupational infections

The risk associated with nosocomial infections that can involve both patients attending the hospital and hospital staff members themselves have been well documented (Bell et al., 1989, Dowell et al., 1995, Pillay et al., 1992, Koziol et al., 1992, Miyamoto et al., 2000, Lui et al., 2001). The first report of a probable spread of B19 infection in hospital involved two paediatric patients with hereditary spherocytosis and sickle cell anemia, respectively (Evans et al., 1984). The spread of aplastic crisis to the patient with sickle cell disease occurred when she was exposed to the patient with hereditary spherocytosis, thereby emphasising the danger of contacts between patients with known haemolytic anemia.

Although a prospective survey reported no increase in annual seroconversion rates in childcare providers (1.5%) compared to the women of childbearing age control group (1.5%) (Koch and Alder, 1989), many other reports show an increase risk of B19 infection in women working outside the home in school or day care settings (Cartter et al., 1991; Valeur-Jensen et al., 1999; Cordell, 2001; Schwarz et al., 1990).

Taken together, these studies indicated that the highest risk for B19 infection is found in households and selected occupational settings where workers can be exposed to infected
patients or staff in hospital wards, or to infected children in schools and day care centres.

I.1.3.2.5. Parenteral transmission

Although much less likely than the respiratory route, parenteral transmission may occur by transfusion of contaminated blood products and will be discussed in section II.

I.1.4. Immune response

In immunocompetent individuals, clearance of human parvovirus B19 from blood appears to be achieved almost entirely through the humoral immune response of the individual. Moreover, this response is mainly directed against the structural proteins VP1 and VP2. The important role of neutralising antibodies in clearing the virus is suggested by the fact that intravenous immunoglobulin can cure chronic B19 infections in immunosuppressed patients.

I.1.4.1. Antibody response in acute and past B19 infections

Experimental infection of healthy volunteers has shown that the predominant immune response is humoral (Anderson et al., 1985a; Kurtzman et al., 1989a). Figure 1.10 summarises the time course of B19 serology, which will be detailed below (Heegaard and Brown, 2002).
I.1.4.1.1. IgM response

The IgM immune response was examined by Anderson and coworkers, who inoculated healthy adult volunteers intranasally with parvovirus B19 obtained from an asymptomatic blood donor (Anderson LJ et al., 1985). High-titre IgM antibodies to B19 developed during the second week (9 to 10 days) after inoculation and represented the first detectable immune reaction indicating an acute B19 infection. IgM antibodies may be found in serum for 3 to 6 months, although in some cases the IgM antibodies may decline very rapidly resulting in negative values already after 2 to 3 weeks.

In order to study the immune response to B19 infection without having to inoculate volunteers, scientists had to overcome the shortage of B19 antigens by expressing recombinant B19 proteins in several systems, both prokaryotic and eukaryotic (Sisk and Berman, 1987; Brown et al., 1990a; Kajigaya et al., 1991; Söderlund et al., 1992; Saikawa et al., 1993; Palmer et al, 1996; Manaresi et al., 1999a).

Whether they are undenatured or denatured, recombinant VP1 and VP2 proteins can be used to detect immune response against conformational or linear epitopes respectively.

Hence an Enzyme Linked Immunosorbent Assay (ELISA) with intact antigens can
detect antibodies against conformational epitopes whereas a Western blot assay with denatured antigens can be used to identify immunity against linear epitopes (Kerr et al., 1999). However, data available on IgM reactivity against linear and conformational epitopes of VP1 and VP2 is limited and rather controversial. While some studies indicate that in patients with primary B19 infection, the IgM response to linear VP1 epitopes was more frequent, intense and persistent than the response to linear VP2 epitopes (Palmer et al., 1996, Manaressi et al., 2001; Manaressi et al., 2002a), other studies found no difference in the IgM responses to VP1 and VP2 linear epitopes (Kerr et al., 1999). It has also been reported that in the active phase of infection, IgM antibodies against conformational epitopes of both VP1 and VP2 appeared at the same time and with the same frequency but those against VP1 epitopes were longer lasting than the other epitope specific IgM (Manaressi et al., 2001).

I.1.4.1.2. IgA response

A significant rise in specific IgG and IgA antibodies in 87% and 77%, respectively, of persons from whom acute and convalescent phase serum specimens were available has been reported (Erdman et al., 1991). Specific IgA antibodies were found in 93% of persons with EI. However, these antibodies were also present in half of normal blood donors with prior B19 exposure, as indicated by specific IgG antibodies (Erdman et al., 1991). This high prevalence of IgA antibodies among normal individuals indicates their long persistence. Moreover, breast milk has also been shown to contain IgA antibodies (Heegaard et al., 2000).

I.1.4.1.3. IgG response

Studies in infected volunteers have shown that IgG antibodies to B19 began to develop at the end of the second week after inoculation and early in the third week,
Chapter I

simultaneously with the decrease of IgM antibodies and the observation of the rash typical for parvovirus B19 infection (Anderson et al., 1985a).

During the acute and early convalescent phases of B19 infection, the majority of IgG antibodies are thought to be directed against both conformational and linear epitopes present in the VP2 protein and against linear epitopes of the VP1-unique region (Söderlund et al., 1995a). However, another report suggests that antibodies from some individuals do not react against linear epitopes on both denatured B19 VP1 and VP2 antigens (Kerr et al., 1999). The discrepancy might be due to the fact that the two studies used different proteins (the unique region of VP1 or a VP1/2 capsid combination compared with the whole proteins). In an attempt to further define the different phases in IgG response to B19 infection, it has been reported that in the active or very recent stage of infection, IgG against VP1 linear epitopes were detectable concomitantly, and with the same frequency, as IgG against VP2 conformational epitopes but in the convalescent phase, IgG against VP2 linear epitopes were detectable with the same frequency as IgG against VP2 conformational epitopes (Manaresi et al., 1999a). However, other reports suggest that antibodies against VP2 are detectable prior to IgG against VP1 (Schwartz et al., 1988; Kurtzman et al., 1989a) but this may reflect the 19-fold higher amount of VP2 antigen compared with VP1 antigen found in preparations using native virus as the antigen source (Manaresi et al., 1999a). Finally, the persistence of antibodies to conformational but not linear epitopes of VP2 during late convalescence is also unclear (Söderlund et al., 1995a; Manaresi et al. 1999a). The long term IgG antibody response is directed mainly against VP1, and in particular the aminoterminal half of the VP1-unique region, which has been shown to be immunodominant (Musiani et al., 2000). A summary of IgG immune response in active and convalescent phases of B19 infection is shown in table 1.2.
Table 1.2: Summary of IgG antibody response in active and convalescent phases of parvovirus B19 infection

<table>
<thead>
<tr>
<th>Stage of infection</th>
<th>VP1 epitope</th>
<th>VP2 epitope</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Linear</td>
<td>Conformational</td>
</tr>
<tr>
<td>Active phase</td>
<td>+</td>
<td>-</td>
</tr>
<tr>
<td>Convalescent phase</td>
<td>Unknown</td>
<td>Unknown</td>
</tr>
</tbody>
</table>

The predominant subclass of IgG antibodies involved in the binding to VP1 and VP2 capsid proteins is IgG1 during the acute phase and early convalescence while subclass IgG3 peaks 2 weeks after infection but stabilises to low levels over 6 months (Franssila et al., 1996). Both IgG1 and IgG3 decline to background levels during the recovery period. At the same time, a dramatic increase in VP1-specific IgG4 activity is observed, although that subclass is barely detectable for the first three months after infection. This subclass of antibodies may also become prominent upon chronic antigenic stimulation (Aalberse et al., 1983; Iskander et al., 1981). This antigenic stimulation could arise from repeated subclinical exposure to the virus, which is highly probable in epidemic periods, persistence of the virus at low concentrations in immunocompetent individuals or repeated exposure to antigens as part of immune complexes (Franssila et al., 1996).

I.1.4.2. Characteristics of the linear and conformational epitopes of VP1/VP2 and the VP1-unique region

I.1.4.2.1. Major capsid protein VP2

Studies using monoclonal antibodies binding to synthetic peptides show that the neutralising epitopes are located at the carboxy terminal half of VP2 (amino acids 328-344 from the amino terminus), with recognition sites at amino acids 253-272, 309-
A comparison with CPV suggests that this region is probably on the surface of the native virion. The viral surface of CPV is composed of a “spike” on each of the threefold axes, consisting of four loops (Tsao et al., 1991; Chapman and Rossmann, 1993). Superimposition of the largest loops (loops 3 and 4) of CPV on a map of the B19 VP2 epitopes indicated that all the B19 epitopes lay between the projected surface loops of CPV, suggesting that the immunodominant domain on the VP2 capsids correlates with the surface spike of CPV (Brown et al., 1992; Sato et al., 1991b). Studies have shown that the CPV loops 1 and 3 are immunogenic and have surface exposed residues (Langeveld et al., 1993). These loops might be possible sites for attachment of neutralising antibodies, which could interfere with binding between CPV virion and cell surface receptor. Similarly, in parvovirus B19, the proximity of the antigenic epitopes to the receptor site, suggests that virus neutralisation may be caused by preventing attachment of viruses to the cells (Chipman et al., 1996).

Several studies have suggested that the VP1/VP2 junction and the VP2 capsid protein (amino acids 57-77) may be linear neutralising epitopes (Saikawa et al., 1993; Yoshimoto et al., 1991). It is clear that conformational epitopes are also present. In contrast, other studies have shown that recombinant VP2 capsids on their own do not elicit a neutralising antibody response in rabbits and require the presence of VP1 which may modulate the antigenicity of the native virus particles or, alternatively, may affect the conformational structure of the neutralising epitopes (Kajigaya et al., 1991; Yoshimoto et al., 1991).

Additionally, when B cell memory was induced after B19 infection, B cell memory was strongly maintained against VP2 conformational epitopes and against VP1 linear
epitopes, whereas it was not maintained against VP2 linear epitopes (Corcoran et al., 2004).

I.1.4.2.2. VP1 and its unique region

Studies have shown that the most amino-terminal quarter of the unique region of VP1 is the most immunogenic region and that the immune recognition of the unique portion of VP1 is similar to reactivity against a soluble, conformationally free globular protein, while immune recognition of VP2 epitopes is much more conformationally fixed by the capsomere structure (Saikawa et al., 1993). This region contains numerous neutralising linear epitopes, clustered in particular at the amino-terminus (between amino acids 1 and 80) and in the centre (amino acids 148-205) (Anderson et al., 1995; Gigler et al., 1999; Zuffi et al., 2001). All these data indicate that the unique region of VP1 is located on the virion surface and thus accessible to antibody binding but its precise relationship to the rest of the capsid is still unknown (Kawase et al., 1995). An investigation of the genomic variability and the antigenic stability of the VP1 unique region confirmed that there was very little variation in amino acid sequence, between 0-3.2% or 8 amino acids (Dorsch et al., 2001; Hemauer et al., 1996; Erdman et al., 1996). These results confirmed that the amino-terminal part (amino acids 1 to 80) must be surface exposed and highly stable, and suggest that it could be folded in a loop-like structure.

I.1.4.3. Antibody response in persistent B19 infection and implication of immune response against the non-structural protein NS1

After the onset of neutralising antibody production, the virus is rapidly cleared from the circulation but in some cases of parovovirus B19 infection, persistence of the virus for
Chapter I

up to a decade has been reported (Kurtzman et al., 1989a; Pont et al., 1992). Chronic
infection has been observed in four populations of patients: those with congenital
immunodeficiency, with HIV infection, those receiving immunosuppressive
chemotherapy for treatment of cancer, acute lymphocytic leukaemia and tissue
transplantation, and lastly in the developing fetus (Anderson and Young, 1997;
Kurtzman et al., 1989b).

Early studies indicated that sera from patients with acute or past infection without
complications did not contain detectable levels of anti-NS1 antibodies but NS1-specific
antibodies were present in sera from patients suffering from severe B19-associated
arthritis, perhaps reflecting persistent viral infection (von Poblotzki et al., 1995a;
1995b). It is possible that these specific antibodies might indicate an elevated
production of the non-structural protein in particular individuals or that prolonged viral
presence might lead to the infection of non-erythroid cells bearing the B19 receptor,
which would not normally be susceptible to the virus. Thus the expression pattern of the
parvovirus B19 genome in these non-permissive cells may be shifted to the preferential
production of NS1 protein (Liu et al., 1992). In addition, the elevated synthesis and
release of NS1 protein after cell death might result in initiation of an NS1-specific
humoral response (von Poblotzki et al., 1995b). In contrast, later studies indicated that
anti-NS1 antibodies were present in a proportion of patients with recent (12.5% to 45%)
and past (36%) B19 infections (Searle et al., 1998; Jones et al., 1999). The discrepancy
between these studies could be partly explained by three factors: the difference in the
sizes of the patient groups investigated, the relative sensitivities of the assays used to
detect the NS1 antibodies and the time of sampling after onset of infection as a number
of studies have shown that NS1-specific IgG became detectable about four weeks after
infection and about two weeks after VP1/VP2-specific immune response (Searle et al.,
Finally, as only low amounts of NS1 are synthesised during replication in the erythroid progenitor cells, there may be insufficient antigen to prime a strong and long-lasting immune response detectable in persons with past parvovirus infection (Ozawa and Young, 1987; Tolfvenstam et al., 2000). Other studies have also shown the presence of anti-NS1 antibodies in 22 to 30% of B19 infected individuals, of which 13 to 27% had recent infections and the remainder past infections (Venturoli et al., 1998; Hemauer et al., 2000). These studies confirm that the development of anti-NS antibodies is not limited to persistently infected patients or to those patients with B19 arthritis (Kerr and Cunniffe, 2000). The percentage of persons with NS1-specific IgG has been found to decline with increasing age, whereas IgG against capsid proteins are as prevalent in younger as in elderly individuals (Hemauer et al., 1999; Searle et al., 1998).

Three NS1-specific linear epitopes in the carboxy terminal region of NS1 (amino acids 191 to 206, 271 to 286 and 371 to 386) have been identified, with the highest seroreactivity being against amino acids 271 to 286 (Tolfvenstam et al., 2000). These antibodies are unlikely to be protective as persistence of the virus in the serum at relatively high levels is possible despite the presence of NS1-specific immunoglobulins (Von Poblotzki et al., 1995b). However, other reports have suggested a weak but significant neutralising ability of anti-NS1 antibodies (Gigler et al, 1999; Kurtzman et al., 1989b), thus the role of NS1 in the persistence of B19 infection remains unclear and controversial.

I.1.4.4. Cellular immunity

Despite early, unsuccessful attempts at demonstrating a proliferative cellular response to B19 using peripheral blood mononuclear cells (PBMC) from individuals with serologic evidence of exposure to virus (Kurtzman et al., 1989b), there is evidence now from
several studies of a cellular response to B19 infection (von Poblotzki et al., 1996, Franssila et al., 2001, Mitchell et al., 2001). A lymphoproliferative response against B19 recombinant capsid proteins VP1 and VP2 was reported, although not in the form of empty capsids (von Poblotzki et al., 1996). These groups demonstrated that CD4+ T cells, also called T helper (T_H) cells, make up the major population of reactive cells and that viral determinants were presented to them by HLA class II molecules and observed lymphocyte proliferation in response to stimulation with a recombinant B19 NS-1 protein in vitro.

It appears that the cellular response to B19 mainly involves differentiated CD4+ cells in late convalescence as an immunoglobulin class switch to IgG4, normally triggered by interleukin-4 (IL-4) and interleukin-13 (IL-13), which in turn are produced specifically by T_H type 2 (T_H2) (Franssila et al., 1996; Roitt et al., 1998). However, other reports suggest that the cellular immune response could be more T_H1 oriented in the acute phase of infection as an increase in interferon gamma (IFN-γ), which is produced by T_H1 cells, as well as by natural killer (NK) cells (Roitt et al., 1998), was detected in these studies (Wagner et al., 1995). These authors also identified a rise in the production of IL-1 and IL-6 mRNA. The former is produced by many cells in response to infection and activates NK cells cytocidal activity, T_H cell proliferation as well as B-cell proliferation (Roitt et al., 1998). Both IL-1 and IL-6 are released by some B-cells and enhance expression of IL-2 on T lymphocytes. In turn, IL-2 activates B-cells and NK cells and promotes division of T cells with release of IFN-γ. Although there are signs that the immune response is T_H1 oriented during the acute phase of infection, leading to macrophage activation, it is clear that the humoral response is also activated by a series of cytokines, which activate B-cell proliferation and subsequently antibody production.
Other findings showing a significant T cell immunity elicited by B19, have been reviewed (Klenerman et al., 2002). The first B19-derived CD8+ T-lymphocyte epitope has been mapped and shown to be derived from the amino acids 391 to 399 of the non-structural protein NS-1 (Tolfvenstam et al., 2001a). This peptide was able to stimulate ex-vivo CD8+ T-lymphocyte responses in B19-seropositive donors. Moreover, using ELISpot responses to peptides spanning the whole NS-1 sequence, multiple further responses were identified in seropositive individuals, thus pointing to the presence of a persistent memory population (Klenerman et al., 2002). In conclusion, the CD8+ T-lymphocyte responses might indicate an ongoing stimulation by persistent antigen and might involve a simultaneous maintenance role of CD4+ T cells (Wagner et al., 1995; von Poblotzki et al., 1996; Franssila et al., 2001).

1.1.5. Diagnosis

The symptoms of parvovirus B19 infection are often non-specific and could theoretically be confused with various other infectious agents, such as rubella, cytomegalovirus (CMV), varicella zoster virus (VZV), mumps or rubeola. Therefore, differential laboratory diagnosis of B19 infection is essential, as a recent study showed, when 123 out of 344 samples (35.7%) collected during an epidemic of B19 from children with rashes presented neither B19 DNA, IgM nor IgG (Gallinella et al., 2003). Detection of B19 infection relies on a range of laboratory tests summarised in table 1.3. While serum samples are the most commonly tested specimens, bone marrow aspirates, cord blood samples, amniotic fluid samples and biopsy specimens of placenta and fetal tissues are also used to detect B19 infection (Zerbini et al., 2002).
Table 1.3: Summary of diagnostic and detection assays for B19

<table>
<thead>
<tr>
<th>Diagnosis by</th>
<th>Diagnostic laboratory tests</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cellular factors</td>
<td>• Numeration of reticulocytes, neutrophils, lymphocytes and platelets</td>
</tr>
<tr>
<td></td>
<td>• Titration of haemoglobin</td>
</tr>
<tr>
<td></td>
<td>• Microscopic examination of bone marrow aspirates (giant pronormoblasts)</td>
</tr>
<tr>
<td></td>
<td>• Immunohistochemistry of skin lesions</td>
</tr>
<tr>
<td>Antibody detection</td>
<td>• Immunoblot assay</td>
</tr>
<tr>
<td></td>
<td>• Enzyme immunoassay (EIA)</td>
</tr>
<tr>
<td></td>
<td>• Immunofluorescence assay (IFA)</td>
</tr>
<tr>
<td>IgM</td>
<td>• Immunoblot assay</td>
</tr>
<tr>
<td></td>
<td>• EIA</td>
</tr>
<tr>
<td></td>
<td>• IFA</td>
</tr>
<tr>
<td>IgG</td>
<td>• EM</td>
</tr>
<tr>
<td></td>
<td>• Immune electron microscopy (IEM)</td>
</tr>
<tr>
<td>B19 virus detection</td>
<td>• Counter- immunoelectrophoresis (CIE)</td>
</tr>
<tr>
<td></td>
<td>• Radioimmuno-assays (RIA)</td>
</tr>
<tr>
<td></td>
<td>• EIA</td>
</tr>
<tr>
<td></td>
<td>• Blot immunoassays</td>
</tr>
<tr>
<td></td>
<td>• Receptor-mediated haemagglutination assay (RHA)</td>
</tr>
<tr>
<td>B19 antigen detection</td>
<td>• Dot blot hybridisation</td>
</tr>
<tr>
<td></td>
<td>• In situ hybridisation assay (ISH)</td>
</tr>
<tr>
<td></td>
<td>• Polymerase chain reaction (PCR)</td>
</tr>
</tbody>
</table>

1.1.5.1. Diagnosis by cellular and blood markers

When natural infection developed in volunteers infected by B19 virus, reticulocytes were not detected from day 8 and 10 for a period of at least one week (Anderson et al., - 87 -)
Chapter I 1985a). This finding demonstrated that erythropoiesis is prone to interruption following B19 infection in normal individuals. Moreover, a simultaneous significant decrease- as low as 30% of baseline values- in levels of neutrophils, lymphocytes and platelets were observed. In the normal host, the hemoglobin may fall by 2 to 3g/dL (Török, 1992). However, in patients who are already suffering from hematological disorders, characterised by decreased red cell production or increased red cell destruction, B19 infection may result in a dramatic decrease in hemoglobin. All these cellular and blood markers can sometimes prove useful in the diagnosis of recent B19 infection.

Furthermore, examination of bone marrow aspirates by light microscopy can reveal histopathologic changes of erythroid precursor cells, suggestive of parvovirus B19, such as abnormal giant pronormoblasts or “lantern” cells (Török, 1992; Brown and Young, 1995). These cells have a markedly enlarged size and basophilic cytoplasm, fine nuclear chromatin, prominent irregular nucleoli, or viral inclusions. Occasionally, vacuoles and pseudopods can also be seen. In addition to pronormoblasts, in a paediatric patient with acute anemia, some “lantern” cells, which contained a central clear area and reacted strongly in the presence of a parvovirus-specific monoclonal antibody, have been described (Jordan and Penchansky, 1995). Hence, a morphologic description of the bone marrow aspirate could lead the pathologist to the diagnosis of B19 infection, and thus is of major importance, especially when other tests, such as PCR, are not available.

Lastly, skin lesions can also be examined by light microscopy and using immunohistochemistry with anti-human B19 monoclonal antibodies in order to locate virus particles in the cytoplasm of endothelial cells (Takahashi et al., 1995). B19 should be considered as part of a differential diagnosis in any patient presenting anaemia associated with low or absent reticulocytes, especially for those immunosuppressed individuals (Brown, 2000). The detection of morphologic changes may be
Chapter I

complementary to a variety of methods which are used to detect anti-B19 antibodies, B19 virus and viral antigens, as well as B19 genome.

I.1.5.2. Diagnosis by antibody detection

In immunocompetent hosts, B19-specific IgM are the first antibodies to be produced, thus assays for IgM detection can be used to diagnose acute or recent infection. IgM can indeed be detected in more than 90% of cases by the third day of transient aplastic crisis (TAC), or at the time of rash in EI, and can remain for up to 3 months (Anderson and Young, 1997). On the other hand, IgG antibodies become detectable several days after IgM and persist for years and are thus regarded as indicative of a past infection, either resolved or chronic. At present, only IgM and IgG directed against the capsid proteins VP1 and VP2 are used for diagnosis. In immunocompromised patients, B19 specific immune response may be normal, altered and even absent. Therefore, serological investigation is not the main tool to diagnose B19 in these subjects.

Antibodies to the non-structural protein NS1 may also be of interest as a supplementary assay in routine testing, since they may be related with persistent B19 infection or B19-associated arthritis (Von Poblotzki et al., 1995a; 1995b). As these antibodies usually become detectable at least 6 weeks after infection, their detection in pregnant women with borderline or weakly positive IgM results may be fairly common during pregnancy (Searle et al., 1998). However, only 30% of women in childbearing age were shown to produce anti-NS1 antibodies, thus limiting the potential use of anti-NS1 antibodies for diagnosis. IgA antibodies are too persistent to be a useful indicator of recent B19 infection (Erdman et al., 1991) and the usual assays used are various assays for detection of IgM and IgG antibodies.
1.1.5.2.1. Immunoblot assays

Immunoblot assays have been used extensively to measure both B19 IgM and IgG antibody responses and although these assays have problems with sensitivity and specificity and are labour-intensive, they allow the characterisation of antibody response to discrete B19 proteins (Schwarz et al., 1988; Anderson and Young, 1997). Immunoblots, also called Western blot assays, are now commercially available. The technique uses either recombinant or native B19 antigens, which are electrophoresed in denaturing gels and then transferred onto nitocellulose membranes. The immobilised antigens are exposed to patients' sera, followed by enzyme-linked secondary antibody and, finally, a colorimetric substrate to visualise the immunoreactive bands (Palmer et al., 1996). The sensitivity of the assay may be improved by developing a chemiluminescent Western blot assay with a high-performance, video camera-based system (Manaresi et al., 1999b). While Western blot assays are able to detect immune response against B19 VP1 and VP2 linear epitopes, ELISA is used to determine the immune status against conformational epitopes (Kerr et al., 1999; Soderlund et al., 1995a).

1.1.5.2.2. Enzyme immunoassays (EIA)

The early IgM immunoassay was based on an IgM antibody capture radioimmunoassay (MACRIA) and used to diagnose infection in children with sickle cell anaemia recovering from aplastic crisis (Anderson et al., 1982a). At the time, sources of antigen were sera or blood units obtained while in the phase of viraemia. In this assay, IgM from a dilution of patients' serum is "captured" onto a solid phase coated with anti-human IgM. B19 antigen is then added, followed by a detection system. This method is easier to perform and more sensitive than CIE testing of gradient separated IgM fractions of serum (Kelleher et al., 1983). However, one of the disadvantages of
MACRIA is that it uses large amounts of antigen. Development of an antibody-capture assay, based on monoclonal antibodies to B19, for B19-specific IgM and IgG resulted in improved sensitivity (Cohen et al., 1983). Further improvements in sensitivity were obtained by use of a detection system that included a mouse monoclonal antibody to B19 and a 125I-labelled anti-mouse antibody (Cohen, 1997). This assay is used to detect IgM antibodies and can thus be valuable for the diagnosis of recent acute B19 infection. Other groups have developed sensitive ELISA assays, one of which was shown to have comparable sensitivity to DNA spot hybridisation using crude plasma (Anderson et al., 1986, Schwarz et al., 1988). ELISA assays are easier to perform, can be used for mass screening to detect B19 positive plasma and are good non-isotopic alternatives to RIA. Due to the limited availability of B19 native antigens, several authors have reported attempts to develop diagnostic tests based on renewable sources of B19 antigens using synthetic peptides or recombinant antigens expressed in a baculovirus system (VP2 alone or VP1 and VP2) (Brown et al., 1990a; Schwartz et al., 1991a; Fridell et al., 1991; Kajagaya et al., 1991; Salimans et al., 1992; Jordan, 2000). Compared with an IgM assay using native B19 viral antigen, one of the peptide antigen assays was 92% sensitive and 87% specific (Fridell et al., 1991). This assay showed good correlation with a RIA which used native B19 virus, confirming the importance of recombinant B19 antigens as a substitute for native virus. Lastly, a study showed that a Baculovirus-expressed VP2 EIA produced fewer equivocal results and proved to be the most accurate test to detect B19 antibodies in pregnant women compared with an E.coli-based VP1 EIA for the detection of both IgM and IgG in sera (Jordan, 2000).

In EIA commercial kits for B19 diagnosis, IgM antibodies are mainly detected in capture-EIA format, whereas IgG antibodies are usually revealed using indirect ELISA format with antigen coated onto a solid phase (Zerbini et al., 2002). A comparison of
four commercially available IgM EIA to indirect immunofluorescence and PCR assays showed that the relative sensitivities and specificities of the ELISA assays ranged from 97 to 100% and from 81 to 99%, respectively (Sloots and Devine, 1996). Moreover, rubella IgM cross-reactivity was found as particularly problematic in several commercial assays. A similar study of a number of commercial assays showed specificities for B19 IgM antibody detection between 88 and 96% and again a tendency for cross-reactivity with IgM against rubella, as well as Epstein Barr virus (EBV) and CMV was noted (Tolfvenstam et al., 1996). Other comparative studies of commercial EIA assays for IgM found specificities ranging from 70.1% to 93.5% and sensitivities in the range 97.4% to 97.5% (Bruu and Nordbø, 1995; Pickering et al., 1998). However, it is likely that these comparative studies have little value in deciding which test format to use for B19 diagnosis because of the lack of data on the absolute assay performance and reproducibility (Doyle et al., 2000). In addition, external regulatory bodies rarely control in-house assays, resulting in poor standardisation. The first parvovirus IgM EIA to be cleared by the US Food and Drug Administration (FDA) was reported in 2000 (Doyle et al., 2000). There was no cross-reactivity with sera from patients with rubella, CMV, VZV, mumps or rubeola, all of which could theoretically be confused with parvovirus B19 infection.

EIA have also been used to measure IgG avidity to discriminate primary and secondary infections. In the avidity assay, the patients' antibodies are first allowed to bind to an immobilised antigen, then low-avidity antibodies, characteristic of primary infections, are eluted with a denaturing agent. The remaining antigen-bound IgG is quantified immunoenzymatically (Söderlund et al., 1995b; Manaresi et al., 2001). This assay can be used as a complement to IgM antibody assay.
I.1.5.2.3. Immunofluorescence assay (IFA)

Indirect IFA for serum B19-specific IgG and IgM antibodies can be used with recombinant baculovirus expressing either VP1 or VP2 antigen. Insect cells infected with this recombinant baculovirus expression system are then spotted and fixed onto glass slides. A series of incubations and washes are then carried out: first with dilutions of the serum to be tested, followed by goat-anti-human IgG or IgM conjugated with fluorescein isothiocyanate (FITC). Slides are mounted and examined under the fluorescence microscope and the IFA titres determined. A good correlation between IFA results and those obtained with solid-phase capture RIA have been reported although IFA has the advantage of being based on a renewable source of antigen (Brown et al., 1990b; Cohen et al., 1983). Moreover, a later study showed comparable sensitivity of IgG detection by indirect enzyme immunoassay and IFA, with more than 95% acute infection confirmed by the latter (Pereira et al., 2001). In conclusion, although determination of antibody responses can be useful tools for the diagnosis of B19 infection, these assays can also be inconvenient because of the requirement for two serum specimens, resulting in diagnostic delays.

I.1.5.3. Diagnosis by B19 virus and viral antigens detection

I.1.5.3.1. B19 virus

EM and IEM are sometimes used to confirm positive results obtained by other assays and have also proven useful for antenatal diagnosis and in adult cases to examine erythematous skin lesions and confirm B19 infection (Naides and Weiner, 1989; Takahashi et al., 1995). In IEM, B19-specific antibodies are added to the serum samples in order to aggregate viral particles, if present. These aggregates are easier to see than single particles would be by direct EM. Both EM and IEM require technical expertise and costly specialised equipment and cannot be applied to the diagnosis of a large
number of samples (Zerbini et al., 2002). Moreover, serum specimens have to be collected during the early phase of infection when the virus titre is high.

I.1.5.3.2. B19 antigens

I.1.5.3.2.1. Counter-immunoelectrophoresis (CIE)

In early B19 studies, CIE was widely used to detect B19 antigens in serum samples and thus determine acute infection. In this method, wells punched in agarose gel near the cathode are filled with test serum while the opposite wells, near the anode, are filled with B19 antibody positive serum. When the antigens and antibodies meet and form immunocomplexes, a visible line of precipitate appears on the gel (Zerbini et al., 2002). CIE can only detect B19 in blood samples containing 10^6 particles/ml or more and can thus diagnose primary B19 infection only when the virus titre is at a peak. Since CIE is quite insensitive, it has now been replaced by other techniques.

I.1.5.3.2.2. Radioimmunoassays (RIA) and enzyme immuno-assays (EIA)

The development and use of RIA and EIA for the detection of B19 antigens has improved sensitivities and specificities with respect to CIE and IEM. In these assays, a human reference immune serum is absorbed to a solid phase and captures B19 antigens present in serum sample. The immune complexes can then be detected by either I^{125} or enzyme labelled anti-mouse immunoglobulin for RIA and EIA, respectively (Anderson et al., 1986; Cohen et al., 1983). However, virus in immune complexes with early specific host antibodies may be masked from detection, as with CIE.
I.1.5.3.2.3. Blot immunoassays

Blot immunoassays have been developed in two formats: Western blot and dot-blot. In Western blot, human serum is electrophoresed and transferred onto a nitrocellulose membrane, which is then treated with B19-specific monoclonal antibodies. Immunocomplexes formed are visualised by addition of enzyme-conjugated anti-mouse antibody, followed by a colorimetric substrate. The dot-blot format can be used to test both serum samples and amniotic fluids, which are treated to expose the antigenic sites on the virions and to avoid the masking of the antigens by early specific host antibody. These samples are then directly placed onto a nylon membrane as a drop. This dot-blot immunoassay is performed in only four hours and is particularly suitable for large-scale screening of samples (Gentilomi et al., 1997). Moreover, the assay has a comparable, or slightly higher, sensitivity than that achieved by dot-blot hybridisation technique but less than that achieved by nested PCR.

I.1.5.3.2.4. Receptor-mediated haemagglutination assay (RHA)

RHA is a detection assay based on the agglutination of RBCs when mixed with serum containing parvovirus B19 (Sato et al., 1995). This reaction is pH-dependent and inhibited by purified globoside-B19 receptor, as well as by neutralising antibodies. The sensitivity of this method is between 10^5 and 10^6 genome copies/ml, which is almost as sensitive as RIA but much lower than PCR. However, it is simple and rapid to perform (the results are available in one day), can be suitable for large-scale screening and has the advantage of detecting only the virus particles that can bind to the receptor. A similar assay was developed in the UK (Cohen et al., 1995).
I.1.5.4. Diagnosis by B19 DNA detection

The limitations of RIA assays can be avoided by an assay based on detection of the viral genome, rather than the capsid antigen, by dot-blot hybridisation, microwell hybridisation, *in situ* hybridisation and by amplification.

I.1.5.4.1. Dot-blot hybridisation assays

A dot-blot hybridisation assay for detecting viral DNA uses serum specimens, which are filtered and spotted onto a nylon membrane. Different types of probes are then used, including single and double stranded DNA (Prato *et al.*, 1991; Clewley, 1985). A single stranded RNA probe that eliminates the risk of contaminating plasmid sequences has been described but extra caution is needed in handling such RNA probes (Cunningham *et al.*, 1988; Zerbini *et al.*, 1993). DNA probes have been reported to be about ten-fold more sensitive than RNA probes (Salimans *et al.*, 1989a). Most hybridisation probes are obtained from cloned B19 DNA fragments (Clewley, 1985; Azzi *et al.*, 1990; Prato *et al.*, 1991; Zerbini *et al.*, 1993), but can also be prepared by PCR amplification (Hicks *et al.*, 1995; Zerbini *et al.*, 2000; Zerbini *et al.*, 2001) or synthetic oligonucleotides (Cubie *et al.*, 1995). Initial detection methods used hybridisation to 32P-labelled probes (Anderson *et al.*, 1985b; Clewley, 1985). These were replaced with biotin probes which eliminated the disadvantages associated with radioactivity (Cunningham *et al.*, 1988). At present, digoxigenin is widely used since it is as sensitive as radioisotopes and more specific than biotin (Azzi *et al.*, 1990; Prato *et al.*, 1991; Hicks *et al.*, 1995; Zerbini *et al.*, 2001). Both digoxigenin-labelled probes and biotinylated probes can be stored at -20°C for months without loss of activity (Cunningham *et al.*, 1988; Azzi *et al.*, 1990).

The detection system for hybridisation assays can be an immuno-enzymatic or a chemiluminescent reaction. In the former, antibodies against the probe are conjugated
Chapter I

with alkaline phosphatase, which generates a colorimetric reaction. A variation of this technique uses a tyramide signal amplification for biotinylated probes (Zerbini et al., 2000). This method uses a horseradish peroxidase-streptavidin complex to catalyse the deposition of biotinyl-tyramide conjugate and streptavidin coupled to alkaline phosphatase to amplify the signal. A 10 to 50 times increase was observed when compared to detection with alkaline phosphatase (~10^5 genome copies). Improved sensitivities are obtained using a chemiluminescent substrate (Zerbini et al., 1993; Zerbini et al., 2001). An initial study showed that the chemiluminescent reaction had a sensitivity of 6x10^3 virus particles compared with an immuno-enzymatic reaction which was able to detect 1.5x10^4 virus particles (Zerbini et al., 1993). A second study in 2001 showed improved sensitivities for both methods of detection, although that of chemiluminescence (~6x10^2 genome copies) was higher than that of immuno-enzymatic reaction (~3x10^3 genome copies) (Zerbini et al., 2001). Chemiluminescence detection offers the advantage of a permanent record of the reactions, whereas membranes stained with a colorimetric substrate can lose colour over time. Moreover, the latter often present a strong background, resulting in difficulty in interpreting results.

Unlike CIE and RIA, dot-blot hybridisation assay is not affected by the presence of B19-specific antibodies in host serum and allows testing of large numbers of specimens since 1,000 blood donor plasma samples can be tested per day. Moreover, in terms of virus particles detected, the dot-blot assay is more than 300 times more sensitive than RIA, partly because the assay uses a much smaller volume (Anderson et al., 1985b). On the other hand, the detection of DNA by dot-blot hybridisation has limited value for the diagnosis of past B19 infections since the virus is detectable for only one week during viraemia.
Chapter I

1.1.5.4.2. **In situ hybridisation assays (ISH)**

ISH is an important tool for localisation of B19 DNA within individual cells and has been used in bone marrow cells, amniotic fluid cells, cord blood cells and fetal cells (Zerbini et al, 2002). The probes for *in situ* hybridisation have been made either from cloned DNA fragments or from synthetic oligonucleotides (Cubie et al., 1995). ISH with cloned probes can be labelled with radioisotopes, biotin (Porter et al., 1988), acetyl-aminofluorene (Salimans et al., 1989b) or digoxigenin (Morey et al., 1992). Non-radiolabelled probes have been reported to be more sensitive than radiolabelled probes for *in situ* hybridisation on fixed tissues from a hydropic fetus (Salimans et al., 1989b). However, while biotinylated probes offered advantages over radioactive probes, positive results should be confirmed by other methods (Cubie et al., 1995). Since individual, infected cells can be examined, the apparent sensitivity of ISH is greater than with DNA amplification applied to a tissue sample consisting of many cells only a few of which are infected. Detection by ISH has the advantage of identifying the virus and relating its distribution to tissue morphology.

1.1.5.4.3. **DNA amplification**

The technique of DNA amplification, commonly known as PCR (Mullis et al., 1986; Mullis and Faloona, 1987), has vastly improved the sensitivity of detection of B19 DNA compared with other methods. Studies have shown that B19 DNA is detectable longer by PCR than was earlier suggested by nucleic acid hybridisation studies (Anderson et al., 1985a; 1985b). It has been reported that the sensitivity can be improved by transfer of the DNA to a nylon membrane and hybridisation with a radioactive labelled probe (Salimans et al., 1989a; Salimans, 1990). Compared with conventional gel electrophoresis of the amplified DNA, hybridisation of the PCR products increased the
sensitivity from 10^3 to 10^4 particles/ml to as few as 100 particles/ml. Various studies, using modification such as nested PCR, PCR alone with subsequent hybridisation and dot-blot hybridisation to detect B19-specific products, have reported even greater sensitivity of B19 DNA detection down to a single copy (Clewley, 1989; Koch and Adler, 1990; Frickhofen and Young, 1990; Cassinotti et al., 1993a).

The most important drawback associated with this technique is the risk of contamination due to carry-over between samples from the first to the second PCR round, resulting in false positive results. In order to overcome these contamination problems extensive and extremely strict precautions should be taken during the handling of materials (Kwok and Higuchi, 1989). Additionally, only trained personnel should perform the assays in three separate laboratories, ideally equipped with a laminar flow cabinet and without cross-traffic of staff. Lastly, each sample should be tested in duplicate and several negative controls should be included in each PCR reaction.

Another disadvantage of this technique is the high cost of screening a large number of samples. On the other hand, this method is highly specific and the most sensitive assay available at present. It can also be applied to a large variety of clinical materials, such as blood, bone marrow, urine, ascites and leukocyte extracts, as well as synovial and amniotic fluids, fetal and maternal blood (Koch and Adler, 1990; Cassinotti et al., 1993a; Dieck et al., 1999). Parvovirus DNA was also amplified from a cutaneous biopsy specimen during the acute phase of the disease in a case of popular purpuric "gloves-and-socks" syndrome (Grilli et al., 1999). Lastly, results can be reported, depending on laboratories, within 1.5 to 2 days, making PCR an important tool for the early diagnosis of B19 infection.
Studies have shown circulating virus may present with IgM but can only be detected by PCR (Musiani et al., 1993). This is a very important aspect of B19 detection, particularly in immunocompromised patients who often have a low-titre viraemia undetectable by conventional nucleic acid hybridisation techniques. PCR is thus the most suitable, and possibly the only, method of detection of B19 in such patients.

Sensitivity of detection being the major focus of any assay, further research has been undertaken recently to develop very sensitive detection methods for B19 DNA, especially useful for blood products testing. A PCR assay coupled with a hybridisation protection assay, using acridinium ester-labelled DNA probes to detect the amplified products claimed a sensitivity of a single copy in 10μl (100 copies/ml) (Sato et al., 2000). In laboratory diagnostics, PCR assays are usually performed with qualitative methods but several semi-quantitative or quantitative methods have also been reported. These include competitive PCR assays and hybridisation of PCR products to probes in microtitre plates, with either chromogenic or chemiluminescent reaction as a detection system (Gallinella et al., 1997; Gruber et al., 1998; Fini et al., 1999). However, these established methods are time-consuming, labour intensive and require post-PCR handling steps, which may lead to contamination, and lack of standardisation. On the contrary, the recently developed real-time PCR offers rapidity, monitoring of PCR activity as it happens, the potential to eliminate carry-over contamination due to the combination of amplification and detection in closed tube systems, and a quantitative analysis. Two different instruments can be used for this fluorescence-based assay: the ABI PRISM SD7700 system (PE Biosystems), otherwise known as TaqMan, and the LightCycler system (Roche Molecular Biochemicals). The latter (figures 1.11 and 1.12) has recently been used to detect PPV and to quantify the virus load in tested specimens (Krumbholz et al., 2003). The ABI PRISM SD7700 system has been used for the
development of a real-time PCR method that included duplex amplification, internal standardisation and two-colour fluorescence detection (Gruber et al., 2001). It has also been used to screen and identify blood donations containing high titres of B19, thereby improving the safety margin of plasma and plasma products (Aberham et al., 2001) while the LightCycler technology has been useful to evaluate large numbers of serum specimens (Manaresi et al., 2002b). High levels of sensitivity and specificity were found for the detection of B19 DNA. The LightCycler instrument was used in the present study.

Figure 1.11: The LightCycler instrument

As shown in figure 1.12, the LightCycler instrument consists of an upper unit with the heating coil and a lower unit, which contains the thermal chamber, fluorimeter, drive
units, electronic boards and power supply. During measurements, a stepper motor rotates the sample carousel to position the capillary tip, which contains the sample, precisely at the focal point of the fluorimeter optics.

Figure 1.12: Schematic of the LightCycler instrument (Source: operator’s manual)

The kinetics of nucleic acid amplification by PCR has two phases: the exponential phase and the plateau phase. The former reflects the generation of PCR product molecules, which is directly proportional to input target molecules per PCR cycle.
During the plateau phase, there is little or no net increase in PCR product yield. Quantification of DNA is therefore possible during the exponential phase and can be one of two kinds: relative or absolute. The relative quantification is the determination of the target gene ratio in two samples. The advantage of this quantification is that no absolute concentration of target or reference is necessary. On the other hand, absolute quantification is the determination of the absolute amount of target molecules by using an internal or external standard (copy number, mass, etc.).

A standard curve is usually generated by using a well-established external reference reagent such as the WHO B19 International Standard (IS) which allows consistent quantitation of B19 DNA over 7 orders of magnitude (Saldanha et al., 2002). In order to quantify PCR product, the instrument has to acquire fluorescence once per cycle, thereby generating a fluorescence curve that increases in value with each cycle as the product accumulates. The most useful data can be found in the log-linear portion of the fluorescent curve and starts at the cycle number where fluorescence rises above background. The LightCycler software generates a best-fit line from this region of each curve called a crossing line. The crossing point \((C_T)\) is then determined as the intersection between the crossing line and the log-linear region of the fluorescent curve. The crossing point values for a set of standards can be plotted against known \(\log_{10}\) concentration to give a standard curve.

The PCR efficiency, which is a critical factor, can be calculated as shown in figure 1.13. An efficiency of 1.00 (100% doubling per cycle) is attained when the slope is -3.33 whereas PCR efficiency of 0.78 (78% doubling per cycle), which is the cut-off level, is obtained when the slope is -4.0. Any slope that is less than -3.33 would represent more than 100% efficiency, which is impossible and should therefore be disregarded.
Figure 1.13: Calculation of PCR efficiency

(Source: Qiagen seminar on strategies for quantification and lab results)

\[
\text{Efficiency} = 10^{-1/\text{slope}} - 1
\]

By comparing the \(C_T\) of an unknown sample with the standard curve, the LightCycler instrument generates a quantitative estimate of the starting concentration of the target DNA in that sample (figure 1.14).

Figure 1.14: Calculation of target concentration using the standard curve

(Source: Qiagen seminar on strategies for quantification and laboratory results)
Comparison of compiled PCR and serological results showed that single serologic testing on a given clinical sample is highly inappropriate for the diagnosis of B19 infection (Cassinotti et al., 1993a). A recent study showed that, although IgM ELISA was able to detect only 60% of infections, IgM antibodies were the unique diagnostic markers in 20.8% of infections and are thus fundamental for the diagnosis of recent and symptomatic infections where B19 DNA is no longer detectable (Gallinella et al., 2003). PCR was able to detect 79.2% of documented infections and the presence of B19 DNA was the unique marker in as much as 32% of cases, making it fundamental for the detection of B19 acute infections, especially before onset of immune response. Dot-blot hybridisation was not sensitive enough to detect either all early acute infections or persistent infections in which IgM was not detectable. Hence, the most appropriate diagnosis should include determination of both B19 DNA by PCR and specific IgM by ELISA (Gallinella et al., 2003).

I.1.6. Clinical features

I.1.6.1. Asymptomatic infection

Most individuals with B19-specific antibodies have no recollection of previous symptoms and thus asymptomatic infection is considered common. Studies have shown that 26%-31% of adults exposed to the virus, in a school outbreak or via household contact, were asymptomatic (Woolf et al., 1989; Chorba et al., 1986). In addition, differential rates of asymptomatic infection among black (68.8%) and white (20%) household members have been recorded but this is to be expected, as the characteristic rash of B19 infection is more difficult to detect on a dark skin (Chorba et al., 1986). Although asymptomatic infection is common, a wide spectrum of clinical manifestations can result from B19 infection.
1.1.6.2. Dermatologic manifestations

B19 infection as been shown to cause a wide spectrum of dermatologic manifestations, including two specific B19-related dermatologic diseases: EI and papular purpuric “gloves-and-socks” syndrome (PPGSS), as well as other non-specific findings linked to parvovirus infection (Seishima *et al.*, 1999; Katta, 2002).

1.1.6.2.1. Erythema infectiosum (EI)

EI, also known as fifth disease, slapped cheek disease, academy rash or Sticker’s disease, is the major manifestation of B19 infection. However, the distinct clinical features of EI were recognised long before the discovery of the aetiologic agent. The first description of this exanthematous rash illness of childhood was reported two centuries ago by a dermatologist, Robert Willan (Van Elsacker-Niele and Anderson, 1987). The first picture of a child with EI, called “rubeola sine catarrho” at the time, was shown in his dermatology book, written around 1800 (Figure 1.15). The rash was given the different names listed above, including fifth disease, as it was the fifth of the originally described childhood exanthematous diseases. It was thought that rubella virus could be associated with EI, but a study of a school outbreak revealed that a history of rubella vaccination did not affect the risk of developing EI (Lauer *et al.*, 1976). Moreover, no rubella virus could be recovered from the children’s throat swabs.

The first reported EI in association with human parvovirus B19 was in 1983, during an outbreak in a London school, UK (Anderson *et al.*, 1983). Soon after, two studies from Japan confirmed the link between fifth disease and B19 infection (Nunoue *et al.*, 1985; Shiraishi *et al.*, 1985). In the first study, anti-B19 IgM antibodies were detected in 33 of 34 affected children (97%) but only in 21 of 141 healthy children (15%) while in the second study, B19-specific IgM was detected in all 19 patients tested.
The course of EI can be divided into three stages, the first occurring after an incubation period of four to fourteen days (Sabella and Goldfarb, 1999). This phase, often unrecognised, corresponds to a period of viraemia where the patient is contagious and can experience low fever, headache and gastrointestinal symptoms. The second stage of the illness, three to seven days later, is characterised by the distinctive “slapped cheek” appearance, a bright erythematous facial exanthem associated with surrounding relative pallor (figure 1.16). These clinical features vary depending on the age of the patient: in children, the classic rash described here is commonly present whereas in adults, it is more subtle and unusual.
The highest rate of fifth disease was found to be in the five to nine years-old age group (Kelly et al., 1999). In adults, a higher incidence of associated arthralgia and arthritis was first recognised in 1966, and later confirmed in a second study (Ager et al., 1966; Joseph, 1986). The third stage of EI occurs one to four days after the appearance of the facial rash and may last for one to three weeks, depending on exposure to sunlight, heat and stress (Anderson, 1987). This stage is characterised by a lacelike erythematous maculopapular exanthem on the trunk and/or the extremities. Patients presenting with such a rash are no longer contagious since it corresponds to the development of B19-specific IgM antibodies. Although the exanthem may recur or persist for several months, there are no long-term sequelae (Woolf et al., 1989). In addition to the rash, generalised lymphadenopathy and splenomegaly was observed in a few patients (Plummer et al., 1985). Lastly, the prevalence of the symptoms associated with EI can vary between outbreaks and individuals.
Chapter I

I.1.6.2. Papular purpuric "gloves-and-socks" syndrome (PPGSS)

PPGSS was first described in 1990 and associated with an acute infection by B19 in 1991 (Harms et al., 1990; Bagot and Revuz, 1991). This distinctive painful rash takes its name from a symmetric erythema and oedema of the hands and feet, usually sharply demarcated at the wrists and ankles where the lesions progress gradually to purpura. The rash has mainly been described in young adults, although it has also been reported in children (Seabury Stone and Murph, 1993; Labbé et al., 1994). Other body parts can occasionally be affected, including cheeks, elbows, knees, inner thighs and buttocks (Harms et al., 1990; Nelson and Stone, 2000). Systemic symptoms in immunocompetent patients including fever, anorexia and arthralgias and lymphadenopathy have also been observed (Harms et al., 1990; Bagot and Revuz, 1991). PPGSS usually resolves spontaneously within one to two weeks with no permanent sequelae whereas, in immunosuppressed patients, it may result in serious complications. For example, it has been reported that three HIV-positive patients who presented serological evidence of acute B19 and clinical signs of PPGSS, displayed persistent anaemia and prolonged skin lesions (Ghigliotti et al., 2000). It is important to note that, unlike patients with EI, individuals suffering from PPGSS are considered contagious when the rash is present (Nelson and Stone, 2000).

I.1.6.2.3 Other dermatologic manifestations

Another clinical disease associated with B19 is a purpuric rash-like illness, often with other signs of vasculitis (Lefrère et al., 1985b; Mortimer, 1985; Li Loong et al., 1986). A case of a 27-year-old woman with a rash atypical for EI because of the presence of a haemorrhagic exanthem and an area of near-confluent pustules and pseudo-pustules
with a slightly purpuric base has been reported (Naides et al., 1988). Various eruptions such as erythema nodosum may also appear in the viraemic phase of B19 infection (Borreda et al., 1992).

I.1.6.3. Haematologic manifestations

I.1.6.3.1. Transient red blood cell aplasia or aplastic crisis (TAC)

TAC, which is the abrupt onset of severe anaemia with absent reticulocytes, can occur as a unique event in the life of patients with a variety of underlying haematologic abnormalities. The first link between TAC and B19 was made in 1981 when parvovirus B19 was detected in a child with sickle cell anaemia hospitalised for aplastic crisis (Pattison et al., 1981). Further evidence, such as B19 viraemia, and a higher prevalence of B19-specific antibodies in TAC patients with sickle cell disease than in controls, supported this link (Pattison et al., 1981; Serjeant et al., 1981). Other studies have demonstrated B19 viremia and/or the presence of specific IgM in all nine children with sickle cell disease suffering from aplastic crisis (Anderson et al., 1982b).

Since parvovirus B19 infects erythroid progenitor cells in the bone marrow and causes temporary cessation of red blood cell production, patients who have underlying haematologic abnormalities are prone to cessation of RBC production if they become infected. These patients consist of those suffering from decreased red cell production or increased destruction or loss. The former include α- and β-thalassemias (Chorba et al., 1986; Lefrère et al., 1986a; Lefrère et al., 1986b; Lefrère and Decazes, 1986) and patients with iron deficiency (Lefrère and Bourgeois, 1986; Graeve and Elliott, 1991). Infection can also cause TAC in individuals with increased red cell destruction or loss, such as in hereditary spherocytosis (Lefrère et al., 1986a; Lefrère et al., 1986c; Lefrère
Chapter I

and Decazes, 1986; Saarinen et al., 1986; Baurmann et al., 1992), sickle cell disease (Anderson et al., 1982b; Chorba et al., 1986; Lefrère et al., 1986a; Lefrère and Decazes, 1986; Saarinen et al., 1986), pyruvate kinase deficiency (Duncan et al., 1983) and autoimmune haemolytic anaemia (Lefrère et al., 1986a; Tomiyama et al., 1988). The result of all these studies suggests that, in predisposed individuals, 60 to 70% of TAC cases are caused by B19 infection (Heegaard and Brown, 2002). Laboratory findings reveal reticulocytopenia (0 to 1% reticulocytes) and anaemia with haemoglobin concentrations falling dramatically (5g/dL) (Sabella and Goldfarb, 1999). Although recovery often follows the appearance of specific antibodies, severe disease with heart failure can be life threatening.

When hospitalisation is required, patients can be monitored and treated with red blood cell transfusions and clinical symptoms usually resolve within 3 to 6 days (Anderson, 1987). Unlike EI, these patients are often viraemic and therefore still contagious and need to be kept in respiratory isolation to prevent nosocomial transmission. Such transmissions have been documented where two outbreaks of EI among nursing staff were caused by two adolescent patients with sickle cell disease and aplastic crisis (Bell et al., 1989).

Parvovirus-induced red blood cell aplasia has also been reported in a child with no underlying haemolytic anaemia (Murray et al., 1993). In a study of volunteers, all four infected subjects had a reticulocytopenia, neutropenia, thrombocytopenia, lymphopenia and a gradual fall in haemoglobin, suggesting that reticulocytopenia can occur in any B19 infection, but usually disappears before development of a rash (Anderson et al., 1985a). In a patient without shortened red cell survival time, the haemoglobin level is not low enough to be symptomatic or to be considered low. Thus anaemia, the other marker of TAC, often fails to be noticed (Anderson, 1987). However, there is no
evidence to support the role of B19 infection in transient erythroblastopenia of childhood (TEC) (Bhambhani et al., 1986, Skeppner et al., 2002).

Lastly, it is important to note that parvovirus-induced TAC has previously been mistaken for myelodysplastic syndrome (MDS), which comprises a heterogeneous group of clonal stem cell disorders characterised by blood cytopenia and dysplastic traits in the bone marrow (Baurmann et al., 1992; Hasle et al., 1994). It was therefore recommended that parvovirus B19 be considered in the differential diagnosis of MDS in both children and adult patients.

I.1.6.3.2. Bone marrow failure

Due to a bone marrow insufficiency triggered by B19 infection, immunocompromised patients are unable to mount a neutralising antibody response. This results in persistent B19 infection that may cause pure red blood cell aplasia (PRCA) and chronic anaemia. PRCA can be characterised as anaemia with the almost complete absence of RBC precursors in the bone marrow, but essentially normal granulopoiesis and megakaryopoisis (Fisch et al., 2000).

Persistent B19 infection and resulting PRCA and chronic anaemia have been documented in five immunodeficient populations: congenital immunodeficiency, lymphoproliferative disorders, transplant patients, those with acquired immunodeficiency syndrome (AIDS) and those with haemophagocytic syndrome.

I.1.6.3.2.1. Congenital immunodeficiency

Several studies have reported the occurrence of PRCA in B19 infected individuals with congenital immunodeficiency, including combined immunodeficiency with immunoglobulins (Nezelof’s syndrome) (Kurtzman et al., 1987; 1989a; Gahr et al., 1991). In such cases, the B19 infection resulted in severe bone marrow failure, with
Chapter I

erythroid hypoplasia and the presence of giant pronormoblasts. Studies on a patient with a 10-year history of PRCA showed a variety of symptoms starting with intermittent fever, back and abdominal pain and fatigue at an early age and progressing to anaemia which was finally corrected by immunoglobulin therapy (Kurtzman et al., 1989a). Depressed serum antibody levels, low natural killer cell count and a high ratio of helper/suppressor T cells suggested underlying immunodeficiency. The notable feature of this case was that the patient’s older brother had developed PRCA simultaneously but died later of sepsis and hepatic cirrhosis due to transfusion haemosiderosis. The post-mortem detection of B19 DNA in fixed spleen tissue confirmed chronic B19 infection in the sibling.

1.1.6.3.2.2. Lymphoproliferative disorders

Patients suffering lymphoproliferative disorders are mostly children with acute lymphoblastic leukaemia who are receiving chemotherapy. The latter is known to impair the immune system and thus persistent B19 infections with bone marrow failure have been described. Several case reports have linked B19 infection in children with malignancies with severe chronic anemia, bone marrow failure and severe prolonged cytopenia (Kurtzman et al., 1988; Azzi et al., 1989; Yoto et al., 1993; Broliden et al., 1998). Administration of immunoglobulin, as well as interruption of chemotherapy to reduce the level of immunosuppression may result in resolution of the B19-induced anaemia.

1.1.6.3.2.3. Transplant patients

Transplant recipients have to undergo immunosuppressive treatments, which make them susceptible to persistent B19 infection. B19 infection following kidney transplants can
result in a range of diseases from PRAC (Corral et al., 1993; Uemura et al., 1995; Holman et al., 1997; Mathias, 1997), severe symptomatic anemia characterised by intranuclear inclusions in bone marrow and requiring transfusions (Pamidi et al., 2000), and chronic anemia (Mathias, 1997). Such chronic B19 infection seems to be more common and severe in recipients of transplants that require more intensive immunosuppression, including liver and cardiac transplants (Thio and Janner, 1996; Anderson and Young, 1997; Wicki et al., 1997). The presence of B19 DNA in a cardiac transplant recipient who presented with severe anaemia was demonstrated by PCR on the serum and a bone marrow aspirate revealed giant pronormoblasts, both findings implying an acute B19 infection (Thio and Janner, 1996). B19 was shown to be the causative agent for severe transfusion dependent anaemia in a lung transplant patient (Kariyawasam et al., 2000) and severe anaemia with reticulocytopenia in two solid organ transplant recipients (one heart and one lung) (Wicki et al., 1997).

Severe anaemia and PRCA have been reported in several cases following allogeneic bone marrow transplant (BMT) (Weiland et al., 1989; Niitsu et al., 1990). In the case of a patient who had suffered acute myeloid leukaemia and developed unexplained pancytopenia nine months after BMT, a bone marrow biopsy revealed a total absence of erythropoiesis and some enlarged cells with inclusions. A few weeks later, the patient developed a non-cardiogenic pulmonary oedema and died of an intracerebral haemorrhage. Post-mortem examination of the sera taken in the course of this illness revealed a prolonged B19 infection but the source of infection could not be determined (Weiland et al., 1989). Similarly, a patient who had suffered acute promyelocytic leukaemia and developed PRCA one month after BMT was thought to have contracted parvovirus B19 from the platelet transfusion (Niitsu et al., 1990).
However, an investigation of serum samples from 201 allogeneic bone marrow recipients, found 3 cases (~1.5%) of acute B19 infection during the second year following BMT, suggesting that B19 is not a frequent cause of anaemia, leukopenia or thrombocytopenia shortly after transplantation (Söderlund et al., 1997a). Interestingly, the infections diagnosed during recovery may present either as primary or secondary immune responses, depending on the immune history of the donor but regardless of the serological status of the recipient before BMT. These findings have been confirmed by a study of 51 BMT recipients who did not develop B19 infection, at least until hospital discharge (Azzi et al., 1993; Söderlund et al., 1997a). It is possible that isolation measures and intravenous immunoglobulin treatment of these patients may have helped to prevent B19 infection.

I.1.6.3.2.4. AIDS

Due to the effect of the human immunodeficiency virus (HIV) on the cellular branch of the immune system, seropositive subjects have an impaired antibody production that can result in persistent infection. Persistent SPV infection and severe anaemia have been observed in monkeys with concurrent acute infection with simian immunodeficiency virus (SIV) (O’Sullivan et al., 1996). This can also be applied to human parvovirus B19, since it was shown to persist in some AIDS patients who have developed PRCA (Frickhofen et al., 1990) or chronic anaemia (Chernak et al., 1995). Giant pronormoblasts in bone marrow suggested the diagnosis and B19 DNA was amplified intermittently over several months. One study found an unusual pattern in B19 infection in AIDS patients: the bone marrow was hypercellular and erythroid precursors increased with abundant intranuclear inclusions (Crook et al., 2000). However, according to the authors, these findings are consistent with the hypothesis that failure to produce
effective B19-specific IgG neutralising antibodies may lead to persistent infection through viral tolerance. Although PRCA can be improved by immunglobulin therapy, some patients may develop EI symptoms, consistent with their immune complexes origin (Brown and Young, 1996). Moreover, a highly active antiretroviral therapy (HAART) that includes the use of protease inhibitors was found to play an effective role in clearing B19 virus leading to a complete remission of B19-associated PRCA, possibly due to an increase in cellular immunity due to HAART (Mylonakis et al., 1999; Taguchi et al., 2001). In a reported HIV positive case, HAART was shown to have restored the humoral immunity since the clinical course of primary B19 infection in this patient resembled that in an immunocompetent individual (Clarke and Lee, 2003). The prevalence of B19-associated anaemia has been investigated in two small-scale studies (10 and 50 individuals, respectively) and neither acute nor persistent B19 viraemia in any HIV-1 patients was reported (Goedert et al., 1997; Anderson et al. 1985a). The rate of B19 infection in a larger cohort study of HIV-seropositive homosexuals was similar to that in the general population (0.5%) (Abkowitz et al., 1993). Nevertheless, 4 of 24 (17%) transfusion-dependent HIV patients presented with B19 viraemia.

I.1.6.3.2.5. Virus-associated haemophagocytic syndrome (VAHS)

VAHS is characterised by histiocytic hyperplasia, prominent haemophagocytosis and cytopenia, as well as a systemic viral illness (Risdall et al., 1979). Although VAHS is usually benign and self-limited, some patients present an underlying immunosuppression. Several studies have reported cases of malignant histiocytosis with PRCA as an unusual complication (Hanada et al., 1986; Reiner and Spivak, 1988).
Chapter I

Parvovirus-associated VAHS have been observed in many cases in both adults and children (Uike et al., 1993; Tsuda et al., 1994; Shirono and Tsuda, 1995; Hoang et al., 1998; Sadahira et al., 1998). Although these studies suggest that B19 is not a rare cause of this condition, further research is needed to determine the role of B19.

I.1.6.3.3. Thrombocytopenia and neutropenia

A fall in white cell count was first noted in healthy volunteers infected with B19 (Anderson et al., 1985a). Acute B19 infection and TAC are often associated with changes in the other blood lineages, resulting in neutropenia (Saunders et al., 1986; Doran and Teall, 1988) and thrombocytopenia (Saunders et al., 1986; Inoue et al., 1991). The latter has shown to develop into idiopathic thrombocytopenic purpura (ITP) (Inoue et al., 1991). The involvement of parvovirus B19 has been suspected in ITP since B19 DNA and/or IgM antibodies against B19, both markers of an acute infection, were detected in this population of patients (Foreman et al., 1988; Lefrère et al., 1989; van Elsacker-Niele et al., 1996; Wehmeier et al., 2000). B19-associated ITP were found in only 5% (Lefrère et al., 1989), 1.7% (van Elsacker-Niele et al., 1996) and 12% (Wehmeier et al., 2000) of the investigated patients presenting ITP. The fact that the latter figure is higher than in the other two studies might be explained by the relatively small number of individuals included in the investigation. Parvovirus infection was suspected as the cause of chronic neutropenia of childhood in a study where B19 DNA by PCR was demonstrated in the bone marrow of 15 of 19 patients (79%), of whom only 6 had serological evidence of B19 infection (McClain et al., 1993). In contrast, a later study detected B19 DNA in the bone marrow of only 1 of 56 (~2%) children and young adults with chronic neutropenia, suggesting no evidence of the involvement of the human parvovirus (Hartman et al., 1994).
I.1.6.3.4. Vasculitis syndromes

Human parvovirus B19 has been associated with several systemic and local necrotising vasculitis syndromes, including polyarteritis nodosa (Corman and Dolson, 1992), Wegener’s granulomatosis (Finkel et al., 1994), Henoch-Schönlein purpura (Lefrère et al., 1986d) and severe digital arterial occlusive disease (Dingli et al., 2000). Although serological data, DNA detection by PCR and in situ hybridisation have suggested a link with B19, it may be that the virus is not directly responsible for the development of these diseases, but rather can aggravate the underlying disease (Bültmann et al., 2003). Moreover, circulating immune complexes may worsen any preexisting vascular disorder. However, other studies have suggested B19 as the aetiologically responsible agent as immunoglobulin therapy led to rapid improvement of the systemic vasculitis manifestations in patients studied (Finkel et al., 1994). Vascular events have also been reported in association with B19 infection and cerebral manifestations in sickle cell disease patients (Wierenga et al., 2001).

I.1.6.4. Rheumatologic manifestations

Another common complication of B19 infection is joint involvement. However, compared with other infectious agents associated with arthritis, such as *Campylobacter* and *Chlamydia*, the prevalence of parvovirus B19 in adult patients with arthritis of less than 3 months’ duration is low (<3%) (Söderlin et al., 2003). Although rheumatologic manifestations only occur in 8% of infected children, they are more frequent in adults (60%) and especially in women (Török, 1992; Freitas et al., 2002). While women usually develop an acute arthropathy with rash and flu-like illness, men rarely present joint symptoms (Woolf et al., 1989). The most common presentation in adults was acute symmetric polyarthritis, usually starting 1 to 6 days after the eruption of the rash.
(Scroggie et al., 2000). The symptoms affect mainly the small joints of the hand followed by wrists, ankles, knees and elbows. Although the symptoms of arthropathy resolve within a few weeks in most cases, some patients (~20%) have been reported with chronic arthropathy for months to years (White et al., 1985; Reid et al., 1985; Woolf et al., 1989). Parvovirus B19 arthropathy mainly affecting the wrists, elbows, shoulders and neck has been described (Luzzi et al., 1985). Although the symptoms persisted for 8 months, the joints became normal to examination 2 months after onset. During this period, a rise in rheumatoid factor to high titre occurred and was noticed for the first time, suggesting that B19 might be responsible for the presence of rheumatoid factor.

B19 infections have also been linked to chronic arthropathy with an unusual involvement of some joints in the spine (Guillaume et al., 2002) and to the development of a rash, stiffness and swelling of hands and arms (Sasaki et al., 1995) in immunocompetent patients. The reappearance years later of fever, joint pain and a transient rash on hands and arms in some cases suggests that B19 may persist in bone marrow, where it may be reactivated. Several studies have reported viral arthritis and symptoms such as joint swelling, particularly of the hands, as well as pain and stiffness associated with lethargy and morning stiffness as common occurrences in patients diagnosed with B19 infection (rash, EI, IgM seroprevalence) (Woolf et al., 1989; Naides et al., 1990; Cassinotti et al., 1995). The presence of rheumatoid factor and B19 infection in arthritis patients is unclear: some studies have indicated an association (Jobanputra et al., 1995, Luzzi et al., 1985; Sasaki et al., 1995) while others have failed to find a link between the presence of rheumatoid factor and B19 infection (Naides et al., 1990).
Further studies have been reported on long-term follow-up of B19 infections with reference to chronic arthritis. In a study of 54 patients with recent B19 infections who had arthralgia, 72% presented with a skin rash, 64% with fever, 61% had arthritis (Speyer et al., 1998). After a mean follow up of five years, arthralgia and malaise were still present in 40% of individuals but none of the patients reported persistence of joint swelling or restricted motion. In a survey involving patients with recent inflammatory polyarthritis, there was serologic evidence of recent B19 infection in just 4 of 147 patients (2.7%), only one of whom did not satisfy criteria for rheumatoid arthritis (RA) (Harrison et al., 1998). Although these various findings tend to suggest that B19 does not typically cause chronic arthritis, other data are contradictory (Murai et al., 1999).

This report followed 67 patients suffering from acute inflammatory polyarthritis for up to six years. B19-specific IgM and B19 DNA were detected in 12 of them (~18%). All B19 cases but one were originally negative for the rheumatoid factor but, two to four months after the onset of infection, four patients became positive. Although B19 DNA could no longer be detected in serum samples of these four individuals, it was still present in bone marrow and synovial tissue long after the initial infection. The persistence of B19 in synovium of patients with chronic arthritis has been investigated despite the fact that the findings do not always agree. B19 DNA was detected in synovium of 15 of 90 patients (17%) with unexplained arthritis, whereas only 1 of 73 (1.37%) cases was positive when the synovial fluid was tested (Cassinotti et al., 1998). Viral DNA has also been found in the synovial tissue of ~42% (5 of 12) of patients with undifferentiated monoarthriritis and in 75% (3 of 4) of those with oligoarthritis, suggesting that these two conditions might eventually evolve to fulfil the criteria for RA (Stahl et al., 2000a), and has been demonstrated in synovium of 75% of RA patients and
in 17% of patients with osteoarthritis (OA) (Saal et al., 1992). These findings indicated a highly disease-related persistence of parvovirus B19 in the RA synovium.

In contrast, an examination of serum and tissue from patients with RA and OA, found B19 DNA in synovium of 10 of 26 patients (~38%) with RA and 9 of 26 (~35%) with OA, but the data were not considered strong enough to support the involvement of B19 in RA pathogenesis (Kerr et al., 1995b). A similar conclusion was drawn from a study including 37 children with juvenile chronic arthritis (JCA) and 27 young healthy adults undergoing joint surgery for trauma as controls (Söderlund et al., 1997b). Although B19 DNA could not be detected in any synovial fluid, bone marrow or serum samples, it was found in the synovial membrane of 8 of 29 patients (28%) with JCA and in 13 of 27 controls (48%). Finally, the presence of B19 DNA was reported more frequently in the synovial membrane of patients with haemophilic arthritis (31%) in comparison to control individuals with athrosis or joint trauma (5%) (Zakrzewska et al., 2001).

All these studies confirmed that B19 DNA might persist in synovium of both healthy immunocompetent individuals and patients with arthritis of unknown origin, whereas it rarely does in synovial fluid. Moreover, tissue was confirmed to be better than synovial fluid for detecting B19 persistence (Söderlund et al., 1997b; Cassinotti et al., 1998). Parvovirus was also found to persist in the bone marrow of asymptomatic individuals and patients with suspected B19 infection (Cassinotti et al., 1997).

The involvement of B19 infection in JCA or juvenile rheumatoid arthritis (JRA) has also been studied by several groups (Nocton et al., 1993; Kishore et al., 1998) who have reported a link between B19 infection and JCA/JRA in 40% to 100% of patients. In contrast, in another study, B19 DNA was infrequently detected in patients with early RA (2 in 61 i.e. 3.3%) but not detected at all in patients with advanced RA (Nikkari et al., 1995). Therefore, although these findings suggest that B19 does not play a
significant role in the aetiopathogenesis of RA, it may cause, in a few cases, a disease that is indistinguishable from RA. The presence of B19 DNA in bone marrow aspirates from four chronic arthropathy patients months to years following acute B19 infection, and in three patients with acute, but nonchronic, joint symptoms suggest that B19 arthropathy is associated with persistence of B19 virus (Foto et al., 1993).

However, it can be argued that the presence of B19 DNA in bone marrow and/or synovium of a symptomatic patient does not prove that the disease is caused by B19 and that in order to demonstrate the role of parvovirus in the pathogenesis of RA, metabolic products such as viral mRNA and proteins, as well as a B19-specific immune response or inflammation should be demonstrated (Ishii et al., 1999; Söderlund-Venermo et al., 2002). One of the strongest indications of a link between B19 and RA was described by Takahashi and coworkers, who detected B19 DNA in the synovial tissues of 30 of 39 patients with RA (77%), OA (15%) and traumatic joint disorders (16%) (Takahashi et al., 1998). Most importantly, a recent study of the link between B19 and RA demonstrated, by in vivo experiments, the presence of B19 as well as the expression of VP1 in follicular dendritic cells, macrophages, T cells and B cells in RA synovium from patients with RA. These findings suggested that the virus was replicating and infectious and that B19 might be involved in the initiation and perpetuation of RA synovitis leading to joint lesions.

The last aspect investigated was the role the HLA type in acute and persistent arthritis. Some studies have shown the association of HLA-DR4 with acute and persistent arthritis (Klouda et al., 1986; Gendi et al., 1996) but no link between HLA-DR1 and persistent arthropathy (Woolf et al., 1989).
The conclusion from all these studies is that there is no significant evidence to conclude that B19 persistence alone is enough to cause chronic arthritis, RA or OA (Ytterberg, 1999; Moore, 2000; Lefrère et al., 1985a; Stierle et al., 1987). Further research might give an answer to this controversial question of the role of B19 in chronic arthritis and in RA in particular. Historical records reveal that RA is a relatively new disease in Europe, only appearing after the return of explorers from the new world at the end of the 15th century (Altschuler, 1999). In contrast, the disease existed in North America for many thousands of years. EI, which is known to be caused by parvovirus B19, was also first described in the old world in 18th century (Van Elsacker-Niele and Anderson, 1987). Thus, B19 may have been introduced into Europe around the 16th century about the same time as the appearance of RA (Altschuler, 1999).

Parvovirus B19 has also been suspected of being involved in the autoimmune connective tissue disease called systemic lupus erythematosus (SLE), which is characterised by auto-reactive cells and autoantibodies that can potentially affect all organ systems, including the heart, lungs, skin, kidneys and central nervous system (Severin et al., 2003). Several infectious agents, such as retroviruses (Herrmann et al., 1996), EBV (James et al., 1997), and CMV (Rider et al., 1997) have also been suspected of triggering the onset of SLE. However, the similarities between B19 infection and SLE are striking, making it sometimes difficult to differentiate between them (Negro et al., 2001; Trapani et al., 1999; Moore et al., 1999; Nesher et al., 1995). Other reports have demonstrated a link between B19 infection and SLE (Fawaz-Estrup, 1996) and connective tissue disease (Crowson et al., 2000). Studies on SLE patients demonstrated that B19 DNA was detected more commonly in sera from SLE patients without specific-B19 antibodies than in those with antibodies, suggesting that B19 infection in SLE patients might be due to a lack of anti-B19 antibodies, either because...
of the immunocompromised state of the host, or the use of immunosuppressive drugs (Hsu and Tsay, 2001). In contrast, a Swedish study concluded that while the possibility that B19 might be a trigger of SLE in a minor proportion of SLE patients, in the general population, B19 is unlikely to be the aetiological agent in SLE (Bengtsson et al., 2000). In conclusion, although these findings seem to indicate that parvovirus B19 may be involved in pathogenesis or expression of SLE, there are no clear causative associations to date (Severin et al., 2003). No link between B19 and another autoimmune disease, dermatomyositis, which is characterised by inflammatory myopathy, has been demonstrated, either by the detection of B19 DNA in muscle biopsies or the expression of VP1 and VP2 capsid proteins by immunohistochemistry (Chevrel et al., 2003).

To conclude, it is important to consider the diagnosis of coincidental parvovirus B19 in patients with pre-existing rheumatic diseases where there are unusual features, e.g. Behçet’s disease, which is characterised by arthralgia, mouth, nasal and genital ulcers, conjunctivitis and facial swelling (Longhurst et al., 2001).

I.1.6.5. B19 infection during pregnancy and hydrops fetalis

The classical definition of hydrops fetalis is “the presence of excessive fluid accumulation in at least two fetal serous cavities” (Forouzan, 1997). An example of one of these cavities is the amniotic sac. Hydrops fetalis is the final stage of a highly morbid condition, caused by many different fetal, placental, and maternal diseases. Although the condition was described more than 300 years ago, only recent advances have allowed the differentiation of the various aetiologies involved. Hydrops fetalis can be classified either as immune or nonimmune (White, 1999). The former results from a rhesus incompatibility between the mother and fetus that result in maternal antibodies against the fetal red blood cell antigens crossing through the placenta and causing...
severe fetal anaemia. On the other hand, nonimmune hydrops can have many different causes. One of them can be haematological disorders causing fetal anaemia. A number of infections including syphilis, toxoplasmosis, coxsackievirus, herpes simplex virus (HSV), respiratory syncytial virus (RSV), rubella and CMV have also been associated with this condition (Forouzan, 1997).

Numerous studies have demonstrated a convincing causal link between intrauterine fetal infection by parvovirus B19 and nonimmune hydrops fetalis. One of the first publications reported a case of intrauterine B19 infection associated with hydrops fetalis during an outbreak of EI (Brown et al., 1984). Postmortem examination revealed generalised subcutaneous oedema with serous effusions in the pleural, pericardial and peritoneal cavities. Shortly after, a case of intrauterine fetal death (IUFD) at term with serological evidence of recent B19 infection was reported (Knott et al., 1984). A study in Germany looked at 2,279 pregnant women between 1985 and 1988 and found 54% with only anti-B19 IgG antibodies and 5% with both IgG and IgM antibodies, indicating an acute infection (Enders and Biber, 1990). Of these acute infections, 32% (36 of 114) were from women in the first, 54% (62 of 114) in the second and 14% (16 of 114) in the third trimester. The rate of hydrops fetalis was 8.7% while the rate of fetal death was 7.8%. Seroprevalence of anti-B19 IgG antibodies amongst pregnant women was 30% in Singapore (Wong et al., 2000) whereas it was 64% in Melbourne, Australia (Karunajeewa et al., 2001). The seroprevalence of anti-B19 IgG and IgM antibodies was investigated in pregnant women in Kuwait and found to be 53.3% and 2.2%, respectively (Makhseed et al., 1999). Moreover, the rate of fetal loss was 15.4% in women with acute infection, all of which occurred in the first two trimesters. This rate was significantly higher than other studies (Enders and Biber, 1990; Miller et al., 1998) possibly because of the difference in the size of the cohorts studied. Studies have
Chapter I confirmed that fetal loss, with or without nonimmune hydrops, was confined to B19 infection in the first 20 weeks of gestation (Miller et al., 1998; Nunoue et al., 2002).

A prospective study of women experiencing third-trimester IUFD showed that 7.5% had detectable B19 DNA in freshly frozen placental tissue, suggesting that B19 PCR should be included in the routine investigation of IUFD, like it is with hydrops fetalis (Skjöldebrand-Sparre et al., 2000). In a similar study during a nonepidemic period in Sweden, B19 was detected in 3% of placental tissues from first-trimester fetal losses but in 12% from second-trimester (Nyman et al., 2002). None of the placental tissues from full-term normal pregnancies were DNA positive. Another Swedish survey confirmed that the presence of B19 DNA in cases of late second-trimester fetal death is common (15%) and that most cases are non-hydropic (Tolfvenstam et al., 2001b). The authors reached the same conclusion for third-trimester fetal losses, which contradicts other findings (Nyman et al., 2002) which suggest that the reduced rate of fetal loss during the third trimester seems to be due to the ability of the fetus to mount an immune response to the virus (Brown, 1989).

There are conflicting reports on the link between B19 infection and late intrauterine death in non-hydropic fetuses (Tolfvenstam et al., 2001b; Sebire, 2001; Crowley et al., 2001). Overall, B19 is not considered as a notable cause of late intrauterine death in non-hydropic fetuses as PCR detection of B19 DNA in placenta may be due to such specimens containing maternal blood, which may still be viraemic, even after resolution of B19 infection rather than fetal infection. Thus conventional techniques, including serological testing of maternal serum and immunohistochemical staining of fetal tissues are necessary to confirm diagnosis of B19 in IUFD. ISH and PCR of fetal tissues (including heart, lung, brain and thymus) have been used to confirm B19 infection in cases of IUFD (Salimans et al., 1989b; Lowen and Weinstein, 1997). Studies on
Chapter I

Hydropic fetuses have described numerous features including viral intranuclear inclusions in bone marrow and blood cells (Burton, 1986), erythroid precursor cells from most fetal tissues tested, including lung, liver, heart, kidney, thymus, spleen, pancreas, intestine, diaphragm, brain and rib and bone marrow (Morey et al., 1992), lesions in the central nervous system and in the liver (Garcia et al., 1998), multinucleated giant cells of macrophage/microglia lineage as well as many small calcifications around the vessels, especially in the cerebral white matter (Isumi et al., 1999). Finally, histologic examination of hydropic fetal tissues sometimes have shown changes in all organs, particularly the liver, where many hepatocyte nuclei showed degeneration, and signs of apoptosis with peripheral condensation of chromatin in many erythroid cells, despite the absence of intranuclear inclusions (Anand et al., 1987).

Thus, it is important to screen and identify all pregnant women who may have been exposed to B19 infection (Kelly et al., 1999). In Great Britain, recent guidelines on management of parvovirus B19 and other rash illnesses in pregnancy have been compiled by the former Public Health Laboratory Services (PHLS), now known as the Health Protection Agency (HPA) (Morgan-Capner et al., 2002). These recommendations include screening all pregnant women with a non-vesicular rash illness simultaneously for rubella and parvovirus B19 infection and all pregnant women who have had significant contact with a person suffering from a non-vesicular illness for asymptomatic parvovirus B19 infection, a significant contact being defined as “being in the same room for over 15 minutes, or face-to-face contact” (Morgan-Capner et al., 2002). As for women with proven parvovirus B19 infection in the first 20 weeks of pregnancy, they “should be followed by regular ultrasound scanning, and referred to regional units of fetal medicine if hydrops fetalis is detected” (Morgan-Capner et al., 2002). Different management of B19 infection in pregnancy can lead to different
outcomes in cases of hydropsis. Two options are available: either diagnostic cordocentesis and intrauterine transfusion or management of the case expectantly, although the latter option presents the highest risk of fetal death (Xu et al., 2003). In some cases, spontaneous resolution of hydropsis occurs without the need of transfusion (Petrikovsky et al., 1996). A useful marker in B19 infections is maternal serum alpha-fetoprotein (MsAFP) levels which have been shown to be elevated in several women who subsequently aborted B19-infected fetuses (Anderson and Hurwitz, 1988; Carrington et al., 1987). Monitoring of this marker can also be useful for detecting abnormalities at least four weeks before detection by ultrasound. Such abnormalities include placentomegaly, myocarditis, and generalised subcutaneous oedema greater than 5mm and ascites, pleural and pericardia effusion (Suchet et al., 2000). For those fetuses that make a spontaneous recovery, as well as for those, less fortunate, who develop hydrops fetalis, no signs of any structural fetal anomaly have been observed, either antenatally, at birth or post-mortem nor any serological evidence of persistent infection after maternofetal B19 infection (Suchet et al., 2000; Miller et al., 1998; Dembinski et al., 2003).

In addition to the risks for the fetus, B19 infection can also affect the pregnant woman, who might experience complications. The first factor that comes to mind is psychological, since the irregular fetal heart rate pattern and the condition of the fetus in general can often lead to stress for the mother-to-be. Other complications include maternal anaemia, pregnancy-induced hypertension, antepartum hemorrhage but also malpresentation of the fetus at the time of birth, difficult vaginal delivery, leading to a higher caesarean delivery rate in those women and prematurity (Forouzan, 1997). However, no link has been demonstrated between B19 infection of the fetus (with no signs of maternal B19 infection and hydropsis fetalis) and premature birth (Koga et al., 2003).
Chapter I

2001), but this conclusion is only based on a small scale study and further investigations are necessary using an appropriate control cohort.

I.1.6.6. Involvement of other organs

I.1.6.6.1. Liver

When there is no evidence of the involvement of the five major hepatitis viruses (A, B, C, D and E), the nature of the agent that causes acute fulminant liver failure (AFLF) has been unclear and controversial. Cases of hepatitis of unknown aetiology are often associated with aplasia (Pol et al., 1993; Oriol et al., 1994; Cattral et al., 1994), which is itself commonly caused by parvovirus B19 infection. Studies have shown that aplastic anaemia is a common complication among children undergoing transplantation for AFLF (Cattral et al., 1994) and have identified B19 DNA in native livers of several patients with cryptogenic FLF and undergoing such transplantation who did not have associated aplastic anaemia (Langnas et al. 1995; Sokal et al., 1998). In addition, several groups have reported acute viral hepatitis of unknown origin associated with B19 infection, suggesting that testing for B19 infection in non-A, non-B, non-C hepatitis is as relevant as testing for EBV and CMV (Yoto et al., 1996a; Naides et al., 1996; Hillingsø et al., 1998). However, detecting viral DNA in the liver tissue of patients with fulminant hepatitis is not sufficient to demonstrate active viral infection.

Using a specific and sensitive immune adherence PCR (IA-PCR) assay in which B19 viral particles were captured by monoclonal antibodies on solid phase before PCR amplification, the presence of full virions was thus demonstrated in 83% of livers from patients with non-A to E AFLF associated with aplasia and in 75% without aplasia, compared to 17% from patients with AFLF of known aetiology and 18% of controls with chronic or neoplastic liver disease (Karetnyi et al., 1999). Moreover, mRNA for
B19 structural proteins was detected in the tissues of IA-PCR positive livers, suggesting replication of the virus and providing evidence for B19 involvement in liver damage. B19 DNA has also been detected frequently in adults with severe liver damage. However, B19 DNA has also been detected in livers from anti-B19 IgG positive patients without hepatic disease suggesting that B19 DNA might persist in the liver but further research is needed to confirm this hypothesis (Eis-Hübinger et al., 2001). Other studies have reported hepatitis in a patient with B19 infection who also developed myositis and life-threatening interstitial lung disease (ILD) (Bousvaros et al., 1998) and a renal transplant recipient who developed fibrosing cholestatic hepatitis (FCH), possibly related to a persistent B19 infection (Shan et al., 2001). Following immunosuppressive therapy, a persistent and increased viral replication would indeed further aggravate an aplastic anaemia and a hepatic failure secondary to FCH. Parvovirus B19 DNA was detected in liver tissue and B19 particles accumulated in the cytoplasm of enlarged hepatocytes. In contrast, no evidence has been reported to link B19 to “cryptogenic” chronic hepatitis (Arista et al., 2003).

I.1.6.6.2. Lungs

Reports of lung disease associated with B19 infection in humans are few. B19-specific IgM antibodies have been detected in 21 young children with prolonged obstructive respiratory diseases, including bronchitis, bronchiolitis, laryngitis and acute asthmatic attacks in those known to be suffering from bronchial asthma (Wiesbitzky et al., 1991), while a possible association with B19 in an immunodepressed patient with pneumonia has been described (Zerbini et al., 1992). ILD was reported in a patient who showed a prolonged and severe illness but no clinical or laboratory evidence of underlying immunodeficiency but with confirmed serological and PCR data on B19 infection at the
time of onset of illness (Bousvaros et al., 1998). In this case, the systemic persistence of B19 in the blood and lungs and the simultaneous development of ILD are unlikely to be coincidental. It is thus possible that the lung damage was indirectly caused by B19 infection, perhaps through the host immune response. In addition to ILD, it has been proposed that B19 is associated with acute chest syndrome (ACS), a major source of mortality among sickle cell disease (Lowenthal et al., 1996; Wierenga et al., 2001). This condition is characterised by the presence of pleuritic chest pain, fever, rales on lung auscultation and pulmonary infiltrates on chest X-ray. However, further research is necessary to establish an etiologic role of B19 in ACS.

I.1.6.6.3. Heart

Among the numerous complications following B19 infection are acute myocarditis and congenital heart disease (Saint-Martin et al., 1990; Borreda et al., 1992; Tsuda et al., 1994; Heegaard et al., 1998; Enders et al., 1998). In these cases, B19 structural proteins were detected by immunocytochemistry on myocardial tissue sections, or B19 DNA was detected in the myocardial cells, or specific IgM antibodies were present, indicating an acute B19 infection. These cases include the first, and as yet only, case of myopericarditis due to parvovirus 6 months after acute B19 infection (Chia and Jackson, 1996). Studies have shown that B19 might be another cause of heart failure and should thus be considered in similar cases (Malm et al., 1993) and may also be involved in congenital heart disease (Wang et al., 2000).

I.1.6.6.4. Kidneys

Very little is known about the renal involvement caused by B19 infection. Several studies have investigated the link between B19 and focal and segmental glomerulosclerosis (FSGS) (Markenson et al., 1978; Tanawattanacharoen et al., 2000)
and glomerulonephritis with proteinuria following aplastic crisis caused by parvovirus B19 in patients with homozygous sickle cell disease (Wierenga et al., 1995). However, in one of the studies on FSGS patients, although B19 DNA could be detected in these patients, ISH studies failed to detect B19 DNA in any of the kidney tissue samples, implying the lack of ongoing, high-level viral replication. These findings indicated that kidneys might be a frequent reservoir of latent parvovirus B19 DNA but did not establish a definitive role for that DNA. However, certain individuals with FSGS might have active, perhaps transient, infection. B19 infection has also been associated with EI and/or arthropathy with transient urinary abnormalities and (Takeda et al., 2001), EI associated with nephritic syndrome (Ohtomo et al., 2003) and nephritic syndrome with renal impairment and (one with transient acute renal failure) in patients with sickle cell disease (Wierenga et al., 2001). Finally, persistent infection linked to renal involvement resulting in glomerulopathy was demonstrated in immunosuppressed patients, including renal transplant recipients (Moudgil et al., 1997). Although the acute or persistent B19 infection preceding renal involvement tends to point to a possible causal link, the precise mechanism of pathogenesis is still unclear because of the failure to demonstrate viral antigen in the kidney using immunohistochemical techniques.

I.1.6.6.5. Central nervous system

Encephalitis meningitis and acute cerebellar ataxia are rare complications of EI in children (Balfour et al., 1970; Okumura and Ichikawa, 1993; Shimizu et al., 1999). There have been reports of direct invasion of B19 into the central nervous system (CNS) in a case of aseptic meningitis, in which B19 DNA, IgM and IgG antibodies were detectable in cerebrospinal fluid (CSF) (Okumura and Ichikawa, 1993). Moreover, B19 DNA was detected in the CSF of 7 of 162 patients (4.3%) with
meningoencephalitis, suggesting that B19 infection should be included in the differential diagnosis of this condition during the neonatal period, childhood and adolescence (Barah et al., 2001) and in a paediatric case presenting with unexplained neurological illness (Yoto et al., 1994). In contrast, B19 DNA could only be detected in the serum and not in the CSF of a 2-year-old boy with acute cerebellar ataxia (Shimizu et al., 1999) suggesting that the mechanism for acute cerebellar ataxia might not involve direct viral invasion but could be caused by a transient vascular reaction in the cerebellum during B19 infection.

Parvovirus B19 infection of the fetus has already been shown to be associated with lesions in the central nervous system (Garcia et al., 1998). In a retrospective study of aplastic crises in Jamaican patients with sickle cell disease, ten patients had cerebrovascular complications in temporal association with B19 infection and presented with haemiplegia, seizures and encephalitis, which might be related to B19-specific immune complexes (Wierenga et al., 2001). Adult cases of B19-associated CNS infections are also few. There have been reports of B19 infection (persisting for up to nine months) in the blood and in CSF of an immunocompetent patient following an acute infection with meningitis (Cassinotti et al., 1993b), in the CSF of a patient with malignant lymphoma who developed encephalitis and later died (Heegaard et al., 1995) and in an immunocompetent patient who developed encephalitis complicated by prolonged status epilepticus (Skaff and Labiner, 2001). The possibility that a different B19 genotype may be associated with encephalopathy requires further confirmation (Umene and Nunoue, 1995).

B19 has also been shown to be the causative agent in a patient with neuralgic amyotrophy (Pellas et al., 1993) and to result in a more severe meningoencephalitis in a patient with a coomitant mumps infection (Yazawa et al., 2002). Finally, a study of
autistic children did not support a link between infantile autism and B19 (Anlar et al., 1994). Tables 1.4, 1.5 and 1.6 show a summary of the clinical manifestations following B19 infection, those thought to be linked to B19 infection and those unlikely to be caused by B19.
<table>
<thead>
<tr>
<th>Clinical manifestation</th>
<th>References</th>
</tr>
</thead>
<tbody>
<tr>
<td>EI</td>
<td>Lauer et al., 1976; Anderson et al., 1983; Nunoue et al., 1985; Shiraiishi et al., 1985; Anderson, 1987; Woolf et al., 1989; Brown and Young, 1996; Sabella and Goldfarb, 1999; Kelly et al., 1999</td>
</tr>
<tr>
<td>Hydrops fetalis</td>
<td>Brown et al., 1984; Knott et al., 1984; Burton, 1986; Amand et al., 1987; Salimans et al., 1989b, Enders and Biber, 1990; Morey et al., 1992; Lowen and Weinstein, 1997; Garcia et al., 1998; Miller et al., 1998; Makhseed et al., 1999; Isumi et al., 1999; Skjøldebrand-Sparre et al., 2000; Nyman et al., 2002; Wong et al., 2000; Karunajeewa et al., 2001; Tolfvenstam et al., 2001c; Sebire, 2001; Crowley et al., 2001; Nunoue et al., 2002</td>
</tr>
<tr>
<td>Arthropathy</td>
<td>Ager et al., 1966; Joseph, 1986; Török, 1992; Freitas et al., 2002; Woolf et al., 1989; Scroggie et al., 2000; Luzzi et al., 1985</td>
</tr>
<tr>
<td>Thrombocytopenia</td>
<td>Saunders et al., 1986; Inoue et al., 1991</td>
</tr>
<tr>
<td>Neutropenia</td>
<td>Saunders et al., 1986; Doran and Teall, 1988</td>
</tr>
<tr>
<td>TAC</td>
<td>Pattison, 1981; Serjeant et al., 1981; Anderson et al, 1982a; Duncan et al., 1983; Chorba et al., 1986; Lefrère et al., 1986a; Lefrère et al., 1986b; Lefrère et al., 1986c; Lefrère and Decazes, 1986; Lefrère and Bourgeois, 1986; Saarinen et al., 1986; Anderson, 1987; Bell et al., 1989; Graeve and Elliott, 1991; Tomiyama et al., 1988; Baumann et al., 1992; Heegaard and Brown, 2002</td>
</tr>
<tr>
<td>PRCA</td>
<td>Kurtzman et al., 1987; Kurtzman et al., 1988; Kurtzman et al., 1989a; Azzi et al., 1989; Gahr et al., 1991; Yoto et al., 1993; Corral et al., 1993; Uemura et al., 1995; Holman et al., 1997; Mathias, 1997; Broliden et al., 1998; Fisch et al., 2000; Pamidi et al., 2000;</td>
</tr>
<tr>
<td>Purpuric rash-like</td>
<td>Lefrère et al., 1985b; Mortimer, 1985; Li Loong et al., 1986; Naides et al., 1988; Weiland et al., 1989; Niitsu et al., 1990; Harms et al., 1990; Bagot and Revuz, 1991; Borreda et al., 1992; Seabury Stone and Murph, 1993; Labbé et al., 1994; Nelson and Stone, 2000; Ghigliotti et al., 2000; Nelson et al., 2000</td>
</tr>
<tr>
<td>illness</td>
<td></td>
</tr>
<tr>
<td>Clinical manifestation</td>
<td>References</td>
</tr>
<tr>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>Chronic arthropathy</td>
<td>White et al., 1985; Reid et al., 1985; Woolf et al., 1989; Sasaki et al., 1995; Speyer et al., 1998; Murai et al., 1999; Guillaume et al., 2002</td>
</tr>
<tr>
<td>RA</td>
<td>Lefrère et al., 1985a; Stierle et al., 1987; Saal et al., 1992; Kerr et al., 1995b; Nikkari et al., 1995; Cassinotti et al., 1998; Takahashi et al., 1998; Ytterberg, 1999; Stahl et al., 2000a; Moore, 2000;</td>
</tr>
<tr>
<td>JCA and JRA</td>
<td>Nocton et al., 1993; Söderlund et al., 1997b; Kishore et al., 1998</td>
</tr>
<tr>
<td>VAHS</td>
<td>Uike et al., 1993; Tsuda et al., 1994; Shirono and Tsuda, 1995; Hoang et al., 1998; Sadahira et al., 1998</td>
</tr>
<tr>
<td>ITP</td>
<td>Foreman et al., 1988; Lefrère et al., 1989; Inoue et al., 1991; van Elsacker-Niele et al., 1996; Wehmeier et al., 2000</td>
</tr>
<tr>
<td>Vasculitis syndromes</td>
<td>Lefrère et al., 1986d; Corman and Dolson, 1992; Finkel et al., 1994; Dingli et al., 2000; Wierenga et al., 2001; Bultmann et al., 2003</td>
</tr>
<tr>
<td>Hepatitis</td>
<td>Yoto et al., 1996a; Naides et al., 1996; Hillingsø et al., 1998; Bousvaros et al., 1998; Karetnyi et al., 1999; Eis-Hübinger et al., 2001; Shan et al., 2001; Arista et al., 2003</td>
</tr>
<tr>
<td>Acute myocarditis and CHD</td>
<td>Saint-Martin et al., 1990; Borreda et al., 1992; Tsuda et al., 1994; Heegaard et al., 1998; Enders et al., 1998; Wang et al., 2000</td>
</tr>
<tr>
<td>Manifestations in the central nervous system</td>
<td>Balfour et al., 1970; Cassinotti et al., 1993b; Okumura and Ichikawa, 1993; Pellas et al., 1993; Yoto et al., 1994; Heegard et al., 1995; Umene and Nunoue, 1995; Shimizu et al., 1999; Wierenga et al., 2001; Skaff and Labiner, 2001; Barah et al., 2001</td>
</tr>
</tbody>
</table>
Table 1.6: Clinical manifestations unlikely to be linked with B19 infection

<table>
<thead>
<tr>
<th>Clinical manifestation</th>
<th>References</th>
</tr>
</thead>
<tbody>
<tr>
<td>TEC</td>
<td>Bhambhani et al., 1986; Skeppner et al., 2002</td>
</tr>
<tr>
<td>SLE</td>
<td>Nesher et al., 1995; Trapani et al., 1999; Moore et al., 1999; Bengtsson et al., 2000; Negro et al., 2001; Severin et al., 2003</td>
</tr>
<tr>
<td>ILD</td>
<td>Bousvaros et al., 1998</td>
</tr>
<tr>
<td>ACS</td>
<td>Lowenthal et al., 1996; Wierenga et al., 2001</td>
</tr>
<tr>
<td>FSGS and other renal manifestations</td>
<td>Markenson et al., 1978; Moudgil et al., 1997; Tanawattanacharoen et al., 2000; Takeda et al., 2001; Wierenga et al., 2001; Ohtomo et al., 2003</td>
</tr>
<tr>
<td>Infantile autism</td>
<td>Anlar et al., 1994</td>
</tr>
</tbody>
</table>
1.1.6.7. Pathogenesis

The clinical outcome of human parvovirus B19 infection involves three major pathogenic components: the cytopathic effect of the virus on susceptible and dividing cells, the humoral immune response and the result of antibody deficiency (Cherry, 1999). Although each potential pathogenic system will be discussed separately, the pathogenesis of B19 virus is complex and often involves a combination of these mechanisms.

The onset of viraemia occurs six days after infection and is associated with infection of erythrocytes in the bone marrow after attachment to these cells through the receptor (Brown et al., 1993). The local replication is one of the first pathogenic mechanisms in several conditions, including EI, TAC, bone marrow failure, congenital red cell aplasia, vasculitis and hepatitis (Kerr, 2000). The reticulocytopenia observed in most patients is caused by the cytopathogenic effect of the virus on erythroid progenitors. Although this temporary phenomenon goes unnoticed in otherwise healthy children and adults, it can lead to TAC in those with underlying haemolytic disorders, or to PRCA in those unable to mount an immune response to the virus. Additionally, the massive destruction of the erythroid lineage cells through apoptosis leads to severe anaemia and results in heart failure of the infected fetus, and eventually to hydrops fetalis (Cherry, 1999; Yaegashi, 2000). However, in order to understand the potential risks involved in transplacental infection, it is important to establish which cell types in the developing fetus are susceptible to viral attack. Reports have shown the presence of viral non-structural gene products in the liver, lung and, to a smaller extent, other tissues (e.g. spleen) in the infected fetus (Cotmore et al., 1986). These findings are suggestive of an active viral replication in at least one cell type in these tissues. Fetal liver contains islands of haematopoietic tissue, which are likely to contain susceptible cells. B19 can thus
presumably bind to the cell surface and penetrate liver cells not only in the fetus but also in the adult.

Similarly, replication in the lung tissue is not unexpected, since it is highly probable that B19 is transmitted as an infection of the respiratory tract (Anderson et al., 1985a) and that it therefore replicates in at least one cell type present therein. It is likely that B19 can bind to other glycosphingolipids located in liver, kidney and bowel tissues, but not in lung (Cooling et al., 1995). In comparison with the adult tissue, many more cell types are undergoing cell division in the fetus. Therefore, although B19 is mainly haematotropic in adults, it might have a more extensive tissue tropism in the fetus, thereby causing more damage to the fetal tissues and organs (Cotmore et al., 1986). The destruction of erythrocytes can also lead to excess production of red blood cells by the fetus which tries to compensate for the loss, leading to hepato-splenomegaly (Garcia et al., 1998). The direct infection of hepatocytes has been implicated in cases with severe liver disease (Morey et al., 1992). Such severe necrosis may lead to decreased production of albumin with lowered plasma oncotic pressure (Suchet et al., 2000). This, associated with severe anaemia, can produce oedema and thereby contribute to high cardiac output failure. In third-trimester fetuses, it seems that cardiac decompensation is the main determining factor affecting the survival of the fetus. However, the majority of reported fetal deaths appears to be in the second trimester, as the fetus is at greatest risk of hydrops because of the rapid increase in fetal red cell mass at that time of gestation.

Since in situ hybridisation located B19 gene in the nucleus of cardiac cells of CHD sufferers, it might influence gene expression and thereby affect the development of the heart, which could result in CHD (Wang et al., 2000). The cytopathic effect might involve the cytotoxicity of NS-1 protein (Ozawa et al., 1988a) as well as its ability to upregulate cytokine production. Using a transgenic mouse model for nonimmune
hydrops fetalis induced by the NS-1 gene of B19, it has been demonstrated that the nonstructural protein plays a crucial role in the cytotoxicity and the outcome of intrauterine B19 infection (Chisaka et al., 2002).

Previously, the involvement of NS-1 protein in apoptosis had been controversial. The initiation of cell death was observed to occur 24 hours after the induction of NS-1, suggesting that the nonstructural protein might mediate the apoptosis of the erythroid cell lines used in this study (Yaegashi, 2000). Apoptosis was characterised by cell rounding, chromatin condensation and DNA fragmentation. However, other studies could not find any correlation between the presence of anti-NS-1 antibodies in pregnant women and the occurrence of fetal complications (Searle et al., 1998). As for upregulation of cytokine production, NS-1 protein has been shown to induce activation of IL-6 gene expression, which supports the possible relationship between B19 infection and polyclonal activation of B-cells in RA (Moffatt et al., 1996). In addition, in vitro infectivity experiments, have shown that susceptible cell lines (tonsillar cells and macrophages) became infected when cocultured with RA synovial cells, but not OA synovium (Takahashi et al., 1998). Coculture generated not only the expression of VP1, but also an enhanced production of IL-6 and TNF-α that was significantly inhibited by the induction of neutralising antibodies for B19. Therefore, it appears that B19-positive T cells and macrophages might infiltrate into the synovium and recruit circulating immunocytes. Synovial T cells and macrophages, continuously activated by B19, secrete inflammatory cytokines, such as TNF-α and IL-6, to stimulate a variety of synovial cells via the autocrine and paracrine network of cytokines. This leads to an excessive production of cytokines and proteolytic enzymes resulting in persistent inflammation and tissue destruction, including cartilage, joints and bone erosion (Ishii et al., 1999).
Additionally, both TNF-α and NS1 have been involved in apoptosis of erythroid cells leading to reticulocytopenia (Moffatt *et al.*, 1998; Sol *et al.*, 1999). An increase in TNF-α has been described in an adult patient presenting with VAHS and myocarditis, as well as an increase in macrophage-colony stimulating factor (M-CSF) and granulocyte-colony stimulating factor (G-CSF) (Tsuda *et al.*, 1994). This patient had neutrophilia rather than the expected neutropenia and it was proposed that B19 might induce the production of M-CSF, which could in turn activate monocytes and macrophages to proliferate into abnormal haemophagocytes and to produce G-CSF and TNF-α (Tsuda *et al.*, 1994). Due to the disrupted release of G-CSF, mobilisation of neutrophils might have overcome the cell destruction.

Several mechanisms have been proposed regarding the implication of B19 in the pathogenesis of liver damage and hepatitis. Mutations identified in the NS1 gene might generate variant B19 virus with hepatotoxic NS1 that would result in apoptosis of hepatocytes (Naides *et al.*, 1996). Alternatively, B19 might have a direct effect on hepatocytes and the action of various cytokines (including IFN-γ) might result in liver dysfunction via immunological mediation (Yoto *et al.*, 1996a; Yoto *et al.*, 1996b).

The usual manifestations of primary B19 infection are EI in children and arthralgia in adults, both starting about 17 days after infection when the viraemia has cleared (Anderson *et al.*, 1985b). In patients with B19-associated arthritis, low serum complement levels and circulating immune complexes are found (White *et al.*, 1985). Moreover, a study in Spain, involving 43 patients diagnosed with B19 infection resulting in various clinical outcomes, revealed that 81.6% of cases had detectable circulating immune complexes (García-Tapia *et al.*, 1995). Taken together, these findings tend to confirm that immune-mediated pathogenesis, in the form of deposition
of immune complexes, is involved. Such a mechanism was also found in mink affected
with Aleutian disease as anti-B19 IgA-B19 antigen complexes deposited in renal
glomeruli (Portis and Coe, 1979). In humans, the occasional renal involvement in B19
infection was discussed previously. Although it has been suggested that B19 could bind
to and penetrate some kidney cells, it is more plausible that the renal lesions observed in
some studies might be caused by an immune complex-mediated phenomenon which is
closely related to B19 infection in the host (Cooling et al., 1995; Takeda et al., 2001).
Such immune complex deposits were indeed recently found in the renal biopsy of an 8-
year-old child who developed nephritic syndrome during the course of EI due to
parvovirus B19 (Ohtomo et al., 2003).

Serum antinuclear antibodies (ANA) have been described in several patients with acute
polyarthritis caused by B19 (Cobeta-García and Rodilla, 2000). Three months later, the
clinical symptoms had completely resolved, anti-B19 IgG antibodies were positive and
IgM antibodies and ANA were undetectable. Whether these ANA play a role in the
pathogenesis is still unclear. Several patients infected with B19 and suffering from
chronic symmetric polyarthritis resembling RA have also been shown to produce
autoantibodies (Lunardi et al., 1998). Patients had symptoms and IgM antibodies to B19
for 4 months to 2 years. Cross-reactivity of these anti-B19 antibodies with a variety of
antigens including keratin, collagen type II, single-stranded DNA and cardiolipin have
been demonstrated. These findings were later confirmed by a study showing the
production of anti-cardiolipin as well as anti-neutrophil cytoplasmic antibodies in
patients with EI and polyarthralgia, polyarthritis and mild fever (Chou et al., 2000)
suggestive of molecular mimicry or epitope spreading, and a link of B19 to the
induction of an autoimmune response that could perhaps lead to the development of
some SLE cases. However, it is still not clear why antibodies would cross-react with
such a wide range of autoantigens (Ytterberg, 1999). Other studies have confirmed that a number of mechanisms might be involved in the induction of autoimmune disease by B19, including the molecular mimicry mentioned above and the induction of enhanced cytokine production via the NS1 protein (Lehmann et al., 2002).

One of the mechanisms that could trigger the production of anti-phospholipid (aPL) antibodies, found in paediatric and adult patients with rheumatic disease, might be the phospholipase A2-like activity associated with the carboxy-terminal domain of the VP1 unique region (Zádori et al., 2001; Lehmann et al., 2002; Dorsch et al., 2002). The latter mechanism has been supported by the fact that aPL antibodies are frequently found in serum of children with juvenile idiopathic arthritis previously infected by B19 and presenting a persistent infection (von Landenberg et al., 2003). Moreover, adult patients with aPL antibodies also appear to have a high incidence of persistent B19 infection, indicating that parvovirus might be directly implicated in the development of autoimmune responses via aPL.

The implication of NS1 in cytotoxicity was recently proposed in the case of a patient with mixed connective tissue disease and arthralgia (Kerr and Behan, 2002). Although the patient was weakly positive for ANA, she did not develop any other autoantibodies and parvovirus B19 DNA was detected in the skeletal muscle. The NS1 gene had a high mutation rate (3.52%) compared to the wild type (<1%). All ten mutations were silent except one immediately downstream of the NTP binding site. Such a mutation might facilitate persistence of the virus by modifying cytotoxicity (Kerr and Behan, 2002). In contrast, the viral coding regions of B19 DNA found in the synovial tissue of both persistently and recently infected patients were in an apparently continuous, intact DNA molecule (Hokynar et al., 2000). Thus, these findings suggest that persistence of B19 virus does not seem to be due to exceptional mutations or particular variants. Although
Chapter I

NS1 protein might be involved in cytotoxicity, no correlation was found between the presence of NS1-specific antibodies and the development of acute or chronic arthropathy (Mitchell et al., 2001).

An altered immune function, such as the B-cell defects observed in immunocompromised patients, can also play a role in the pathogenesis of B19 virus. Such patients are indeed unable to produce effective neutralising antibodies, resulting in persistence of B19 in the host (Frickhofen and Young, 1989; Broliden et al., 1998).

As far as the vascular events are concerned, strokes are known to occur in sickle cell disease patients (Wierenga et al., 2001). They are commonly associated with blockage of major vessels, which is unexpected in such a condition characterised by occlusion of small vessels. A simultaneous B19-induced aplastic crisis would result in lowered haemoglobin levels, thereby reducing oxygen delivery to areas already rendered vulnerable by pre-existing vascular disease. However, this is only hypothetical and the pathogenesis of B19 in such vascular complications is still unclear.

In conclusion, the importance of each mechanism of pathogenesis in the clinical outcome varies depending on the virus/host interaction and thus on the host’s immune status. More research is still needed to characterise further the role of B19 in this wide clinical outcome.

1.1.7. Treatment, vaccine and animal models

1.1.7.1. Treatment

The two main ways used to treat symptomatic B19 infection are RBCs transfusions and intravenous immunglobulin (IVIG).
Chapter I

1.1.7.1.1. Transfusions

Regular transfusions of erythrocytes were reported for a 12-month-old girl with severe combined immunodeficiency (Gahr et al., 1991). These transfusions were usually necessary every 2 months and resulted in short periods with normal reticulocyte counts. However, a full and stable recovery of erythropoiesis was never achieved in this case and she died at the age of 4 before bone marrow transplantation could be done. Successful intrauterine treatment of two cases of fetal hydrops caused by B19 has been reported (Gloning et al., 1990). Signs of hydrops disappeared after intrauterine transfusions and the infants were born healthy and developed normally. It is first recommended to perform fetal blood sampling to test for blood grouping, anaemia, viral infections, toxoplasmosis, bleeding disorders, severe combined immunodeficiencies and also for a rapid karyotyping in some conditions. In case of fetal anaemia, intrauterine intravascular transfusion can be used as therapy. The role of intrauterine transfusion for fetal hydrops arising from maternal parvovirus B19 infection has been investigated by following the progress of 38 hydropic fetuses in England and Wales between 1992 and 1994 (Fairley et al., 1995). At the first abnormal scan, 12 of 38 received intrauterine transfusions and 3 (25%) died, whereas the other 26 fetuses did not receive any transfusion and 13 (50%) died. Even when taking into account the severity of the hydrops and gestational age, there was a significantly higher risk of fetal loss for those who had not received intrauterine transfusion, thereby emphasising the benefits of such treatment for some fetuses. Intrauterine transfusion can be performed at the first signs of hydrops fetalis. This therapeutic intervention, however, should be restricted only to specialised centres and only be considered in intact pregnancies. An informed consent of the parents should be mandatory. Moreover, it seems that an active treatment consisting of a combination of pre- and postnatal transfusions and IVIG can be
beneficial to correct severe hydrops fetalis and subsequent congenital anaemia (Heegaard et al., 2000).

I.1.7.1.2. Intravenous immunoglobulins (IVIG)

Although functional T lymphocytes are required for recognition and final clearance of parvovirus, the very dramatic correction of anaemia with IVIG therapy is itself convincing evidence that antibody is the principal defence in human parvovirus disease (Kurtzman et al., 1989b). A course of commercial Ig preparations is indicated in patients with anemia and parvoviraemia and also for those with documented persistent B19 infection. A drastic decline in viral concentrations in the blood within hours of administration is observed, followed by prompt reticulocytosis and return to normal or near-normal levels (Frickhofen et al., 1990). Intravenous treatment with Ig, at a dose of 0.4g/kg body weight over 5 days, resulted in marked improvement in several patients suffering from chronic undifferentiated non- and oligoarthritis (Stahl et al., 2000b).

Currently, HIV-positive patients are treated with the same dose as previously mentioned (Frickhofen et al., 1990). Patients should be monitored for evidence of relapse, by observation of the reticulocyte counts, and assays for B19 viraemia when indicated (Brown, 2000). This applies especially if zidovudine treatment complicates the interpretation of reticulocyte counts (Frickhofen et al., 1990). Relapses may occur early in patients with more advanced disease. Most patients with CD4 counts lower or equal to 80 cells/mm³ suffer from relapse within 6 months, necessitating retreatment with IVIG, whereas patients with CD4 counts greater than 300 cells/mm³ do not require routine maintenance therapy (Koduri et al., 1999). If a relapse occurs less than 6 months after the initial treatment, an empiric maintenance treatment with a single-day infusion of 0.94 g/kg IgG every 4 weeks should be applied (Frickhofen et al., 1990). Persistent erythroid aplasia caused by B19 in patients with other forms of immunodeficiency, such
Chapter I

as common variable immunodeficiency, can be treated with low-dose (50mg/kg for 6 days) Ig (Chuhjo et al., 1999). Transplant recipients presenting PRCA or severe anaemia usually respond well to a high-dose treatment (Holman et al., 1997; Moudgil et al., 1997; Mathias, 1997; Marchand et al., 1999; Pamidi et al., 2000). In addition, reduction in immunosuppression may also be helpful as an approach to treat this infection in such patients (Pamidi et al., 2000). A course of IVIG, along with isolation measures, also seems to contribute in preventing B19 infection in bone marrow transplant recipients (Azzi et al., 1993). Additionally, high-dose IVIG has been used to treat patients with acute or chronic ITP, autoimmune neutropenia and autoimmune haemolytic anaemia (Berkman et al., 1988).

However, the mechanism of action of high-dose Ig therapy is unclear and has been the subject of speculation. Many effects of IVIG on the function of the immune system have been proposed, including blockade of Fc receptors (Fehr et al., 1982), decreased Fc-receptor-mediated phagocytosis (Kimberly et al., 1984), enhancement of suppressor T-cell function (Delfraissy et al., 1985), depression of natural killer cells activity (Engelhard et al., 1986) and lowering of autoantibody titres through idiotypic/anti-idiotypic interactions (Sultan et al., 1984). McGuire and colleagues have supported the latter therapeutic mechanism since they found that both the F(ab')2 fragment of IgG and the whole intravenous gamma globulin preparation, but not an Fc fragment of IgG, were capable of neutralising the cytotoxic action of the patient’s IgG fraction (McGuire et al., 1987).

I.1.7.2. Vaccine

Treatment by blood transfusion, Ig or intrauterine transfusion is efficient in controlling human parvovirus B19 infection. However, prevention being better than treatment,
research has been undertaken to develop a safe and effective vaccine. Vaccines against a number of animal paroviruses, such as PPV (Mengeling et al., 1979; Pye et al., 1990), CPV (Eugster, 1980) and FPV (Davis et al., 1970; King and Gutekunst, 1970) have already been developed using live attenuated or killed viruses. As far as parovirus B19 is concerned, development of a vaccine for B19 has been hampered by the limited availability of viral antigen. Firstly, it is complicated to identify a viraemic patient, since viraemia usually resolves before clinical symptoms of B19 virus infection appear. Secondly, when a viraemic individual has been identified, it is difficult to obtain sufficient quantities of virus. Cell culture production of B19 virus would be an alternative but has not yet been possible with the currently available cell lines. However, even if sufficient quantities of live virus could be obtained, there are safety issues associated to its use in a vaccine, such as the possibility of contamination with other viruses.

Finally, extensive investment in research is needed to either attenuate or inactivate such live viruses (Collett and Young, 1994). These limitations, however, have been overcome with the development of genetically engineered expression systems for the production of B19 parovirus antigens. These expression systems allow for the efficient production of unlimited quantities of safe, non-infectious B19 virus antigen and thus offer an opportunity for the development of a B19 parovirus vaccine. Bacterial expression was used by various groups, who inserted into *Escherichia coli* some plasmids with portions of the viral capsid protein sequences fused to other proteins such as β-galactosidase or protein A (Sisk and Berman, 1987; Rayment et al., 1990; Morinet et al., 1989; Rosenfeld et al., 1992). Although large amounts of recombinant protein were produced in bacteria, they lacked the native conformation of B19 virion.
The first eukaryotic expression system to produce complete native B19 capsids was a mammalian cell line engineered from Chinese hamster ovary cells and designated 3-11-5 (Kajigaya et al., 1989). The particles produced were composed of both VP1 and VP2 capsid proteins in a ratio similar to that observed in genuine virions (~4% and ~96%, respectively). The other eukaryotic system used as a source of native B19 capsid proteins (either VP2 alone or both VP1 and VP2) was the baculovirus/insect cell expression system (Brown CS et al., 1991; Kajigaya et al., 1991). It has been shown that in order to elicit a neutralising antibody response in rabbits, recombinant empty capsids had to contain VP1 since recombinant capsids consisting of VP2 only fail to elicit a neutralising immune response in animals (Kajigaya et al., 1991). Moreover, an evaluation of the immune response elicited by recombinant B19 parvovirus capsids of various structural protein compositions (4%, 25%, 35% or 41% VP1 protein) found that recombinant capsids of a protein composition similar to that of naturally occurring B19 virions (4% VP1 capsids) were a relatively poor vaccine immunogen for the elicitation of virus neutralising antibodies (Bansal et al., 1993). However, given that human convalescent sera usually have strong virus neutralising activity, there might be slight differences of a structural and conformational nature between the natural and recombinant capsids that may be immunologically important. Additionally, there may be differences in the presentation to the immune system of a replicating virus and a nonreplicating particle. Another conclusion from this study was that the effective immune response was proportional to the quantity of VP1 contained in the empty capsid immunogen, although only up to a certain point (Bansal et al., 1993). Capsids consisting of more than 25% VP1 did not appear to have a significantly improved ability to elicit neutralising antibody production. All formulations in Freud’s adjuvant triggered significant levels of anti-B19 antibodies 4 weeks post inoculation in guinea pigs. Empty
capsids containing various VP1 concentrations were then tested with or without aluminium hydroxide. Vigorous neutralising response was induced at low doses when formulated with the latter adjuvant whereas a similar activity in the absence of adjuvant was elicited by 100 fold higher doses. These data suggest that recombinant VP1-enriched empty capsids could be a good candidate for a B19 vaccine. Furthermore, recombinant empty capsids were also able to stimulate human T helper lymphocytes, which are essential for B-cell maturation and antibody class switching (Franssila et al., 2001). The immunogenicity of a more recent candidate recombinant B19 vaccine (MEDI-491; MedImmune), composed of ~25% VP1 and ~75% VP2 capsid proteins, was successfully evaluated in a randomized, double-blind, phase I clinical trial (Ballou et al., 2003). All volunteers (n=24) developed neutralising antibody titres that peaked after the third immunisation and was sustained for one year.

The last approach to vaccine development has been via synthetic peptide immunogens containing neutralising epitopes. Protective immunity has already been observed in BALB/c mice after vaccination with a synthetic peptide derived from CPV capsid proteins (Rimmelzwaan et al., 1990). As for parvovirus B19, this method is realistic providing a number of linear epitopes on the capsid proteins have been defined and showed involvement in virus neutralisation. The use of NS1 as a vaccine target is not recommended as no epitope was universally recognised by the different groups reviewed previously (Tolfvenstam et al., 2000). Additionally, and as discussed previously, anti-NS antibodies are unlikely to induce a neutralising response (Von Poblotzki et al., 1995b).

The first and so far only report of the use of synthetic peptides demonstrated that several of them, containing about 20 amino acids of the unique region of VP1, elicited neutralising antiserum in rabbits (Saikawa et al., 1993). Although those results are
encouraging, a lot more research will be required for the development of a useful synthetic peptide vaccine candidate containing a mixture of several neutralising epitopes. Major concerns about such a peptide are its presentation to the B-cell epitope and its capability to induce T helper cell activity (Collett and Young, 1994). Moreover, synthetic peptide-based vaccines are usually poor immunogens and consequently provide incomplete protection. The prospects for the development of a human parvovirus B19 vaccine are fairly good and a hopeful candidate appears to be based on recombinant empty capsids.

While it has proven difficult to develop vaccines against parvoviruses, it was ironical to discover that parvoviruses could be used as vectors for the presentation of foreign epitopes to the immune system (Miyamura et al., 1994). Similarly, hepatitis B virus (HBV) core antigen has already proven to be a good presentation system for peptides of the foot-and-mouth disease virus (Clarke et al., 1987), epitopes from the envelope protein of HIV-1 (Stahl and Murray, 1989) and for rhinovirus peptides (Francis et al., 1990). Synthesis of virus-like particles (VLPs) mimicking authentic virions but lacking the genetic material has been used with autonomous parvoviruses to generate a collection of VLPs (Casal, 1999). Sedlik and coworkers have constructed a PPV VP2 chimera containing the poliovirus C3:T epitope that was able to induce a strong peptide-specific proliferative response in vivo (Sedlik et al., 1995). The very good T CD4+ response obtained against the inserted T-cell epitope was later characterised as being of Th1 phenotype (Lo-Man et al., 1998). Hybrid VLPs prepared by self-assembly of the modified PPV VP2 capsid protein carrying a CD8+ T cell epitope from lymphocytic choriomeningitis virus, was shown to induce vigorous CD8+ and CD4+ cell responses without adjuvant (Sedlik et al., 1997). These VLPs were nonreplicative and the protective responses elicited were long-lived. Further research showed that these vectors...
Chapter I

could initiate both humoral and cellular responses when delivered intranasally, whereas no immune response was observed when mice were orally immunised (Sedlik et al., 1999). Interestingly, three sites suitable for the insertion of B- and T-cell epitopes were defined on the VP2 capsid protein: epitopes placed at the N-terminus of VP2 induce cellular immune response, both through TH cells and cytotoxic cells, epitopes on loop 2 of VP2, located on the surface of the capsid, can elicit strong humoral immune response against the inserted epitope and some sites around the 5-fold axis, the region situated on the “neck” of the caspid, can present epitopes able to trigger a humoral response (Rueda et al., 2000). Therefore, the possibility of combining different types of epitopes on different positions of a single particle to stimulate different branches of the immune system could pave the way to the production of more potent vaccines in a simple and cheap way. In addition, the heat resistance of human parvovirus B19 could become an advantage for vaccination programs in the warmer countries of the developing world (Miyamura et al., 1994).

I.1.7.3. Animal models for B19 infection

Animal models for human parvovirus B19 can be used for two types of studies: pathogenesis of infection and virus inactivation.

Despite the fact that human parvovirus B19 is still the only officially accepted member of the Erythrovirus genus, several candidate viruses have been proposed for inclusion in this relatively new genus. Remarkable similarities have indeed been noticed between the simian and B19 parvoviruses, such as their predilection to infect bone marrow cells in vitro (Gallinella et al., 1995b) and their capacity to cause severe anaemia in infected subjects, respectively cynomolgus monkeys and humans (O’Sullivan et al., 1994; 1997). Two other outbreaks of anaemia were later reported to be caused by two distinct but similar SPV, namely pig-tailed macaque and rhesus parvoviruses, in the
corresponding hosts (Green et al., 2000). All three SPV, which are highly tropic for erythroid progenitor cells, are currently being studied as animal models for the pathogenesis of B19 infection (Brown and Young, 1997). Another candidate erythrovirus was isolated from Korean Manchurian chipmunks (Yoo et al., 1999). Its nucleotide and amino acid sequences showed significant homology to B19 and SPV, suggesting it might also be a potentially useful animal model for B19 infection. Additionally, a recent investigation aiming at understanding the role of B19 NS1 protein in non-immune hydrops fetalis led to the establishment of NS1-transgenic mice lines that can provide an animal model for the study of this condition (Chisaka et al., 2002).

Due to the lack of a suitable infectivity assay for human parvovirus B19 to date, animal models have been widely used in virus inactivation studies, including MVM (House et al., 1990), CPV (Hart et al., 1994; Borovec et al., 1998; Roberts and Hart, 2000), BPV (Brauniger et al., 2000; Roberts and Hart, 2000) and PPV (Blümel et al., 2002a). However, as will be discussed further in chapter V, the relevance of these models is debatable. A recent study by Blümel and colleagues has indeed showed that thermal resistance of B19 markedly differs from that of animal parvoviruses (Blümel et al., 2002b).

I.2. Contamination of blood and blood products

I.2.1. Prevalence of human parvovirus B19

I.2.1.1. Blood donations and plasma pools

Two factors can influence the incidence of B19 in blood donations: the sensitivity of the detection method used and the epidemiology of the virus (Siegl and Cassinotti, 1998). The latter refers to the particularity of B19 infections to occur in late winter and spring (Anderson and Török, 1989) and in 4-year cycles, with 2 epidemic years followed by 2
endemic years (Kelly et al., 2000). Therefore, taking into account both factors, the incidence of B19 virus in blood donations can vary greatly.

The first reported incidence of B19 in British donations in a non-epidemic situation was 11 instances being found in approximately 500,000 blood donations by CIE, which corresponds to about 1 in 45,000 (Mortimer et al., 1983). Subsequently, although the primary aim of their study was to identify a B19 positive donation that could be used as a source of antigen for diagnostic purposes, Cohen and colleagues estimated the incidence of B19 viraemia in blood donors as 1 in 24,000 donations (Cohen et al., 1990). The single donation showed a positive reaction for B19 antigen by CIE and was later confirmed by IEM. Although the positive donation was reported immediately to the North London Blood Transfusion Centre, where the sample was donated, it had already been incorporated in a plasma pool of 28 donations. This pool was then made available for further research. Neither CIE nor radio-immuno assay (RIA) could detect B19 antigen whereas the dot-blot hybridisation assay was positive for B19 DNA. Since the dilution effect would not explain those results, the presence of B19 antibodies from other donations of the pool might have blocked the antigen reactivity. Direct EM confirmed the presence of aggregates of B19 particles coated by antibodies, while direct EM on the single donation had not shown any antibody coating of the virus particles nor aggregation. Therefore, it seemed that the presence of antibodies did not interfere with DNA detection (Cohen et al., 1990).

The importance of the sensitivity of the detection method used and B19 infection epidemiology was shown in a number of studies detailed below. While Japanese samples tested by ID and in a non-epidemic period showed an incidence of 1 in 35,000, that figure increased to 1:4,000 under an epidemic situation, when measured with the same method (Tsujimura et al., 1995). Moreover, when using the more sensitive PCR
detection method during a minor epidemic of EI, the incidence of B19 viraemia in healthy blood donors was 1:167 (0.6%), which was considerably higher than in previous surveys (Yoto et al., 1995). Still in Japan, Sato and coworkers first used double immunodiffusion (DID) to find 1 in about 14,000 donations positive for B19 in 1992, which was a prevalent year for EI (Sato et al., 1995). The following year, which was not epidemic for EI, 1 in 90,000 donations was contaminated with B19. Nevertheless, when both DID and RHA were used for screening from April to July 1995 -again not prevalent for EI in Japan-, no positive donation was detected by DID, whereas RHA identified 27 positives among 45,735 tested (~1 in 1,700). However, only 7 of those were confirmed positive by PCR, thereby bringing the figure to 1 in 6,500 and underlining the weak specificity of the RHA screening method. Another study using PCR to detect B19 DNA in blood units in a non-epidemic year found approximately 1 positive in 3,300 (McOmish et al., 1993). The most recent study reported the results of the implementation of PCR screening of plasma pool samples for B19 DNA at the "laboratoire francais du fractionnement et des biotechnologies" in France (Aubin et al., 2000). This was the most extensive of such studies reported to date since it was done over a 2-year period. During this time, the frequency of parvovirus B19 viraemic donations was 1 in 5,950, which correlated with previously published data. Moreover, the previously described seasonal and annual B19 epidemics were observed in this report as during the peak of the French epidemic in April 1997, B19 incidence in blood donors was as high as 1 in 1,420. B19 DNA levels in positive pools ranged from 10^2 to 10^{11} copies/ml. Table 1.7 summarises the data available to date.
Table 1.7: Incidence of parvovirus B19 viraemic sera

<table>
<thead>
<tr>
<th>Situation</th>
<th>Incidence</th>
<th>Method of detection</th>
<th>Country</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>Non-epidemic</td>
<td>1:45,000</td>
<td>CIE</td>
<td>UK</td>
<td>Mortimer et al., 1983</td>
</tr>
<tr>
<td>Non-epidemic</td>
<td>1:24,000</td>
<td>CIE</td>
<td>UK</td>
<td>Cohen et al., 1990</td>
</tr>
<tr>
<td>Non-epidemic</td>
<td>1:35,000</td>
<td>ID</td>
<td>Japan</td>
<td>Tsujimura et al., 1995</td>
</tr>
<tr>
<td>Epidemic</td>
<td>1:4,000</td>
<td>ID</td>
<td>Japan</td>
<td>Yoto et al., 1995</td>
</tr>
<tr>
<td>Epidemic</td>
<td>1:167</td>
<td>PCR</td>
<td>Japan</td>
<td></td>
</tr>
<tr>
<td>Epidemic</td>
<td>1:14,000</td>
<td>DID</td>
<td>Japan</td>
<td>Sato et al., 1995</td>
</tr>
<tr>
<td>Non-epidemic</td>
<td>1:90,000</td>
<td>DID</td>
<td>Japan</td>
<td></td>
</tr>
<tr>
<td>Non-epidemic</td>
<td>1:6,500</td>
<td>PCR</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Non-epidemic</td>
<td>1:3,300</td>
<td>PCR</td>
<td>UK</td>
<td>McOmish et al., 1993</td>
</tr>
<tr>
<td>Non-epidemic</td>
<td>1:5,950</td>
<td>PCR</td>
<td>France</td>
<td>Aubin et al., 2000</td>
</tr>
<tr>
<td>Epidemic</td>
<td>1:1,420</td>
<td>PCR</td>
<td>France</td>
<td></td>
</tr>
</tbody>
</table>

These PCR-based data have raised the concern that B19 might frequently contaminate blood products, which are generated from pools of 3,000 to 10,000 plasma units. It appeared essential to screen blood products for B19 DNA and to investigate the effect of the virus removal/inactivation used.

I.2.1.2. Plasma products

I.2.1.2.1. Coagulation factors

The first group to test the hypothesis that parvovirus B19 was spread by blood products was Mortimer and colleagues as early as 1983 (Mortimer et al., 1983). He demonstrated that young American haemophiliacs receiving factor VIII and IX concentrates showed a
higher prevalence of anti-B19 (97%) than in either blood donors or age-matched controls (20%). However, as far as individual blood donations were concerned, Mortimer did not show any significant increase in anti-B19 antibodies prevalence (36%) in a group of multiply transfused patients, compared to the untransfused control group.

A few years later, the prevalence of anti-B19 IgG in non-heat-treated factor VIII concentrates was found to be 89% (47 of 53), compared with 39% (53 of 135) of their age-matched controls (Williams et al., 1990). On the other hand, treatment with single donor units of plasma or plasma fraction (cryoprecipitate) was not associated with an increase in the prevalence of anti-B19 IgG. Moreover, two of 12 boys (17%) who had received the NHS 8Y factor VIII concentrate were positive for IgG, compared to 11 of 36 (31%) of controls. Williams and colleagues emphasised the fact that those promising results were preliminary, and rightly so, since Yee and his team showed transmission of B19 by this product a few years later (Williams et al., 1990; Yee et al., 1995; Yee et al., 1996).

B19 DNA was detected in clotting factor concentrates by dot-blot hybridisation, Southern blot hybridisation and by nested PCR (Zakrzewska et al., 1992). Once again, the different sensitivities of these detection methods influenced the prevalence of the virus in the batches tested. Only two concentrates were shown to contain B19 DNA by either dot blot or Southern blot hybridisation, whereas seven samples out of 25 tested were reported to contain viral DNA after nested PCR amplification. Similarly, only one of these concentrates (steam-heated) contained sufficient B19 DNA to be detectable by all the assays used. Overall, B19 DNA was detected in 2 of 3 untreated concentrates and in 4 of 20 treated concentrates.

A Norwegian study investigated the prevalence of B19 antibodies among haemophiliacs with different types and severities of coagulation factor defects (Rollag et al., 1991).
Chapter I

The results showed that the prevalence in the different groups varied from 52% to 88%, depending on type and severity of the defect, whereas 49% of household contacts had B19 antibodies. The highest prevalence was found among persons with severe haemophilia A and B, but with an even higher prevalence among individuals with haemophilia B than A. The latter finding could be explained by the fact that factor IX concentrates, used to treat haemophilia B, were extracted from a larger plasma pool (250 donors) than that used for production of factor VIII concentrates (6 donors), which is given to patients suffering from haemophilia A. The fact that the prevalence of B19 antibodies is higher among those with severe haemophilia reflects the increased factor concentrate requirement and therefore the increased risk of receiving a B19 infected concentrate. Although the factor concentrates themselves were not tested for B19 DNA, an indirect correlation was made between the use of coagulation factor concentrates to treat haemophilia and the high prevalence of B19 antibodies among the patients receiving those blood products, as was already suggested by Mortimer and colleagues (Rollag et al., 1991; Mortimer et al., 1983). This correlation was also proposed in another study, although there was no significant difference between Dutch patients with haemophilia A, B or von Willebrand’s disease (Mauser-Bunschoten et al., 1998). This report showed that, in children of 0-10 years, 42 of 55 (76%) of the haemophilia patients and 11 of 48 (23%) of the controls were positive for anti-B19 IgG, as well as a striking 100% of children with severe haemophilia A who were treated on a prophylactic basis with clotting factor concentrates. These data emphasized once more the high risk of B19 transmission through plasma-derived clotting products.

In addition, while 20% of clotting factor batches tested in France (both factor VIII and IX concentrates) contained B19 DNA (Lefrère et al., 1994), as much as 100% (7 of 7) of factor VIII batches tested in Great Britain were also positive (Saldanha and Minor,
Chapter I

1996). Two German groups also tested batches of factor VIII and reported 47 of 70 (67%) (Eis-Hübinger et al., 1996) and 15 of 19 (79%) positive for B19 DNA by PCR (Willkommen et al., 1999).

I.2.1.2.2. Albumin

The first study to investigate contamination of albumin with human parvovirus B19 tested 29 commercial batches, of either 4% or 20% albumin solution, produced from European plasma by two different manufacturers (Lefrère et al., 1995). No B19 DNA was found in albumin concentrates, which are routinely heated by pasteurisation at 60°C for 10 hours to inactivate blood-borne viruses. Although B19 is thermostable and non-enveloped, it was suggested that the ethanol fractionation process might have inactivated or eliminated B19. Saldanha and Minor, on the other hand, detected B19 DNA in 3 of 12 albumin batches (25%) (Saldanha and Minor, 1996). The limit of detection of B19 DNA had been improved from 400-4000 genome equivalents/ml (Lefrère et al., 1995) to 115 genome equivalents/ml (Saldanha and Minor, 1996), which might explain in part the disparity of the results in those two studies.

Furthermore, while Willkommen and coworkers detected 3 of 44 albumin batches (7%) positive for B19 DNA (Willkommen et al., 1999), they found it remarkable that some of their German colleagues reported the presence of B19 DNA in 5 of 30 (17%) lots of recombinant factor VIII from two manufacturers, to which human albumin was added as a stabiliser during the preparation and purification procedures (Eis-Hübinger et al., 1996). Although albumin was also subjected to pasteurisation at 60°C for 10 hours, Eis-Hübinger et al. suggested that the differences in the manufacturing process for albumin, such as ethanol fractionation, purification by chromatography or filtration, could
Chapter I contribute to the divergence seen between their results and Lefrère and colleagues' (Eis-Hübinger et al., 1996; Lefrère et al., 1995).

I.2.1.2.3. Immunoglobulins

Besides albumin and factor VIII batches, Saldanha and Minor investigated both intravenous (IV) and intramuscular (IM) immunoglobulin (IG) batches, finding B19 DNA in 3 of 15 IVIG samples and 3 of 4 IMIG samples (Saldanha and Minor, 1996). Those IMIG samples found positive for B19 DNA were from two different manufacturers who did not use any specific viral inactivation technique and one batch even presented with a B19 DNA titre that was the same as in the start pool. Regarding the start pools tested in the same study, the majority (65 of 75: ~87%) was found to contain B19 DNA.

In conclusion, the contamination risk depends on several factors that could facilitate the presence of human parvovirus B19 in blood and blood derivatives. Firstly, the number of potentially infected blood donors is significant as, by the age of 60 years old, 60% of the general population would have been infected by the parvovirus. Secondly, the vast majority of infected adults are clinically asymptomatic, making diagnosis at the time of donation difficult. The rash, when present, develops after the viraemic phase. Thirdly, the incubation period during primary infection usually results in very high viraemia of 10^{11}-10^{13} virus particles/ml (Frickhofen and Young, 1989). Fourthly, although the virus is normally cleared in 5 to 10 days, some infected individuals present a long-lasting but low level viraemia (10^2 to 10^4 virus particles/ml), although they have developed an IgG response and are thus immunocompetent (Faden et al., 1992; Cassinotti et al., 1993; Kerr et al., 1995; Sasaki et al., 1995). Additionally, human parvovirus B19 might stay
latent in the bone marrow (Sasaki et al., 1995; Cassinotti et al., 1997). Last but not least, it is still unclear whether the presence of anti-B19 IgG in other donations within a pool is sufficient to neutralise infectious virus particles and to prevent susceptible recipients of blood and blood products from developing viraemia and possibly B19 infection. However, despite the incidence of parvovirus B19 in blood and blood products detailed previously, the actual transmission of clinical infection is rare in the recipients because the viruses might not be infectious or could have been destroyed by viral inactivation steps during the manufacturing process. Moreover, anti-B19 antibodies from other blood donations in large plasma pools might be sufficient to neutralize B19 virus particles present in a single donation and prevent the infection. The few cases of infectious virus transmission by blood and blood products over the years are detailed in the following paragraph.

1.2.2. Evidences of infectious virus transmission by blood and blood products

1.2.2.1. Blood donations

The first report of transmission of infectious B19 by a single-donor transfusion was in a young woman suffering from β-thalassemia (Zanella et al., 1995). This patient developed a symptomatic B19 infection involving transitory heart failure as well as transient red cell aplasia. B19 DNA was detected in blood samples taken from both the patient and one of the donors of the blood transfused, whose child had EI one week before donation. Additionally, the presence of anti-B19 IgM in the patient's serum indicated an acute infection and could also implicate the RBC transfusion in B19 transmission. Such an unusual case of transfusion-related B19 infection, as well as B19 incidence mentioned previously illustrate the fact that its transmission through blood
donations is a rare event in a non-epidemic situation, whereas it can become a significant risk during an epidemic period. As Aubin et al. emphasised, “during peak epidemic periods, manufacturing pools of several thousands of donations could contain as many as ten viraemic donations” (Aubin et al., 2000). Moreover, since a blood donation from an individual at the peak of viraemia can contain up to 10^{13} virus particles/ml, even this single positive donation will contaminate a large plasma pool. Even contamination to a smaller plasma pool can occur and was reported in a pool containing 28 donations (Cohen et al., 1990). The contaminated plasma pool had not been given to patients nor used for fractionation and was withheld from processing on time. Unfortunately, this is not always the case and the health of blood products recipients can sometimes be put at risk, as demonstrated by the following cases of infectious B19 transmission.

I.2.2.2. Plasma products

I.2.2.2.1. Clotting factors

B19 infection was reported following a first dose of factor VIII into a previously untreated patient who developed viraemia and a B19-specific IgM response ten days after receiving the concentrate, without any other possible source of infection such as a proceeding or concurrent illness in a close contact (Mortimer et al., 1983). This was the first direct evidence that factor concentrates can transmit B19 infection. Subsequently, evidence for B19 transmission by unheated commercial factor VIII was given in two patients who had been infrequently exposed to concentrates (Williams et al., 1990). The presence of anti-B19 IgM demonstrated an acute infection, even though asymptomatic. Although both boys had received the same batch of factor VIII 3 to 4 weeks before testing, evidence of B19 contamination in this batch could not be found since all tests
performed were negative (RIA, EM and dot blot hybridisation). On one hand, the techniques used at the time might not have been sensitive enough to detect the virus as PCR would nowadays, while on the other hand, it seems more likely that the patients were infected through their treatment rather than by the natural route.

The introduction of a solvent/detergent (S/D) treatment was confirmed not to be efficient on human parvovirus B19 as was indicated by the first case of hypoplastic anaemia in a young haemophiliac who had been transfused for the first time with a S/D treated factor VIII concentrate (Morfini et al., 1992). The patient showed all the signs of a B19 primary infection, with high level of IgM detected just after the treatment, as well as anaemia and extreme fatigue after 10 days. IgG were found in the second serum sample drawn 3 weeks after anaemia and the patient recovered well within a week. The second case of S/D treated clotting factor involved in B19 transmission was that of a female haemophilia B carrier, who acquired a symptomatic B19 infection via S/D-treated factor IX concentrates (Yee et al., 1996). Blood samples from the patient were positive for B19 DNA by primary and nested PCR (>10^7 genomes/ml). These cases emphasise the vulnerability of such patients and might become a significant problem if parvovirus infection following treatment was to occur during pregnancy.

In Britain, although heat-treated factor VIII concentrate 8Y was previously thought to be comparatively safe (Williams et al., 1990), B19 infection of an immunocompetent adult who had received this product was suggested (Yee et al., 1995). Despite the fact that the patient’s serum sample was negative for anti-B19 antibodies immediately before the first treatment, both IgM and IgG became detectable by RIA at the time of admission for sepsis, myelosuppression and hepatic dysfunction. Moreover, the batch of factor VIII concentrate received by the patient was found to be positive for B19 DNA by nested PCR. It is important to note that even infrequent users of clotting factor
concentrates are still at high risk of contracting a transfusion-associated B19 infection. As for factor IX concentrates, there had been a previous report of three patients presumed to have contracted symptomatic B19 infection via such products (Lyon et al., 1989). The patients had only limited exposure to blood products and two had received only the National Health Service heat-treated factor IX concentrate. Despite the fact that none of these patients gave a history of contact with a person with a rash before the development of their own rash and that anti-B19 antibodies were negative in an earlier stored serum, both anti-B19 IgM and IgG were detected after the onset of the rash. B19 DNA was amplified by PCR in one particular batch of factor IX concentrate used to treat these patients, which suggested that parvovirus B19 might be transmitted by heat-treated factor VIII and IX.

Although recombinant factor VIII concentrates had been regarded as safe concerning blood borne viruses, seroconversion for B19 in 5 of 16 susceptible patients receiving this product was reported (Aygören-Pürsün et al., 1997). Despite the fact that the results were ambiguous in 3 of the cases, concerns remained for the other two patients regarding the possible transmission of the virus via recombinant factor VIII. Additionally, and as mentioned previously, parvovirus B19 DNA had already been amplified by nested PCR in recombinant factor VIII preparations where human albumin was used as a stabiliser during the manufacturing process (Eis-Hübinger et al., 1996). In Aygören-Pürsün and colleagues’ study, albumin was also present as excipient in the recombinant product and could thus be suspected to be the cause of seroconversion (Aygören-Pürsün et al., 1997). Nevertheless, the natural infection of the patients within the community cannot be ruled out.
I.2.2.2. Immunoglobulin

While evaluating the possible genetic changes related to chronic parvovirus B19 infection, Erdman and coworkers found an abrupt change in B19 sequences in samples collected in a 5-year-old patient after administration of different lots of IVIG (Erdman et al., 1997). Possible explanations for this sequence change included a specimen cross-contamination in the laboratory, the genetic evolution or immune selection of B19 variants and a reinfection by natural exposure or from B19 contaminated IVIG. After investigation, given the timing of the appearance of this new B19 strain just after administration of IVIG and the fact that IVIG had been shown to frequently contain B19 DNA (Saldanha and Minor, 1996), transmission of infectious parvovirus B19 by contaminated IVIG seemed to be the most likely event to have occurred. Although B19 antibodies present in IVIG would normally neutralize both the patient's virus and any virus potentially present in the preparation, it is possible that the immune complexes formed by specific antibodies and the virus particles enable infection of cells bearing the Fc receptor, such as monocytes and macrophages (Erdman et al., 1997; Morey et al., 1992). Infection of those cells would be non-productive, short-term and clinically asymptomatic, which was the case for the young patient studied by Erdman and colleagues. However, some reservations about the possibility of B19 transmission from IVIG in this particular case were raised a few years later (Hayakawa et al., 2002) as no correlation was indeed shown between the B19 genotype in the patient's serum sample and the IVIG administered to the patient in Saldanha and Minor's paper (Saldanha and Minor, 1996). Therefore, Hayakawa and coworkers claimed to have presented “the first report to clearly show parvovirus B19 transmission from IVIG” (Hayakawa et al., 2002). Only a few days after administration of IVIG later, found to be contaminated by B19, a patient's serum sample had become positive for B19 IgM antibody and for B19...
DNA by PCR. In this case, the patient suffered from fulminant hepatitis likely to have been caused by B19 infection following pre-existing coxsackie B4 infection. However, the implication of IVIG in transmitting B19 infection had not been clearly established and further evidence would be needed to establish the cause of infection in this particular case.

I.2.2.2.3. Fibrin sealant

Another blood derivative implicated in infectious B19 transmission is fibrin sealant, which consists of fibrinogen and thrombin mixed with factor XIII and calcium. It is used as a haemostatic agent. Despite dry-heat viral inactivation on both fibrinogen and thrombin components, three cases of symptomatic B19 infection due to the use of the same batch of fibrin sealant during surgery were reported (Hino et al., 2000). The batch in question was found positive for B19 DNA by PCR. In addition, the possibility of transmission by medical staff members was excluded after they were all confirmed negative for B19 IgM. Following these cases, a careful follow-up of patients treated with fibrin sealant was advised and the need for recombinant products was emphasised. The frequency of B19 infection transmission by fibrin sealant during surgery was estimated in a group of 85 patients who underwent thoracic surgery and needed fibrin sealant to stop air leak or haemorrhage (Kawamura et al., 2002). In 6 of 29 patients (20.7%) whose blood samples were negative for anti-B19 IgG before surgery, samples obtained 12 to 48 weeks after surgery were positive for both anti-B19 IgG and B19 DNA by PCR. Batches of fibrin sealant used in 2 of those 6 patients also tested positive for B19 DNA. It was therefore suggested that these post-chest surgery infections were transmitted by B19 contaminated fibrin sealant.
The various reports of significantly elevated prevalence of anti-B19 antibodies in haemophiliacs, as well as in other patients receiving frequent treatment with plasma products derived from such pools, gave further evidence that the virus is very robust. It is able to withstand the treatment and purification steps of these plasma products and still be present -and sometimes infectious- in the final product.

1.2.3. “Inefficiency” of viral inactivation methods used in current processes

According to Burnouf, who reviewed virus inactivation treatments, “one problem in establishing these techniques is to ensure a high level of virus inactivation while preserving the biological activity of the coagulation factors” (Burnouf, 1992). It is essential to design effective inactivation methods that will avoid the alteration of the three-dimensional structure of therapeutic proteins. Moreover, it seems that plasma protein purification technologies, based on high-resolution chromatographic extractions, already play a role in viral safety. The manufacture of coagulation factor concentrates involves a combination of centrifugation, precipitation, chromatography, ultrafiltration and freeze-drying steps. All of these steps could, in theory, contribute to inactivate or remove viruses. In practice, at least one, but often two, validated viral inactivation/removal techniques have to be included in blood products preparation.

PCR was used to detect B19 DNA in seven of seven factor VIII samples tested, which had been treated with either S/D plus monoclonal antibody purification, dry heat (80°C for 72 hours) or solvent-detergent followed by ion-exchange chromatography (Saldanha and Minor, 1996). Although Saldanha and Minor emphasised that further work on many more samples is required, Their results suggest that none of these viral inactivation methods are sufficient to destroy B19 viral DNA. As mentioned previously, the same
Chapter I

study showed that some IVIG batches were positive for B19 DNA. IVIG usually
undergoes various viral inactivation steps. For instance, the manufacturers can use S/D
treatment, pasteurisation (60°C for 10 hours), low pH step (pH 4.25) or treatment with
protease at pH 6.5. All fifteen pools from one of the manufacturers who used pH 4.25
presented high levels of B19 DNA but the six IVIG batches derived from those were
negative for B19 DNA, suggesting that such low pH could destroy the virus (Saldanha
and Minor, 1996). However, B19 DNA was found in IVIG from the manufacturer who
used a S/D step. The possible transmission of B19 virus by S/D treated factor VIII
concentrate had been suggested in a young haemophiliac who developed hypoplastic
anaemia after first infusion with the former product (Morfini et al., 1992). It is well
known that this inactivation technique destroys only lipid-enveloped viruses and that
B19 virus can thus withstand such a virucidal method. Subsequently, Koenigbauer and
coworkers published the case report of a patient who was infused with several units of
solvent (tri(n-butyl)phosphate)-detergent (Triton X-100) treated plasma later found to
have high levels of parvovirus B19 DNA (Koenigbauer et al., 2000). The patient was
positive for both IgG and IgM, which reflected an acute B19 infection. This particular
case shows once more the inefficiency of S/D treatment to inactivate B19 virus.

In order to supplement S/D treatment with a technique that might be more effective on
non-lipid-enveloped viruses, heating treatments, including dry-heating and
pasteurisation, were investigated. Four of 20 treated clotting concentrates tested for B19
DNA were positive (Zakrzewska et al., 1992). Only a small number of chloroform
treated and dry-heated products were included in the study and, although none was
found to contain B19 DNA, the number tested was too small to be representative of the
effectiveness of these treatments. Similarly, B19 DNA was not detectable in the seven
pasteurised concentrates tested in this study. Although the pasteurisation technique is
Chapter I

suggested to reduce the risk of B19 infection, it doesn’t eliminate it (Lyon et al., 1989; Azzi et al., 1992). Even if the study by Mauser-Bunschoten et al. did not detect B19 virus particles directly, it showed a significant difference in prevalence of B19 IgG between haemophiliacs and healthy individuals but, interestingly, did not observe any change between the patients treated with S/D or with pasteurised products (Mauser-Bunschoten et al., 1998). Furthermore, despite the fact that factor VIII 8Y was treated for 72 hours at 80°C (final product), this clotting factor concentrate still transmitted parvovirus B19 infection to an immunocompetent adult (Yee et al., 1995). This product was previously thought to be associated with a lower incidence of B19 transmission (Lyon et al., 1989). More recent data showed that blood products either vapour-treated (60°C for 10 hours followed by 80°C for 1 hour) or dry-heat treated (80°C for 72 hours), transmitted B19 infection, although asymptomatic, in two young recipients (Blümel et al., 2002a). The use of dry heating at sterilising temperature (100°C for 10 to 30 minutes) was also recommended with minimal loss for factor VIII and IX concentrates (Rubinstein and Rubinstein, 1989; Rubinstein, 1990). Following this suggestion, an Italian manufacturer chose to add a terminal inactivation step based on heating at 100°C for 30 minutes in lyophilised clotting factor concentrates (Santagostino et al., 1994).

Nevertheless, an acute B19 infection developed in four patients out of the ten who were anti-B19 IgG negative before receiving the treated factor VIII or IX concentrates. This report was criticised by Prowse, who thought that the data should have been interpreted with regard to an age-matched healthy control group or an untransfused haemophilic group (Prowse, 1994). Most previously untreated haemophiliacs would be under the age of ten, which is an age group that would be expected to show a higher rate of B19 viraemia. The other comment on the study by Santagostino and colleagues came from Guillaume, who proposed to extend the terminal viral inactivation step at 100°C to 45 or
even 60 minutes in blood products in order to eliminate parvovirus B19 (Guillaume, 1994). However, it was argued that this final inactivation step might increase the risk of a reduced yield and the possibility of a higher frequency of inhibitors (Thomas, 1994). To this reservation, Lusher and coworkers replied that the same arguments were given in the early 1980s when the introduction of dry heat and pasteurisation treatments to clotting factors production was discussed, but neither of these events took place and a large number of infections by HIV and HCV were spared thanks to these inactivation techniques (Lusher et al., 1994). To end this argument, Thomas seemed resilient to "acknowledge that absolute safety is a mirage", statement to which both Lusher et al. and Colvin reacted strongly as "no one should abandon the goal of achieving absolute safety" (Thomas, 1994; Colvin, 1994; Lusher et al., 1994).

Other processes used to supplement S/D treatment included purification by anion exchange chromatography, as well as nanofiltration (pore size 0.2\(\mu\)m). The reduction of B19 DNA in factor VIII manufactured in such a way was investigated by spot hybridisation and Southern blotting (Schwarz et al., 1991). It was thought that physical-chemical interaction occurred between B19 virus and the anion exchange material of the column since there was a reduction of at least \(\log_{10} 2\) of the total amount of B19 virus used to spike the start product. Additionally, DNA hybridisation could not detect any viral DNA after the filtration step, which showed that residual virus particles, seen as aggregates by EM, were cleared in this final step. Although these results were interesting, they were not obtained with the most sensitive nucleic acid detection method (PCR) and they still do not indicate whether B19 virus found after anion exchange chromatography represents infectious or inactivated virus.

Nanofiltration of factors IX and XI concentrates also showed promising results on the elimination of bovine parvovirus (BPV; 20-25nm) (Burnouf-Radosevich et al., 1994).
The 15N filter (pore size 0.15μm) used was able to remove more than \(\log_{10} 6.3 \) of BPV while virus aggregates were also eliminated by more than \(\log_{10} 5.8 \) when passed through a 35N filter (pore size 0.35μm). Although BPV is a small non-enveloped virus resistant to S/D treatment and has been used as a model for parvovirus B19, further studies using human parvovirus B19 virus itself are still required to evaluate the efficiency of nanofiltration. Furthermore, this method cannot be applied to higher molecular weight plasma proteins, such as factor VIII molecule or von Willebrand factor concentrates.

Tables 1.8 and 1.9 summarise the characteristics of established viral removal and inactivation procedures regarding protein integrity and efficacy to inactivate parvovirus B19.

Table 1.8: Characteristics of well-recognized viral removal procedures

<table>
<thead>
<tr>
<th>Treatment</th>
<th>Properties</th>
<th>Points to Consider</th>
</tr>
</thead>
<tbody>
<tr>
<td>Precipitation</td>
<td>Purifies protein</td>
<td>• Usually modest virus removal</td>
</tr>
<tr>
<td></td>
<td>Can be effective against both enveloped and non-enveloped viruses including parvovirus B19</td>
<td>• Difficult to model</td>
</tr>
<tr>
<td>Chromatography</td>
<td>Purifies protein</td>
<td>• Virus removal highly dependent of choice of resin, protein solution, and buffers</td>
</tr>
<tr>
<td></td>
<td>Can be effective against both enveloped and non-enveloped viruses including parvovirus B19</td>
<td>• May be highly variable from one virus to another</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Resin must be sanitized between lots</td>
</tr>
<tr>
<td>Nanofiltration</td>
<td>Effective against enveloped viruses</td>
<td>• Degree of virus removal depends on the pore size of filter used</td>
</tr>
<tr>
<td></td>
<td>Can be effective against non-enveloped viruses including parvovirus B19</td>
<td>• Elimination of small viruses may not be total</td>
</tr>
<tr>
<td></td>
<td>Non-denaturing to proteins</td>
<td>• Some filter defects may not be detected by integrity testing</td>
</tr>
<tr>
<td></td>
<td>High recovery of “smaller” proteins such as coagulation factor IX</td>
<td></td>
</tr>
</tbody>
</table>
Table 1.9: Characteristics of well-recognized viral inactivation procedures

<table>
<thead>
<tr>
<th>Treatment</th>
<th>Properties</th>
<th>Points to Consider</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pasteurisation</td>
<td>Inactivates enveloped and some non-enveloped</td>
<td>• Protein stabilizers may also protect viruses</td>
</tr>
<tr>
<td></td>
<td>viruses including HAV</td>
<td>• Does not inactivate parvovirus B19</td>
</tr>
<tr>
<td></td>
<td>Relatively simple equipment</td>
<td></td>
</tr>
<tr>
<td>Terminal Dry Heat</td>
<td>Inactivates enveloped and some non-enveloped</td>
<td>• Does not inactivate Parvovirus B19</td>
</tr>
<tr>
<td></td>
<td>viruses including HAV</td>
<td>• Requires strict control of moisture content</td>
</tr>
<tr>
<td></td>
<td>Treatment applied on the final product</td>
<td></td>
</tr>
<tr>
<td>Steam or vapour Heat</td>
<td>Inactivates enveloped and some non-enveloped</td>
<td>• Does not inactivate Parvovirus B19</td>
</tr>
<tr>
<td></td>
<td>viruses</td>
<td>• Relatively complex to put in place</td>
</tr>
<tr>
<td></td>
<td>Treatment applied on the final product</td>
<td></td>
</tr>
<tr>
<td>S/D</td>
<td>Very efficient against enveloped viruses</td>
<td>• Non-enveloped viruses unaffected</td>
</tr>
<tr>
<td></td>
<td>Non-denaturing to proteins</td>
<td>• Not generally affected by buffers used</td>
</tr>
<tr>
<td></td>
<td>High process recovery</td>
<td>• S/D reagents must be removed</td>
</tr>
<tr>
<td></td>
<td>Relatively simple equipment</td>
<td></td>
</tr>
<tr>
<td>Acid pH</td>
<td>Effective against enveloped viruses</td>
<td>• Limited efficacy against non-enveloped viruses</td>
</tr>
<tr>
<td></td>
<td>Relatively simple equipment</td>
<td>• Use largely restricted to IgG</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• At pH 4, effective virus kill requires elevated temperatures</td>
</tr>
<tr>
<td>Methylene blue</td>
<td>Efficiency depends on nucleic acid content</td>
<td>• Loss of functional activity of coagulation proteins (more severely affected are factor VIII and fibrinogen)</td>
</tr>
<tr>
<td></td>
<td>(greater for double stranded than single</td>
<td>• Can be applied to single unit system</td>
</tr>
<tr>
<td></td>
<td>stranded)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Good efficiency for enveloped viruses but</td>
<td></td>
</tr>
<tr>
<td></td>
<td>variable efficiency for non-enveloped viruses</td>
<td></td>
</tr>
</tbody>
</table>

The main conclusion that can be drawn from such data is the difficulty to evaluate the efficiency of established viral removal/inactivation methods to reduce the risk associated with infectious parvovirus B19. The first reason for this is that the actual
infectivity of the virus is not reflected by the B19 DNA titre, which highlights the lack of a reproducible and sensitive infectivity assay. Although the cell line KU812Ep6 has been used to detect infection by mRNA amplification (reverse-transcriptase-PCR: RT-PCR) or immunofluorescence staining (Blümel et al., 2002b; Boschetti et al., 2004), the UT-7/Epo-S1 cell line was found to be more susceptible to parvovirus B19 infection (Chaput and Saldanha, unpublished data). The second reason resides in the fact that the animal models available, including BPV, PPV, CPV and MMV are not representative of the behaviour of human parvovirus B19. For instance, recent studies have clearly shown that animal models have different susceptibility to pasteurisation and low pH treatment (Blümel et al., 2002b; Boschetti et al., 2004). Human parvovirus was shown to be inactivated by more than log_{10} 4 after 10 minutes at 60°C in albumin solutions, whereas PPV was resistant to pasteurisation treatment (Blümel et al., 2002b). Similarly, when exposed to pH 4.0 for 2 hours, parvovirus was inactivated by more than log_{10} 5 whereas MMV was resistant for over 9 hours. These new data revealed not only that animal paroviruses should not be used as models for B19, but also that human parvovirus B19 might be much more susceptible to inactivation treatments than previously suspected.

I.2.4. What solutions for safer, B19-free plasma?

A number of solutions can be applied to improve the safety of plasma pools regarding parvovirus B19 at the time of donation, during the manufacturing process or with the increasing use of recombinant clotting factor concentrates.

I.2.4.1. At the first stage of blood donation

Donors could be selected on the basis of being anti-B19 IgG positive, since they are likely to represent a resolved infection. However, reinfection can occur in those who
have a low level of anti-B19 IgG, resulting in a second IgM response (Anderson and Young, 1997).

One of the key solutions, which is already applied routinely by some manufacturers, is the screening of blood donors by nucleic acid testing (NAT) for B19 DNA to limit the number of B19 transmissions (McOmish et al., 1993). The potential benefit of NAT for parvovirus B19 was discussed at a workshop on the implementation of NAT to screen donors of blood and plasma (Tabor et al., 2000). At the time, it was considered to be an “in-process control” rather that a donor screening test. As of June 2000 in the United States, NAT screening for HCV RNA and HIV RNA in minipools was implemented efficiently, without compromising the availability of the blood supply (Busch and Dodd, 2000). However, in the context of the debate over minipool versus individual-donation NAT, the main concern was that the shorter window-period and yield of individual-donation NAT compared to minipool NAT for HIV and HCV would be very small and very expensive. The political and regulatory bodies in developed countries decided to apply minipool NAT but might introduce further safety, including individual-donation NAT and NAT for additional agents, such as West Nile virus in Canada and parvovirus B19 in Europe. However, such a decision should be an international consensus since “blood policies, like the viruses we are trying to avoid, ramify globally” (Busch and Dodd, 2000) although realistically, there is a huge gap between rich countries and developing countries, where both the high viral prevalence and the minimal, sometimes the absence of screening leads to hundreds of thousands of infections a year being transmitted through blood.

One disadvantage of donor-screening procedures is the lack of specificity in the deferral criteria, leading to a large number of safe donors being deferred (Kleinman, 2001). Additionally, the main limitation of NAT remains the fact that the presence of B19 in
concentrates does not necessarily indicate that the product is infectious (Luban, 1994).

Therefore, in vitro infectivity studies are still needed, as well as a clear correlation between viral sequences as detected by PCR and infectivity of the virus.

I.2.4.2. During the manufacturing process

Another way to improve safety is the introduction in the manufacturing procedure of a new virucidal method effective on non-lipid enveloped viruses, such as psoralen treatment, iodine, UVC light irradiation, gamma-irradiation and SuperFluids™.

In the absence of ultraviolet (UV) light, psoralens reversibly intercalate into helical regions of DNA and RNA. When illumination with UVA occurs, they react with pyrimidine bases to form covalent mono-adducts and cross-links with the nucleic acids (Corash, 2003). Consequently, both nucleated cells (T cells, leukocytes) and pathogens are unable to replicate. Psoralen S-59 (Cerus Corporation, Concord, CA, USA) for use on platelet concentrates is now being introduced into clinical practice in Europe since it has received final CE Mark approval. However, when RBCs are processed through the system, they constitute a difficult environment for pathogen inactivation because of the light absorbance by haemoglobin and the viscosity of packed RBCs (Corash, 2003). A compound that does not require light activation, called S-303 (Cerus Corporation, Concord, CA, USA), is thus utilised and is activated by a pH shift created by the introduction of erythrocytes into the system. Phase III clinical trials on S-303-treated RBC are underway to evaluate their safety and efficacy in the treatment of acute and chronic anaemia. Another compound used for pathogen reduction in RBC concentrates is PEN 110 (INACTINE™; VI Technologies, Watertown, MA, USA). It is a highly water-soluble cation capable of diffusing through cell membranes and covalently interacts with nucleophilic centres of nucleic acids, essentially with N7 of guanine.
residues (Lazo et al., 2002). N7 guanine alkylation can cause opening of the imidazole ring, base loss and strand breakage, resulting in disruption of transcription and replication of the pathogen genome (Lazo et al., 2002; Purmal et al., 2002). The removal of PEN 110 to a non-toxic level is then performed using an automated cell-washing process.

A different chemical treatment is that of iodine, a strong oxidizing agent with powerful microbicidal properties. When it is bound to polymers or dextran chromatographic medium such as Sephadex®, there is a slow, controlled release of iodine into the protein solution, with virus inactivation occurring over a longer time course (hours) (Miekka et al., 1998). In the case of the chromatographic medium, protein is passed through a bed of iodine-Sephadex® followed immediately by a bed of Sephadex® used to trap and remove free iodine. The factors that might affect the iodine inactivation system are iodine concentration, age of iodine-Sephadex®, temperature, contact and incubation times and composition of protein solution being treated. All these factors need to be defined and controlled. Liquid iodine has also been found to inactivate several enveloped and non-enveloped viruses in an antithrombin III concentrate (Highsmith et al., 1995).

Several physical treatments can also be applied, such as UVC light (254nm), which targets nucleic acid, thereby inactivating a wide range of viruses, irrespectively to the presence of a lipid envelope. Both albumin and IVIG solutions had to be treated with 5,000 Joules/m² UVC before non-enveloped and heat and/or acid resistant viruses (polio 2, vaccinia and T4 phage) were effectively inactivated (Hart et al., 1993). A recent study also showed that UVC can be used at doses that preserve protein activity but still inactivate MVM, parvovirus B19, the encephalomyocarditis virus, which is a model for
HAV, and bovine herpes virus type 1, a model for enveloped viruses such as HBV (Caillet-Fauquet et al., 2004).

Gamma irradiation has been used extensively for the treatment of a variety of materials ranging from sterilizing medical devices (Doue, 2001) to reducing bacterial and viral contamination in animal sera (House et al., 1990). Such irradiation readily penetrates protein solutions and has the potential to inactivate pathogens during the manufacture of bulk intermediates and in final products (Miekka et al., 2003). It can act either by direct rupture of covalent bonds in target molecules including proteins and nucleic acids, or indirectly by producing reactive free radicals and other active, radiolytic products, which in turn can react with proteins and nucleic acids.

Lastly, the novel system of SuperFluids™ (Aphios Corporation, Woburn, MA, USA) has the ability to reduce the viral load of both enveloped and non-enveloped viruses. They are normally gases which, when compressed to a particular pressure and heated to a specific temperature, enter the supercritical fluid region and show enhanced solvation, penetration and expansion properties (Dr T Castor, personal communication). Treatment of viruses with these fluids results in inflation of the particles due to penetration of the SuperFluids™. Subsequent decompression causes their expansion within the virus particles resulting in rupturing of the particles at their weakest point. This technology does not damage proteins and enzymes since it is purely physical and does not involve the use of chemicals, heat or irradiation. The other advantages are the fact that they are readily separated, with no toxic residues and that the system can be easily scaled up to production levels with continuous flow operations. However, this technique cannot be used on blood donations that still contain red blood cells because these fluids would damage them.
I.2.4.3. Replacement therapy

The last point to consider is an alternative choice of replacement therapy, namely recombinant clotting factor concentrates. The first-generation recombinant factor VIII, formulated in albumin, was licensed in the early 1990s (Mannucci, 2002). Although they showed excellent efficiency and triggered no more inhibitors than plasma-derived factors do, the safety of the albumin used as a stabiliser was questioned, as discussed previously (Eis-Hübinger et al., 1996; Aygören-Pürsün et al., 1997). Second-generation recombinant factor VIII, in which no human albumin is added but includes a S/D step, is licensed in both the US and Europe (Mannucci, 2002). Additionally, clinical trials are underway for third-generation recombinant factor VIII, which are manufactured with no human or animal protein. Such formulated and manufactured recombinant factor IX is already available. However, those products cost 2 to 3 times more than blood products and few haemophiliacs can be prescribed this safer alternative. Moreover, the production capacity for recombinant factors is still limited, leading to a risk of shortage.

I.3 Aims of the thesis

In the present study, several continuous cell lines were evaluated for susceptibility to B19 infection with a view to developing a sensitive in vitro infectivity assay. As B19 does not produce any cytopathic effect in susceptible cell cultures, replication can be demonstrated by IFA detection of viral proteins, (particularly NS1, which is not present in the B19 inoculum), an increase in viral DNA or in the detection of B19 mRNA. Quantification by IFA is difficult due to the poor susceptibility of the cell lines used for B19 replication and the sensitivity of the technique. Similarly, accurate quantification by DNA amplification is complicated by the fact that it is difficult to ensure that all input viruses are thoroughly removed before analysis of progeny virus, especially at the
lower dilutions. The best method is thus detection of mRNA. In B19 replication, spliced mRNAs are transcribed off the B19 template and these are easily amplified by reverse transcriptase PCR (RT-PCR). They have a distinct size compared with amplicons that may possibly be amplified from the DNA template.

In addition to using B19-specific primers for RT-PCR, primers specific for the housekeeping gene β-actin were included in the amplification reaction. Housekeeping genes are expressed at a constant level in different tissues, stages of development and experimental treatment. The level of actin in samples for a particular assay was used to normalise the B19 mRNA results.

The initial work on the evaluation of cell lines for B19 infectivity assays was done with the KU812 and UT-7/EPO cell lines, which were easily available. Later in this study, the KU812Ep6 cell line, which was reported to be a better line for B19 infection, was obtained and some preliminary work was done with this cell line. However, due to restrictions on the use of the KU812Ep6 cell line, the clonally selected cell line, UT-7/EPO-S1, was obtained and evaluated.

Several parameters, such as the optimal time to infect the cell lines, the passage number, the conditions for culture and inoculation were investigated. In addition, the effects of cell synchronisation on susceptibility to B19 infection were studied. Cell synchronisation has been reported to enhance the susceptibility of the human megakaryocytoblastoid cell line UT-7 to B19 infection (Shimomura et al., 1993). This was possibly due to the requirement of a product of the S phase of cell division for B19 replication. It has also been reported that B19 requires rapidly dividing cells for propagation (Anderson, 1987b). Finally, the effects of hypoxia on the susceptibility of the cell lines to B19 infection were studied. In contrast to standard cell culture conditions, characterized by 20% oxygen concentration, cells in the human body are
exposed to much lower oxygen concentrations, ranging from 16% in the pulmonary alveoli to less than 6% in most other organs of the body (Semenza, 2001). Moreover, oxygen concentration may even drop to extremely low concentrations, close to anoxia, in the presence of altered vascularization as observed at pathological sites such as tumors. Several studies have shown that severe hypoxia (1% oxygen) increased the number of erythroid BFU-E generated from CD34+ cells, as well as their maintenance in a liquid culture system (Cipolleschi et al., 1997; Sun et al., 2000). On the other hand, hypoxia inhibited the expression of CD36, a marker of erythroid CFU-E and maturing erythroid precursors (Cipolleschi et al., 1997). The role of EPO levels in the differentiation and amplification of the CFU-E pool under hypoxia was found to be crucial in mouse model (Mide et al., 2001). EPO, which is a hypoxia-inducible cytokine, might indeed act as a "survival factor" at the CFU-E level and/or increase the flow of cells from BFU-E to CFU-E. The enhancement of B19 replication in cells grown in low oxygen conditions could thus be due to the proliferation and maintenance of the virus target cells. In addition, this phenomenon could be explained by an increase in the expression of viral receptors on cells grown in hypoxia. Such conditions have recently been found to induce high expression of CXC-chemokine receptor 4 (CXCR4), one of the primary HIV-1 co-receptors in vivo, in different cell types: monocytes, monocyte-derived macrophages, tumor-associated macrophages, endothelial cells and cancer cells (Schioppa et al., 2003).

In addition to quantification of B19 DNA, the present study describes optimization of a procedure to semi-quantitate B19 mRNA in B19-infected cell cultures.

The second part of the present study used the optimised B19 infectivity and quantitative B19 DNA assays to evaluate the efficacy of five methods for the inactivation or removal
Chapter I

of pathogens from blood products. Two chemical methods (psoralin and Inactin treatments) and two physical methods (pressure cycling and dry heating) for pathogen inactivation were studied. In addition, a pathogen removal method, nanofiltration, was included in this study.
Chapter II: Materials and methods
II.1. Materials

II.1.1. Agarose gel electrophoresis

- 50 x Tris-acetate-ethylenediamine tetraacetic acid (EDTA) (TAE) stock. Made at NIBSC: 2M Tris-acetate, 50mM EDTA. Working solution is 1 x TAE.

- Ethidium bromide tablets (EtBr) (BIO-RAD, 161-0430).

- Ethidium bromide-agarose gel: a 2% agarose gel was prepared by adding 100ml of 1x TAE buffer to 2g of agarose powder (Agargel H/M, CLP, #5410.500), which was then heated in a microwave oven for a couple of minutes to dissolve the agarose. The gel solution was stirred, left to cool down to just above body temperature. EtBr was then added at a final concentration of 1ug/ml (100µl of 1mg/ml stock). The agarose solution was poured into the gel apparatus and the combs were put in place.

- 6x blue/orange loading dye (Promega, G190A)

- The PCR markers (Promega, G3161A) contained lambda phage EcoR1fragments 1000, 750, 500, 300, 150 and 50 base pairs in length. For gel analysis, the DNA ladder was prepared by adding 5µl of PCR markers to 2µl of blue/orange dye.

- The gel was placed into the gel tank of the electrophoresis apparatus (Horizon™ 11.14, BRL) and the combs removed carefully to avoid tearing the wells. The power was supplied through GenePower Supply GPS 200/400 (Pharmacia) and the gel was run for approximately 1 hour at 90V (110mA).
II.1.2. Nucleic acid extraction

All buffers for extraction, RT-PCR and PCR were prepared in a dedicated “clean” room. All sample dilutions and extraction of nucleic acids were done in a level 2+ laboratory in a class II cabinet.

- DNA extraction: QIAamp DNA blood mini kit (50 extractions) (Qiagen, 51304)

Buffer OL1 from QIAamp DNA mini kit: 30µl of β-mercaptoethanol (β-ME; Sigma-Aldrich, M6250) was added per 1ml of lysis buffer OL1, supplied in the Qiagen kit. Due to its toxicity, β-ME must be dispensed in a fume cabinet and appropriate protective clothing must be worn. OL1 buffer is then stable for 1 month at room temperature.

- mRNA extraction: Oligotex direct mRNA micro kit (Qiagen, 72012)

 - Buffer OCL (lysis buffer) made in-house for mRNA extraction:
 10mM Tris.Cl pH 7.5 (made up from Trizma®Hydrochloride (Sigma, T-9285) 1M and Trizma®Base (Sigma, T-8524))
 140mM NaCl (5M solution, Sigma, S5150)
 5mM KCl (sigma, P5405)
 1% IGEPAL CA-630 (Sigma, I3021)

Buffer OCL was stored at 4°C for one month and kept on ice during the extraction.

 - Buffer OCD (dilution buffer) was made fresh before each extraction:

 1M lithium chloride (LiCl) (8M solution, Sigma, L7026)
 20mM Tris.Cl pH 7.5
 2mM Ethylenediamine-tetracetic acid (EDTA) (Sigma, E7889)
 1% Sodium dodecyl sulfate solution (SDS; Sigma-Aldrich, L4522)
Chapter II

II.1.3. Nucleic acid amplification

II.1.3.1. DNA amplification

The kit used for DNA amplification was the LightCycler Faststart DNA Master SYBER Green kit (Roche, 3003230). The LightCycler glass capillaries were also supplied by Roche (1909339).

The primers (desalted) were first obtained from GIBCO BRL Life Technologies (UK), renamed (from October 2001) Invitrogen Life Technologies (UK). They were reconstituted in RNAase-free water to obtain a working solution at 25pmol/μl. However, the absorbance at 260nm of all the primers was also measured and the concentrations calculated using the following equation:

\[
\text{Concentration (nmole/ml) = } A_{260} \times \text{weight per OD (given by the manufacturer on the data sheet)} \times \text{dilution factor}
\]

The sequence of the forward primer, B19F, was:

5' GGC AGC ATG TGT TAA AGT GGA 3'. The annealing temperature of this primer in 50mM Na\(^+\) was 55.8°C and it was located at positions 1538-1558 on the B19 genome.

The sequence of the reverse primer, B19R, was:

5' CTC CAG GCA CAG CTA CAC TTC 3'. The annealing temperature of the reverse primer in 50mM Na\(^+\) was 57.7°C and it was located at positions 1840-1820 on the B19 genome. This primer pair amplified a 302 base pair region of the NS1 gene.

II.1.3.2. mRNA amplification

The kit used for RNA amplification was the one step RT-PCR kit (100 reactions) (Qiagen, 210212).
The primers (desalted) used for mRNA amplification were first obtained from GIBCO BRL Life Technologies (UK), renamed (from October 2001) Invitrogen Life Technologies (UK). The relative positions of the primers on the B19 genome are shown on figure 2.1 and the primers sequences and the sizes of the specific amplification products are listed in table 2.1. The splicing donor and acceptor sites indicated on figure 2.1 were first described by Ozawa and coworkers, and then revised by St Amand and colleagues (Ozawa et al., 1987; St Amand et al., 1991). Map location of the primers was calculated from B19-Au accession number M13178 (Shade et al., 1986). Details of the actin primer pair are showed in table 2.2. The primer concentration was calculated after measurement of their absorbance at 260nm.

Figure 2.1: Location of B19 primers on the genomic and transcription maps of B19

GT: splicing donor site (406)
AG: splicing acceptor site (1910; 1925; 1952; 2030)
Table 2.1: B19 primer pairs used in this study

<table>
<thead>
<tr>
<th>Primer pair</th>
<th>Sequence (5’→3’)</th>
<th>Map location</th>
<th>Primer Tm, (°C)</th>
<th>Expected products size (bp)</th>
<th>Regions amplified</th>
</tr>
</thead>
<tbody>
<tr>
<td>Forward: B19-9</td>
<td>GTT TTT TGT GAG CTA ACT AAC A</td>
<td>384-405</td>
<td>49.3</td>
<td>155; 275; 1779</td>
<td>NS1</td>
</tr>
<tr>
<td>Reverse: B19-6</td>
<td>CAA AGG TGT GTA GAA GGC TT</td>
<td>2163-2144</td>
<td>52.6</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Forward: B19-9</td>
<td>GTT TTT TGT GAG CTA ACT AAC A</td>
<td>384-405</td>
<td>49.3</td>
<td>185; 305; 1810</td>
<td>NS1</td>
</tr>
<tr>
<td>Reverse: XPP2</td>
<td>ACC GTC CCA CAC ATA ATC AAC</td>
<td>2194-2214</td>
<td>55.1</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Table 2.2: Actin primer pair used in this study

<table>
<thead>
<tr>
<th>Primer pair</th>
<th>Sequence (5’→3’)</th>
<th>Map location</th>
<th>Primer Tm, (°C)</th>
<th>Expected products size (bp)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Forward: Actin 3</td>
<td>GAT GAC CCA GAT CAT GTT TG</td>
<td>427-446</td>
<td>51.1</td>
<td>621</td>
</tr>
<tr>
<td>Reverse: Actin 4</td>
<td>GGA GCA ATG ATC TTG ATC TTC</td>
<td>1068-1048</td>
<td>51.1</td>
<td></td>
</tr>
</tbody>
</table>
II.1.4. Purification of amplified products from agarose gels for sequencing

Tris-EDTA (TE) buffer: 10mM tris, pH 8, 1mM EDTA. It was used to wash the spin column.

II.1.5. FACS analysis

- The wash buffer contained PBS (made at NIBSC) with 2% foetal calf serum (FCS) (GIBCO Invitrogen cell culture, 16000) and 0.05% w/v sodium azide (Sigma, S8032)
- The fixative buffer was 2% saline formaldehyde solution (formaldehyde solution from VWR International, 284216N)
- Mouse IgG negative control RPE (Serotec, MCA928PE)
- Mouse anti-human CD34 Class II-RPE (Serotec, MCA1578PE)

II.1.6. Primary cells

II.1.6.1. CD34+ cells

Cells expressing CD34 are normally present at a frequency of 0.05-0.2% in peripheral blood whereas the peripheral blood from patients whose stem cells have been mobilised contains up to 1% of CD34+ cells (Dr M. Watts, personal communication; Watts and Linch, 1997). Thus, Dr M. Watts (Department of Haematology, University College Hospital, London, UK) kindly provided mobilised peripheral blood (on a weekly basis), from which CD34+ cells were selected.

II.1.6.2. Aperesis cells

Samples of apheresis cells, or mobilised PBMC, were kindly given weekly by Dr M. Watts (Department of Haematology, University College Hospital, London, UK).
II.1.7. Continuous human erythroid cell lines

The human cell lines used in this study are shown in table 2.3.

Table 2.3: Human cell lines used in this study

<table>
<thead>
<tr>
<th>Cell line</th>
<th>Origin</th>
<th>Reference</th>
<th>Growth medium</th>
<th>Source</th>
</tr>
</thead>
<tbody>
<tr>
<td>KU812</td>
<td>Patient with chronic myeloid leukemia</td>
<td>Nakazawa et al., 1989</td>
<td>RPMI 1640 +10% FCS + 1% glutamine + 1% pen/ strep</td>
<td>Dr Nakazawa, Niigata University, Japan</td>
</tr>
<tr>
<td>KU812 Ep</td>
<td>Erythropoietin-dependent subline of KU812</td>
<td>Miyagawa et al., 1999</td>
<td>RPMI 1640 +10% FCS +6 IU/ml EPO + 1% glutamine + 1% pen/ strep + 1% fungizone</td>
<td>Ube Research laboratory, Fujirebo, Japan</td>
</tr>
<tr>
<td>UT-7/EPO</td>
<td>Erythropoietin-dependent subline of UT-7, a human leukaemia cell line</td>
<td>Komatsu et al., 1993</td>
<td>IMDM +10% FCS + 2 IU/ml EPO + 1% pen/ strep + 1% fungizone</td>
<td>Dr.Komatsu, Jichi Medical School, Tochigi, Japan</td>
</tr>
<tr>
<td>UT-7/EPO-S1</td>
<td>Erythropoietin-dependent subline of UT-7/EPO</td>
<td>Morita et al., 2001</td>
<td>Iscoves modified DMEM + Glutamax-1 +10% FCS + 2 IU/ml EPO + 1% gentamycin + 1% fungizone</td>
<td>Dr Morita, Tohoku University, Japan</td>
</tr>
</tbody>
</table>

All the cell lines grew as suspension cultures, either as single cells or in aggregates. All cell lines were grown at 37°C in a 5% CO₂ atmosphere, either in 75mm³ flasks (Falcon) or in 24-well or 96-well plates (Falcon). The stock cell cultures were split every 3-5 days at a split ratio of 1:3 to 1:5. The cell suspension was centrifuged at 715g for 10
minutes to pellet the cells. The pellet was then resuspended in a small volume of growth medium (usually 1-5ml), diluted 1:10 in trypan blue solution and the live cells (unstained) counted in a haemacytometer (Sigma).

UT-7/EPO-S1 cell aggregates, which can be seen on figures 2.2 and 2.3, had already been shown to be more susceptible to B19 infection than single cells (Dr Morita, personal communication). Thus before splitting, the cells were left for 30 minutes to settle at the bottom of the flask and most of the medium was carefully removed, leaving behind the cell aggregates. The latter were then resuspended in a small volume of growth medium, and the cell aggregates dispersed by pipetting before further processing.

Hypoxia studies on UT-7/EPO-S1 cells were performed in the laboratories of the Canadian Blood Services (Ottawa, Canada), which had a dedicated incubator required for tissue culture in a controlled low oxygen atmosphere, using regulated oxygen and nitrogen supplies.

Figure 2.2: UT-7/EPO-S1 cell aggregates under the light microscope (x20)
II.1.8. Cell culture reagents

- RPMI 1640 with L-glutamine and sodium bicarbonate (Sigma, R8758-500ml)
- Iscove’s Modified Dulbecco’s Medium (IMDM) (GIBCO BRL (Life Technologies Ltd, 21980-024))
- IMDMEM with Glutamax-I (GIBCO BRL Life Technologies Ltd, 31980-022)
- TC100 insect culture medium (for SF9 cells) with L-glutamine and sodium bicarbonate (Sigma, T3160)
- GIBCO Invitrogen cell culture, 16000
- Erythropoeitin (EPREX, 1000IU/0.5ml) (Janssen-Cilag Ltd, 140165)
- Penicillin and streptomycin (Pen/strep) (Sigma, P0781)
- Fungizone (250μg/ml; 20ml) (VWR International, 700/0030/08)
- Trypan blue 0.4% solution (Sigma, T8154)
- Inverted light microscope (Olympus Tokyo)
• Fluorescence microscope (Zeiss, Axiovert 10)

• Collagen I from rat-tail (Sigma, C7661-5MG), at a working solution of 50µg/ml made in a solution of 0.02N acetic acid (0.57ml of glacial acetic acid (Fisons, A10400/PB17) in 500ml sterile glass distilled water).

• Fibronectin-like protein polymer genetically engineered (Sigma, F5022). The stock solution (1mg/ml) was diluted 1:10 in PBS-A (prepared in-house) to obtain a working solution at 100µg/ml.

• The stock solution of hydroxyurea was prepared as follows: A 1M solution of hydroxyurea was prepared by adding 0.7605g of hydroxyurea (Sigma, H8627) into 10ml of sterile water. The solution was then filtered with a 25mm diameter filter, 0.2µm pore size (Whatman). The working solution of hydroxyurea was made by 1:100 dilution (10mM) of 1mM hydroxyurea in sterile, distilled water

• Culture of CD34+ cells: IMDM, 20% FCS, 20ng/ml human stem cell factor (SCF) (Sigma, S7901), 2u/ml EPO, 1ng/ml human IL-3 (Sigma, I1646), 1% fungizone and 1% penicillin/streptomycin

• Culture of BFU-E: 80ml FOX’s complete medium (StemCell Technologies, Methocult™ H4230), 20ml IMDM, 30ng/ml IL-3, 2U/ml EPO, 25ng/ml G-CSF, 10ng/ml SCF and 25ng/ml GM-CSF.

• 5M NaCl: 290.2g NaCl (BDH AnalaR®, 102414J) were dissolved in 1 litre double-distilled water and dispensed into 100ml aliquots.

• Preparation of phosphate buffers:
 • 0.2M phosphate buffers: a stock solution of 0.2M NaH$_2$PO$_4$ was prepared by dissolving 24g of sodium phosphate monobasic (NaH$_2$PO$_4$) (Sigma, S5011) in 1 litre double distilled water. The stock solution was aliquoted in 100ml volumes and autoclaved.
A stock solution of 0.2M of Na$_2$HPO$_4$ was prepared by dissolving 28.4g of sodium phosphate diphasic (Na$_2$HPO$_4$) in 1 litre double distilled water, aliquoted in 100ml volumes and autoclaved.

The required pH was obtained by mixing the two buffer components as in the following proportions:

Table 2.4: Phosphate buffers composition

<table>
<thead>
<tr>
<th>Phosphate buffer (0.2M)</th>
<th>pH 5.7</th>
<th>pH 6.0</th>
<th>pH 6.5</th>
<th>pH 6.7</th>
</tr>
</thead>
<tbody>
<tr>
<td>Volume of NaH$_2$PO$_4$ (ml)</td>
<td>93.5</td>
<td>87.7</td>
<td>68.5</td>
<td>56.5</td>
</tr>
<tr>
<td>Volume of Na$_2$HPO$_4$ (ml)</td>
<td>6.5</td>
<td>12.3</td>
<td>31.5</td>
<td>43.5</td>
</tr>
</tbody>
</table>

Physiological phosphate buffers

In order to obtain 10mM physiological phosphate buffers (to keep the cells viable), 5 ml of 0.2M buffers shown above were mixed to 2.9ml of 5M NaCl (Sigma, S5150) and 92.1ml of sterile water to give a buffer containing 0.85% NaCl. The pH of the buffers was checked with a pH meter (3520 pHMeter, Jenway).

- Preparation of acetate buffers:

 - 0.2M acetate buffers: a stock solution of 0.2M sodium acetate was prepared by dissolving 16.4g sodium acetate (C$_2$H$_3$O$_2$Na) (Sigma, S2889) in 1 litre double distilled water. The stock solution was aliquoted in 100ml volumes and autoclaved.

 The required pH was obtained by mixing the stock buffer solution with glacial acetic acid (Fisons, A10400/PB17) as in the following proportions:
Table 2.5: Acetate buffers composition

<table>
<thead>
<tr>
<th>Acetate buffer (0.2M)</th>
<th>pH 5.6</th>
<th>pH 5.2</th>
<th>pH 4.8</th>
<th>pH 4.4</th>
<th>pH 4.0</th>
</tr>
</thead>
<tbody>
<tr>
<td>Volume of glacial acetic acid (ml)</td>
<td>4.8</td>
<td>10.5</td>
<td>20</td>
<td>30.5</td>
<td>41</td>
</tr>
<tr>
<td>Volume of Na acetate (ml)</td>
<td>45.2</td>
<td>39.5</td>
<td>30</td>
<td>19.5</td>
<td>9</td>
</tr>
</tbody>
</table>

- Physiological acetate buffers:

In order to obtain 10mM physiological acetate buffers, (to keep the cells viable), 5 ml of 0.2M buffers shown above were mixed to 2.9ml of 5M NaCl and 92.1ml of sterile water to give a buffer containing 0.85% NaCl. The pH of the buffers was checked with a pH meter (3520 pHMeter, Jenway).

- Sterilization of stock and working cell culture reagents by autoclaving. All buffers and solutions were autoclaved (121°C for 15 minutes) before use.

II.1.9. Immunofluorescent reagents

PBS/0.05% Tween 20 (Sigma, P1379)

Evans blue/ PBS/Tween: 1 drop of Evans blue in 5ml of PBS/Tween

Polyvinyl alcohol mounting medium with DABCO (Sigma, 10981)

II.1.10. Antibodies

- Mouse monoclonal antibody against VP1 and VP2 proteins (Novocastra Laboratories Ltd, UK, R92F6)

- Mouse monoclonal antibody against VP1 and VP2 proteins (kindly given by Dr Miyagawa, Fujirebo, Japan)
Chapter II

- Mouse monoclonal antibody against VP1 and VP2 proteins (kindly supplied by Dr. J. Blumel, Paul Erhlich Institut, Germany)
- Rabbit polyclonal antibody against NS1 protein (kindly supplied by Dr. S. Doyle, National University of Ireland, Republic of Ireland)
- Anti-mouse IgG (whole molecule)-FITC antibody produced in goat (affinity isolated antibody buffered aqueous solution; Sigma, F2012)
- Monoclonal anti-rabbit immunoglobulins–FITC antibody produced in mouse (clone RG-16 purified immunoglobulin buffered aqueous solution; Sigma, F4890)
- Alexa Fluor® 488 signal amplification kit for mouse antibodies was obtained from Cambridge BioScience (catalogue number A-11054)

II.1.11. MACS

- MACS direct CD34 progenitor cell isolation kit (Miltenyi Biotech, 467-02)
- 50 Pre-Separation Filters (Miltenyi Biotech, 130-041-407)
- MiniMACS Starting Kit (Miltenyi Biotech, 130-090-312)
- Wash buffer: PBS-4salts/ 2mM EDTA/ 0.5% BSA. Keep cold.

II.1.12. Sequencing

GenElute™ Minus EtBr spin column (56501; Sigma-Aldrich, UK) was used to eliminate ethidium bromide from stained DNA. The PCR reaction to amplified the extracted DNA was run on the robocycler PCR machine called RoboCycler® gradient 96 (Stratagene). Sequencing itself was done using the ABI kit and the ABI 310 sequence analyzer (ABI, UK).
II.1.13. Human parvovirus B19 removal/inactivation studies

II.1.13.1. Virus removal by nanofiltration using Planova® filters:

Asahi Kasei Pharma

Planova® filters are available as single-use, self-contained modules in four mean pore sizes of 15 nm, 19 nm, 35 nm, and 72 nm, which correspond to Planova® 15N, 20N, 35N, and 75N, respectively (figure 2.4).

Figure 2.4: Photograph of 15N and 35N Planova® filters

In the present study, the first three types of filters were used. A range of surface areas for each mean pore size allows simple scale-up from validation studies to process scale. Planova® filters were subject to two separate integrity tests by the manufacturer to confirm pore size distribution (Planova® New Pressure Hold Test) and the absence of membrane defects (leakage test).

Planova® filters utilise a hollow-fibre microporous membrane constructed of naturally hydrophilic cellulose with a narrow pore distribution. The Planova® membrane is actually a tortuous, three-dimensional structure of interconnected "voids" and "capillaries" (figure 2.5). Higher protein recoveries are possible due to the hydrophilic
properties of the membrane which lower the probability that product protein will be adsorbed to the surface of the membrane.

Figure 2.5: Capillary-void structure in a Planova® 15N (x 50,000)

Human albumin was chosen as a model protein of plasma-derived product to test this virus removal technique. Reconstituted 25% albumin was obtained from department of Immunobiology at NIBSC.

II.1.13.2. Virus inactivation by SuperFluids™: Aphios Inc., USA

Aphios Corporation (Woburn, MA, USA) was granted a US Patent (No: 5,877,005) in March 1999, “Viral inactivation method using near-critical, supercritical or critical fluids” for pathogen inactivation. As shown on figure 2.6, SuperFluids™ are normally gases which, when compressed to a particular pressure (critical pressure P_c) and heated to a specific temperature (critical temperature T_c), enter the supercritical fluid region and show enhanced solvation, penetration and expansion properties.
Three supercritical fluids were used in the present study, namely Freon-22, Freon-23 and N₂O/CO₂.

The laminar flow SuperFluids™ inactivation unit is composed of an isobaric chamber, SuperFluids™ and sample inputs, a decompression chamber and a collection system. Additionally, several isobaric chambers can be used in the system when a multistage laminar flow SuperFluids™ inactivation is set up that can further increase the reduction in viral load. The inactivation protocol consists of four steps: addition of SuperFluids™ to the product to be treated, adjustment of the operating pressure and temperature, mixing in order to reach a specific contact time between the SuperFluids™ and the virion, typically from 10 seconds to 1 minute. This step results in inflation of the particles due to penetration of the SuperFluids™. Finally, decompression of the system causes expansion of the SuperFluids™ within the virus particles resulting in rupturing of the particles at their weakest point.
II.1.13.3. Virus inactivation by the INACTINE™ system: Vitex, USA

The INACTINE™ System, which was developed by VI technologies or Vitex, features small molecules that, due to their size and stability in blood, are able to penetrate through the protective walls of resistant pathogens. These molecules, which can be synthesized in abundant quantities, are activated only when they bind to their target, the DNA or RNA of the pathogen. The loss of DNA or RNA replication is a fatal event for viruses or bacteria whereas the red blood cells do not need DNA or RNA to function. By purifying the red cells during the automated washing process to remove the INACTINE™ PEN110 (the Psoralen treatment compound) to trace levels, the INACTINE™-treated RBCs concentrates appear very safe.

II.1.13.4. Virus inactivation by S-59: the Helinx® technology; Cerus Corporation, USA

Cerus Corporation (CA, USA), has developed a family of novel small molecules which target and crosslink nucleic acids. These Helinx® compounds penetrate cellular and nuclear membranes and intercalate into the helical regions of DNA and RNA. The Cerus technology, the INTERCEPT Blood System, includes the INTERCEPT platelet system, the INTERCEPT plasma system and the INTERCEPT red blood cell system. They were developed in collaboration with Baxter Healthcare, for use in blood centres, and include a sterile disposable set pre-filled with Helinx® inactivation compounds.

When plasma and platelet concentrates are treated, the psoralen compound amotosalen hydrochloride (HCl) S-59 is used. Crosslinking of nucleic acids can be achieved in four steps, the first one being targeting, which involves the penetration of the psoralen compound amotosalen into cells, viruses, bacteria and other pathogens. The second step is the docking of the psoralen compound between the paired A, C, G and T bases of the
DNA ladder. The third step starts when, under illumination with 3.0 J/cm² ultraviolet A (UVA) light (a first photon), amotosalen reacts with the pyrimidine bases C or T, resulting in the formation of a link with the DNA. Finally, additional illumination can form a crosslink with both strands of DNA. This reaction can occur with the genomic material of DNA- and RNA-based viruses, in genomes that are either single or double stranded. Pathogens, as well as potentially harmful white blood cells with crosslinked DNA, can no longer replicate and cause infection or destructive transfusion reactions. Nevertheless, platelets, plasma and red cells do not contain nuclear DNA or RNA that can be targeted by this molecule and therefore retain their biological utility after Helinx® inactivation treatment (Wollowitz, 2001).

II.2. Methods

II.2.1. Virus quantification

Three B19 virus isolates were used for this study: two from Germany, isolates JS and JB, and one from the USA, named isolate LP. These isolates were quantitated using the established LightCycler quantitative assay. Dilutions of the WHO B19 International Standard (IS) were run in parallel in order to construct a standard curve for the quantitation.

Isolate JS (titre 1x10^{12} IU/ml) was used throughout this study for the establishment of all the assays and will be referred to as “B19 stock virus”. In addition, this isolate was used to spike the samples that were treated for viral inactivation and removal. The DNA and infectivity titres of the three isolates were compared using the optimised mRNA assay. Isolate LP (titre 5x10^{13} IU/ml) was used as a positive control in infectivity assays to evaluate the efficacy of the viral inactivation studies (chapter IV).
EM and IEM by negative staining were done on B19 stock virus by Mr B. Megson and Ms H. Appleton (HPA). IEM used 50μl of JS isolate and 50μl of antibody, contained in serum Pickem (Cossart et al., 1975). Normal EM was done with the isolate only (50μl).

II.2.2. Detection of virus infectivity by indirect immunofluorescent assay (IFA)

II.2.2.1. Preparation of microscope slides

The Shandon Cytospin® 2 (Life Sciences International) was used to spin cell suspensions and simultaneously sediment the cells onto a microscope slide. The result was a monolayer of cells concentrated in a small-defined zone (6mm circle). The cell suspension was placed into a disposable cytofunnel, which had been attached to a cytoblock, with the slide and blotter. Up to 12 samples could be run during one spin, which lasted for 5 minutes at 45g. The disadvantage of this method was that only one sample could be spun on one microscope slide, which meant that many slides had to be processed. The slides used in this method were Apes slides which were made in-house by the histology laboratory at NIBSC by coating glass slides with 3-amino propyltriethoxysilane (Sigma). When the monolayer was dry, the cells were fixed in cold acetone for 10 minutes. Alternatively, cells were spun for 5 minutes at 145g and the supernatant discarded. The pellets were resuspended in 50μl of PBS-A and 10μl of cell suspension was first place on the slide and left to air dry. The slides used were multispot microscope slides polytetrafluoroethylene (PTFE) coated from Hendley-Essex. The slide was observed under light microscope to ensure that an even layer of cells was obtained and the cell density adjusted accordingly. Once dry, the cells were fixed in cold acetone for 10 minutes.
II.2.2.2. Protocol

If the slide used did not already contain defined spots, as in the coated multispot microscope slides (Hendley-Essex), a circle was drawn around the fixed cells with a PAP pen (Cambridge BioScience) in order to define the area where the antibodies would be placed and to retain the reagents on the glass slide.

The slides were washed in PBS/Tween 20 (0.05%) and air dried in a class 1 cabinet. A mouse monoclonal anti-VP1/VP2 antibody (R92F6; Novocastra Laboratories Ltd, UK) was diluted 1:80 and a negative serum diluted 1:100 in PBS/Tween. 100 to 150μl of antibody or negative serum was added to the cells, which were then incubated for 30 minutes at 37°C (5% CO₂).

The slides were washed twice in PBS/Tween for 10 minutes each time. In the meantime, a goat anti-mouse FITC conjugate was diluted 1:100 in Evans blue/ PBS/Tween. Evans blue was used to avoid high background staining. The edges of the slides were carefully dried after the washes and 100μl of the conjugate was added to the cells, which were incubated for 30 minutes at 37°C (5% CO₂).

The slides were then washed twice again in PBS/Tween for 10 minutes each time, and once with distilled water. They were air dried inside the cabinet and mounted with Dabco using a cover slip. The slides were then ready to be viewed under the fluorescence microscope (oil immersion objective) or could be stored at -20°C for a few months.

II.2.2.3. Positive controls: baculovirus expressing B19 capsid antigens

Since baculovirus is an insect virus, either SF9 or SF21 insect cell lines could be used for culturing the recombinant viruses. Both cell lines were cultured at 28°C in TC100 medium with 10% fetal calf serum (FCS) and 1% fungizone in 75cm³ flasks as a cell
monolayer. When the cells were confluent, the medium was discarded and the cells scraped off with a sterile cell scraper. The cells were resuspended into 60ml of fresh medium and 5ml of this cell suspension was dispensed into six 25cm3 flasks, labeled VP1, VP2 and negative control. The cells were left undisturbed for 6 hours at 28°C to allow the cells to attach to the flask and form a monolayer. Two types of inoculi were available: baculovirus expressing parvovirus VP1 or VP2 proteins (kindly provided by Dr J.Clewley and Dr B.Cohen, HPA; Hicks et al., 1996). 100μl of each neat inoculum was added to the corresponding flask whereas nothing was added into the negative control flask. The flasks were incubated at 28°C for 3 days. The cells were then scraped off, harvested and centrifuged at 168g for 5 minutes. The cell pellets were resuspended in 1ml of TC100 medium. Microscope slides were prepared in one of the two ways described previously and the cells fixed in cold acetone for 10 minutes. Once dry, the slides were either treated immediately for immunofluorescence or stored at -20°C for later use.

II.2.3. Primary cells

II.2.3.1. CD34+ cells

II.2.3.1.1. Isolation of CD34+ cells from PBMC

The positive selection of CD34+ cells was performed using a direct CD34 progenitor cell isolation kit, using the MiniMACS (MAgnetic Cell Sorting) kit from Miltenyi Biotech GmbH (Germany). This technology is based on the use of MACS MicroBeads, MACS Columns and MACS Separators. The MicroBeads are superparamagnetic particles that are coupled to highly specific monoclonal antibodies, anti-CD34 in the present experiment. They are used to magnetically label the target cell population: CD34+ haematopoietic progenitor cells. As the MicroBeads are extremely small (50nm),
the use of a high-gradient magnetic field is required to retain the labeled cells. By using a MACS Column with a coated matrix placed in a permanent magnet, the MACS Separator, the magnetic force is sufficient to retain the target cells labeled with a minimum of MicroBeads. All the unlabeled cells are washed out thoroughly by rinsing the column with buffer, without affecting the labeled or unlabeled cell fractions. The labeled fraction can be collected by removing the column from the magnet. The entire procedure can be done in less than 30 minutes.

Approximately 4 to 5 ml of peripheral blood were kindly provided weekly by Dr M. Watts (Department of Haematology at University College Hospital, London, UK). The patients whose blood samples and apheresis cells were tested by BFU-E assay were assigned a number in order to respect their anonymity.

The first step consisted of harvesting mononuclear cells from PBMC by density gradient centrifugation over Ficoll Paque® (Pharmacia Biotech). The latter was added to the blood sample (10% of blood volume), mixed gently and centrifuged for 10 minutes at 168g. The supernatant, which was the platelet-rich plasma (PRP), was removed and stored at -20°C for later antibody testing. The peripheral blood was diluted a first time 1:1 (volume: volume) with RPMI and 10% FCS and the collection tube rinsed with this buffer. A second 1:1 (volume: volume) dilution of blood into Ficoll-Paque® was done at an angle so that the blood remained on top of the Ficoll-Paque®. The sample was centrifuged for 20 minutes at 543g. In the meantime, the MACS Column was prepared by placing a 30μm pre-separation filter on top of the reservoir, situated on the upper part of the column in order to remove cell clumps.

Three collection tubes (labeled 'Wash', 'Waste' and 'CD34+') were prepared and the wash tube was placed under the column. The azide in the MACS column was washed off with 1ml of cold wash buffer, through the pre-separation filter, which had to be lifted
to release the buffer. When the centrifugation of peripheral blood and Ficoll-Paque®
was complete, the different cell types had migrated, leading to the formation of layers.
The bottom layer contained erythrocytes, which had been aggregated by the Ficoll and,
therefore, sedimented completely through the Ficoll-Paque®. The layer immediately
above the red blood cells contained mostly granulocytes whereas the lymphocytes,
platelets and monocytes, because of their lower density, were found in the interface
between the remaining plasma and the Ficoll-Paque®. The lymphocytes were collected
with care, transferred to a new tube and the cell clumps were broken by gentle pipetting.
The cells were washed with wash buffer to remove any remaining Ficoll-Paque® and
spun at 1050g for 5 to 7 minutes. Most of the supernatant was discarded and the cell
pellet resuspended by gently flicking the tube. To these cells was added 100μl of
magnetic beads to which CD34 specific antibodies were directly coupled. These beads
were provided with the direct CD34 progenitor cell isolation kit (Miltenyi Biotech
GmbH). The cells and the magnetic particles were left at 4°C for 30 minutes, with a
gentle mix after 15 minutes.
The cells were then washed with wash buffer and centrifuged at 905g for 5 minutes. The
supernatant was discarded and the cell pellet resuspended in 0.5ml of wash buffer. The
waste tube was placed under the MACS column and the cell suspension added in the
filter. Additional wash buffer was used to wash potential remaining cells from the tube
and was added to the filter. The MACS column was rinsed with 3 to 4 volumes of wash
buffer, thereby allowing all the unlabeled cells to be washed out thoroughly, without
affecting the labeled or unlabeled cell fractions. The MACS column was then removed
from the magnet and placed onto the CD34+ collection tube. Between 0.5ml and 1ml of
wash buffer was added to the column and the CD34+ cells were forced out of the
column by using a plunger. The expected cell count of the isolated CD34+ cells was
between 10^5 and 10^6 cells/ml. The cells were cultured at 37°C (5% CO_2) in CD34+ cell culture medium.

II.2.3.1.2. FACS analysis of isolated CD34+ cells

The cells were labeled with Phycoerythrin-(PE) conjugated anti-CD4 antibody, acquired using the FACS (Fluorescence Activated Cell Sorter) machine and the data were analysed using the Cellquest program.

CD34+ cells isolated from peripheral blood and apheresis cells were centrifuged for 5 minutes at 580g. The cell pellet was resuspended in 1 ml of buffer, which was kept at 4°C. The cells were spun again and most of the supernatant discarded, keeping ~100μl of liquid in the tube. To the cells was added 20μl (2mg/ml stock solution) of mouse anti-human CD34 IgG1 antibody PE-conjugated. In addition, a negative control was used with matching mouse IgG1-PE to assess for non-specific staining. Both samples were mixed and left for 1 hour at 4°C. A first wash was done using 1ml of wash buffer and the cells were centrifuged for 2 to 3 minutes at 6110g. The supernatant was discarded and the wash step repeated. Finally, 1ml of FACS fixative buffer was added to the apheresis cells.

The FACS machine (Becton Dickinson) was operated by Dr R. Stebbings (Department of Immunobiology, NIBSC).

II.2.3.1.3. Infection of CD34+ cells

Approximately four days after isolation from peripheral blood, CD34+ cells in culture (CD34+ cell culture medium supplemented with 1ng/ml of IL-3) were harvested and placed in a 1.5ml sterile Eppendorf tube. The cells were centrifuged for 5 minutes at 580g and the supernatant was removed.
For infection, cell pellets containing approximately 10^5 cells/ml, were resuspended in 30μl of neat B19 stock virus (1x1012 IU/ml) or 1:10 dilution (1x1012 IU/ml) whereas 30μl of IMDM was used for the negative control. The cell suspensions were mixed thoroughly by vortexing and placed at +4°C for 2 hours, with occasional mixing. At the end of the incubation period, 3ml of freshly prepared IMDM was added to each sample. Each sample was plated out in a 6-well plate (0.5ml cell suspension/well). After 3 to 4 days incubation at 37°C (5% CO$_2$), the cells were harvested and slides were prepared for indirect IFA in one of the two ways described previously (see section II.2.2.1).

II.2.3.2. Apheresis cells

II.2.3.2.1. Determination of anti-B19 IgG status of apheresis cell donors by EIA

The anti-B19 IgG status of some of the apheresis cells donors were kindly tested by Dr B. Cohen (HPA, London, UK), using serum samples from the donors where available. The kit used was the parvovirus B19 IgG sandwich enzyme immunoassay (3rd generation) by Biotrin (Dublin, Ireland). In this protocol, 100μl of diluted patient serum (1:10 dilution in sample diluent provided with the kit), 100μl of negative control (ready-to-use) and 100μl of positive control (ready-to-use) were added to the wells of a coated microwell plate. The plate was incubated for 1 hour at room temperature. During this step, specific parvovirus B19 IgG antibodies present in serum bound to the microtitre wells coated with a purified parvovirus B19 recombinant VP2 protein. Following a wash step with wash solution, peroxidase-labelled rabbit anti-human IgG was added (100μl), which bound to the human parvovirus B19 IgG if present. The samples were incubated for 30 minutes at room temperature. After a wash step, the whole complex was then detected by addition of substrate (100μl), which turned blue in the presence of
Chapter II

II.2.3.2.2. Determination of anti-B19 IgG status of apheresis cells donors by IFA

This test was performed with the help of Dr B. Cohen (HPA, London, UK). Positive and negative controls, as well as serum samples from patients who had donated apheresis cells, were applied onto the slides and incubated. Following washes, a rabbit anti-human FITC conjugate antibody (1:40 dilution) was added onto the slides. Two washes with PBS/Tween were followed by one wash with distilled water. Once dried, the slides were mounted and observed using the water immersion objective of a fluorescent microscope.

II.2.3.2.3. BFU-E reduction assay

After a cell count, the hospital staff advised on the volume of sample containing 10^3 cells. Twice this volume (2 x 10^3 cells) was transferred into eight sterile 1.5ml Eppendorf tube and spun at 2,300g for 30 seconds at room temperature. Seven of these tubes were used for infection with parvovirus B19 while the eighth one was the uninfected negative control. The pellet in the latter was resuspended by vortexing. In the other samples, the supernatant (medium) was removed but saved. The pellet was resuspended in 30µl of B19 stock virus (1×10^{12} IU/ml), which had been serially diluted 1:3 and vortexed. Both infected samples and negative control were left for minimum 2 hours at +4°C. The medium previously saved was then added to the corresponding infected sample and vortexed. Each sample (infected and control) was added to a 2.5ml aliquot of Fox’s medium, mixed thoroughly by vortexing and plated out in a 24-well
plate (0.5ml in each well). The plate was incubated for 10 to 11 days at 37°C in a 5% CO₂ incubator without moving it. The red colonies formed in the negative control were counted with the naked eye (between 50 and 100 red colonies/well on average) and a cell count was also done in the infected wells if red colonies were visible.

The percentage BFU-E reduction was calculated using the formulae:

\[
\text{Percentage reduction} = \frac{(A-B)}{A} \times 100
\]

A being the total number of red colonies in the five control wells and B being the total number of red colonies in the five wells inoculated with virus.

II.2.4. Nucleic acid extractions

II.2.4.1. Nucleic acid extraction using QIAamp DNA blood mini kit (Qiagen)

The QIAamp DNA blood mini kit (Qiagen) is designed to purify genomic, mitochondrial, bacterial and viral nucleic acids from blood and related body fluids. Nucleic acids bind specifically to the QIAamp silica-gel membrane while contaminants pass through the spin columns. Wash buffers are then used to remove impurities, such as PCR inhibitors, and pure, ready-to-use nucleic acids are eluted in water.

Before starting the extraction procedure, and according to the manufacturer’s recommendations, the carrier was redissolved in water to obtain a 1μg/μl solution, 1μl of which was added to 200μl the lysis buffer, labelled AL, resulting in a concentration of carrier of 1μg/reaction. Two hundred microlitres of sample was gently mixed with 20μl of proteinase K (20mg/ml) in a 1.5ml Eppendorf tube. Two hundred and one microlitres of AL+carrier was then added to the tubes, which were mixed, spun briefly...
and incubated at 56°C for 10 minutes. A brief spin preceded the addition of 250μl of ethanol (99% purity). The tubes were once more mixed, spun briefly and left at room temperature for 10 minutes. The samples were then loaded onto the columns provided and spun at 11,450g for 1 minute. The collection tubes were changed and the columns washed once with 500μl of AW1 and spun at 11,450g for 1 minute. The collection tubes were changed and the columns washed with 500μl of AW2 and spun at 11,450g for 1 minute. Once more, the collection tubes were replaced and the columns were spun at 17,530g for a further 3 minutes. The silica columns were then transferred to siliconised tubes (whose lids had been cut off) and left to stand for a couple of minutes to allow any residual ethanol to evaporate. To elute the nucleic acids, 60μl of water was added to the centre of the columns, which were left at room temperature for 1 minute then centrifuged at 11,450g for 3 minutes. The eluted nucleic acids were transferred to 0.5mL siliconised tubes for immediate amplification and quantification by the LightCycler system (Roche Molecular Biochemicals). Alternatively, nucleic acids were stored at -70°C.

II.2.4.2. Oligotex direct mRNA kit (Qiagen) for extraction of poly A+ RNA from whole cells

The Oligotex direct mRNA kit (Qiagen) allows isolation of pure poly A+ mRNA directly from cultured cells. Rigorous denaturing lysis conditions applied to the homogenised cells can generate an immediate RNAse-free environment for the extraction of intact mRNA. Moreover, the Oligotex resin used is composed of polystyrene-latex particles of uniform size (1.1μm diameter) and spherical shape. These particles form a stable suspension, thereby providing a large surface area for fast and efficient hybridisation with polyadenylic acids. After washing, mRNA is eluted in a
small volume of elution buffer (OEB) and can be used immediately for RT-PCR amplification.

Prior to extraction, the Oligotex suspension was heated for 10 to 15 minutes at 37°C, mixed by vortexing and then left at room temperature while buffer OEB was placed in a water bath at 70°C. Approximately 2x10⁷ cells (grown in suspension) were initially pelleted by centrifugation at 402g for 5 minutes in 1.5 ml RNAase-free Eppendorf tubes. The cells were disrupted by addition of lysis buffer OL1 (with β-ME) at room temperature. To achieve this, the cell pellet was loosened by flicking the tube and adding 600µl of OL1 (for 1x10⁶ to 1x10⁷ cells). The sample was vortexed for a few seconds or pipetted up and down. In order to homogenise the sample, the lysate was passed 5 to 10 times through a 20-gauge needle (0.9mm diameter) fitted to an RNAase-free syringe. At this stage, the lysate was either stored at -70°C (for several months) for later use or used immediately. To process frozen cell lysates, samples were thawed for 10 minutes (≤2x10⁷ cells) in a 37°C water bath to redissolve the salts. Dilution buffer (ODB), supplied in the kit, was then added to the homogenised cells (1.2ml) and the samples were mixed thoroughly by pipetting. The samples were spun for 3 minutes at 15,115g and the supernatant transferred to a new RNAase-free tube. Thirty-five microlitres of Oligotex suspension was added to each sample, mixed by vortexing and left at room temperature for 10 minutes. The Oligotex-mRNA complex was pelleted at 15,115g for 5 minutes. The supernatants were carefully removed and discarded. The pellets were resuspended by adding 100µl of lysis buffer (OL1), followed by vortexing. Four hundred microlitres of ODB was added to the samples which were then incubated at 70°C for 3 minutes followed by incubation at room temperature for a further 10 minutes. This step slightly enriched for poly A⁺ mRNA by decreasing the amount of rRNA. The samples were spun at 15,115g for 5 minutes and the supernatant removed.
carefully. The pellets were resuspended with 350µl of wash buffer 1 (OW1) by vortexing. The samples were then transferred to spin columns provided in the kit and centrifuged for 1 minute at 15,115g. The collection tubes containing the flow-through were discarded and replaced. The columns were washed twice with 350µl of wash buffer 2 (OW2) as described above. The spin columns were then transferred to 1.5ml RNAase-free tubes and 30µl of preheated (at 70°C) elution buffer OEB added to the columns. The buffer was pipetted up and down three to four times to resuspend the resin and the columns spun for 1 minute at 15,115g. The eluted mRNA was carefully transferred to new RNAase-free centrifuge tubes, and either placed on ice for immediate use or stored at -70°C for later amplification.

II.2.4.3. Oligotex direct mRNA kit (Qiagen) for extraction of poly A⁺ RNA from cell cytoplasm

The same Oligotex direct mRNA kit (Qiagen) was used to extract mRNA from cell cytoplasm. However, the lysis buffer (OCL) and dilution buffer (OCD) were prepared in-house according to the manufacturer’s instructions (section I.1.2). Prior to extraction, the Oligotex suspension was heated in a 37°C water bath for 10 to 15 minutes, mixed by vortexing and then left at room temperature while buffer OEB was incubated in a second water bath heated to 70°C. The cells grown in suspension were harvested two days post-infection, placed in RNAase-free centrifuge tubes and spun for 5 minutes at 402g. The cell pellets were loosened by flicking the tubes and 0.2ml of chilled OCL buffer was added, followed by incubation on ice for 7 minutes. The tubes were then spun for 2 minutes at 755g at 4°C in a pre-chilled centrifuge to pellet the nuclei (the nuclear pellets were white and much smaller than the cell pellets). The supernatants, containing the cytoplasmic fraction, were transferred to an RNAase-free centrifuge tube.
Two hundred microlitres of OCD and 20μl of Oligotex suspension were added to the supernatant and mixed thoroughly. After 3 minutes incubation at 70°C, the samples were placed at room temperature for a further 10 minutes. The samples were spun for 5 minutes at 15,115g at room temperature. The supernatants were carefully removed and discarded. The pellets were then resuspended in 350μl of wash buffer OW1 by gently pipetting. Both spin column, supplied in the Oligotex kit, and batch format protocols were tested.

In the batch format, instead of collecting the Oligotex resin in a spin column, the polystyrene-latex particles were pelleted by centrifugation for 2 minutes at 15,115g. The supernatants were removed and the pellets resuspended in 350μl of OW2. The samples were spun again for 2 minutes at 15,115g and the OW2 wash and centrifugation repeated using a new tube. The pellet was then resuspended in 30μl of OEB prewarmed at 70°C. All samples were incubated in a water bath at 70°C while adding the buffer. Samples were left at this temperature for a couple of minutes, followed by centrifugation at 15,115g for 2 minutes. The supernatants containing the eluted mRNA were carefully transferred to new RNAase-free tubes, which were then either placed on ice for immediate use or stored at -70°C for later use.

In the spin column format, the cytoplasmic fraction was transferred to a spin column (supplied with the kit) and processed as above except that the wash buffers and supernatants flowed through the column into collection tubes. The collection tubes were changed at the end of each centrifugation step.
II.2.4.4. Nuclisens™ (Organon Teknika) extraction of total nucleic acids

The Nuclisens™ kit (Organon Teknika) allowed extraction of total (viral and cellular) nucleic acids. The silica supplied in the kit was resuspended by vortexing. Fifty microlitres of silica were added to 0.9ml of kit lysis buffer which itself lysed samples, stabilised nucleic acids and enhanced selective nucleic acid adsorption to the silica particles. Two hundred microlitres of sample were added to a tube containing lysis buffer and silica, and was mixed thoroughly. The samples were then left at room temperature for 10 minutes and vortexed every minute to ensure the nucleic acids bound to the silica. The samples were spun for 30 seconds at 15,115g. After removal of the supernatant, 1ml of wash buffer was added to each sample, followed by vortexing. The samples were spun for 30 seconds at 15,115g, the supernatants removed and the washing step repeated once. The silica pellets were resuspended in 1ml of 70% ethanol, the suspensions were transferred to clean 1.5ml Eppendorf tubes and spun for 30 seconds at 15,115g. After removing the supernatants, 1ml of ethanol was added as before and the samples vortexed and spun. The supernatants were discarded. The samples were washed with 1ml of acetone, vortexed, spun and the acetone discarded. The silica pellets were dried at 56°C for 30 minutes and 50μl of pre-warmed elution buffer was added to each sample. The samples were vortexed until resuspended and incubated for 30 minutes at 70°C in order to completely redissolve the nucleic acids. During this incubation step, samples were vortexed every 10 minutes to resuspend the silica. The samples were finally spun for 5 minutes at 15,115g and the supernatant containing total nucleic acids (~35μl) was carefully removed and transferred to clean RNAase-free tubes (0.5ml) which were either stored at -70°C for later use or placed on ice for immediate use.
II.2.4.5. QIAamp DNA mini kit (Qiagen) for extraction of total nucleic acids

QIAamp DNA mini kits (Qiagen) contained Proteinase K, which had been shown to be the optimal enzyme for use with the lysis buffer. Two hundred microlitres of samples were added to 1.5 ml microcentrifuge tubes which already contained 20μl of Proteinase K. Then 200μl of lysis buffer (AL) were added to each sample, mixed thoroughly by vortexing and incubated for 10 minutes at room temperature, followed by 10 minutes at 56°C. The centrifuge tubes were briefly centrifuged to remove drops from the inside of the lids. Two hundred microlitres of absolute ethanol were added to the samples, which were mixed by vortexing and briefly centrifuged. The mixture was carefully applied onto the QIAamp Spin Columns provided in the kit (in 2ml collection tubes) without wetting the rim. The caps were closed and the spin columns were centrifuged at 6000g for 1 minute. The spin columns were placed in clean 2ml collection tubes and the tubes containing the filtrate were discarded. Five hundred microlitres of wash buffer 1 (AW1) were added onto the spin columns, which were centrifuged at 6000g for 1 minute. The spin columns were again placed in clean 2ml collection tubes and the tubes containing the filtrate were discarded. The spin columns were washed twice with 500μl of wash buffer 2 (AW2) and centrifuged at 6000g for 1 minute. The spin columns were placed in clean 2ml collection tubes and the tubes containing the filtrate were discarded. An additional centrifugation at full speed (20,000g) was done after the second wash for 3 minutes. The spin columns were placed in clean 2ml collection tubes and the tubes containing the filtrate were discarded. Two hundred microlitres of elution buffer (AE) were added to each spin column. After incubation at room temperature for 5 minutes, the spin columns were centrifuged at 6000g for 1 minute. The eluted total nucleic acids were stored at -20°C for later use.
II.2.5. DNA quantification by LightCycler system (Roche Molecular Biochemicals)

The DNA FastStart Master SYBR Green I kit (Roche Applied Science) includes MgCl₂ stock solution (25mM, vial 2) to adjust the MgCl₂ concentration, sterile PCR grade water to adjust the final volume and the LightCycler FastStart enzyme (vial 1a), which is mixed with the LightCycler FastStart reaction mix SYBR Green I (vial 1b). This mixture contains FastStart Taq DNA polymerase, reaction buffer, dNTP mix, SYBR Green I dye and 10mM MgCl₂. FastStart Taq DNA polymerase is a modified form of thermostable recombinant Taq DNA polymerase. The heat-labile blocking groups on some of the amino acid residues of the enzyme allow it to stay inactive at room temperature. Therefore, there is no elongation during the period where primers can bind non-specifically. The pre-incubation step at 95°C, for a maximum of 10 minutes removes the blocking groups and activates the modified enzyme.

During each phase of DNA synthesis, the SYBR Green I dye binds to the amplified nucleic acids and produces a fluorescent signal. As SYBR Green I dye binds non-specifically to the minor grooves of double-stranded DNA, both specific amplicons and primer dimers will contribute to the overall fluorescent signal. However, since the melting curve of primer dimers is usually lower than that of specifically amplified PCR product, an analysis of the melting curve enables collection of fluorescence data at a temperature at which the primer dimers are denatured and do not contribute to the fluorescent signal. Previous studies in the laboratory had shown that the melting temperature of the primer dimers was below 80°C while that of the amplified product was above this temperature. Therefore, in the B19 assay, fluorescence data were collected at 80°C to exclude signals from primer dimers. The ideal target length would be 100 to 150bp and the use of SYBR Green allows a flexible detection of different
targets and is less expensive than fluorogenic probes (i.e. dual-labelled probes, FRET probes and molecular beacons).

In addition to the DNA quantification provided by the LightCycler instrument (Roche Diagnostics), the PCR products from the optimisation experiments were analysed on a 2% agarose gel containing ethidium bromide. The DNA samples were prepared by adding 2 to 3.5μl of 6x loading dye to a 1.5ml Eppendorf tube without a lid. The glass capillaries were gently removed from the LightCycler carousel, uncapped and placed inverted in the prepared tubes. The capillaries were then spun twice in a microcentrifuge at 700g for a few seconds to remove the amplicons. The samples were analysed on a 2% agarose gel run at 100 volts for 40-50 minutes. The bands were visualised under the UV light and photographed either using a Polaroid camera or by the Autochemi™ photographic system (UVP).

II.2.6. mRNA amplification by OneStep RT-PCR

The OneStep RT-PCR kit (Qiagen) contains 10x OneStep RT-PCR buffer, deoxynucleotides mix (dNTPs), 5x Q buffer solution, RT-PCR enzyme mix and RNAase-free water. OneStep RT-PCR buffer is designed to enable both reverse transcription and specific amplification. The buffer contains a balanced combination of KCl and (NH₄)₂SO₄ which allows specific primer annealing over a wide range of annealing temperatures and Mg²⁺ concentrations. The Q solution, supplied with the kit, was used to improve suboptimal RT-PCR amplification caused by RNA and DNA templates that have a high degree of secondary structure or that are GC-rich. Q buffer has also been shown to prevent the amplification of non-specific RT-PCR products. The OneStep RT-PCR enzyme mix contains enzymes for both reverse transcription (Omniscript™ and Sensiscript™ reverse transcriptases) and PCR amplification.
(HotStarTaq™ DNA polymerase). Omniscript™ reverse transcriptase is directed at RNA amounts greater than 50ng whereas Sensiscript™ reverse transcriptase is optimised for use with very small amounts of RNA (less than 50ng), thereby providing sensitive RT of any amount of RNA from 1pg to 2µg. During the RT-step, HotStarTaq™ DNA polymerase is completely inactive and does not interfere with the RT reaction. Once the latter is completed, reactions are heated to 95°C for 15 minutes to activate HotStarTaq™ DNA polymerase while inactivating the reverse transcriptases. This procedure eliminates extension from non-specifically annealed primers and primer-dimers in the first cycle, allowing specific PCR amplification.

II.2.7. Statistical Analysis

All statistical analyses were kindly done by Mr Alan Heath (Informatics Division, NIBSC, UK).

II.2.7.2. LightCycler Standard curve

In the first validation study investigating the limit of detection of the LightCycler PCR assay, no statistical analysis was performed. It was sufficient to look at the melting temperatures to determine the limit of detection.

The second validation study looked at the linearity and precision of the LightCycler standard curve. Results were available from 7 separate assays. For each assay the estimated concentration (\log_{10} IU/ml) for the four samples tested were obtained by reading off the standard curve using the LightCycler software. The overall means of the estimates of \log_{10} IU/ml were calculated, along with the standard deviation across the 7 estimates in each case. To interpret the standard deviation, assuming a normal distribution of repeat estimates, 95% of estimates would fall within the range mean \pm 2
Chapter II

11.2.7.2. DNA extraction and amplification

As for the study above, analysis was based on the overall mean and standard deviation of the estimates of \(\log_{10} \) IU/ml. Interpretation is again based on the expected range of +/- 2 x standard deviation.

11.2.7.3. Determination of 95% and 50% detection limits of the optimised infectivity assay

The methods used for determining the detection limits use a statistical model based on the Poisson distribution. This assumes that the number of “detectable units” (copies or genome equivalents) in an individual samples follows the Poisson distribution with mean given by the average number of “detectable units” at that dilution. Under this model, the dilution equivalent to a mean of one copy per sample tested would result in 63% of tests being positive. The dilution equivalent to three copies per sample would result in 95% of tests being positive. This is defined as the 95% detection limit. The Poisson model can be fitted to the data in table 3.12, represented as a number of positive out of number tested at each dilution, using the commercial statistical software package SAS.
II.2.8. Sequencing of PCR products

II.2.8.1. Purification of amplified products from agarose gels for sequencing

Amplified products obtained with the primer combination B19-9 and XPP-2 were separated on 2% agarose gels and the bands visualised on a UV transilluminator. A gel slice containing the specific band was cut out using a sterile blade and placed in a siliconised 1.5ml Eppendorf tube. The gel slice was snap frozen in a mixture of ethanol and dry ice for 30 minutes. The material used to eliminate ethidium bromide from this stained DNA was the GenElute™ Minus EtBr spin column (56501; Sigma-Aldrich, UK). Before starting the DNA recovery, the spin column was washed by adding 100μl of TE buffer (made in-house), placed in a 1.5ml Eppendorf tube and centrifuged at 17,005g for 5 seconds. The microcentrifuge tube containing TE buffer was discarded and replaced by a new one. Since the spin column should not be left to dry, the frozen gel slice was transferred onto it quickly. The column was centrifuged at 17,005g for 10 minutes to extract the DNA (in buffer) from the gel slice. The eluted DNA was precipitated by the addition of 2 volumes of ethanol and 0.1 volume of 5M ammonium acetate (pH 5.3), followed by incubation at -20°C for 10 minutes. The DNA precipitate was collected by centrifuging at 17,005g for 5 minutes. The supernatant was discarded and DNA was then redissolved in 10μl of TE buffer.

II.2.8.2. Sequencing protocol

Gel purified RT-PCR products were run on a 2% agarose gel with 5μl DNA markers and the concentration of DNA in the amplified products estimated by a comparison of the fluorescence of the product and one of the marker bands in the appropriate size range.
Sequencing was done using the ABI kit (ABI, UK). Approximately 10ng amplified DNA was further amplified in a reaction containing 4μl of terminator mixture, 1.6pmol of primers B19-6 and B19-9 and RNAase-free water to make the final volume 10μl. The PCR reaction was run with the following conditions: 1 cycle at 96°C for 1 minute, followed by 25 cycles of 96°C for 30 seconds, 55°C for 20 seconds and 60°C for 20 seconds and lastly 1 cycle at 60°C for 3 minutes. The PCR products were then purified from unincorporated primers by ethanol precipitation. In a 0.5ml Eppendorf tube were placed 1μl of 3M NaOAc, pH 4.6 and 10μl of the sequencing reaction. After mixing thoroughly, 25μl of absolute ethanol (EtOH) was added to the tube, then mixed again and left at room temperature for 15 minutes. The reaction was centrifuged at 28,215g for 15 minutes to pellet the DNA. The supernatant was carefully removed and 300μl of 70% EtOH was used to resuspend the pellet by flicking the tube. After centrifugation at 28,215g for 5 minutes, the supernatant was removed and another 300μl of 70% EtOH was added to the DNA pellet. The latter was resuspended by flicking again and spun at the same speed for 5 minutes. The supernatant was removed very carefully and the sample centrifuged again to collect any residual EtOH, which was then discarded. The tube was left opened (covered with tissue paper) to dry at room temperature for 30 to 40 minutes. Some template suspension buffer (TE buffer, 15μl) was used to re-dissolve the DNA pellet. The sample was transferred to a thin wall PCR tube and heated to 95°C for 2 minutes and immediately placed onto ice. The sample was transferred to a labelled sequencing tube and loaded onto the ABI 310 sequence analyzer.

II.2.9. Human parvovirus B19 removal/inactivation studies

The optimised tissue culture assay using UT-7/EPO-S1 cells and RT-PCR assay described previously were used to test one method of virus removal by nanofiltration
Chapter II

(Asahi Kasei Pharma) and four virus inactivation techniques: dry heat treatment (BPL), super critical fluids (Aphios Inc.), INACTINE™ system (Vitex) and Helinx® technology (Cerus Corporation). Each of these companies was provided with a sample of B19 virus stock (isolate JS; 1×10^{12} IU/ml). This inoculum was used to spike the products before inactivation or removal. Samples from different stages of these methods were then sent back to NIBSC for infectivity and B19 DNA assays.
Chapter III: Results
III.1. Characterisation of the virus isolates used in this study

III.1.1. Electron microscopy on the virus stock (JS isolate)

Three B19 virus isolates were used for this study: two from Germany, isolates JS and JB, and one from the USA, isolate LP. These three isolates were identified before the discovery of the B19 genotypes 2 and 3. They are therefore very likely to be genotype 1 isolates, which is that found most commonly in North America and Western Europe. The isolates were quantitated using the established LightCycler quantitative assay.

Figure 3.1 below shows EM and IEM photos of the virus stock (isolate JS).
Figure 3.1: IEM and EM of Human Parvovirus B19

(A, B and C: IEM; D: EM)
III.1.2. DNA Quantification of B19 samples

The DNA titres of the three isolates mentioned above were obtained by quantitative real-time LightCycler PCR as 1×10^{12} IU/ml, 3×10^{12} IU/ml and 5×10^{13} IU/ml for JS, JB and LP, respectively.

III.2. Detection of virus infectivity by IFA: controls

Insect cells SF9 were infected with baculovirus expressing either VP1 or VP2 recombinant protein as positive controls (figures 3.3 and 3.4) whereas some cells were mock infected to serve as negative control (figure 3.2). The mouse monoclonal anti-B19 VP1/VP2 antibody (Novocastra Laboratories Ltd) was used at a 1:80 dilution.

Figure 3.2: IFA in mock infected SF9 cells
Figure 3.3: IFA in SF9 cells infected by baculovirus expressing VP1 recombinant protein

Figure 3.4: IFA in SF9 cells infected by baculovirus expressing VP2 recombinant protein
Infected SF9 cells were easily identified by the presence of green dots where the recombinant proteins were produced. Another type of fluorescence was seen, which was brighter and more diffuse in the cell.

III.3. Primary cells

III.3.1. CD34+ cells

III.3.1.1. FACS results

The aim of this experiment was to access the proportion of haematopoietic stem cells present in the CD34+ isolated samples. In addition to the negative control, three test runs were performed: CD34 test.001, CD34 test.002 and CD34 test.003. CD34 test.001 and test.003 were looking at isolated CD34+ cells from two different patients while CD34 test.002 was investigating apheresis cells from a patient who had not been included in the BFU-E studies. Two graphs were obtained with the Cellquest program after measurements by the cytometer. The first graph was a plot of cell granulosity (SSC-H) versus size (FSC-H) (figures 3.5, 3.8 and 3.11) while the second was a plot of CD34+ versus size (figures 3.6, 3.9 and 3.12). Additionally, and in order to visualise the fluorescence associated with CD34+ cells, a histogram of events versus CD34 fluorescence was plotted (figures 3.7, 3.10, 3.13).
• CD34 test.001 (isolated CD34+ cells)

Figure 3.5: Dot plot of the cell granulosity (SSC-H) versus cell size (FSC-H) for CD34

Figure 3.6: Dot plot of CD34+ versus cell size (FSC-H) for CD34 test.001
Figure 3.7: Histogram of events versus CD34 fluorescence for CD34 test.

- CD34 test.

Figure 3.8: Dot plot of the cell granularity (SSC-H) versus cell size (FSC-H) for CD34 test.
Figure 3.9: Dot plot of CD34+ versus cell size (FSC-H) for CD34 test.

Figure 3.10: Histogram of events versus CD34 fluorescence for CD34 test.
CD34 test.002 (apheresis cells)

Figure 3.11: Dot plot of the cell granulosity (SSC-H) versus cell size (FSC-H) for CD34 test.002

Figure 3.12: Dot plot of CD34+ versus cell size (FSC-H) for CD34 test.002
In figures 3.5 and 3.8 (experiments CD34 test-001 and CD34 test.003), CD34+ cells could be seen in the lower right-hand quadrant: 17.5% and 17.2%, respectively. On figures 3.6 and 3.9, these cells were in majority in the upper right-hand quadrant: 73.6% and 72.4%, respectively. However, it was clear that CD34+ cells were not the only cell population in the samples where the CD34+ cells had been isolated from mobilized peripheral blood. Figures 3.11, 3.12 and 3.13 (experiment CD34 test.002), which represented the cell populations in the apheresis sample, showed, as expected, that the CD34+ cell density was not as high as that of the CD34+ isolated sample. The proportion of CD34+ labelled cells was indeed only 37% (figure 3.13).
III.3.1.2. Detection of infectious parvovirus B19 particles in CD34+ cells by IFA

B19 infected CD34+ isolated cells were stained by IFA to investigate the presence of B19-specific fluorescence. The initial experiments using cells from patients 9, 13, 15 and 19 failed due to poor cell growth or bacterial contamination prior to IFA. Therefore, in subsequent experiments, 1% penicillin/streptomycin and 1% fungizone were added to the medium before and after B19 infection CD34+ cells. Those CD34+ cells isolated from the peripheral blood of a patient whose cells were not tested in the BFU-E reduction assay were inoculated with 1:10 dilution of B19 stock virus (1x10^11 IU/ml) 5 days after CD34+ isolation. Microscope slides were prepared (using the method of the drops on slide) on day 3 and 4 post-infection and IFA was performed using a mouse monoclonal anti-VP1/VP2 antibody (R92F6; Novocastra Laboratories Ltd, UK) followed by a goat anti-mouse FITC conjugate (Sigma). Observation under the fluorescence microscope revealed no evidence of positive staining. This suggested either the absence of infected CD34+ cells or the absence of viral replication in those cells or again a poor sensitivity of the IFA.

The final experiment attempted to detect infectious parvovirus B19 particles in CD34+ cells by IFA using cells isolated from two further patients who were not included in the BFU-E study. The volume of cell suspension used for culture after isolation was reduced to 200µl of 2x10^5 cells/ml suspension in each well of a 96-well plate (flat bottom with low evaporation lid, Falcon). After 4 days at 37°C, the cells were settled at the bottom of the wells and the medium was removed carefully and discarded. Only 20µl of 1:10 dilution of B19 stock virus (1x10^11 IU/ml) were added to two wells while 20µl of negative serum were added to two negative control wells. Then the infection proceeded as detailed previously and slides were made 4 days post-infection.
Chapter III

III.3.1.3. Detection of infectious parvovirus B19 particles in CD34+ cells by detection of mRNA transcripts

Attempts were made to demonstrate the replication of B19 in inoculated CD34+ cells by detection of B19 specific transcripts. Cells expressing CD34 were isolated from the peripheral blood of patients 31 and 32 (not tested by BFU-E reduction assay), with final concentrations of 8.6×10^5 cells/ml and 9×10^5 cells/ml, respectively. After 4 days at $37^\circ C$
(5% CO\textsubscript{2}) in CD34+ medium, the cell count was 1x107 cells/ml and 1.5x105 cells/ml for patients 31 and 32, respectively. CD34+ cells were then harvested and inoculated with 100\textmu{l} of either negative serum or a 1:10 dilution of B19 stock virus (1x1011 IU/ml). The cells were plated out in 4 wells of a 96-well plate using 200\textmu{l} of medium/well for patient 31 and 2 wells of a 96-well plate for patient 32. Cells from patient 31 were harvested on days 1, 2, 3 and 4 post-infection while cells from patient 32 were harvested on days 5 and 6 post-infection. Total nucleic acids were isolated using the Nuclisens™ extraction method that will be described later (see section II.2.4.4).

Two reverse transcription (RT)-PCR reactions were prepared with either actin-specific primers (actin-3 and actin-4) or B19-specific primers (B19-6 and B19-9) (see section II.1.3.2). The total volume for each RT-PCR reaction was 50\textmu{l}, including 5\textmu{l} mRNA template added last. Each reaction contained 10\textmu{l} of RT-PCR buffer, 2\textmu{l} of 10mM dNTP mix, 1.2\textmu{l} of 25pmol/\textmu{l} forward and reverse primers, 2\textmu{l} of RT-PCR enzyme mix and finally 28.6\textmu{l} of RNAase-free water to make up the reaction volume to 50\textmu{l}. The RT-PCR conditions were as follows: 1 cycle at 50°C for 30 minutes, 1 cycle at 94°C for 15 minutes, 43 cycles of 94°C for 45 seconds, 55°C for 45 seconds and 72°C for 2 minutes and finally 1 cycle at 72°C for 5 minutes. A 2% agarose gel was run with the RT-PCR products and visualised under UV light.

The results are shown in figures 3.14 and 3.15. The internal control, actin (~635bp), was present in all samples tested (figure 3.14), confirming that the cellular nucleic acids had been extracted from all samples. Considering the brightness of the actin bands, 2\textmu{l} of template would have been sufficient for the amplification of mRNA transcripts. The expected sizes for B19-specific mRNA transcripts amplified with B19-6 and B19-9 primers were 155bp, 275bp and 1779bp. All three bands could be detected in all CD34+ samples inoculated with the virus from day 1 to day 6 post-infection (figure 3.15).
A smear seen in these samples could be due to the absence of Q buffer in the RT-PCR reaction, which would have prevented unspecific amplification. The large product seen in lane 11 (figure 3.15; day 6, negative serum) might have been due to a contamination from the neighbouring wells during loading of the samples. As far as CD34+ cells from patient 31 were concerned, the intensity of the amplification seemed to be greatest on days 1 and 2 post-infection. These time points were not tested for cells from patient 32, which showed the greatest intensity of amplification on day 6 post-infection.

By detecting B19-specific mRNA transcripts, this experiment demonstrated that CD34+ cells isolated from mobilised peripheral blood were able to support the replication of human parvovirus B19, from day 1 to at least day 6 post-infection.

Figure 3.14: Agarose gel with RT-PCR products amplified with actin-specific primers

![Agarose gel with RT-PCR products amplified with actin-specific primers](image-url)

<table>
<thead>
<tr>
<th>Lane</th>
<th>Sample</th>
<th>Lane</th>
<th>Sample</th>
</tr>
</thead>
<tbody>
<tr>
<td>M</td>
<td>PCR markers</td>
<td>1</td>
<td>Day 1, negative serum (patient 31)</td>
</tr>
<tr>
<td>2</td>
<td>Day 1, 2x10^{11} IU/ml (patient 31)</td>
<td>3</td>
<td>Day 2, negative serum (patient 31)</td>
</tr>
<tr>
<td>4</td>
<td>Day 2, 2x10^{11} IU/ml (patient 31)</td>
<td>5</td>
<td>Day 3, 2x10^{11} IU/ml (patient 31)</td>
</tr>
<tr>
<td>6</td>
<td>Day 4, negative serum (patient 31)</td>
<td>7</td>
<td>Day 5, 2x10^{11} IU/ml (patient 32)</td>
</tr>
<tr>
<td>8</td>
<td>Day 4, 2x10^{11} IU/ml (patient 31)</td>
<td>9</td>
<td>Day 5, negative serum (patient 32)</td>
</tr>
<tr>
<td>10</td>
<td>Day 5, 2x10^{11} IU/ml (patient 32)</td>
<td>11</td>
<td>Day 6, negative serum (patient 32)</td>
</tr>
<tr>
<td>12</td>
<td>Day 6, 2x10^{11} IU/ml (patient 32)</td>
<td>13</td>
<td>RNAase-free water</td>
</tr>
</tbody>
</table>
III.3.2. BFU-E reduction assay

III.3.2.1. Anti-B19 IgG status of apheresis cells donors

SF9 insect cells were used in this IFA and were infected with baculovirus expressing either VP1 or VP2 recombinant proteins and fixed on microscope slides as positive controls. Some uninfected SF9 cells were also included in the test as negative controls. The IgG status of some of the apheresis donors was tested using IEA and IFA and the results are shown in table 3.1 below.
Ten of fifteen patients tested for anti-B19 IgG antibodies were found positive using IEA. Of these ten, six were also tested by IFA and only the one with the highest cutoff value of 9.3 showed strong fluorescence with VP2 protein and some fluorescence with VP1 protein. Patient 1 had a cutoff value of 7.8 and the IFA was positive for both capsid proteins. On the other hand, the two patients with the lowest cutoff values of 2.2 and 1.7 (patients 13 and 18, respectively) didn’t show any fluorescence with either VP1
or VP2 proteins. The last two patients with intermediate cutoff values of 4.4 and 5.2 (patients 14 and 16, respectively) displayed weak fluorescence with the VP1 protein only and none with VP2 in the IFA.

III.3.2.2. BFU-E reduction assay results

An example of the red colonies formed from BFU-E after plating the cells on Fox’s medium is shown in figure 3.16.

Figure 3.16: Red colonies in a negative control of BFU-E reduction assay

The red colonies were counted in each well and the percentage BFU-E reduction calculated for each dilution. The raw data of the BFU-E reduction assay of all the patients who donated apheresis cells are shown in appendix 1. The results indicated a significant discrepancy between the different patients who donated apheresis cells. To confirm this observation, the virus dilution containing 2×10^7 IU/ml was looked at more
closely. When this virus dilution was added to apheresis cells collected from donors 15 and 30, no reduction in the formation of red colonies was noted (0% reduction). There were two hypotheses for this result: the first one was that there were not enough B19 infectious particles in the sample to interfere with the differentiation of haemapoietic progenitors into erythrocytes, and the second one was that the apheresis cells from these patients were not fully permissive to B19 infection.

When inoculated onto apheresis cells of patients 1, 18, 27 and 29, the same virus dilution (2x10^7 IU/ml) induced a percentage BFU-E reduction lower than 10% i.e. 7.14, 9.35, 3.57 and 5.74%, respectively. This observation ruled out the first hypothesis proposed above since the same virus dilution resulted in reduction of red colony formation in different patients. Therefore, cells collected from patients 1, 18, 27 and 29 seemed to be more permissive than those from patients 15 and 30. Even more permissive to B19 infection were all the cell samples in which 2x10^7 IU/ml gave rise to a red colony formation reduction from 11.46% (patient 24) to 63.49% (patient 21). These apheresis cells were collected from patients 14 (19.16%), 23 (23.51%), 25 (25.46%), 19 (31.01%), 20 (31.87%), 26 (32.42%), 28 (39.29%), 17 (54.88%), 22 (57.75%) and 13 (57.8%). The major discrepancies noted between patients seemed to be due to a difference in cell susceptibility to B19 infection.

III.3.2.3. Detection of infectious parvovirus B19 in cells from BFU-E colonies by indirect IFA

The aim of the experiments in this section was to assess the susceptibility to B19 infection of apheresis cells differentiated into erythrocytes.

In the first experiment, patient 7 was specifically chosen because of the apparent lack of susceptibility to B19 infection suggested by the BFU-E reduction assay results (Appendix 1). When inoculated with 1x10^10 IU/ml of B19 stock virus, the apheresis
cells from patient 7 only showed 3.4% BFU-E reduction, whereas the same virus
dilution tested in 18 other samples induced on average 79% BFU-E reduction. Results
from patient 8 at that virus dilution was slightly lower than average at 66.83%
(Appendix 1). The red colonies formed in the negative control of BFU-E assays of
patients 7 and 8 were thus picked by aspiration using a sterile glass Pasteur pipette and
placed in 1ml of fresh IMDM medium (Appendix 1). The cell counts were 2.1x10⁶
cell/ml and 2.3x10⁶ cells/ml, for patients 7 and 8, respectively. The cells were
centrifuged for 10 minutes at 145g and the supernatant discarded. The differentiated
cells were inoculated with either 100μl of medium or 100μl neat B19 stock virus
(1x10¹² IU/ml) and incubated at 4°C for 2 hours with occasional mixing. Fresh medium
was then added to the samples to obtain a final concentration of 5x10⁵ cells/ml and this
cell suspension was plated out in a 96-well plate using 1x10⁵ cells/well (i.e. 200μl/well).
The plate was placed at 37°C (5% CO₂) and the cells harvested on the day of infection,
as well as on days 1, 2, 3, 4 and 7 post-infection. Microscope slides were prepared and
IFA was performed using mouse monoclonal antibody anti-VP1/VP2, 1:80 dilution
(R92F6, Novocastra).

As expected, neither of the samples (patients 7 and 8) inoculated with B19 stock virus
(1x10¹² IU/ml) presented fluorescence on the day of infection since the virus had not
had time to replicate. Cells from patient 7 harvested on day 3 post-infection presented
only a few positive cells (~5%; not shown) whereas on day 4, the proportion of infected
cells was slightly greater (~10%; figure 3.17). The fluorescence was brighter than on the
previous day and mainly diffuse, although fluorescent spots could be seen on a few
cells, as shown on figure 3.17. On day 7 post-infection, the type of fluorescence
remained the same but it was detected in a higher proportion of the cells (~20%), as can
be seen on figure 3.18.
Figure 3.17: IFA in differentiated cells from patient 7 infected with parvovirus B19, day 4 post-infection

Figure 3.18: IFA in differentiated cells from patient 7 infected with parvovirus B19, day 7 post-infection
As for patient 8, very few cells presented positive staining on days 3 and 4 post-infection (not shown). Of those infected, the majority showed diffuse fluorescence in the whole cells rather than spots. On day 7 post-infection, a larger proportion of cells were infected (~25%) and showed fluorescence for VP1/VP2 proteins (not shown). When compared to each other on day 7 post-infection, cells from patient 8 seemed to be slightly more susceptible to B19 infection than cells from patient 7 since there were more positive cells in the former. The type of fluorescence seemed to be overall more diffuse in cells from patient 8 compared to those from patient 7 where some infected cells showed fluorescent spots. This phenomenon might have been explained by the fact that infection in cells from patient 8 was more significant, with possibly a higher viral replication rate than in cells from patient 7. Results from a previous BFU-E reduction assay (Appendix 1) had indeed suggested that cells from patient 7 were less susceptible to B19 infection than those from patient 8 when inoculated with 1×10^{10} IU/ml. However, when inoculated with 1×10^{12} IU/ml, 100% reduction had been induced in both these patients. Therefore, if more cells had been available, this IFA experiment would have been repeated using a lower virus titre for inoculation in order to assess better the susceptibility to B19 infection of erythrocytes differentiated from those apheresis cells.

In order to compare these results with those of another patient, a second time-course experiment was performed using cells from patient 6. The cell count was 3.3×10^6 cells/ml and cell harvest was done every day from day 2 to day 10 post-infection. In this experiment, the microscope slides were prepared using the cytospin method. The IFA results of this experiment showed that no positive staining could be detected in cells until day 3 post-infection. Figure 3.19 shows the negative control on that day. In the
sample inoculated with B19 stock virus, only a few cells (~1%) showed fluorescent dots representing VP1/VP2 proteins, as shown on figure 3.20.

Figure 3.19: IFA in uninfected differentiated cells from patient 6, day 3 post-infection.

Figure 3.20: IFA in infected differentiated cells from patient 6, day 3 post-infection.
Lastly, a third time-course experiment investigated the cells from two more patients: 3 and 4. The protocol above was followed and the cell counts of picked red colonies were 2.5×10^6 cell/ml and 9.5×10^5 cells/ml for patients 3 and 4, respectively. The IFA results showed that few cells were actually fixed on the microscope slides and that no positive staining was present in the differentiated cells from either patient on any day (not shown). The absence of fluorescence might have been due to either the lack of susceptibility of those particular primary cells or to the fact that the cells might have been dying of a different cause before they were harvested. This second hypothesis might explain why there were so few cells on the slides.

III.4. Continuous human erythroid cell lines

III.4.1. Growth curves

As human parvovirus B19 is known to infect cells in S phase (Kishore and Kapoor, 2000), it was crucial to determine the growth pattern of the cells and thereby decide on the optimum time for viral inoculation.

III.4.1.1. KU812Ep6 cell line

For the KU812Ep6 cell line, the growth curves of cells at both early (n+19) and late passage (n+81) were compared. For each cell passage, cell suspension concentrations (prepared using fresh medium) of 1×10^5, 5×10^4 and 1×10^4 cells/ml were tested. In addition to providing an indication on the best time to infect the cells, this experiment allowed the determination of the best starting concentration when splitting the cells. Each cell suspension was seeded into two 24-well plates using 1ml of cell suspension per well. The plates were incubated at 37°C (5% CO₂). Every day and for 8 days, 100μl
Chapter III

of trypan blue was added to 4 wells of each cell suspension dilution and the live cells (unstained) counted using a haemacytometer.

The cell counts and growth curves for KU812Ep6 cells are shown in appendix 2, tables A2.1 to A2.6 and in figures 3.21 and 3.22.

Figure 3.21: KU812Ep6 growth curves (n=19)
The results suggested that these cells should be used at a starting concentration of 1×10^5 cells/ml and should be harvested 5 days after passing them to optimise the yield of dividing cells, which have been reported to be the most permissible for parvovirus B19. The study showed that an earlier passage (n+19) led to higher cell concentrations than a later cell passage (n+81) suggesting that the former might be more suitable regarding a higher cell yield.

III.4.1.2. UT-7/EPO cell line

The protocol described above for KU812Ep6 cells was followed for UT-7/EPO cells at passages n+19 and n+80 and for UT-7/EPO-S1 cells at passage n+14, using cell suspensions at starting concentrations of 1×10^5, 5×10^4 and 1×10^4 cells/ml.
The cell count results are displayed in appendix 2, tables A2.7 to A2.12 and the growth curves are shown in figures 3.23 and 3.24.

When UT-7/EPO cells were used at passage n+80 (tables A2.10 to A2.12, figure 3.24), they showed an earlier exponential phase than that of the lower passage n+19 (tables A2.7 to A2.9, figure 3.23). Additionally, the growth of earlier passage cells (n+19) showed a plateau phase (figure 3.23) whereas the growth curves of cells at a later passage (n+80) were decreasing quickly after reaching the peak, revealing rapid cell death (figure 3.24). The use of such late passage (n+80) was therefore not recommended. These data suggested that UT-7/EPO cells should be passaged at the starting concentration of 1×10^5 cells/ml and virus inoculation should be done 3 days after splitting them.

Figure 3.23: UT-7/EPO growth curves (n+19)
III.4.1.3. UT-7/EPO-S1 cell line

The same protocol as described for KU812Ep6 cells (see section III.4.1.1) was followed but the results of the cell counts for UT-7/EPO-S1 cell line with a starting cell concentration of 1×10^4 cells/ml were too low to be significant and thus the results are not shown. Tables A2.13 and A2.14 in appendix 2 and figure 3.25 show the cell counts for the starting cell concentrations of 1×10^5 and 1×10^6 cells/ml. The growth curve using 1×10^5 cells/ml (green) did not show the typical shape, i.e. exponential growth, plateau and decrease. The cells were still multiplying 9 days after seeding. It was therefore decided that UT-7/EPO-S1 cells would be split to obtain the starting concentration of 1×10^5 cells/ml in all experiments using this cell line, and that the cells should be used for virus inoculation 5 days after passaging them.
III.4.2. Cell attachment study

The aim of this experiment was to evaluate whether any of the suspension cell lines could form a monolayer on suitably treated plates in order to establish a plaque assay for B19, which would be more user friendly. Accordingly, the bottom of a 96-well plate was treated with either collagen or fibronectin, known to promote cell attachment, in order to determine whether KU812, KU812Ep6 and UT-7/EPO cells would adhere to the wells.

To coat each well of a 96-well plate (0.32 cm²) with 2.5μg of Collagen I, 50μl of a working solution of Collagen I (rat-tail, Becton-Dickinson), containing 50μg/ml was added (5μg/cm²). The plate was left at room temperature for 1 hour, the Collagen I
solution discarded from the wells and replaced with 200μl of PBS-A. The plate was left to stand for 30 seconds and the buffer discarded. The plate was air-dried and used immediately. Alternatively, the coated plate could be stored at 4°C for up to a week.

A second plate was coated with fibronectin-like engineered protein polymer (Sigma). In order to coat each well of a 96-well plate (0.32cm²) with 3.2μg of fibronectin-like engineered protein polymer, 32μl of the working solution (100μg/ml) was added to each well (10μg/cm²). The plate was left for 5 minutes at room temperature, fibronectin-like engineered protein polymer was discarded and the coated plate was immediately rinsed twice with PBS-A and air-dried. The coated plate could either be used immediately or stored at room temperature for up to 4 months. An example of part of the 96-well plate is shown below in table 3.2. Columns 1, 3 and 5 of the plate were coated (+ sign) with either Collagen I or fibronectin-like engineered protein polymer as described above, whereas columns 2, 4 and 6 were not coated (- sign). The latter served as negative controls.

Table 3.2: Plate for cell attachment experiment

<table>
<thead>
<tr>
<th></th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>+</td>
<td>-</td>
<td>+</td>
<td>-</td>
<td>+</td>
<td>-</td>
</tr>
<tr>
<td>B</td>
<td>+</td>
<td>-</td>
<td>+</td>
<td>-</td>
<td>+</td>
<td>-</td>
</tr>
<tr>
<td>C</td>
<td>+</td>
<td>-</td>
<td>+</td>
<td>-</td>
<td>+</td>
<td>-</td>
</tr>
<tr>
<td>D</td>
<td>+</td>
<td>-</td>
<td>+</td>
<td>-</td>
<td>+</td>
<td>-</td>
</tr>
<tr>
<td>E</td>
<td>+</td>
<td>-</td>
<td>+</td>
<td>-</td>
<td>+</td>
<td>-</td>
</tr>
<tr>
<td>F</td>
<td>+</td>
<td>-</td>
<td>+</td>
<td>-</td>
<td>+</td>
<td>-</td>
</tr>
</tbody>
</table>
Rows A and B were used for UT-7/EPO cell line (duplicate), rows C and D for KU812 cell line (duplicate), and rows E and F for KU812Ep6 cell line (duplicate). A cell concentration of 1×10^5 cells/ml was used in columns 1 and 2, 5×10^5 cells/ml in columns 3 and 4 and 1×10^6 cells/ml in columns 5 and 6. 200μl of cell suspension in fresh medium was added to the corresponding well in the two coated plates, which were then placed in an incubator (37°C, 5% CO$_2$).

After 4 hours, the cells were disturbed by shaking gently and observed under a light microscope for any sign of adherence to the coated plate. Only a few cells in each well, coated or non-coated, seemed attached to the plate. All three cell lines tested presented the same results. The plates were replaced in the incubator. After 24 hours, the medium was removed by inverting the plates and the cells observed under the light microscope. When the cell concentration was high i.e. 1×10^6 cells/ml, some cells situated at the periphery of the wells stayed attached whereas the rest of the cells in suspension were removed when the medium was removed. This observation was made in both coated and non-coated wells, suggesting that neither treatment with Collagen I nor with fibronectin-like engineered protein polymer was responsible for this phenomenon. As far as lower cell concentrations were concerned, the cells were removed with the medium, thereby confirming that no attachment took place. Once more, all cell lines tested showed the same results.

In conclusion, this experiment suggested that KU812, KU812Ep6 and UT-7/EPO suspension cells could adhere to neither Collagen I nor fibronectin-like engineered protein polymer-coated plates. The development of a plaque assay for human parvovirus B19 using one of the above suspension cell lines was therefore ruled out, and an infectivity assay detecting viral mRNA transcripts was developed using those cells.
III.4.3. Detection of B19 proteins by indirect IFA in continuous cell lines

III.4.3.1. Comparison of KU812, KU812Ep6 and UT-7/EPO cell lines

Three cell lines: KU812, KU812Ep6 and UT-7/EPO (2x10^5 cells), were inoculated with either 30μl of neat B19 stock virus (1x10^{12} IU/ml) or 30μl of negative serum. The cells were incubated at 4°C for 2 hours, with occasional mixing by flicking the tubes in order to keep the cells in suspension. Fresh medium (1ml) was added to each sample, which was then seeded into a 24-well plate (0.5ml per well). The plate was incubated at 37°C (5% CO\(_2\)) and the cells were harvested 5 days post-infection. Microscope slides were prepared using the cytopsin method (200μl of cell suspension).

Two different primary antibodies were tested in this indirect IFA: mouse monoclonal anti-VP1 and VP2 proteins (1:80 dilution; Novocastra), mouse monoclonal anti-VP1 and VP2 proteins (1:50, 1:80, 1:100, 1:500, 1:1,000 dilutions; kindly provided by Ube Research laboratory, Fujirebo, Japan). A negative serum (1:100 dilution) was also included as a control.

As expected, no fluorescence was seen in any cell line when the negative serum was used as primary antibody with B19 inoculated cells. Similarly, no staining was detected in cells inoculated with negative serum (negative controls). With the Novocastra monoclonal antibody, positive staining was observed equally in cell lines KU812 and KU812Ep6 (~10%) whereas less fluorescence was seen in cell line UT-7/EPO (~5%). However, the proportion of positive cells was much higher when the monoclonal antibody from Ube Research laboratory, Fujirebo (Japan) was used as the primary antibody (>30%). Overall, the cell line UT-7/EPO also presented slightly less fluorescence than the other two cell lines. Although all three cell lines showed positive staining when the highest dilution (1:1,000 dilution) of the antibody from Ube Research laboratory, Fujirebo (Japan) was used, the highest proportion of infected cells and the
brightest fluorescence were displayed in the KU812Ep6 cell line. Photos of each cell line stained with the Japanese antibody (1:80 dilution) are shown on figures 3.26 to 3.28.

Figure 3.26: IFA in UT-7/EPO cells inoculated with human parvovirus B19, 5 days post-infection
Figure 3.27: IFA in KU812 cells inoculated with human parvovirus B19, 5 days post-infection

Figure 3.28: IFA in KU812Ep6 cells inoculated with human parvovirus B19, 5 days post-infection
III.4.3.2. KU812Ep6 cell line

Comparison of UT-7/EPO, KU812, KU812Ep6 cell lines in the previous experiment suggested that the KU812Ep6 cell line might be the most permissive one for human parvovirus B19 infection. This cell line was therefore investigated further. Infection of KU812Ep6 cells (passage n+72; 2x10^6 cells) was done with either 300μl of a 1:10 dilution of the B19 stock virus (1x10^{11} IU/ml) or 300μl of negative serum. Cells were left at 4°C for 2 hours, with occasional mixing to resuspend the cells, and washed twice with PBS-A. Fresh medium (1ml) was added to both positive and negative samples, which were then seeded into a 24-well plate. The plate was incubated at 37°C (5% CO₂) and the cells were harvested 5 days post-infection. Microscope slides were prepared using the cytospin method (200μl of cell suspension).

IFA was performed using either rabbit polyclonal anti-NS1 protein (1:100 dilution; from Dr S. Doyle, National University of Ireland, Republic of Ireland) or a commercial mouse monoclonal antibody anti-VP1/VP2 (1:50, 1:100, 1:1,000, 1:10,000 dilutions; Novocastra) with the Alexa Fluor® 488 signal amplification kit (Cambridge BioScience, UK). The latter system includes the Alexa Fluor 488 rabbit anti-mouse IgG (1:100 dilution), followed by enhancement with the Alexa Fluor goat anti-rabbit IgG (1:100 dilution). These conjugates are claimed to be significantly brighter and more photostable than fluorescein-labelled probes. Alexa Fluor goat anti-rabbit IgG conjugate only was used as the secondary antibody for cells stained with rabbit polyclonal anti-NS1 protein.

As expected, the cells which had been inoculated with negative serum did not show evidence of positive staining with either antibody used. KU812Ep6 cells inoculated with B19 and stained using mouse monoclonal anti-VP1/VP2 proteins presented
positive staining in only a couple of cells in each slide in the form of fluorescent spots, as seen on figure 3.29.

Figure 3.29: IFA in KU812Ep6 cells inoculated with human parvovirus B19, 5 days post-infection (stained with mouse monoclonal anti-VP1/VP2)

When the cells inoculated with the virus were stained with rabbit polyclonal anti-NS1 protein, some fluorescence was detected in a small proportion of the cells (~1%; not shown).

III.4.3.3. UT-7/EPO-S1 cell line

The IFA method kindly provided by Dr. J. Blümel (Paul Erhlich Institut, Germany) was tested on the UT-7/EPO-S1 cells. This protocol differed slightly from the one described previously in the method of infection, as well as in the use of a different mouse monoclonal antibody anti-VP1/VP2.
Cell aggregates were harvested, pelleted by centrifugation at 580g for 1 minute, and 7 samples were prepared with 2×10^5 cells/sample. The cell pellet was resuspended in 200μl of medium without FCS (IMDM with 2U/ml EPO, 1% penicillin/streptomycin and 1% fungizone). Serial dilutions of the B19 stock virus were also prepared in medium without FCS, with concentrations ranging from 1×10^{11} to 1×10^6 IU/ml. 100μl of either a virus dilution or medium without FCS (negative control) was added to the corresponding cell sample. The cells were then placed in a 37°C water bath for 2 hours.

One millilitre of complete medium (IMDM with 10% FCS, 2U/ml EPO, 1% penicillin/streptomycin and 1% fungizone) was added to each sample, without washing. The cell suspensions were seeded in a 24-well plate and incubated at 37°C (5% CO$_2$). The cells were harvested 4 days post-infection and centrifuged at 715g for 1 minute. The medium was discarded (poured out rather than pipetted out) and the cell pellet washed with 1ml of PBS-A. The samples were centrifuged again (715g for 1 minute) and most of the supernatant discarded, leaving about 50μl. A volume of 8μl of this cell suspension was placed onto each spot of a multi spot slide (12 spots; Dunn, UK), air dried and fixed in cold acetone/methanol (1:1, volume:volume) for 10 minutes.

One slide was stained with the commercial mouse monoclonal antibody anti-VP1/VP2 (Novocastra, 1:100 dilution) while the other was incubated with a mouse monoclonal antibody (kindly provided by Dr J. Blümel) directed the VP1/VP2 proteins (1:100 dilution), followed by the goat anti-mouse FITC-conjugated secondary antibody (F0257, Sigma).

As expected, all cells inoculated with negative serum (negative controls) did not show any fluorescence. When the commercial mouse monoclonal (Novocastra) was used to stain UT-7/EPO-S1 cells, specific fluorescence, although very faint, was detected in a small proportion (~1%) of cells inoculated with dilutions of the B19 stock virus.
containing 2×10^{11} and 2×10^{10} IU/ml. On the other hand, when the antibody provided by Dr. Blümel was used, positive staining was bright and a few infected cells (~2-5%) could still be seen in cells inoculated with 2×10^9 IU/ml of B19 virus. The differences in staining between the two antibodies can be seen in figures 3.30 and 3.31.

Figure 3.30: IFA in UT-7/EPO-S1 cells inoculated with human parvovirus B19

$(2 \times 10^{10} \text{ IU/ml}), 4 \text{ days post-infection}$
The major difference between the infection method used in the present research project and Dr Blümel’s protocol was the use of a larger inoculum volume in the latter method, thereby increasing the multiplicity of infection. This experiment suggested that the mouse monoclonal antibody provided by Dr Blümel was log₁₀ 1 more sensitive at detecting fluorescence in infected UT-7/EPO-S1 cells than the commercially available antibody (Novocastra). However, the virus titre at which the cells had to be inoculated with was still very high (2x10⁹ IU/ml).

Consequently, an infectivity assay using nucleic acid amplification (RT-PCR) to detect viral mRNA transcripts seemed a much more sensitive and specific alternative to IFA.
III.4.4. B19 infectivity assay for the detection of B19-specific mRNAs in continuous cell lines

In the B19 infectivity assay developed in the present study, the number of infectious units/ml can be calculated by taking the product of the reciprocal of the highest dilution giving a positive signal in the mRNA assay and a factor to allow for the volume of inoculum. Since the volume of virus used to infect the cells was 30μl, the factor was x33.3 or log10 1.5.

III.4.4.1. KU812 cell line

This experiment was aimed at determining whether KU812 cells were able to support parvovirus B19 replication and thereby to assess its possible use in the B19 infectivity assay. This was done by detecting viral mRNA transcripts using nucleic acid amplification (RT-PCR). As it was the first attempt at infecting these cells with B19, a high titre of virus was used and a time-course experiment was done for the isolation of mRNA from KU812 cells.

Two samples, each containing 10^6 cells, were prepared and centrifuged at 580g for 5 minutes. One sample (negative control) was inoculated with 100μl of negative serum while the other sample was resuspended in 100μl of B19 stock virus diluted 1:10 in PBS-A (1x10^{11} IU/ml). The cells were left at 4°C for 2 hours and washed twice with 200μl of PBS-A. The cell pellets were then resuspended in 5ml of fresh medium and seeded into 5 wells of a 24-well plate. The plate was incubated at 37°C. One negative control and one sample inoculated with the virus were harvested on day 1, 2, 3, 4 and 5 post-infection. The isolation of total nucleic acids was carried out following Nuclisens™ extraction protocol.
Two different amplification assays were done, one with actin-specific primers (actin-3 and actin-4; 25pmol/µl) and the second with B19-specific primers (B19-6 and B19-9; 25pmol/µl). The RT-PCR conditions were 1 cycle at 50°C for 30 minutes, 1 cycle at 94°C for 15 minutes, 43 cycles of 94°C for 45 seconds, 55°C for 45 seconds and 72°C for 2 minutes and finally 1 cycle at 72°C for 5 minutes.

Figures 3.32 shows a photo of the agarose gel run with mRNA products amplified using actin- (A) and B19-specific (B) primers. Although actin transcripts (figure 3.32, panel A) were present in all samples, the concentration of actin (as judged by the brightness of the band) progressively decreased from day 4 post-infection. When B19-specific primers were used (figure 3.32, panel B), all samples that had been inoculated with B19 virus (samples 2, 4, 6, 8 and 10) showed both B19-specific bands. The very faint bands seen in the negative samples 1 and 3 were due to a contamination from the neighbouring well when loading sample 2. The other negative samples did not show any amplification (samples 5, 7 and 9). This experiment showed that, when inoculated with high titre parvovirus B19, KU812 cells did allow the replication of the virus, at least from days 1 to 5 post-infection.
Figure 3.32: Analysis of mRNA products in KU812 cells

(A) Amplified with actin-specific primers

(B) Amplified with B19-6 and B19-9 primers

<table>
<thead>
<tr>
<th>Lane</th>
<th>Samples</th>
</tr>
</thead>
<tbody>
<tr>
<td>M</td>
<td>PCR markers</td>
</tr>
<tr>
<td>1.</td>
<td>day 1 post-infection, negative serum</td>
</tr>
<tr>
<td>2.</td>
<td>day 1 post-infection, 2x10^{11} IU/ml inoculum</td>
</tr>
<tr>
<td>3.</td>
<td>day 2 post-infection, negative serum</td>
</tr>
<tr>
<td>4.</td>
<td>day 2 post-infection, 2x10^{11} IU/ml inoculum</td>
</tr>
<tr>
<td>5.</td>
<td>day 3 post-infection, negative serum</td>
</tr>
<tr>
<td>6.</td>
<td>day 3 post-infection, 2x10^{11} IU/ml inoculum</td>
</tr>
<tr>
<td>7.</td>
<td>day 4 post-infection, negative serum</td>
</tr>
<tr>
<td>8.</td>
<td>day 4 post-infection, 2x10^{11} IU/ml inoculum</td>
</tr>
<tr>
<td>9.</td>
<td>day 5 post-infection, negative serum</td>
</tr>
<tr>
<td>10.</td>
<td>day 5 post-infection, 2x10^{11} IU/ml inoculum</td>
</tr>
</tbody>
</table>
Chapter III

III.4.4.2. KU812Ep6 cell line

A number of parameters regarding infection of cell cultures with parvovirus B19 were investigated in order to determine the optimum conditions for the use of KU812Ep6 cells in an infectivity assay. These parameters were concentration of erythropoietin (EPO) in the culture medium, passage number of cells for infection, pH of phosphate buffer used as the virus diluent and temperature of incubation of the infected cells.

III.4.4.2.1. Concentration of erythropoietin (EPO)

The aim of this study was to grow KU812Ep6 cells in medium containing increasing concentrations of EPO in order to determine the optimum culture conditions for this cell line with respect to susceptibility to B19 infection.

The cells were passaged and placed at 37°C in 5 tissue culture flasks (25mm³; Falcon) containing medium supplemented with 2, 4, 6, 8 and 10U/ml of EPO. Four days later, the cells were harvested and counted. Six samples with 10⁶ cells were prepared and centrifuged at 580g for 5 minutes. Serial 1:3 dilutions of the B19 stock virus were made in PBS-A to contain 1x10⁸⁵, 1x10⁸, 1x10⁷⁵, 1x10⁷ and 1x10⁶⁵ IU/ml. Five cell samples were resuspended in these virus dilutions (30μl) whereas the negative control was resuspended in negative serum (30μl).

After 2 hours at 4°C, the cells were washed twice with 200μl PBS-A and the supernatant discarded. Each sample was resuspended in 5ml fresh medium containing the corresponding EPO concentration of 2, 4, 6, 8 or 10U/ml and was seeded in 5 wells of a 24-well plate. The latter was then incubated at 37°C (5% CO₂).

The cells were harvested two days post-infection and mRNA was isolated from whole cells using the Oligotex direct mRNA kit (Qiagen). Extracted mRNA was used as template in a multiplex RT-PCR assay using actin-specific primers (actin-3 and actin-4;
2.5pmol/μl) and B19-specific primers (B19-6 and B19-9; 25pmol/μl). The amplification conditions were 1 cycle at 50°C for 30 minutes, 1 cycle at 94°C for 15 minutes, 43 cycles of 94°C for 45 seconds, 55°C for 45 seconds and 72°C for 2 minutes and finally 1 cycle at 72°C for 5 minutes.

The results are shown in figure 3.33. As expected, none of the negative controls (samples 6, 12, 19, 25 and 31) showed amplification of B19-specific transcripts while all samples from which mRNA had been isolated showed amplification of the actin-specific transcript.

When KU812Ep6 cells were cultured with EPO concentrations of 2, 4, 8 and 10U/ml, the last sample in which B19-mRNA transcripts could be amplified was that inoculated with a dilution of the B19 stock virus containing 1x10^8 IU/ml. When the cells were grown with 6U/ml of EPO, the last sample in which B19-mRNA transcripts could be amplified was that inoculated with a dilution of the stock virus containing 1x10^7 IU/ml (sample 17). Therefore, this experiment showed that the sensitivity of the infectivity assay was optimum when KU812Ep6 cells were cultured in medium containing 6U/ml of EPO (which was also the concentration used by the laboratory which originally described this cell line).
III.4.4.2.2. Cell passage number

Since previous experiments (not shown) had suggested that KU812Ep6 cells at a higher passage number might be more susceptible to B19 infection than cells at a lower passage, it was considered important to compare different passage number in terms of infectivity assay results.
KU812Ep6 cells at passages n+8, n+29, n+81 and n+93 were counted and 5 samples containing 4x10^5 cells each were pelleted by centrifugation (715g for 5 minutes) for each passage tested. The cells were washed once with 500μl of phosphate buffer pH5.7 and centrifuged at 715g for 5 minutes. The cell pellets were resuspended in 30μl of dilutions of the B19 stock virus (made in phosphate buffer pH5.7) containing 1x10^8, 1x10^7, 1x10^6 and 1x10^5 IU/ml. The negative control was resuspended in buffer only. All samples were left at 4°C for 2 hours and washed twice with PBS-A. To each sample, 1ml of fresh medium was added and the cells seeded in a 24-well plate. After two days in a 37°C (5% CO₂) incubator, the cells were harvested and the mRNA isolated from cell cytoplasm using the Oligotex direct mRNA kit.

Extracted mRNA was used as template in a multiplex RT-PCR assay using actin-specific primers (actin-3 and actin-4; 2.5pmol/μl) and B19-specific primers (B19-6 and B19-9; 25pmol/μl). The amplification conditions were: 1 cycle at 50°C for 30 minutes, 1 cycle at 95°C for 15 minutes, 43 cycles of 94°C for 45 seconds, 54°C for 40 seconds and 72°C for 50 seconds and finally 1 cycle at 72°C for 5 minutes.

The results are shown on figure 3.34.
In KU812Ep6 cells at passage n+29, the only sample in which B19-mRNA transcripts could be amplified was that inoculated with a dilution of the stock virus containing 1×10^8 IU/ml (sample 6). When cells at passages n+8 and n+81 were used, the last sample in which B19-mRNA transcripts were detected was that inoculated with 1×10^7 IU/ml of virus stock (samples 2 and 12). In the case of cells at passage n+93, the 275bp band specific for B19 was very faint and the only one detected in samples 17 and 18, inoculated with dilutions of the stock virus containing 1×10^7 and 1×10^6 IU/ml respectively. In conclusion, this study suggested that KU812Ep6 cells from a higher the
passage number were more susceptible to B19 infection than cells from a lower passage number.

III.4.2.3. pH of diluent buffer

Since it has been reported that a low pH is preferable in a B19 haemagglutination assay (Sato et al., 1995) to allow better adsorption of the virus onto the cells, low pH phosphate buffers were investigated for use as a diluent for the virus serial dilutions used in the infectivity assay. Phosphate buffers (10mM) at pH 5.7, 6.0, 6.5 and 6.7, containing 0.85% NaCl, were investigated.

Sixteen samples (three inoculated with B19 and one negative control for each of the four pHs) were prepared with 10⁶ KU812Ep6 cells (passage n+42) per sample. The cells were washed once with 0.5ml of phosphate buffer and centrifuged (580g for 5 minutes). The cell pellets were resuspended in 30μl of the respective phosphate buffer containing 1x10⁹, 1x10⁸ and 1x10⁷ IU/ml of B19 virus stock. The negative control was resuspended in the corresponding buffer only. The samples were incubated at 4°C for 2 hours and washed twice with 200μl of PBS-A to restore the pH to 7.2. The cell pellets were resuspended in 5ml of fresh medium and seeded into 5 wells of a 24-well plate and incubated at 37°C for 2 days, after which the cells were harvested. Isolation of mRNA from whole cells was done using the Oligotex direct mRNA kit (Qiagen). Extracted mRNA was used as template in multiplex RT-PCR using actin-specific primers (actin-3 and actin-4; 2.5pmol/μl) and B19-specific primers (B19-6 and B19-9; 25pmol/μl). The amplification conditions were 1 cycle at 50°C for 30 minutes, 1 cycle at 94°C for 15 minutes, 43 cycles of 94°C for 45 seconds, 55°C for 45 seconds and 72°C for 2 minutes and finally 1 cycle at 72°C for 5 minutes.

The results are shown on figure 3.35.

- 270 -
The bright actin band in all samples suggested that the cells did not loss significant viability as the pH decreased. The results showed that all pHs tested allowed detection of $1 \times 10^{6.5}$ B19 infectious units/ml. Moreover, at pH 5.7, the B19-specific bands were the brightest. Therefore it appeared that phosphate buffer pH 5.7 could be used as diluent in the B19 infectivity assay.
In addition to phosphate buffer pH 5.7, 10mM acetate buffer (with 0.85% NaCl) at lower pHs (pH 5.6, 5.2, 4.8, 4.4 and 4.0) were tested in the second study for comparison purposes. Twenty-five samples (three inoculated with B19 and one negative control for each of the five pHs) were prepared with \(10^6\) KU812Ep6 cells (n+47) per sample. The protocol described in the previous experiment was followed using dilutions of the B19 stock virus, made in the appropriate buffer, containing \(1 \times 10^8\), \(1 \times 10^7\) and \(1 \times 10^6\) IU/ml. Isolation and amplification of mRNA were performed in the same way as in the first study. The results are shown in figure 3.36.

There was a clear decrease in the brightness of the actin band as the pH decreased, suggesting that the cells were not viable at a very low pH. When acetate buffer at pH 5.6 and 5.2 were used as diluent of B19 stock virus, the last sample in which B19-specific mRNA transcripts were detected was that inoculated with a dilution of the B19 stock virus containing \(1 \times 10^7\) IU/ml (samples 3 and 7). When acetate buffers at pH 4.8 and 4.4 were used, the infectivity assay was able to detect \(\log_{10} 1\) less infectious virus particles per ml than at pH 5.6 and 5.2. There was no amplification of B19-specific transcripts when acetate buffer pH 4.0 was used. However, the use of phosphate buffer at pH 5.7 led the detection of \(1 \times 10^{7.5}\) infectious units/ml, suggesting that it was the most efficient buffer to use for optimum B19 infection of KU812Ep6 cells. This buffer was therefore chosen as the virus diluent in the infectivity assay with KU812Ep6 cells.
Figure 3.36: Analysis of mRNA products in KU812Ep6 cells with various pHs of diluent buffer

(A) Lanes 1 to 5: acetate buffer pH 5.6
1. 1×10^8 IU/ml inoculum
2. 1×10^7 IU/ml inoculum (duplicate)
3. 1×10^6 IU/ml inoculum
4. 1×10^5 IU/ml inoculum
5. Negative serum

Lanes 6 to 9: acetate buffer pH 5.2
6. 1×10^8 IU/ml inoculum
7. 1×10^6 IU/ml inoculum
8. 1×10^5 IU/ml inoculum
9. Negative serum

Lanes 10 to 13: acetate buffer pH 4.8
10. 1×10^8 IU/ml inoculum
11. 1×10^7 IU/ml inoculum
12. 1×10^6 IU/ml inoculum
13. Negative serum

B) Lanes 18 to 21: acetate buffer pH 4.0
18. 1×10^8 IU/ml inoculum
19. 1×10^7 IU/ml inoculum
20. 1×10^6 IU/ml inoculum
21. Negative serum

Lanes 14 to 17: acetate buffer pH 4.4
14. 1×10^8 IU/ml inoculum
15. 1×10^7 IU/ml inoculum
16. 1×10^6 IU/ml inoculum
17. Negative serum

Lanes 22 to 25: phosphate buffer pH 5.7
22. 1×10^8 IU/ml inoculum
23. 1×10^7 IU/ml inoculum
24. 1×10^6 IU/ml inoculum
25. Negative serum
26. RNAase-free water
III.4.4.2.4. Incubation temperature

The incubation period, during which cells and viruses were in contact, lasted for 2 hours and was done at 4°C. However, in order to ensure that this incubation temperature was optimal for B19 infection of KU812Ep6 cells, the results of the infectivity assay were compared to incubation at 37°C and room temperature. Eighteen samples of KU812Ep6 cells (passage n+39; 8x10^5 cells/sample) were prepared and inoculated in triplicate with either negative serum or dilutions of the B19 stock virus containing 1x10^{10}, 1x10^9, 1x10^8, 1x10^7 and 1x10^6 IU/ml, prepared in PBS-A. One set of samples was placed in a 37°C water bath, another at 4°C and the last set left at room temperature for 2 hours. The cells were washed twice with PBS-A and 4ml of fresh medium added to each sample. The cells were seeded in a 24-well plate (1ml per well), incubated at 37°C for 2 days, after which they were harvested. Isolation of mRNA from whole cells was done using the Oligotex direct mRNA kit. Extracted mRNA was used as template in multiplex RT-PCR using actin-specific primers (actin-3 and actin-4; 2.5pmol/μl) and B19-specific primers (B19-6 and B19-9; 25pmol/μl). The amplification conditions were 1 cycle at 50°C for 30 minutes, 1 cycle at 94°C for 15 minutes, 43 cycles of 94°C for 45 seconds, 55°C for 45 seconds and 72°C for 2 minutes and finally 1 cycle at 72°C for 5 minutes. The RT-PCR products were run on agarose gels, which are shown on figure 3.37.
Figure 3.37: Analysis of mRNA products in KU812Ep6 cells using various incubation temperatures

Lane M. PCR markers
Lanes 1 to 6: incubation at 37°C
1. 1×10^{10} IU/ml inoculum
2. 1×10^8 IU/ml inoculum
3. 1×10^7 IU/ml inoculum
4. 1×10^6 IU/ml inoculum
5. 1×10^5 IU/ml inoculum
6. Negative serum

Lanes 7 to 12: incubation at room temperature
7. 1×10^{10} IU/ml inoculum
8. 1×10^9 IU/ml inoculum
9. 1×10^8 IU/ml inoculum
10. 1×10^7 IU/ml inoculum
11. 1×10^6 IU/ml inoculum
12. Negative serum

Lanes 13 to 18: incubation at 4°C
13. 1×10^{10} IU/ml inoculum
14. 1×10^9 IU/ml inoculum
15. 1×10^8 IU/ml inoculum
16. 1×10^7 IU/ml inoculum
17. 1×10^6 IU/ml inoculum
18. Negative serum
19. RNAase-free water

As expected, a bright actin band was present in all samples where mRNA was extracted. When the cells and virus were incubated at 37°C, the last sample in which B19-specific mRNA transcripts were detected was the one inoculated with a dilution of the stock virus containing 1×10^9 IU/ml (sample 2). Although very faint bands of the size of the B19-specific mRNA transcripts were seen in sample 5 inoculated with a dilution of the stock virus containing 1×10^6 IU/ml, no specific bands were detected in samples 3 and 4, inoculated with 1×10^8 and 1×10^7 IU/ml, respectively. Therefore, this result might have
been due to the Poisson distribution and might not have been significant. The same infectivity assay results were obtained when the incubation period was done at 37°C, room temperature and 4°C. At these temperatures, the assay could detect 1×10^9 IU/ml. The conclusion of this experiment was that the incubation temperature did not seem to be a significant parameter that could influence the susceptibility of KU812Ep6 cells to B19 infection. Therefore, 4°C was used as the incubation temperature for the optimised infectivity assay.

Overall, the experiments described in this section suggested that KU812Ep6 cells of a higher rather than lower passage number grown in medium supplemented with 6U/ml of EPO were optimum for the B19 infectivity assay. In addition, phosphate buffer, pH 5.7, was shown to be a good diluent for B19 virus in the infectivity assay and the study indicated that the incubation temperature of cells with virus was not a significant parameter in the inoculation step of the assay.

III.4.4.3. UT-7/EPO cell line

The optimal conditions for B19 infection of the UT-7/EPO cell line were also investigated. Three different virus diluents, namely phosphate buffer pH 5.7, acetate buffer pH 5.6 and PBS-A, were compared in this infectivity assay using UT-7/EPO cells. Twelve samples, including three inoculated with three dilutions of B19 stock virus and one negative control for each of the three buffers tested, were prepared with UT-7/EPO cells (passage n+46; 4x10^5 cells/sample). The cells were washed once with phosphate buffer pH 5.7, acetate buffer pH 5.6 or PBS-A. Three different virus dilution series were prepared using each of the three buffers as diluent, and the cell pellets were resuspended in 30μl of virus dilution, containing 1×10^8, 1×10^6 or 1×10^4 IU/ml, or with
the corresponding buffer alone. The samples were incubated at 37°C for 2 hours, after which UT-7/EPO cells were washed twice with 0.5ml of PBS-A. The cell pellets were resuspended in 2ml of freshly made medium and seeded in 2 wells of a 24-well plate. After 2 days incubation at 37°C (5% CO₂), the cells were harvested and the mRNA extracted from cell cytoplasm using the Oligotex direct mRNA kit (Qiagen). As the RT-PCR step could not be done immediately following mRNA isolation, the extracted mRNA samples were stored at -70°C. Two different pairs of primers were used for the amplification step: multiplex RT-PCR using B19-6 and B19-9 (25pmol/μl) with actin-3 and actin-4 primers (2.5pmol/μl), and single RT-PCR using the B19 primer pair XPP2 and B19-9 (25pmol/μl). The amplification conditions were 1 cycle at 50°C for 30 minutes, 1 cycle at 95°C for 15 minutes, 43 cycles of 95°C for 45 seconds, 57°C for 40 seconds and 72°C for 40 seconds and finally 1 cycle at 72°C for 10 minutes.

Figure 3.38 and 3.39 show the results of RT-PCR amplification using B19-6 and B19-9 (multiplex) and XPP2 and B19-9, respectively.

It is important to note, on figure 3.38, that most actin bands were very faint, except for samples 10, 11 and 12. The cell loss observed was probably not due to low pH since the actin bands were also faint when PBS-A was used. Moreover, previous experiments with KU812Ep6 cells suggested that cell loss only occurred at and below pH 4.4. This low level of isolated mRNA could have explained the lack of amplification of the B19-specific transcripts when B19-6 and B19-9 primers were used. Only sample 10, which had been inoculated with a dilution of the stock virus containing 1x10⁶ IU/ml (diluted in phosphate buffer pH 5.7), showed amplification of B19-specific transcripts.
Figure 3.38: Analysis of mRNA products in UT-7/EPO cells amplified with B19-6 and B19-9 primers

Lane M. PCR markers

Lanes 1 to 4: PBS-A
1. 1×10^8 IU/ml inoculum
2. 1×10^6 IU/ml inoculum
3. 1×10^4 IU/ml inoculum
4. PBS-A

Lanes 9 to 12: phosphate buffer pH 5.7
9. 1×10^8 IU/ml inoculum
10. 1×10^6 IU/ml inoculum
11. 1×10^4 IU/ml inoculum
12. Phosphate buffer pH 5.7
13. RNAase-free water

Lanes 5 to 8: acetate buffer pH 5.6
5. 1×10^8 IU/ml inoculum
6. 1×10^6 IU/ml inoculum
7. 1×10^4 IU/ml inoculum
8. Acetate buffer pH 5.6
Figure 3.39: Analysis of mRNA products in UT-7/EPO cells amplified with XPP2 and B19-9 primers

Amplification with primers XPP2 and B19-9 primers gave faint bands specific to B19 (figure 3.39). Amplification was seen in samples 1 and 5, which had been inoculated with a dilution of the stock virus containing 1×10^8 IU/ml diluted in PBS-A and acetate buffer pH 5.6, respectively. When phosphate buffer pH 5.7 was used as diluent, amplification of B19-specific transcripts occurred in all three samples inoculated with the virus (samples 9, 10 and 11). In these conditions, the infectivity assay was able to detect 1×10^4 IU/ml of B19. The difference in results between the different buffers tested...
might have been due to the fact that more mRNA was present in samples 10, 11 and 12 than in the other samples. However, phosphate buffer pH 5.7 was still confirmed to be the most suitable buffer to use as virus diluent in infectivity assays using UT-7/EPO cells.

III.4.4.4. Comparison of the susceptibility of the KU812, KU812Ep6 and UT-7/EPO cell lines to infection with B19

III.4.4.4.1. B19 infectivity assays using the KU812Ep6, KU812 and UT-7/EPO cell lines

Since all three cell lines had been shown to support B19 replication, this experiment was aimed at determining which one was the most suitable for establishing a sensitive, B19 infectivity assay by inoculating the cells with serial, half-log₁₀ dilutions (1:3 dilutions) of the B19 stock virus. Seven samples, containing 2x10⁵ cells per sample, were prepared for each of the cell line, KU812Ep6 (passage n+54), KU812 (passage n+68) and UT-7/EPO (passage n+53), and centrifuged at 580g for 5 minutes. Serial dilutions of virus in phosphate buffer pH 5.7, containing 1x10⁸, 1x10⁷.5, 1x10⁷, 1x10⁶.5, 1x10⁶ and 1x10⁵.5 IU/ml were prepared. For each cell line, six of the cell pellets were resuspended in 30μl of the corresponding virus dilution while the remaining cell pellet was inoculated with phosphate buffer pH 5.7 only. After 2 hours incubation at 4°C, the cells were washed twice with PBS-A and seeded in 1ml of the corresponding medium. The 24-well plate was placed at 37°C. Two days later, isolation of mRNA from whole cells was done using the Oligotex direct mRNA kit (Qiagen). Extracted mRNAs were used as templates in a multiplex RT-PCR assay with actin primers and the B19-specific primer pair B19-6 and B19-9. The amplification conditions were 1 cycle at 50°C for 30
Chapter III

minutes, 1 cycle at 94°C for 15 minutes, 43 cycles of 94°C for 45 seconds, 55°C for 45 seconds and 72°C for 2 minutes and finally 1 cycle at 72°C for 5 minutes.

Figure 3.40 shows that B19-specific mRNA transcripts were present in all samples inoculated with the virus. All three cell lines displayed similar results, although KU812 cell line seemed slightly better than the other two cell lines because both bands of 155bp and 275bp were present in all samples inoculated with parvovirus B19.

Since KU812Ep6 cells were derived from KU812 cell line, these two cell lines were compared in the following experiment using higher virus dilutions.
Figure 3.40: Analysis of mRNA products in various cell lines amplified with B19-6 and B19-9

Lane M. PCR markers

Lanes 1 to 7: KU812Ep6 cells
1. 1×10^8 IU/ml inoculum
2. $1 \times 10^7.5$ IU/ml inoculum
3. 1×10^7 IU/ml inoculum
4. $1 \times 10^6.5$ IU/ml inoculum
5. 1×10^6 IU/ml inoculum
6. $1 \times 10^5.5$ IU/ml inoculum
7. Phosphate buffer pH 5.7

Lanes 8 to 14: KU812 cells
8. 1×10^8 IU/ml inoculum
9. $1 \times 10^7.5$ IU/ml inoculum
10. 1×10^7 IU/ml inoculum
11. $1 \times 10^6.5$ IU/ml inoculum
12. 1×10^6 IU/ml inoculum
13. $1 \times 10^5.5$ IU/ml inoculum
14. Phosphate buffer pH 5.7

Lanes 15 to 21: UT-7/EPO cell
15. 1×10^8 IU/ml inoculum
16. $1 \times 10^7.5$ IU/ml inoculum
17. 1×10^7 IU/ml inoculum
18. $1 \times 10^6.5$ IU/ml inoculum
19. 1×10^6 IU/ml inoculum
20. $1 \times 10^5.5$ IU/ml inoculum
21. Phosphate buffer pH 5.7
22. RNAase-free water
III.4.4.4.2. B19 infectivity assay using KU812 and KU812Ep6 cell lines

This experiment was done in order to investigate the relative sensitivities of the KU812 (passage n+70) and KU812Ep6 (passage n+56) cell lines to infection with B19. The protocol described above was followed using lower virus dilutions (in phosphate buffer pH 5.7) for inoculation of the cells. Cells were thus inoculated with dilutions of the B19 stock virus containing 1×10^7, 1×10^6, 1×10^5, 1×10^4, 1×10^3, 1×10^2, 1×10^1 and 1×10^0 IU/ml. A negative control with buffer only was also included for both cell lines. Isolation of mRNA from whole cells was done using the Oligotex direct mRNA kit (Qiagen). Extracted mRNAs were used as templates in a multiplex RT-PCR assay with actin primers and the B19 primer pair B19-6 and B19-9. The amplification conditions were the same as in the previous experiment (section III.4.4.4.1).

The results of nucleic acids amplification are shown on figure 3.41.

The housekeeping gene actin was present in samples 1 to 18, suggesting that mRNA had been extracted in all samples tested. Although there seemed to have been some non-specific bands in some samples using KU812Ep6 cells (samples 2, 3 and 4), the last sample that showed amplification of B19-specific transcripts was sample 5, which had been inoculated with a dilution of the stock virus containing 1×10^3 IU/ml. However, only the 275bp band was detected in samples 1, 3 and 5, while no B19 transcripts were amplified in sample 4 (inoculated with 1×10^3 IU/ml). This could have been due to the Poisson distribution. In comparison, when cells KU812 were used in the infectivity assay, the last sample that showed amplification of B19-specific transcripts was sample 11, inoculated with 1×10^6 IU/ml. Therefore, in this particular study, B19 infectivity assay was able to detect $\log_{10} 3$ more infectious virus units per ml with KU812Ep6 cells than with the parent cell line KU812. This was in contrast to the previous experiment,
which had found KU812 to be more permissive for B19 infection than KU812Ep6 or UT-7/EPO cell lines. However, since lower virus titres were used to infect the cells in the present experiment, the variation in sensitivity between the cell lines might have been due to the Poisson distribution of virus at limiting dilutions.

Figure 3.41: Analysis of mRNA products in KU812 and KU812Ep6 cell lines amplified with B19-6 and B19-9

Lane M. PCR markers

<table>
<thead>
<tr>
<th>Lanes 1 to 9: KU812Ep6 cells</th>
<th>Lanes 10 to 18: KU812 cell</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. 1x10⁷ IU/ml inoculum</td>
<td>10. 1x10⁷ IU/ml inoculum</td>
</tr>
<tr>
<td>2. 1x10⁶ IU/ml inoculum</td>
<td>11. 1x10⁶ IU/ml inoculum</td>
</tr>
<tr>
<td>3. 1x10⁵ IU/ml inoculum</td>
<td>12. 1x10⁵ IU/ml inoculum</td>
</tr>
<tr>
<td>4. 1x10⁴ IU/ml inoculum</td>
<td>13. 1x10⁴ IU/ml inoculum</td>
</tr>
<tr>
<td>5. 1x10³ IU/ml inoculum</td>
<td>14. 1x10³ IU/ml inoculum</td>
</tr>
<tr>
<td>6. 1x10² IU/ml inoculum</td>
<td>15. 1x10² IU/ml inoculum</td>
</tr>
<tr>
<td>7. 1x10¹ IU/ml inoculum</td>
<td>16. 1x10¹ IU/ml inoculum</td>
</tr>
<tr>
<td>8. 1x10⁰ IU/ml inoculum</td>
<td>17. 1x10⁰ IU/ml inoculum</td>
</tr>
<tr>
<td>9. Phosphate buffer pH 5.7</td>
<td>18. Phosphate buffer pH 5.7</td>
</tr>
<tr>
<td></td>
<td>19. RNAase-free water</td>
</tr>
</tbody>
</table>
III.4.4.4.3. Cell synchronisation

The aim of this experiment was to determine whether cells synchronised in S phase were more susceptible to B19 infection. Three cell lines: KU812 (passage n+73), KU812Ep6 (passage n+59) and UT-7/EPO (passage n+58) were treated with hydroxyurea, which is a drug that inhibits ribonucleotide reductase and arrests the cell cycle at the G1/S boundary or in the S phase, depending upon the hydroxyurea concentration, the time of exposure and the type of cells.

For each cell line, 10^6 cells were counted and pelleted by centrifugation at 580g for 5 minutes. The cells were resuspended in 10ml of the appropriate cell culture medium containing 1mM hydroxyurea (without antibiotics or fungizone), placed in a 25mm3 flask and incubated at 37°C (5% CO$_2$) for 36 to 40 hours. The cell suspensions were centrifuged for 5 minutes at 670g and washed twice in 5ml of the appropriate cell culture medium without FCS, prewarmed at 37°C. A cell count was performed after the second wash in order to establish the volume of cell suspension to be used for infection (2×10^5 cells/sample). Six samples, including five inoculated with serial dilutions of the B19 stock virus and one inoculated with phosphate buffer at pH 5.7, were prepared for each cell line. Serial dilutions of the virus stock containing 1×10^7, 1×10^6, 1×10^5, 1×10^4 and 1×10^3 IU/ml were prepared in phosphate buffer pH 5.7. The cell pellets were resuspended in 30μl of the appropriate virus dilution or 30μl of buffer only (negative control). After 2 hours incubation at 4°C, the cells were washed twice with 200μl of PBS-A, resuspended in 1ml of the appropriate fresh cell culture medium and seeded into a 24-well plate. The latter was incubated at 37°C for 2 days (5% CO$_2$). The cells were harvested two days post-infection and poly A$^+$ RNA was extracted from whole cells using the Oligotex direct mRNA kit (Qiagen). Isolated mRNA was used as template in a multiplex RT-PCR assay using actin-specific primers (actin-3 and actin-4; 2.5pmol/μl)
and B19-specific primers (B19-9 and B19-6; 25pmol/μl). The amplification conditions were 1 cycle at 50°C for 30 minutes, 1 cycle at 94°C for 15 minutes, 43 cycles of 94°C for 45 seconds, 55°C for 45 seconds and 72°C for 2 minutes and finally 1 cycle at 72°C for 10 minutes.

The results are shown on figure 3.42. Actin-specific transcripts were present in all samples except sample 14, which had been lost during mRNA extraction. As expected, all three negative controls (samples 6, 12 and 19) did not show any B19-specific bands. Both B19-specific transcripts were still detected in KU812Ep6 cells inoculated with 1x10^4 IU/ml (sample 4). However, no amplification of B19-specific transcripts was detected in sample 3, which could be due to the Poisson distribution at limiting dilutions.

In KU812 cells, although no amplification was detected in sample 7, faint B19-specific bands could be seen in sample 8, where cells had been inoculated with 1x10^6 IU/ml. In UT-7/EPO cells, the total lack of amplification of B19-specific mRNA transcripts suggested that the cells did not support B19 replication. However, B19-specific transcripts had previously been detected in those cells using the same infectivity assay. The second hypothesis was that the treatment with hydroxyurea might not have had the expected effect on the cells and possibly have interfered with cell growth of susceptibility to B19 infection. However, the parent cell line UT-7 had previously been reported to support the replication of B19 following treatment with hydroxyurea (Shimomura et al., 1993). Lastly, the fact that the actin-specific band was faint in all UT-7/EPO samples suggested that less mRNA was isolated from these cells compared with other cell lines. Thus, this experiment suggested that the best infectivity results after cell synchronisation were obtained with KU812Ep6 cell line.
When compared to non-synchronised cells, the results of the infectivity assay were similar for the KU812 cell line whereas the detection of B19 transcripts was $\log_{10} 1$ higher with non-synchronised KU812Ep6 cells than with synchronised cells. As far as the UT-7/EPO cell line was concerned, the highest dilution detected was $1 \times 10^{5.5}$ IU/ml
of the B19 stock virus when the cells were not synchronised whereas no amplification was detected after cell synchronisation.

Overall, it seemed that cell synchronisation did not significantly improve the permissibility of the cells to parvovirus B19 infection. In conclusion, the data obtained in this study comparing the three cell lines suggested that non synchronised KU812Ep6 cells were the best candidate for use in a B19 infectivity assay, in terms of permissiveness to B19 infection as well as in being able to support virus replication. However, due to confidentiality issues with the group from which the cells had been obtained, work was discontinued on this cell line. A new cell line, UT-7/EPO-S1, which had been reported to be more susceptible to B19 replication than the parental cell line, UT-7/EPO (Morita et al., 2001), was obtained for evaluation in the B19 infectivity assay.

III.4.5. Optimisation of B19 infectivity assay using UT-7/EPO-S1 cells

The newly obtained cell line UT-7/EPO-S1 was investigated to determine whether it was able to support B19 replication and to assess its susceptibility to the virus compared to other cell lines previously studied. UT-7/EPO-S1 cells (passage n+4) were pelleted and washed once with phosphate buffer pH 5.7. Approximately 2x10^5 cells were inoculated with either 30μl of buffer (negative control) or serial dilutions of the stock B19 virus, diluted in phosphate buffer pH 5.7, containing 1x10^9, 1x10^8, 1x10^7, 1x10^6, 1x10^5, 1x10^4 and 1x10^3 IU/ml. After 2 hours incubation at 4°C, the cells were washed twice with 500μl of PBS-A. The cells were resuspended in 1ml of fresh medium and seeded in a 24-well plate placed at 37°C (5% CO2). Two days post-infection, the cells were harvested and the mRNA isolated from the cell cytoplasm using the Oligotex direct mRNA kit (Qiagen). Nucleic acids amplification was done using the B19-specific
primers XPP2 and B19-9. The amplification conditions, which were used for all experiments using UT-7/EPO-S1 cells, were 1 cycle at 50°C for 30 minutes, 1 cycle at 95°C for 15 minutes, 43 cycles of 95°C for 45 seconds, 50°C for 40 seconds and 72°C for 40 seconds and finally 1 cycle at 72°C for 10 minutes.

Amplification of the housekeeping gene actin (not shown) confirmed successful isolation of mRNA from all cell samples. Figure 3.43 shows the amplified RT-PCR products on the agarose gel.

Figure 3.43: Analysis of mRNA products in UT-7/EPO-S1 cells amplified with XPP2 and B19-9

The results indicated that the infectivity assay using UT-7/EPO-S1 cells was able to detect B19-specific mRNA transcripts in cells inoculated with 1x10^4 IU/ml (sample 6). The absence of B19 transcripts amplification in sample 5, which had been inoculated...
Chapter III

with \(1 \times 10^5\) IU/ml of virus, might have been due to the Poisson distribution. Therefore, this preliminary study indicated that this new cell line was able to support B19 replication and also appeared to be slightly more susceptible to B19 infection, i.e. more permissive, than the parent cell line, UT-7/EPO. A comparison of the infectivity results with the UT-7/EPO-S1 cells with results previously obtained with KU812Ep6 cells suggested that the UT-7/EPO-S1 cell line would be a very good candidate cell line for the B19 infectivity assay. The following sections describe the optimisation of the assay using this new cell line.

III.4.5.1. Virus diluent buffer

In order to establish that phosphate buffer pH 5.7 was the optimum buffer for inoculation of the UT-7/EPO-S1 cell line as it was for the other cell lines studied, a further experiment was done to compare the sensitivity of this cell line to virus diluted in phosphate buffer pH 5.7 and cell culture medium without FCS. Cells (passage n+5) were prepared as above and inoculated with serial dilutions of the stock B19 virus, prepared in either phosphate buffer pH 5.7, or cell culture medium without FCS, containing \(1 \times 10^7\), \(1 \times 10^6\) and \(1 \times 10^5\) IU/ml. mRNA isolated from the cell cytoplasm using the Oligotex direct mRNA kit. Nucleic acids amplification was done using the B19-specific primers XPP2 and B19-9 and the conditions were as previously described (section III.4.5).

Figure 3.44 shows amplification of the nucleic acid extracted from UT-7/EPO-S1 cells.
Figure 3.44: Analysis of mRNA products in UT-7/EPO-S1 cells amplified with XPP2 and B19-9

Lane M. PCR markers
Lanes 1 to 4: phosphate buffer pH 5.7
1. 1x10⁷ IU/ml inoculum
2. 1x10⁶ IU/ml inoculum
3. 1x10⁵ IU/ml inoculum
4. Phosphate buffer pH 5.7
Lanes 5 to 8: medium without FCS
5. 1x10⁷ IU/ml inoculum
6. 1x10⁶ IU/ml inoculum
7. 1x10⁵ IU/ml inoculum
8. Medium without FCS
Lanes 9 and 10: controls
9. RNAase-free water
10. RT-PCR positive control: 2x10⁷ IU/ml inoculum

Amplification of the housekeeping gene actin (non-shown) confirmed successful isolation of mRNA from all cell samples. The results shown on figure 3.44 indicated that, when phosphate buffer pH 5.7, was used as the virus diluent, the assay was able to detect at least 1x10⁵ IU/ml of virus (sample 3). The RT-PCR B19-specific bands were still very bright in the sample from cell inoculated with the highest dilution of virus, suggesting that an even higher dilution might be detected. In contrast, only a very faint band was seen in sample 5, which had been inoculated with a dilution of the stock virus containing 1x10⁷ IU/ml diluted in medium without FCS. This study clearly confirmed that B19 infection at low pH increased the cells susceptibility to the virus and phosphate
buffer pH 5.7 was therefore chosen as the virus diluent buffer for the B19 infectivity assay with UT-7/EPO-S1 cells.

III.4.5.2. Cell passage number

The two experiments in this section investigated the influence of the cell passage number on the susceptibility of UT-7/EPO-S1 cells to infection with B19. The first experiment studied cells, at passage n+5 and n+45, inoculated with serial dilutions of the B19 stock virus, diluted in phosphate buffer pH 5.7, containing 1×10^6, 1×10^5, 1×10^5, 1×10^4, and 1×10^4 IU/ml. mRNA was isolated from the cell cytoplasm using the Oligotex direct mRNA kit (Qiagen) and amplified in a multiplex assay with actin-specific primers (actin-3 and actin-4; 5pmol/µl) and B19-specific primers (XPP2 and B19-9; 25pmol/µl). The amplification conditions were as previously described (section III.4.5).

The results comparing passage number n+5 and n+45 are shown on figure 3.45. The presence of a bright actin band in all samples confirmed that mRNA had been extracted successfully. The results showed that there was a $\log_{10} 1$ difference between the results obtained with UT-7/EPO-S1 n+5 and n+45. The assay was able to detect 1×10^6 IU/ml when passage n+5 was used (sample 2) whereas 1×10^5 IU/ml were detected with passage n+45 (sample 11). This first experiment thus suggested that a late, rather than early, cell passage might improve the results of the B19 infectivity assay.
Figure 3.45: Analysis of mRNA products in UT-7/EPO-S1 cells (passages n+5 and n+45) amplified with XPP2 and B19-9

Lane M. PCR markers

Lanes 1 to 7: cell passage n+5
1. 1×10^6 IU/ml inoculum
2. 10^6 IU/ml inoculum
3. 10^5 IU/ml inoculum
4. 10^4 IU/ml inoculum
5. 10^4 IU/ml inoculum
6. 10^3 IU/ml inoculum
7. Phosphate buffer pH 5.7

Lanes 8 to 14: passage number n+45
8. 1×10^6 IU/ml inoculum
9. 10^6 IU/ml inoculum
10. 10^5 IU/ml inoculum
11. 10^4 IU/ml inoculum
12. 10^4 IU/ml inoculum
13. 10^3 IU/ml inoculum
14. Phosphate buffer pH 5.7

Lanes 15 and 16: controls
15. RNAase-free water
16. RT-PCR positive control: 1×10^7 IU/ml inoculum

The above experiment was repeated using cells at passage number n+14 and n+53. The cells were inoculated with dilutions of the B19 stock virus, diluted in phosphate buffer pH 5.7, containing 1×10^7, 1×10^6, 1×10^5, 1×10^4, 1×10^5 and 1×10^4 IU/ml. The results are shown on figure 3.46.
Figure 3.46: Analysis of mRNA products in UT-7/EPO-S1 cells (passages n+14 and n+53) amplified with XPP2 and B19-9

The amplification of the housekeeping gene, actin, suggested that the extraction of mRNA had been successful. Figure 3.46 also showed that the use of both cell passages n+14 and n+53 allowed the detection of 1x10^6 IU/ml of virus (samples 3 and 11). When compared to the first experiment in this series, the data were similar to those obtained with cell passage n+5.

Therefore, the log_{10} 1 difference between passages n+5, n+14, n+53 and n+45 might have been insignificant and was probably due to detection variation from one experiment to another. It appeared that UT-7/EPO-S1 passage number did not have a significant impact on the outcome of the B19 infectivity assay.
III.4.5.3. Hypoxia studies

III.4.5.3.1. Growth curves

The cell line UT-7/EPO-S1 at passage n+16 was used at a starting concentration of 1x10^5 cells/ml. Two 24-well plates were incubated at 37°C, one in a normal 20% oxygen atmosphere while the second was in an incubator with 3% oxygen. Every day and for 7 days, 100μl of trypan blue was added to 4 wells of each cell suspension dilution. The live cells (unstained) were counted using a haemacytometer in order to construct a growth curve. Table A2.15 in appendix 2 shows the cell concentrations calculated from the cell counts done everyday for 10 days and figure 3.47 is a plot of these values.

Figure 3.47: Growth curves of UT-7/EPO-S1 cell line (n+17) in a 20% and 3% oxygen atmosphere
As expected, the cells grown in 3% oxygen showed a slower growth than those cultured in normal atmospheric conditions. However, the optimum time for cell harvest to provide the highest number of dividing cells for the B19 infectivity assay was 5 days after cell passage for both set of conditions.

III.4.5.3.2. Hypoxia conditions

The effect of hypoxia on the susceptibility of UT-7/EPO-S1 cells to B19 infection was investigated. Table 3.3 below shows the oxygen concentration at which the cells were incubated before infection with B19, as well as after B19 infection. Samples marked "A" were incubated in 20% oxygen both before and after inoculation with parvovirus while samples "B" were grown in 20% oxygen before infection and in 3% oxygen post-infection. Finally, samples labelled "C" were grown in a 3% oxygen atmosphere and were incubated in the same hypoxic conditions post-infection.
Table 3.3: Conditions and samples names for hypoxia study

<table>
<thead>
<tr>
<th>Pre-infection</th>
<th>Post-infection</th>
<th>Time of harvesting</th>
<th>Name of samples</th>
</tr>
</thead>
<tbody>
<tr>
<td>oxygen</td>
<td>oxygen</td>
<td></td>
<td></td>
</tr>
<tr>
<td>20%</td>
<td>20%</td>
<td>24 hours</td>
<td>A24-1 to 10</td>
</tr>
<tr>
<td>20%</td>
<td>20%</td>
<td>48 hours</td>
<td>A48-1 to 10</td>
</tr>
<tr>
<td>20%</td>
<td>20%</td>
<td>72 hours</td>
<td>A72-1 to 10</td>
</tr>
<tr>
<td>20%</td>
<td>3%</td>
<td>24 hours</td>
<td>B24-1 to 10</td>
</tr>
<tr>
<td>20%</td>
<td>3%</td>
<td>48 hours</td>
<td>B48-1 to 10</td>
</tr>
<tr>
<td>20%</td>
<td>3%</td>
<td>72 hours</td>
<td>B72-1 to 10</td>
</tr>
<tr>
<td>3%</td>
<td>3%</td>
<td>24 hours</td>
<td>C24-1 to 10</td>
</tr>
<tr>
<td>3%</td>
<td>3%</td>
<td>48 hours</td>
<td>C48-1 to 10</td>
</tr>
<tr>
<td>3%</td>
<td>3%</td>
<td>72 hours</td>
<td>C72-1 to 10</td>
</tr>
</tbody>
</table>

Ten samples for each harvest time i.e. 24, 48 and 72 hours (30 samples for A, 30 samples for B and 30 samples for C) were prepared with UT-7/EPO-S1 cells (2x10^5 cells per sample; passage n+17). Thirty microlitres of serial dilution of the B19 stock virus, prepared in phosphate buffer pH 5.7 and containing 1x10^8, 1x10^7.5, 1x10^7, 1x10^6.5, 1x10^6, 1x10^5.5, 1x10^5, 1x10^4.5 and 1x10^4 IU/ml were used to inoculate the cells. One negative sample for A, B and C was inoculated with 30μl of buffer only. All samples were incubated at 4°C for 2 hours, washed twice with PBS-A and resuspended in 1ml of fresh medium. The cell suspensions were seeded in 24-well plates and cultured for 24 hours, 48 hours or 72 hours at 37°C (5% CO₂) with either 20% or 3% oxygen (table 2.3). Once harvested, the mRNA was extracted from cell cytoplasm using the Oligotex direct mRNA kit (Qiagen). Multiplex RT-PCR was performed using
primers specific for the housekeeping gene (actin-3 and actin-4; 5pmol/µl) and for parvovirus B19 (XPP2 and B19-9; 25pmol/µl). The amplification conditions were as previously described (section III.4.5).

The results of the hypoxia experiment are shown in table 3.4.

<table>
<thead>
<tr>
<th>Time of harvesting (hours)</th>
<th>Log_{10} infectious particles/ ml</th>
</tr>
</thead>
<tbody>
<tr>
<td>24</td>
<td><limit of detection</td>
</tr>
<tr>
<td>48</td>
<td>7</td>
</tr>
<tr>
<td>72</td>
<td>7</td>
</tr>
<tr>
<td>24</td>
<td><limit of detection</td>
</tr>
<tr>
<td>48</td>
<td>7</td>
</tr>
<tr>
<td>72</td>
<td>7</td>
</tr>
<tr>
<td>24</td>
<td><limit of detection</td>
</tr>
<tr>
<td>48</td>
<td>8</td>
</tr>
<tr>
<td>72</td>
<td>8</td>
</tr>
</tbody>
</table>

III.4.6. Quantification of B19 DNA by LightCycler system

III.4.6.1. MgCl\textsubscript{2} titration

The effects of MgCl\textsubscript{2} concentration on the efficiency of the PCR assay was investigated by testing increasing amounts of MgCl\textsubscript{2} from 1 to 5mM. The total reaction volume was 20µl, including 2µl of SYBR Green master mix, B19F and B19R primers at a final concentration of 0.5µM, MgCl\textsubscript{2} at a concentration optimum for the amplification of B19
DNA and nuclease-free water to give a final volume of 20μl. The PCR mix was loaded into glass capillaries, followed by the addition of 5μl of DNA template. The DNA samples used for this study were the B19 IS (99/800) and 1:10 and 1:100 of this standard. The B19 IS has an established concentration of 10^6 IU/ml. From the collaborative study used to establish this standard, 1IU is approximately equivalent to 0.6–0.8 genome equivalents (Saldanha et al., 2002). The four steps of PCR amplification were 1 cycle at 95°C for 10 minutes (pre-incubation), 40 cycles of 20 seconds at 95°C, 30 seconds at 65°C (amplification) and 5 seconds at 80°C (fluorescent data collection), 1 cycle at 65°C for 15 seconds (melting), and a final cycle at 40°C for 30 seconds (cooling). The MgCl$_2$ concentration was titrated by testing increasing concentrations of 1, 2, 3, 4 and 5mM (0, 0.8, 1.6, 2.4 and 3.2μl, respectively) in order to optimise the DNA amplification reaction.

The results are shown on figure 3.48 and the concentrations of 1mM and 2mM MgCl$_2$ proved inadequate for an efficient DNA amplification. MgCl$_2$ concentrations from 3 to 5mM seemed to be optimum for this assay since the bands on the agarose gel were much neater and brighter than the lower concentrations.
Figure 3.48: Analysis of DNA products amplified by LightCycler for MgCl₂ titration

Lane M. PCR markers

Lanes 1 to 4: 1mM MgCl₂
1. B19 IS 10⁶ IU/ml
2. B19 IS 10⁵ IU/ml
3. B19 IS 10⁴ IU/ml
4. Carrier tRNA (control)

Lanes 9 to 12: 3mM MgCl₂
9. B19 IS 10⁶ IU/ml
10. B19 IS 10⁵ IU/ml
11. B19 IS 10⁴ IU/ml
12. Carrier tRNA (control)

Lanes 17 to 20: 5mM MgCl₂
17. B19 IS 10⁶ IU/ml
18. B19 IS 10⁵ IU/ml
19. B19 IS 10⁴ IU/ml
20. Carrier tRNA (control)

Lanes 5 to 8: 2mM MgCl₂
5. B19 IS 10⁶ IU/ml
6. B19 IS 10⁵ IU/ml
7. B19 IS 10⁴ IU/ml
8. Carrier tRNA (control)

Lanes 13 to 16: 4mM MgCl₂
13. B19 IS 10⁶ IU/ml
14. B19 IS 10⁵ IU/ml
15. B19 IS 10⁴ IU/ml
16. Carrier tRNA (control)

III.4.6.2. Validation studies

The validation studies used the optimised conditions of nucleic acid extraction and DNA quantification. Therefore, QIAamp DNA blood mini kit (Qiagen) was used to extract total nucleic acid, which was in turn quantified by real-time PCR on the LightCycler instrument (Roche). The PCR kit used for this amplification was FastStart DNA Master SYBR Green I kit (Roche). The total reaction volume was 20μl, including
2μl of SYBR Green master mix, 0.5μl of each primers (B19F and B19R) at the working concentration of 20pmol/μl (10pmol per reaction), MgCl₂ at the optimum concentration of 5mM (3.2μl), 8.8μl of nuclease-free water and 5μl of template. The conditions for amplification were 1 cycle at 95°C for 10 minutes, 40 cycles of 20 seconds at 95°C, 30 seconds at 65°C and 5 seconds at 80°C, 1 cycle at 65°C for 15 seconds, and a final cycle at 40°C for 30 seconds.

III.4.6.2.1. B19 DNA Standard curve

Two studies were performed to establish the validity of the B19 standard curve. Firstly, in order to determine the limit of quantitation of the assay, serial dilutions of the B19 IS DNA were prepared as follows: neat (10^6 IU/ml), 1:10 dilution (10^5 IU/ml), 1:10^2 dilution (10^4 IU/ml), 1:10^3 dilution (10^3 IU/ml), 1:10^4 dilution (10^2 IU/ml), 1:10^5 dilution (10 IU/ml) and 1:10^6 dilution (1 IU/ml). Two negative controls were added to each of the four runs, namely RNAase-free water and B19 negative plasma. The B19 IS DNA samples and the B19 negative plasma samples used in this first study had been extracted on different days. The PCR kit used was the FastStart DNA Master SYBR Green I (Roche Diagnostics) and the primers were B19F and B19R. A standard curve was then constructed using the LightCycler software. All PCR products were visualised on a 2% agarose gel.

In all four runs, although the LightCycler computer program calculated a value for the “B19 DNA concentration” below 1x10^3 IU/ml, this value corresponded to a fluorescence generated by the formation of primer dimers and was therefore not specific for B19. In order to confirm this, both melting peaks (figures 3.49, 3.50 and 3.51) and agarose gels (figure 3.52) were examined. Taking into account all four runs, the melting temperature of the IS DNA samples ranging from 10^6 to 10^3 IU/ml was between 84.4
and 85°C (figure 3.49, from run 2). As shown on figure 3.50, the 1×10^4 dilution of the IS (1x10^2 IU/ml) in run 2 presented two melting peaks: a large one at a melting temperature of 79.94°C and a smaller one at a melting temperature of 84.57°C. Although the latter temperature was within the range specific for B19 DNA, the fluorescence measured was mainly generated by primer dimers. The latter have a melting temperature between 79.9 and 80.5°C. Primer dimers could also be seen on the agarose gels for this particular sample (50bp band), while a faint band specific for B19 was still visible in 3 of 4 runs. This sample was therefore considered below the limit of quantitation. Even higher dilutions of the standard (10 and 1IU/ml), as well as the negative controls (water and negative plasma), also showed two melting peaks but the smaller one was not specific for B19 DNA since the melting temperature was lower than 84°C. In conclusion, all calculated values lower than 1×10^3 IU/ml were considered negative for B19 DNA.
Figure 3.49: Melting peaks of the standard curve samples
Figure 3.51: Melting peaks of the negative plasma sample
Figure 3.52: Analysis of PCR products for the 1st validation study

(A) Run 1 Run 2

Lane M. PCR markers

Lanes 1 to 7: B19 IS DNA
1. B19 IS neat (10^6 IU/ml)
2. B19 IS 10^{-1} (10^5 IU/ml)
3. B19 IS 10^{-2} (10^4 IU/ml)
4. B19 IS 10^{-3} (10^3 IU/ml)
5. B19 IS 10^{-4} (10^2 IU/ml)
6. B19 IS 10^{-5} (10 IU/ml)
7. B19 IS 10^{-6} (1 IU/ml)

Lanes 8 and 9: Controls
8. PCR negative control: RNAase-free water
9. B19 negative plasma

(B) Run 3 Run 4

Lane M. PCR markers

Lanes 1 to 7: B19 IS DNA
1. B19 IS neat (10^6 IU/ml)
2. B19 IS 10^{-1} (10^5 IU/ml)
3. B19 IS 10^{-2} (10^4 IU/ml)
4. B19 IS 10^{-3} (10^3 IU/ml)
5. B19 IS 10^{-4} (10^2 IU/ml)
6. B19 IS 10^{-5} (10 IU/ml)
7. B19 IS 10^{-6} (1 IU/ml)

Lanes 8 and 9: Controls
8. PCR negative control: RNAase-free water
9. B19 negative plasma
In a second validation study, standard curves set up in 7 different amplification runs were statistically analysed in order to evaluate the linearity of the standard curve. The virus concentrations ranged was from 10^6 to 10^3 IU/ml. The results of the expected values and the calculated values obtained for 7 standard curves from 7 different assays are shown in table 3.5 (log_{10} values). Statistical analysis was kindly done by A. Heath (Department of Informatics, NIBSC; see section II.2.7.1) and the results are shown in table 3.6.

Table 3.5: Validation results for B19 standard curve

<table>
<thead>
<tr>
<th>Study number</th>
<th>Std 1 (log_{10} 6) log_{10} DNA concentration (IU/ml)</th>
<th>Std 2 (log_{10} 5) log_{10} DNA concentration (IU/ml)</th>
<th>Std 3 (log_{10} 4) log_{10} DNA concentration (IU/ml)</th>
<th>Std 4 (log_{10} 3) log_{10} DNA concentration (IU/ml)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>6.029</td>
<td>5.073</td>
<td>3.764</td>
<td>3.132</td>
</tr>
<tr>
<td>2</td>
<td>6.029</td>
<td>5.073</td>
<td>3.764</td>
<td>3.132</td>
</tr>
<tr>
<td>3</td>
<td>6.059</td>
<td>4.929</td>
<td>3.962</td>
<td>3.048</td>
</tr>
<tr>
<td>4</td>
<td>6.016</td>
<td>4.966</td>
<td>4.016</td>
<td>2.726</td>
</tr>
<tr>
<td>5</td>
<td>6.029</td>
<td>4.941</td>
<td>4.029</td>
<td>2.307</td>
</tr>
<tr>
<td>6</td>
<td>6.024</td>
<td>4.951</td>
<td>4.024</td>
<td>2.709</td>
</tr>
<tr>
<td>7</td>
<td>5.951</td>
<td>5.022</td>
<td>4.100</td>
<td>2.925</td>
</tr>
</tbody>
</table>
This study examined the linearity of the standard curve over the range $\log_{10}6$ to $\log_{10}3$ IU/ml and the reproducibility of the curve. The mean estimates were very close to the expected concentrations at $\log_{10}6$- $\log_{10}4$, but were poor at $\log_{10}3$ (Std 4), indicating a good linearity over most of the range. The standard deviations also showed excellent reproducibility at $\log_{10}6$, but the reproducibility decreased as the concentrations got lower. Although the limit of detection might be 10^2 IU/ml, the first validation study suggested to choose $\log_{10}3$ IU/ml as the lower limit of quantitation for this assay.

Overall, it was decided that the standard curve should include the following dilutions of the B19 IS DNA: neat (10^6 IU/ml), 1:10 dilution (10^5 IU/ml), 1:102 dilution (10^4 IU/ml), 1:103 dilution (10^3 IU/ml), as well as a negative sample (RNAase-free water). An example of such a curve is shown on figure 3.53, with the calculated efficiency and slope. According to the manufacturers’ instructions, curves with a slope less than -3.33 were considered satisfactory.
Figure 3.53: Example of a standard curve established with the B19 IS generated on the LightCycler.

- Crossing Points: ****
- Linear Regression

<table>
<thead>
<tr>
<th>Cycle Number</th>
<th>Log Concentration</th>
</tr>
</thead>
<tbody>
<tr>
<td>35</td>
<td>3.0</td>
</tr>
<tr>
<td>34</td>
<td>3.1</td>
</tr>
<tr>
<td>33</td>
<td>3.2</td>
</tr>
<tr>
<td>32</td>
<td>3.3</td>
</tr>
<tr>
<td>31</td>
<td>3.4</td>
</tr>
<tr>
<td>30</td>
<td>3.5</td>
</tr>
<tr>
<td>29</td>
<td>3.6</td>
</tr>
<tr>
<td>28</td>
<td>3.7</td>
</tr>
<tr>
<td>27</td>
<td>3.8</td>
</tr>
<tr>
<td>26</td>
<td>3.9</td>
</tr>
<tr>
<td>25</td>
<td>4.0</td>
</tr>
<tr>
<td>24</td>
<td>4.1</td>
</tr>
<tr>
<td>23</td>
<td>4.2</td>
</tr>
<tr>
<td>22</td>
<td>4.3</td>
</tr>
<tr>
<td>21</td>
<td>4.4</td>
</tr>
<tr>
<td>20</td>
<td>4.5</td>
</tr>
<tr>
<td>19</td>
<td>4.6</td>
</tr>
<tr>
<td>18</td>
<td>4.7</td>
</tr>
<tr>
<td>17</td>
<td>4.8</td>
</tr>
<tr>
<td>16</td>
<td>4.9</td>
</tr>
<tr>
<td>15</td>
<td>5.0</td>
</tr>
<tr>
<td>14</td>
<td>5.1</td>
</tr>
<tr>
<td>13</td>
<td>5.2</td>
</tr>
<tr>
<td>12</td>
<td>5.3</td>
</tr>
<tr>
<td>11</td>
<td>5.4</td>
</tr>
<tr>
<td>10</td>
<td>5.5</td>
</tr>
<tr>
<td>9</td>
<td>5.6</td>
</tr>
<tr>
<td>8</td>
<td>5.7</td>
</tr>
<tr>
<td>7</td>
<td>5.8</td>
</tr>
<tr>
<td>6</td>
<td>5.9</td>
</tr>
<tr>
<td>5</td>
<td>6.0</td>
</tr>
</tbody>
</table>

Baseline Adjustment: Arithmetic
Noise Band Cursor: N/A
Analysis Method: Second Derivative Maximum
Slope: -3.241
Intercept: -44.13
Error: 0.0275
Color Compensation: Off
r: -1.00
III.4.6.2.2. Study 1: validation of DNA extraction and amplification on the LightCycler

In order to study the reproducibility of the quantitative PCR assay, the first validation study included six DNA extractions done in 6 separate runs. The samples included one positive control (B19 IS neat), three negative controls (one anti-B19 antibody negative plasma, one anti-B19 antibody negative serum, one water control) and a test sample, which was a 1:10 dilution of the IS in water (10^5 IU/ml). The positive and negative controls for each run were first amplified by LightCycler PCR in order to check that there were no false positive/negative results. The test samples from each extraction run were amplified by LightCycler PCR in two separate LightCycler PCR runs on different days (days 1 and 2) with an expected B19 DNA titre of 10^5 IU/ml. B19 DNA titres were calculated using a standard curve obtained from serial dilutions of one B19 IS extracted in the first run and the results are shown in table 3.7.

<table>
<thead>
<tr>
<th>DNA extraction run number</th>
<th>Log_{10} DNA concentration (IU/ml) day 1</th>
<th>Log_{10} DNA concentration (IU/ml) day 2</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>4.770</td>
<td>4.841</td>
</tr>
<tr>
<td>2</td>
<td>4.231</td>
<td>4.504</td>
</tr>
<tr>
<td>3</td>
<td>4.934</td>
<td>4.985</td>
</tr>
<tr>
<td>4</td>
<td>4.397</td>
<td>4.244</td>
</tr>
<tr>
<td>5</td>
<td>5.695</td>
<td>5.542</td>
</tr>
<tr>
<td>6</td>
<td>4.710</td>
<td>4.784</td>
</tr>
</tbody>
</table>
Statistical analysis, kindly performed by Alan Heath (Informatics Department, NIBSC) was based on the log_{10} titres. It was noted that the titres for extraction run 5 were considerably higher than for the other samples (about log_{10} 1). The overall mean of the log_{10} titres was log_{10} 4.804 IU/ml, again slightly lower than the anticipated log_{10} 5 IU/ml. This represents a geometric mean of 6.368 \times 10^4 IU/ml.

The variability between extractions was assessed by calculating the mean log_{10} titre from the two repeat runs for each sample, and then calculating the standard deviation of the means across samples, which was 0.472. Therefore 95% of results from repeated extractions should fall approximately within ± log_{10} 0.94 IU/ml. This figure was relatively high, and had been influenced by the high results for sample 5 noted above. However, it is possible that there may have been a dilution error with run 5. A 1:10 dilution is a required step. If this had been omitted, it may have accounted for the results for run 5, being 10-fold higher than for the other samples. The analysis was thus repeated omitting run 5. The overall mean of the log_{10} titre was log_{10} 4.641 IU/ml. This represented a geometric mean of 4.37 \times 10^4 IU/ml. The standard deviation across samples was 0.282. Therefore 95% of results from repeated extractions should fall approximately within ± log_{10} 0.56 IU/ml. This figure represents the overall expected variability in the test, including the extraction step, based on two replicate LightCycler runs.

III.4.6.2.3. Study 2: Validation of B19 LightCycler PCR

The second study included six repeat nucleic acid amplifications on different days of a sample from a single extraction in order to study the variability in the amplification step of the assay. B19 DNA was extracted from the IS (sample 1) and diluted in RNAase-free water 1:10 to make a stock B19 DNA solution containing 10^5 IU/ml for testing.
This test sample for the validation study was amplified by LightCycler PCR on 6 different days and the B19 DNA titre of the test sample (expected concentration 10^5 IU/ml) was calculated against a standard curve obtained from serial dilutions of the B19 IS, which was extracted in parallel with the test sample.

The overall mean of the six log_{10} titres was log_{10} 4.915 IU/ml, slightly lower than the anticipated log_{10} 5.0 IU/ml. This represents a geometric mean of 8.214×10^4 IU/ml. The standard deviation of the log_{10} titres was 0.092 i.e. 95% of individual results from repeat testing of this sample would be expected to fall within approximately two standard deviations of the mean i.e. +/- log_{10} 0.18 IU/ml. This gives a measure of the expected variability from the LightCycler PCR, independent of the extraction process.

III.4.6.3. **Quantification of B19 samples used in this study**

Three high titre B19 samples were used in this study; samples JS (B19 stock virus) and JB, which were obtained from Germany and sample LP, which was from the USA. B19 DNA was extracted from these samples in parallel with the B19 IS (10^6 IU/ml). Ten-fold serial dilutions from 10^{-1} to 10^{-8} of the samples were prepared in DNAse-free water. Ten-fold serial dilutions from 10^{-1} to 10^{-5} of the IS were also prepared. All samples were amplified in duplicate by real-time PCR on the LightCycler instrument. A standard curve was constructed from the dilutions of the IS and B19 DNA was quantified in the B19 samples by reading the results off this curve.

III.4.7. **Optimisation of mRNA isolation**

III.4.7.1. **Time course experiments**

The studies described in the following section were all aimed at finding the optimum time to harvest infected cells for maximum yield of B19 mRNA. The cell line used in
the first experiment was KU812Ep6 and infection was done using 100μl of either negative serum as the negative control or a 1:10 dilution of the B19 stock virus (1x10^{11} IU/ml). Each well of a 24-well plate was seeded with 1.8x10^5 cells. One well of both infected and uninfected cells was harvested on day 2, 3, 4, 5, 6, 7, 8, 9, 10, 12, 13, 14, 15, 16 and 21 post infection (15 samples). Fresh medium (1ml) was added to all remaining wells on day 14 since considerable evaporation of medium had occurred by this time. A cell count was done after each harvest in order to note any major difference in the cell number, which might have influenced the outcome of the mRNA extraction step. The harvested cells were centrifuged and frozen at -70°C until extracted all together. The mRNA isolation method used was the Nuclisens™ extraction of total nucleic acids. The RT-PCR step was performed separately for B19 (primers B19-6 and B19-9; 25pmol/μl) and actin genes (primers actin-3 and actin-4; 25pmol/μl). The RT-PCR conditions were similar for amplification using B19- and actin-specific primers: 1 cycle at 50°C for 30 minutes, 1 cycle at 94°C for 15 min, 43 cycles at 94°C for 45 seconds, 55°C for 45 seconds and at 72°C for 2 minutes and lastly, 1 cycle at 72°C for 5 minutes. The products were analysed on 2% agarose gels.

Table 3.8 shows the cell count performed after each harvest for both KU812Ep6 cells infected with a 1:10 dilution of the B19 stock virus (1x10^{11} IU/ml) and uninfected cells. The cell counts suggested that there was no major difference over time for infected cells and negative controls. The number of surviving cells was lower after 21 and 16 days in culture for infected and uninfected cells, respectively. This phenomenon was expected because of natural cell death, even after addition of fresh medium on day 14 post-infection. When infected and uninfected cells were compared, there seemed to be fewer cells in the infected samples compared with the negative controls. This was also to be
expected since B19 virus would lyse and thus kill a proportion of the cells in the infected samples.

Table 3.8: Cell counts of infected and uninfected KU812Ep6 cells over time post-infection

<table>
<thead>
<tr>
<th>Day post infection</th>
<th>Infected sample (cells/ml)</th>
<th>Negative sample (cells/ml)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>1.8×10^5</td>
<td>1.8×10^5</td>
</tr>
<tr>
<td>3</td>
<td>3.4×10^5</td>
<td>5.3×10^5</td>
</tr>
<tr>
<td>4</td>
<td>5.2×10^5</td>
<td>6.7×10^5</td>
</tr>
<tr>
<td>5</td>
<td>7.3×10^5</td>
<td>7.8×10^5</td>
</tr>
<tr>
<td>6</td>
<td>6.6×10^5</td>
<td>7.5×10^5</td>
</tr>
<tr>
<td>7</td>
<td>4.1×10^5</td>
<td>7.6×10^5</td>
</tr>
<tr>
<td>8</td>
<td>4.3×10^5</td>
<td>8.4×10^5</td>
</tr>
<tr>
<td>9</td>
<td>2.4×10^5</td>
<td>7.3×10^5</td>
</tr>
<tr>
<td>10</td>
<td>2.8×10^5</td>
<td>8.5×10^5</td>
</tr>
<tr>
<td>12</td>
<td>2.7×10^5</td>
<td>3.9×10^5</td>
</tr>
<tr>
<td>13</td>
<td>4.7×10^5</td>
<td>5.2×10^5</td>
</tr>
<tr>
<td>14</td>
<td>4.3×10^5</td>
<td>6.3×10^5</td>
</tr>
<tr>
<td>15</td>
<td>4.4×10^5</td>
<td>7.9×10^5</td>
</tr>
<tr>
<td>16</td>
<td>4.5×10^5</td>
<td>4.7×10^5</td>
</tr>
<tr>
<td>21</td>
<td>1.8×10^5</td>
<td>4.8×10^5</td>
</tr>
</tbody>
</table>

mRNA was extracted from infected and uninfected cells and amplified, in separate assays, with actin primers and with B19-specific primers (primers B19-6 and B19-9), as shown on figure 3.54 (panels A and B, respectively).
Figure 3.54: Analysis of mRNA products extracted from KU812Ep6 cells

(A) Amplified with actin-specific primers

Lane M. PCR markers
1. Day 2, negative serum
2. Day 2, 1x10^11 IU/ml inoculum
3. Day 3, negative serum
4. Day 3, 1x10^11 IU/ml
5. Day 4, negative serum
6. Day 4, 1x10^11 IU/ml inoculum
7. Day 5, negative serum
8. Day 5, 1x10^11 IU/ml inoculum
9. Day 6, negative serum
10. Day 6, 1x10^11 IU/ml inoculum
11. Day 7, negative serum
12. Day 7, 1x10^11 IU/ml inoculum
13. Day 8, negative serum
14. Day 8, 1x10^11 IU/ml inoculum
15. Day 9, negative serum
16. Day 9, 1x10^11 IU/ml inoculum
17. Day 10, negative serum
18. Day 10, 1x10^11 IU/ml inoculum
19. Day 12, negative serum
20. Day 12, 1x10^11 IU/ml inoculum
21. Day 13, negative serum
22. Day 13, 1x10^11 IU/ml inoculum
23. Day 14, negative serum
24. Day 14, 1x10^11 IU/ml inoculum
25. Day 15, negative serum
26. Day 15, 1x10^11 IU/ml inoculum
27. Day 16, negative serum
28. Day 16, 1x10^11 IU/ml inoculum
29. Day 21, negative serum
30. Day 21, 1x10^11 IU/ml inoculum

(B) Amplified with B19-specific primers
From the agarose gel analysis, the internal control was amplified and the band was bright in all extracted samples. This suggests that the mRNA isolation was successful and that the products amplified with B19-specific primers could be compared. The two RT-PCR products of 155bp and 275bp, which are characteristic of B19 mRNA transcripts with this primer pair, were present in all samples infected with parvovirus B19. These two bands were very bright over time, except on days 5, 6 and 7, when fainter bands were detected. The largest RT-PCR product (1,779bp), which could not always be detected, was also present in most infected samples up to day 10 post-infection. The negative control on day 12 post-infection (lane 19) showed specific B19 bands, which are most probably due to a contamination from the neighbouring well (infected sample, day 12, lane 20). In conclusion, this experiment indicated that cell harvesting could be done as early as 2 days post-infection and that B19 mRNA transcripts were still produced 21 days post-infection.

In order to investigate the time course of B19 infection in other cell lines, the second and third experiments used UT-7/EPO and KU812 cells, respectively. Since the first experiment showed that the cells begin to die after about 2 weeks in culture, studies 2 and 3 only investigated the presence of mRNA transcripts until 10 days post-infection. Moreover, unlike experiment 1, the cells were harvested from day 1 post-infection. The protocols for infection (inoculation with a 1:10 dilution of the B19 stock virus (1x10^{11} IU/ml) or mock-infected with negative serum), harvest, cell count, mRNA extraction, RT-PCR and analysis on agarose gels were similar to those described for the first experiment. Tables 3.9 and 3.10 show the cell counts after each harvest of UT-7/EPO and KU812 cells, respectively. Extracted mRNA was amplified in separate assays,
with actin primers and B19-specific primers (B19-6 and B19-9), as displayed on figures 3.55 and 3.56, panels A and B, for UT-7/EPO and KU812 cells, respectively.

Table 3.9: Cell counts of infected and uninfected UT-7/EPO cells over time post-infection

<table>
<thead>
<tr>
<th>Day post infection</th>
<th>Infected sample (cells/ml)</th>
<th>Negative sample (cells/ml)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>2 x10⁵</td>
<td>2 x10⁵</td>
</tr>
<tr>
<td>1</td>
<td>1.8 x10⁶</td>
<td>2.8 x10⁵</td>
</tr>
<tr>
<td>2</td>
<td>3.5 x10⁵</td>
<td>4.9 x10⁵</td>
</tr>
<tr>
<td>3</td>
<td>3.1 x10⁶</td>
<td>4.7 x10⁵</td>
</tr>
<tr>
<td>4</td>
<td>3.5 x10⁵</td>
<td>5.5 x10⁵</td>
</tr>
<tr>
<td>5</td>
<td>4.6 x10⁵</td>
<td>7 x10⁵</td>
</tr>
<tr>
<td>6</td>
<td>4.4 x10⁵</td>
<td>8.7 x10⁵</td>
</tr>
<tr>
<td>7</td>
<td>4.2 x10⁵</td>
<td>1.2 x10⁵</td>
</tr>
<tr>
<td>8</td>
<td>6 x10⁵</td>
<td>1.4 x10⁵</td>
</tr>
<tr>
<td>9</td>
<td>5.1 x10⁵</td>
<td>3.7 x10⁵</td>
</tr>
<tr>
<td>10</td>
<td>6.8 x10⁵</td>
<td>1.9 x10⁶</td>
</tr>
</tbody>
</table>

No major difference in the cell count was noted either between infected and uninfected samples or over time. The RT-PCR step with actin primers showed that all samples were extracted successfully since a bright band on the agarose gel was seen in all samples.
Figure 3.55: Analysis of mRNA products extracted from UT-7/EPO cells

(A) Amplified with actin-specific primers

Lane M. PCR markers
1. Day 1, negative serum
2. Day 1, 1x10^11 IU/ml inoculum
3. Day 2, negative serum
4. Day 2, 1x10^11 IU/ml inoculum
5. Day 3, negative serum
6. Day 3, 1x10^11 IU/ml inoculum
7. Day 4, negative serum
8. Day 4, 1x10^11 IU/ml inoculum
9. Day 5, negative serum
10. Day 5, 1x10^11 IU/ml inoculum
11. Day 6, negative serum
12. Day 6, 1x10^11 IU/ml inoculum
13. Day 7, negative serum
14. Day 7, 1x10^11 IU/ml inoculum
15. Day 8, negative serum
16. Day 8, 1x10^11 IU/ml inoculum
17. Day 9, negative serum
18. Day 9, 1x10^11 IU/ml inoculum
19. Day 10, negative serum
20. Day 10, 1x10^11 IU/ml inoculum
21. RNAase-free water

(B) Amplified with B19-specific primers
As far as amplification with B19-specific primers was concerned, two negative samples (day 1, lane 1 and day 6, lane 11) showed two faint bands characteristic of RT-PCR products. This was due to overloading from the neighbouring wells. These B19-specific bands were present in all infected samples from days 1 to 10, with the brightest bands on days 1 and 2 post-infection. When compared with the results obtained with the KU812Ep6 cell line in the first experiment, the largest RT-PCR product (1,779bp) was not present on the gel. The fainter bands observed 7 days post-infection with KU812Ep6 cells were not seen with UT-7/EPO cells. There was no other variation between the two cell lines.

Table 3.10: Cell counts of infected and uninfected KU812 cells over time post-infection

<table>
<thead>
<tr>
<th>Day post infection</th>
<th>Infected sample (cells/ml)</th>
<th>Negative sample (cells/ml)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>2×10^5</td>
<td>2×10^5</td>
</tr>
<tr>
<td>1</td>
<td>2.9×10^5</td>
<td>2.5×10^5</td>
</tr>
<tr>
<td>2</td>
<td>2.9×10^5</td>
<td>4.2×10^5</td>
</tr>
<tr>
<td>3</td>
<td>3.2×10^5</td>
<td>2.7×10^5</td>
</tr>
<tr>
<td>4</td>
<td>1.9×10^5</td>
<td>3.5×10^5</td>
</tr>
<tr>
<td>5</td>
<td>2.3×10^5</td>
<td>3.2×10^5</td>
</tr>
<tr>
<td>6</td>
<td>2.2×10^5</td>
<td>3.8×10^5</td>
</tr>
<tr>
<td>7</td>
<td>2.7×10^5</td>
<td>3.3×10^5</td>
</tr>
<tr>
<td>8</td>
<td>2.6×10^5</td>
<td>4.3×10^5</td>
</tr>
<tr>
<td>9</td>
<td>2×10^5</td>
<td>2.3×10^5</td>
</tr>
<tr>
<td>10</td>
<td>3×10^5</td>
<td>4.1×10^6</td>
</tr>
</tbody>
</table>
Figure 3.56: Analysis of mRNA products extracted from KU812 cells

(A) Amplified with actin-specific primers

(B) Amplified with B19-specific primers

Lane M. PCR markers
1. Day 1, negative serum
2. Day 1, 1x10^11 IU/ml inoculum
3. Day 2, negative serum
4. Day 2, 1x10^11 IU/ml inoculum
5. Day 3, negative serum
6. Day 3, 1x10^11 IU/ml inoculum
7. Day 4, negative serum
8. Day 4, 1x10^11 IU/ml inoculum
9. Day 5, negative serum
10. Day 5, 1x10^11 IU/ml inoculum
11. Day 6, negative serum
12. Day 6, 1x10^11 IU/ml inoculum
13. Day 7, negative serum
14. Day 7, 1x10^11 IU/ml inoculum
15. Day 8, negative serum
16. Day 8, 1x10^11 IU/ml inoculum
17. Day 9, negative serum
18. Day 9, 1x10^11 IU/ml inoculum
19. Day 10, negative serum
20. Day 10, 1x10^11 IU/ml inoculum
As observed with the other two cell lines tested in the first and second experiments (KU812Ep6 and UT-7/EPO, respectively), the two B19-specific RT-PCR products of 155bp and 275bp were detected from days 1 to 10 post-infection in KU812 cells. Although the actin band was present in all samples extracted, it was weaker in lanes 17 to 20 (days 9 and 10), which suggested that a lower amount of mRNA was extracted. This could explain why the B19-specific bands from samples harvested on these days were weaker than the other samples in the studies. The other explanation for this phenomenon is that the non-specific amplification observed in these studies, may have reduced amplification of the B19 specific products. A number of uninfected samples (days 1, 6 and 7; lanes 1, 11 and 13, respectively) seemed to show faint B19-specific bands. This was most probably due to a contamination from the neighbouring wells during loading. Extra care during sample loading was therefore taken in subsequent experiments.

The fourth and last experiment in this series investigated the time course of the suspension cell line UT-7/EPO-S1 (passage n+22) focusing on days 2, 3 and 4 post-infection which had been shown in the previous experiments to be the optimum times for B19 mRNA expression. In addition to investigating the best time for cell harvest, this experiment used lower dilutions of the inoculum to study sensitivity. Infection was done with dilutions (in phosphate buffer pH 5.7) of the B19 stock virus containing 1×10^7 IU/ml, 1×10^6 IU/ml, 1×10^5 IU/ml and 1×10^4 IU/ml and the diluent as the negative sample. Unlike experiments 1 to 3, extraction was performed on freshly harvested cells using the Oligotex direct mRNA extraction method from cell cytoplasm, which was shown to be the best method for mRNA extraction (see section II.2.4.3). Since the cell count did not seem to differ between cell lines, infected and uninfected samples or over
time, these parameters were not investigated with the UT-7/EPO-S1 cell line. was performed using. The multiplex RT-PCR amplification conditions, using B19 primers (XPP-2 and B19-9; 25pmol/μl) and actin primers (2.5pmol/μl), were 1 cycle at 50°C for 30 minutes, 1 cycle at 95°C for 15 min, 43 cycles at 95°C for 45 seconds, 57°C for 40 seconds and at 72°C for 40 seconds and lastly, 1 cycle at 72°C for 10 minutes. The amplified products were analysed on a 2% agarose gel, which is shown below on figure 3.57.

Figure 3.57: Analysis of mRNA products extracted from UT-7/EPO-S1 cells amplified with XPP2 and B19-9

Lane M. PCR markers
1. Day 2, 1x10^7 IU/ml inoculum
2. Day 2, 1x10^6 IU/ml inoculum
3. Day 2, 1x10^5 IU/ml inoculum
4. Day 2, 1x10^4 IU/ml inoculum
5. Day 2, phosphate buffer pH 5.7
6. Day 3, 1x10^7 IU/ml inoculum
7. Day 3, 1x10^6 IU/ml inoculum
8. Day 3, 1x10^5 IU/ml inoculum
9. Day 3, 1x10^4 IU/ml inoculum
10. Day 3, phosphate buffer pH 5.7
11. Day 4, 1x10^7 IU/ml inoculum
12. Day 4, 1x10^6 IU/ml inoculum
13. Day 4, 1x10^5 IU/ml inoculum
14. Day 4, 1x10^4 IU/ml inoculum
15. Day 4, phosphate buffer pH 5.7
16. RNAase-free water
The first conclusion from the above experiment was that samples from day 4 post-infection are not reliable since the negative control (lane 16) shows clear, B19-specific bands. This could be due to a contamination problem during mRNA extraction or, less likely, multiplex RT-PCR. The end point for harvest and mRNA extraction on days 2 and 3 post-infection was 1×10^6 IU/ml. Although the 262bp band was not visible 2 days post-infection and the 125bp band was fainter than that seen 3 days post-infection, the end point remained the same.

Overall, since it was useful to reduce the overall time of infectivity assay without loss of sensitivity, cell harvest was done 2 days post-infection. Since there did not seem to be any difference between the cell lines tested, KU812, KU812Ep6, UT-7/EPO and UT-7/EPO-S1, day 2 post-infection was established for cell harvest, mRNA extraction and multiplex RT-PCR assays.

III.4.7.2. Comparison of different extraction protocols

The first study, which aimed at finding the most efficient mRNA extraction protocol, compared three different nucleic acid isolation methods. These include total nucleic acid extraction by the QIAamp DNA mini kit (Qiagen) and the Nuclisens™ kit (Organon Teknika), and mRNA isolation from whole cells using the Oligotex direct mRNA mini kit (Qiagen). KU812 cell line was infected with 1:10 (1×10^{11} IU/ml) and 1:100 (1×10^{10} IU/ml) dilutions of the B19 stock virus (in phosphate buffer pH 5.7). Negative serum was used as a negative control in each extraction tested. Cells were harvested three days post-infection and the protocols described previously were followed. Separate RT-PCR assays were done using the following conditions: 1 cycle at 50°C for 30 minutes, 1 cycle at 94°C for 15 min, 43 cycles at 94°C for 45 seconds, 55°C for 45 seconds and at 72°C for 2 minutes and lastly, 1 cycle at 72°C for 5 minutes. Amplifications of actin (actin-3
and actin-4; 25pmol/µl) and B19 genes (B19-6 and B19-9; 25pmol/µl) were done separately and the results are shown on figure 3.58, panels A and B, respectively. All samples showed bright bands for the actin internal controls, suggesting successful extractions. Although all three extractions showed similar brightness of the RT-PCR products bands, the methods isolating total nucleic acids presented smears on the gels, even in the negative samples (lanes 1 and 7). This suggested a lack of specificity of these extraction methods. Therefore, as expected, the most specific method for the isolation of mRNA was Oligotex direct mRNA extraction from whole frozen cells.
Figure 3.58: Analysis of mRNA products extracted from KU812 cells

(A) Amplified with actin-specific primers

(B) Amplified with B19-specific primers

Lane M: PCR markers

Lanes 1 to 3: Extraction with QIAamp DNA mini kit
1. Negative serum
2. 1×10^{11} IU/ml inoculum
3. 1×10^{10} IU/ml inoculum

Lanes 4 to 6: Extraction with Oligotex direct mRNA mini kit from whole frozen cells
4. Negative serum
5. 1×10^{11} IU/ml inoculum
6. 1×10^{10} IU/ml inoculum

Lanes 7 to 9: Extraction with Nuclisens™ kit
7. Negative serum
8. B19 1×10^{11} IU/ml inoculum
9. B19 1×10^{10} IU/ml inoculum
10. RNAase-free water
The second study compared extraction of mRNA from whole frozen cells with those from whole fresh cell and cell cytoplasm, using the Oligotex direct mRNA protocol. Serial dilutions of the B19 stock virus were prepared in phosphate buffer pH 5.7 and used to infect KU812Ep6 cells (n=58): 30 μl of dilutions of virus containing 1x10^7 IU/ml, 1x10^6 IU/ml, 1x10^5 IU/ml, 1x10^4 IU/ml and phosphate buffer pH 5.7 as the negative control. Cells were harvested 2 days post-infection and mRNA extracted as described previously. Nucleic acid amplification by multiplex RT-PCR was performed with actin (2.5pmol/μl) and B19 specific primers (B19-6 and B19-9; 25pmol/μl) and the amplification conditions were as previously described in the first experiment in this section. Evaluation of the efficiency of the different extraction methods tested was done by comparing amplified products on a 2% agarose gel, as shown on figure 3.59.

The agarose gels showed that, as far as efficiency was concerned, the extraction method using fresh whole cells allowed the detection of mRNA transcripts in cells inoculated by 10^6 IU/ml. The other two methods, namely Oligotex direct mRNA extraction from whole frozen cells and from cell cytoplasm were only able to detect mRNA transcripts in cells inoculated by 10^7 IU/ml. However, as far as the specificity of the extraction methods was concerned, extractions using whole cells (fresh and frozen) showed a number of non-specific bands, suggesting that Oligotex direct mRNA extraction from cell cytoplasm was a “cleaner” and more specific isolation method. Additionally, the latter method was less time consuming and more user-friendly than the other two methods of mRNA isolation. Moreover, the log_{10} 1 difference in the end point between those methods could most probably be improved by optimising the RT-PCR conditions. Therefore, Oligotex direct mRNA extraction from cell cytoplasm (Qiagen) was the method chosen for further research on the infectivity assay for human parvovirus B19.
Figure 3.59: Analysis of mRNA products extracted from KU812Ep6 cells amplified by multiplex RT-PCR

Lane M. PCR markers

Lanes 1 to 5: Oligotex direct mRNA extraction from fresh whole cells
1. \(1 \times 10^7\) IU/ml inoculum
2. \(1 \times 10^6\) IU/ml inoculum
3. \(1 \times 10^5\) IU/ml inoculum
4. \(1 \times 10^4\) IU/ml inoculum
5. Phosphate buffer pH 5.7

Lanes 6 to 10: Oligotex direct mRNA extraction from cell cytoplasm
6. \(1 \times 10^7\) IU/ml inoculum
7. \(1 \times 10^6\) IU/ml inoculum
8. \(1 \times 10^5\) IU/ml inoculum
9. \(1 \times 10^4\) IU/ml inoculum
10. Phosphate buffer pH 5.7
11. RNAase-free water

Lanes 12 to 16: Oligotex direct mRNA extraction from whole frozen cells
12. \(1 \times 10^7\) IU/ml inoculum
13. \(1 \times 10^6\) IU/ml inoculum
14. \(1 \times 10^5\) IU/ml inoculum
15. \(1 \times 10^4\) IU/ml inoculum
16. Phosphate buffer pH 5.7

The third study was a comparison of the batch format with the vacuum manifold format for the Oligotex direct mRNA extraction (Qiagen) from cell cytoplasm (see section II.2.4.3). UT-7/EPO-S1 cells (passage n+41) were used for this experiment. Serial dilutions of the B19 stock virus were prepared in phosphate buffer pH 5.7 and cells were infected with 30 μl of the diluted virus range: \(1 \times 10^7\) IU/ml, \(1 \times 10^6\) IU/ml, \(1 \times 10^5\)
IU/ml, 1x10^4 IU/ml and phosphate buffer pH 5.7 as the negative sample. Duplicate cell samples were infected for each extraction protocol, giving a total of 20 samples. Cells were harvested 2 days post-infection and mRNA extracted as described. In the vacuum manifold format, the columns were placed on the manifold (supplied by Qiagen), the buffers added and a vacuum applied to the columns. For the elution step, the spin columns were placed in RNAase-free centrifuge tubes for collection of the mRNA. Since UT-7/EPO-S1 cells were used, the B19-specific primers (XPP2 and B19-9) and the multiplex amplification conditions (1 cycle at 50°C for 30 minutes, 1 cycle at 95°C for 15 min, 43 cycles at 95°C for 45 seconds, 50°C for 40 seconds and at 72°C for 40 seconds and 1 cycle at 72°C for 10 minutes) differed from the previous two experiments. Comparison of the two formats tested was done by analysing the RT-PCR products on a 2% agarose gel, as shown on figure 3.60.

A clear difference of log_{10} 1 was observed between the batch format (end point log_{10} 8.5 inf.u./ml) and the vacuum manifold format (end point log_{10} 7.5 inf.u./ml). Although the vacuum manifold format provided a quicker alternative to the classical spin columns since less handling was required, the batch format was much gentler for the nucleic acids and the yield was higher. The latter was thus chosen as the best method of mRNA extraction using Oligotex direct isolation from cell cytoplasm (Qiagen).
Figure 3.60: Analysis of mRNA products extracted from UT-7/EPO-S1 cells amplified by multiplex RT-PCR

Lane M PCR marker
Lanes 1 to 10: extraction with batch format
1 and 6. \(1 \times 10^7\) IU/ml inoculum
2 and 7. \(1 \times 10^6\) IU/ml inoculum
3 and 8. \(1 \times 10^5\) IU/ml inoculum
4 and 9. \(1 \times 10^4\) IU/ml inoculum
5 and 10. Phosphate buffer pH 5.7
21. RNAase-free water
22. Positive control

Lanes 11 to 20: extraction with vacuum manifold format
11 and 16. \(1 \times 10^7\) IU/ml inoculum
12 and 17. \(1 \times 10^6\) IU/ml inoculum
3 and 18. \(1 \times 10^5\) IU/ml inoculum
14 and 19. \(1 \times 10^4\) IU/ml inoculum
15 and 20. Phosphate buffer pH 5.7

III.4.8. Optimisation of RT-PCR

III.4.8.1. Primer combinations

Two combinations of forward and reverse primers were tested using mRNA extracted from cells inoculated with serial dilutions of B19 or mock-infected with PBS-A in order to evaluate the sensitivity and specificity of each primer pair.

The first combination of primers, B19-6 and B19-9, was tested using B19 mRNA from cells infected with dilutions of the B19 stock virus containing \(1 \times 10^9\) IU/ml, \(1 \times 10^8\) IU/ml, \(1 \times 10^7\) IU/ml or phosphate buffer pH 5.7 as negative control. The mRNAs used had previously been extracted from KU812Ep6 cells (10^6 cells/sample) using the Oligotex direct mRNA method with fresh, whole cells. The total volume for each RT-
PCR reaction was 25µl, including 5µl mRNA template. Each reaction contained 5µl each of RT-PCR buffer and Q buffer, 1µl of 10mM dNTP mix, 0.6µl of 25pmol/µl forward and reverse primers, 1µl of RT-PCR enzyme mix and finally 6.8µl of RNAase-free water to make up the reaction volume to 25µl. The RT-PCR conditions included 1 cycle at 50°C for 30 minutes, 1 cycle at 95°C for 15 minutes, 43 cycles of 95°C for 50 seconds, 55°C for 40 seconds and 72°C for 45 seconds and finally 1 cycle at 72°C for 10 minutes. The RT-PCR products were analysed on a 2% agarose gel and the results are shown on figure 3.61.

This combination of B19-6 and B19-9 primers resulted in two specific RT-PCR products (275bp and 155bp) in all three samples inoculated with parvovirus B19 (lanes 1 to 3 on figure 3.61). No non-specific band could be seen in the negative controls: sample inoculated with phosphate buffer only and RT-PCR negative control (RNAase-free water), lanes 4 and 5 respectively.
The second experiment was aimed at assessing the sensitivity of the primer combination XPP2 and B19-9 compared with that of the B19-6 and B19-9 primer pair. Several mRNA samples, which the B19-6/ B19-9 primer pair had not been able to amplify previously (results not shown), were processed again with both sets of primers. The mRNAs had previously been extracted from synchronised KU812 cells (2x10^5 cells/sample) using the Oligotex direct mRNA method with fresh, whole cells infected with serial dilutions of the B19 stock virus containing 1x10^7 IU/ml, 1x10^6 IU/ml, 1x10^5 IU/ml, 1x10^4 IU/ml or phosphate buffer pH 5.7 as the negative control. The RT-PCR conditions were the same as above but the annealing temperature was raised to 57°C to
minimise amplification of non-specific products. The RT-PCR products were analysed on a 2% agarose gel, which is shown on figure 3.62.

Figure 3.62: Analysis of mRNA products extracted from KU812 cells amplified with XPP2 and B19-9 primer combination

![Agarose gel](image)

Lane M: PCR markers

Lanes 1 to 7: primer pair B19-6 and B19-9
1. 1×10^7 IU/ml inoculum
2. 1×10^6 IU/ml inoculum
3. 1×10^5 IU/ml inoculum
4. 1×10^4 IU/ml inoculum
5. 1×10^3 IU/ml inoculum
6. Phosphate buffer pH 5.7
7. RNAase-free water

Lanes 7 to 14: primer pair XPP2 and B19-9
7. 1×10^7 IU/ml inoculum
8. 1×10^6 IU/ml inoculum
9. 1×10^5 IU/ml inoculum
10. 1×10^4 IU/ml inoculum
11. 1×10^3 IU/ml inoculum
12. Phosphate buffer pH 5.7
13. RNAase-free water

As in the previous attempt (not shown), amplification with primers B19-6 and B19-9 was unsuccessful since no bands were seen (lanes 1–5). Possible explanations could be failure at the infection step or at the mRNA extraction stage, or again low sensitivity of the RT-PCR step. The second possibility was ruled out because the initial attempt to amplify the mRNA samples with these primers was done in a multiplex format and
actin bands, although faint, were seen in all samples (results not shown). The infection step was successful since the samples inoculated with 1x10⁷ and 1x10⁶ IU/ml showed B19-specific mRNA transcripts (although faint) amplified by XPP2 and B19-9 primers (lanes 8 and 9). Therefore, it appeared that primers XPP2 and B19-9 gave more sensitive RT-PCR results than primers B19-6 and B19-9. The primer pair XPP2 and B19-9 was thus chosen to amplify mRNA in all further B19 infectivity assays.

III.4.8.2. Multiplex RT-PCR

The optimisation of the multiplex RT-PCR step was achieved by evaluating several parameters, namely the use of Q buffer, the concentration of actin primers and the annealing temperature of the PCR step.

III.4.8.2.1. Q buffer

The use of Q buffer to increase the sensitivity and specificity of the RT-PCR assay was investigated. Two sets of RT-PCR mix were prepared, one containing Q buffer (5µl per reaction) and one without Q buffer, and used for the amplification of B19 mRNA using the multiplex RT-PCR assay with the B19 primer pair XPP2 and B19-9. The samples used consisted of mRNA which had previously been extracted from KU812Ep6 cells inoculated with serial dilutions of the B19 stock virus containing 1x10⁷ IU/ml, 1x10⁶ IU/ml, 1x10⁵ IU/ml, 1x10⁴ IU/ml and phosphate buffer pH 5.7 as the negative control (2x10⁵ cells/sample). mRNA was extracted from whole, frozen cells using the Oligotex direct mRNA protocol described previously (see section II.2.4.2) and the amplification conditions were as described in section III.4.8.1. Analysed samples are shown on figure 3.63.
The actin-specific band was detected in all samples containing mRNA. When Q buffer was present in the RT-PCR mix, a faint non-specific band above the larger band specific for B19 (305bp) was seen in all samples, even the mock-infected sample (lane 5). In addition, some more non-specific faint bands were seen above and below the B19-specific 185bp band. However, when Q solution was not used in the amplification reaction, a large number of bright non-specific bands were detected in all samples, suggesting a lack of specificity of the amplification reaction in the absence of Q buffer. Therefore, Q buffer was considered essential for the nucleic acid amplification reaction.
III.4.8.2.2. Concentration of actin primers

When the RT-PCR assay was performed separately for actin- and B19-specific primers, the concentration of B19 primers as well as actin-3 and actin-4 stock solutions was 25pmol/μl. Although 5μl of template was added per B19-specific reaction, only 2μl of mRNA was needed for actin amplification. Since the volume of each actin primer per reaction was 0.6μl, the final primer concentration per reaction was 0.6pmol/μl (15pmol/reaction). However, since this concentration may have been sub-optimal in a multiplex assay (the concentrations of actin primers could decrease the amplification of B19 specific products by interference), four experiments were performed with various actin primer concentrations and a constant B19 primer concentration of 25pmol/μl.

In the first experiment, the actin primer working solutions were diluted 1:3, 1:4 and 1:5, resulting in respective concentrations of 8.33pmol/μl, 6.25pmol/μl and 5pmol/μl. The mRNAs used in this experiment had previously been extracted from KU812Ep6 cells infected with dilutions of the B19 stock virus containing 1x10^{12} IU/ml and 1x10^{9} IU/ml as well as cells mock infected with negative plasma. The mRNAs were extracted from fresh, whole cells using the Oligotex direct mRNA protocol. The total volume for each multiplex reaction was 25μl, including 5μl mRNA template added last. Each reaction contained 5μl of RT-PCR buffer and Q buffer, 1μl of 10mM dNTP mix and RT-PCR enzyme mix, 0.6μl of each primer (actin-3, actin-4, B19-6, B19-9) and finally 5.6μl of RNAase-free water. The conditions for amplification were as described previously in section III.4.8.1. The products were analysed on a 2% agarose gel, which is shown on figure 3.64.
Figure 3.64: Analysis of mRNA products extracted from KU812Ep6 cells amplified by multiplex RT-PCR using various actin primers concentrations

![Image of gel electrophoresis with lanes labeled M, 1 to 12, and bands at 1,000 bp, 750 bp, 500 bp, 300 bp, and 150 bp]

Lane M: PCR markers

Lanes 1 to 4: actin primers at 1:3 dilution (8.33pmol/µl)
1. Negative serum
2. 1x10^{12} IU/ml inoculum
3. 1x10^9 IU/ml inoculum
4. RNAase-free water

Lanes 5 to 8: actin primers at 1:4 dilution (6.25pmol/µl)
5. Negative serum
6. 1x10^{12} IU/ml inoculum
7. 1x10^9 IU/ml inoculum
8. RNAase-free water

Lanes 9 to 12: actin primers at 1:5 dilution (5pmol/µl)
9. Negative serum
10. 1x10^{12} IU/ml inoculum
11. 1x10^9 IU/ml inoculum
12. RNAase-free water

This experiment demonstrated that all three primer dilutions were suitable for amplification of the actin gene. The fact that the lower band was not present in sample 7 (inoculated with 1x10^9 IU/ml) suggested that the 1:4 actin primers dilution was inhibiting the amplification of this B19 transcript. The lower bands in samples 3 and 11 (inoculated with 1x10^9 IU/ml) with dilutions 1:3 and 1:5, respectively, were also very
faint. Therefore, the lower concentration of actin primers was considered to be necessary to prevent loss of amplification with the B19 primers.

The second experiment in this series compared actin primer working solutions concentrations of 12.5pmol/μl (1:2 dilution), 5pmol/μl (1:5 dilution) and 2.5pmol/μl (1:10 dilution) using the B19-specific primers pair XPP2 and B19-9, which were, by then, found to be more specific than the B19-6 and B19-9 combination. In addition, in order to evaluate the sensitivity of the assay, mRNA from cells infected with lower concentrations of parvovirus B19 (compared with the first experiment) were used. Thus, the mRNA samples used had previously been extracted from cells infected with dilutions of the B19 stock virus containing 1x10^7 IU/ml, 1x10^6 IU/ml and 1x10^5 IU/ml and cells mock infected with PBS pH 5.7. The mRNA samples were extracted from UT-7/EPO-S1 cell cytoplasm using the Oligotex direct mRNA protocol. The multiplex RT-PCR conditions were similar to that of the previous experiments but the annealing step was slightly modified by increasing the temperature from 55°C to 57°C and the elongation step was reduced from 2 minutes to 40 seconds. The products were analysed on 2% agarose gels, as shown on figure 3.65.

As expected, the more diluted the actin primers, the fainter the actin-specific bands on the agarose gel. The two B19-specific bands were visible in samples inoculated with 1x10^7 IU/ml and 1x10^6 IU/ml. These bands were very faint with the 1:2 and 1:5 dilutions of actin primers whereas they were brighter when 1:10 dilution was used. However, in this case, the actin band was very faint (lanes 11 to 14 on figure 3.65). This suggests that the 1:10 dilution (2.5pmol/μl) was not sufficient to amplify the housekeeping gene transcript in these samples. A lower dilution of actin-3 and actin-4 primers was therefore tested in a further experiment.
Figure 3.65: Analysis of mRNA products extracted from UT-7/EPO-S1 cells amplified by multiplex RT-PCR using various actin primers concentrations

Lane M: PCR markers

Lanes 1 to 5: actin primers at 1:2 dilution (12.5pmol/µl)
1. 1x10⁷ IU/ml inoculum
2. 1x10⁶ IU/ml inoculum
3. 1x10⁵ IU/ml inoculum
4. Phosphate buffer pH 5.7
5. RNAase-free water

Lanes 6 to 10: actin primers at 1:5 dilution (5pmol/µl)
6. 1x10⁷ IU/ml inoculum
7. 1x10⁶ IU/ml inoculum
8. 1x10⁵ IU/ml inoculum
9. Phosphate buffer pH 5.7
10. RNAase-free water

Lanes 11 to 15: actin primers at 1:10 dilution (2.5pmol/µl)
11. 1x10⁷ IU/ml inoculum
12. 1x10⁶ IU/ml inoculum
13. 1x10⁵ IU/ml inoculum
14. Phosphate buffer pH 5.7
15. RNAase-free water

The third experiment investigated actin primer concentrations between 1:5 and 1:10 dilutions, namely 1:6 (4.16pmol/µl) and 1:8 (3.125pmol/µl). The nucleic acids samples used had previously been extracted from UT-7/EPO-S1 cells (passage n+22) using the Oligotex direct mRNA protocol from cell cytoplasm. The cells were infected with 1:10 dilutions of the B19 stock virus containing from 1x10⁷ IU/ml to 1x10⁴ IU/ml and a
negative control (phosphate buffer pH 5.7). The RT-PCR conditions were similar to those described in the previous experiment. Two separate amplifications were run in parallel, namely with B19-specific primers only (B19-9 and XPP2) and multiplex RT-PCR including both the same B19-specific primers and actin-specific primers at the dilutions tested in this experiment (1:6 and 1:8). The amplified products were analysed on 2% agarose gels shown on figure 3.66 (panel A and B, respectively).

When B19-specific primers alone were used in the RT-PCR step (panel A, figure 3.66), the end point was sample 3, cells inoculated with 1×10^5 IU/ml. Although the B19-specific bands were also detected by multiplex amplification in sample 3, they were very faint and the 305bp band could not be seen when amplified with actin primers diluted 1:6. In addition, the actin bands were not well defined and very faint with either dilution tested and a number of non-specific bands were present on panel B, figure 3.66. Therefore, the concentration of actin-specific primers seemed to be too low for consistent detection in the multiplex assay. The actin primer concentration of 1:5 dilution, which had previously been tested, was therefore investigated once again in the fourth and final experiment.
Figure 3.66: Analysis of mRNA products extracted from UT-7/EPO-S1 cells

(A) Amplified with B19-specific primers (B19-9 and XPP2)

(B) Amplified by multiplex RT-PCR with various actin primers concentrations

M PCR markers
1. 1x10⁷ IU/ml inoculum
2. 1x10⁶ IU/ml inoculum
3. 1x10⁵ IU/ml inoculum
4. 1x10⁴ IU/ml
5. Phosphate buffer pH 5.7
6. RNAase-free water (negative control)
7. RT-PCR positive control (1x10⁶ IU/ml)

- 340 -
The last experiment aiming at determining the optimal actin primers concentration for multiplex RT-PCR investigated the 1:5 dilution (5pmol/μl) again, using mRNA samples from different inoculation and extraction experiments in order to evaluate the reproducibility of the assay. The RNA samples were extracted from UT-7/EPO-S1 cells (passage n+22) using the Oligotex direct mRNA protocol from cell cytoplasm. The cells had been inoculated in duplicate with dilutions of the B19 stock virus containing 1x10^7 IU/ml, 1x10^6 IU/ml and 1x10^5 IU/ml and from cells mock infected with phosphate buffer pH 5.7. Samples were amplified in a multiplex RT-PCR assay with the B19-specific primers (B19-9 and XPP2) at a concentration of 25pmol/μl and actin primers (actin-3 and actin-4) diluted 1:5 (5pmol/μl). The RT-PCR conditions were similar to those described for the two previous experiments and again two separate amplifications were run in parallel, one with B19-specific primers only (B19-9 and XPP2) and the other with both B19-specific primers and actin-specific primers at the 1:5 dilution in a multiplex format. The amplified products obtained were analysed on 2% agarose gels, as shown on figure 3.67, panels A and B, respectively.

When the RT-PCR step was first performed using B19-specific primers only, the two mRNA transcripts were amplified in only one out of two samples inoculated with 1x10^6 IU/ml (panel A, sample 3). On the other hand, when the multiplex RT-PCR (using 5pmol/μl of actin primers) was performed, both samples inoculated with 1x10^6 IU/ml showed B19-specific bands, although only a faint 305bp band was seen in sample 3, panel B. The B19-specific bands in samples 1 and 2 were much brighter with actin primers (panel B) than without (panel A). In addition, the actin gene transcript was clearly amplified in all samples with extracted mRNA. Therefore, a concentration of 5pmol/μl for actin-specific primers and 25pmol/μl for B19-specific primers seemed to
be the best combination for the optimal amplification of both B19 and actin transcripts by multiplex RT-PCR.

Figure 3.67: Analysis of mRNA products extracted from UT-7/EPO-S1 cells

(A) Amplified with B19-specific primers (B19-9 and XPP2)

(B) Amplified by multiplex RT-PCR (1:5 dilution of actin primers)

| | PCR markers | 1. 1x10^7 IU/ml inoculum | 2. 1x10^7 IU/ml inoculum | 3. 1x10^6 IU/ml inoculum | 4. 1x10^6 IU/ml inoculum | 5. 1x10^5 IU/ml inoculum | 6. 1x10^5 IU/ml inoculum | 7. Phosphate buffer pH 5.7 | 8. Phosphate buffer pH 5.7 | 9. RNAase-free water |
|---|-------------|--------------------------|--------------------------|--------------------------|--------------------------|--------------------------|--------------------------|--------------------------|--------------------------|--------------------------|--------------------------|
| M | PCR markers | 1. 1x10^7 IU/ml inoculum | 2. 1x10^7 IU/ml inoculum | 3. 1x10^6 IU/ml inoculum | 4. 1x10^6 IU/ml inoculum | 5. 1x10^5 IU/ml inoculum | 6. 1x10^5 IU/ml inoculum | 7. Phosphate buffer pH 5.7 | 8. Phosphate buffer pH 5.7 | 9. RNAase-free water |
III.4.8.2.3. Annealing temperature

In addition to determining the optimal actin primer concentration as 5pmol/μl, the data obtained by testing different primer combinations showed that the most specific primer pair was XPP2 and B19-9. When used on their own, the annealing temperature chosen for this set of primers was 57°C. However, since the present experiment aimed at optimising the annealing temperature for the multiplex RT-PCR, it was lowered in order to increase the sensitivity of the assay. Therefore, the temperatures tested were 48°C, 50°C, 52°C and 55°C, using mRNA samples extracted from UT-7/EPO-S1 cells which had been infected with serial dilutions of the three different B19 isolates, namely JS (B19 stock virus), JB and LP and extracted from cell cytoplasm using the Oligotex direct mRNA protocol. The 1:10 viral dilutions ranged from 10^{-4} to 10^{-8} and one sample inoculated with phosphate buffer pH 5.7 was also included as the negative control. The RT-PCR negative and positive controls were RNAase-free water and mRNA previously extracted from UT-7/EPO-S1 cells inoculated with 1×10^7IU/ml of B19 virus stock, respectively. Multiplex RT-PCR using actin-specific primers (actin-3 and actin-4 at 5pmol/μl) and B19-specific primers (XPP2 and B19-9 at 25pmol/μl) was set up with the following conditions: 1 cycle at 50°C for 30 minutes, 1 cycle at 95°C for 15 minutes, 43 cycles of 95°C for 45 seconds, 55°C/ 52°C/ 50°C/ 48°C for 45 seconds and 72°C for 40 seconds and finally 1 cycle at 72°C for 10 minutes. The products of each of the four mRNA amplifications at 55°C, 52°C, 50°C and 48°C were analysed on 2% agarose gels and are shown on figure 3.68, panels A, B, C and D, respectively.
Figure 3.68: Analysis of mRNA products extracted from UT-7/EPO-S1 cells amplified by multiplex RT-PCR

(A) Annealing temperature: 55°C

(B) Annealing temperature: 52°C

(C) Annealing temperature: 50°C
(D) Annealing temperature: 48°C

The end points for all three inoculi at each annealing temperature tested are shown in table 3.11. For the B19-specific mRNA transcripts, figure 3.68, panels A to D and table 3.11 all showed that a lower annealing temperature such as 50°C or 48°C resulted in a higher sensitivity of the amplification reaction. The optimisation of the multiplex RT-PCR was a balance between amplification of B19-specific mRNA transcripts and the housekeeping gene transcripts, to ensure that the amplification of the one did not interfere with that of the other. Thus, the second parameter that was investigated was the amplification of the actin gene when using decreasing temperatures. At 55°C, many of the samples containing mRNA did not show any actin-specific band and, in the samples
that did show a band, it was very faint. However, when the annealing temperature was lowered to 52°C, 50°C and 48°C, all samples showed the actin band, although it was still faint in some samples at 52°C and 48°C.

In conclusion, taking all parameters into account, it appeared that an annealing temperature of 50°C would provide the best amplification, in terms of sensitivity, of the housekeeping gene (actin) and parvovirus B19 transcripts using the primer pair XPP2 and B19-9.

Table 3.11: Results of annealing temperature optimisation

<table>
<thead>
<tr>
<th>B19 isolate</th>
<th>RT-PCR annealing temperature (°C)</th>
<th>Log₁₀ DNA titre (IU/ml)</th>
<th>End point dilution</th>
<th>Log₁₀ infectious units (inf.u./ml)</th>
</tr>
</thead>
<tbody>
<tr>
<td>JS</td>
<td>55</td>
<td>12.0</td>
<td>5.0</td>
<td>8.5</td>
</tr>
<tr>
<td></td>
<td>52</td>
<td>12.0</td>
<td>5.0</td>
<td>8.5</td>
</tr>
<tr>
<td></td>
<td>50</td>
<td>12.0</td>
<td>5.0</td>
<td>8.5</td>
</tr>
<tr>
<td></td>
<td>48</td>
<td>12.0</td>
<td>5.0</td>
<td>8.5</td>
</tr>
<tr>
<td>JB</td>
<td>55</td>
<td>12.5</td>
<td>7.0</td>
<td>7.0</td>
</tr>
<tr>
<td></td>
<td>52</td>
<td>12.5</td>
<td>5.0</td>
<td>9.0</td>
</tr>
<tr>
<td></td>
<td>50</td>
<td>12.5</td>
<td>5.0</td>
<td>9.0</td>
</tr>
<tr>
<td></td>
<td>48</td>
<td>12.5</td>
<td>5.0</td>
<td>9.0</td>
</tr>
<tr>
<td>LP</td>
<td>55</td>
<td>13.7</td>
<td>6.0</td>
<td>9.2</td>
</tr>
<tr>
<td></td>
<td>52</td>
<td>13.7</td>
<td>5.0</td>
<td>10.2</td>
</tr>
<tr>
<td></td>
<td>50</td>
<td>13.7</td>
<td>5.0</td>
<td>10.2</td>
</tr>
<tr>
<td></td>
<td>48</td>
<td>13.7</td>
<td>5.0</td>
<td>10.2</td>
</tr>
</tbody>
</table>
Chapter III

III.4.9. Optimised human parvovirus B19 infectivity assay

III.4.9.1. Infectivity assay conditions

The infectivity assay was optimised at several levels, including tissue culture, virus inoculation and incubation, and mRNA extraction and amplification. Detection of B19 replication was indeed found to be more sensitive than IFA.

The non-synchronised UT-7/EPO-S1 cell line, at passages between n+14 and n+53, was chosen after extensive tissue culture studies. The growth curves for this cell line showed that the optimum time for virus inoculation, which was when the cells were multiplying the most, was 5 days after splitting them at a concentration of 1×10^5 cells/ml.

After being washed with phosphate buffer pH 5.7, 2×10^5 cells were inoculated with $30\mu l$ of B19 virus diluted in phosphate buffer pH 5.7. An incubation of 2 hours at 4°C was followed by the addition of 1ml of fresh medium (Iscoves modified DMEM, with Glutamax-1, 10% FCS, 2 IU/ml EPO, 1% gentamycin, 1% fungizone). The cells were incubated at 37°C (5% CO$_2$) and the optimum time for harvesting was 2 days post-inoculation.

The best method for the extraction of mRNA was found to be from cell cytoplasm using the Oligotex direct mRNA kit (Qiagen). Isolated mRNA was amplified by multiplex RT-PCR using the optimum primer combination: B19-9 (forward) and XPP-2 (reverse). OneStep RT-PCR kit (Qiagen) was used and each reaction contained $5\mu l$ of 10x OneStep RT-PCR buffer, $5\mu l$ of 5x Q buffer solution, $1\mu l$ of dNTPs, actin primers (Actin-3 and Actin-4) at a concentration of $3\text{pmol per reaction (0.6}\mu l$ of 5pmol/µl stock) and B19 primers (B19-9 and XPP-2) at a concentration of $15\text{pmol per reaction (0.6}\mu l$ of 15pmol/µl stock), $1\mu l$ of RT-PCR enzyme mix and $5.6\mu l$ of RNAase-free water. Template ($5\mu l$) was added to complete the volume of a full reaction to $25\mu l$ reaction mix. The amplification conditions were 1 cycle at 50°C for 30 minutes, 1 cycle at 95°C.
for 15 minutes, 43 cycles of 95°C for 45 seconds, 50°C (optimum annealing temperature) for 40 seconds and 72°C for 40 seconds and finally 1 cycle at 72°C for 10 minutes.

III.4.9.2. Validations studies

The aim of these studies was to determine the limit of detection of the optimised B19 infectivity assay.

The optimised protocols for inoculation of cells, extraction of mRNA and RT-PCR as determined in the initial experiments were used for this study. Briefly, the UT-7/EPO-S1 cell line was used at passages between n+48 and n+52 and six assays with duplicate sample dilutions of the stock virus were performed. Serial dilutions of the B19 stock virus, ranging from $10^{-5.0}$ to $10^{-8.0}$, were prepared in phosphate buffer pH 5.7 and cells were inoculated with 30µl of diluted virus containing 1×10^7 IU/ml, $1\times10^6.5$ IU/ml, 1×10^6 IU/ml, $1\times10^5.5$ IU/ml, 1×10^5 IU/ml, $1\times10^4.5$ IU/ml, 1×10^4 IU/ml and phosphate buffer pH 5.7 as the negative sample. The infectivity assay conditions detailed previously (section III.4.9.1) were applied for these validation studies.

Table 3.12 summaries the detection (+) or absence (-) of B19 specific transcripts for each study.
Table 3.12: Record of B19 specific transcripts presence (+) or absence (-) in the validation studies of the optimised infectivity assay

<table>
<thead>
<tr>
<th>Log<sub>10</sub> DNA concentration of inoculum (IU/ml)</th>
<th>7.0</th>
<th>6.5</th>
<th>6.0</th>
<th>5.5</th>
<th>5.0</th>
<th>4.5</th>
<th>4.0</th>
<th>Negative control</th>
</tr>
</thead>
<tbody>
<tr>
<td>Log<sub>10</sub> dilution of inoculum</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>-5.0</td>
<td>-5.5</td>
<td>-6.0</td>
<td>-6.5</td>
<td>-7.0</td>
<td>-7.5</td>
<td>-8.0</td>
<td></td>
</tr>
<tr>
<td>Study number</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>-</td>
<td>+</td>
<td>+</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>-</td>
<td>+</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
</tbody>
</table>

Statistical analysis kindly done by A. Heath (Department of Informatics, NIBSC) showed that the 95% detection limit for this assay was log₁₀ -6.03 dilution (range -5.82 to -6.24), or log₁₀ 5.97 IU/ml (log₁₀ 7.53 inf.u./ml) and the 50% detection limit was log₁₀ -6.67 dilution (range -6.46 to -6.87) or log₁₀ 5.35 IU/ml (log₁₀ 8.15 inf.u./ml). The calculated DNA concentration to infectious unit ratios for this study are shown in the table 3.13 The calculated mean ratio for the DNA concentration to infectious units was 10^{3.91}:1.
Table 3.13 Infectivity results and DNA concentration to infectious unit ratio for the optimised infectivity assay

<table>
<thead>
<tr>
<th>Study number</th>
<th>Log$_{10}$ DNA concentration (IU/ml)</th>
<th>Log$_{10}$ infectious units/ml</th>
<th>DNA concentration: infectious unit ratio</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>12.0</td>
<td>9.0</td>
<td>$10^{3.0}:1$</td>
</tr>
<tr>
<td>1</td>
<td>12.0</td>
<td>8.5</td>
<td>$10^{3.5}:1$</td>
</tr>
<tr>
<td>2</td>
<td>12.0</td>
<td>8.5</td>
<td>$10^{3.5}:1$</td>
</tr>
<tr>
<td>2</td>
<td>12.0</td>
<td>7.5</td>
<td>$10^{4.5}:1$</td>
</tr>
<tr>
<td>3</td>
<td>12.0</td>
<td>7.5</td>
<td>$10^{4.2}:1$</td>
</tr>
<tr>
<td>3</td>
<td>12.0</td>
<td>7.5</td>
<td>$10^{4.2}:1$</td>
</tr>
<tr>
<td>4</td>
<td>12.0</td>
<td>8.5</td>
<td>$10^{4.5}:1$</td>
</tr>
<tr>
<td>4</td>
<td>12.0</td>
<td>7.5</td>
<td>$10^{4.5}:1$</td>
</tr>
<tr>
<td>5</td>
<td>12.0</td>
<td>8.5</td>
<td>$10^{3.5}:1$</td>
</tr>
<tr>
<td>5</td>
<td>12.0</td>
<td>8.5</td>
<td>$10^{3.5}:1$</td>
</tr>
<tr>
<td>6</td>
<td>12.0</td>
<td>7.5</td>
<td>$10^{4.5}:1$</td>
</tr>
<tr>
<td>6</td>
<td>12.0</td>
<td>8.0</td>
<td>$10^{4.0}:1$</td>
</tr>
</tbody>
</table>

III.4.10. Sequencing of PCR products

The two mRNA transcripts amplified with B19-9 (position 384-405) and XPP-2 (position 2194-2214), which are shown below, were sequenced. As far as the longer transcript was concerned (upper band), only the reverse sequence was obtained, which was enough to identify its size and position on the reference genomic DNA (M13178).

Forward primer B19-9: GTT TTT TGT GAG CTA ACT AAC A
Reverse primer XPP2: ACC GTC CCA CAC ATA ATC AAC
Longer transcript (305bp on gel) sequenced with the reverse primer XPP-2:

5' CCCACTAACATTCAACGAAAANTGGTCTGGCAAAAAGGTGTGTAAGAGGCATTCT
TCCACGATGCAGCTACAACATTTCGGAAGAAAATCGGGCTTCGACAAATGAT
TCTCCTGAACCTGGTCCCAGGATGGGCTACTAGAGCGCGCGGGTTTCTAGTG
TTCCAGGCCCTGGGATGAGGTTTAAAAAAAAGCTCTTTTCGACTGAGTTCTT
CAGAGCTTTCCACCACACTGCTGCTGATACGGGTTGCTGTAACATGGGGCT
GGTTGGAGGTCTGGGAGGGCGCATCTGGTTAGTTAGCTCACA

Shorter transcript (185bp on agarose gel) sequenced with the reverse primer XPP-2:

5' CCCACTAACATTCAACGAAAACTGGTCTGGCAAAAAGGTGTGTAAGAGGCATTCT
TCCACGATGCAGCTACAACATTTCGGAAGAAAATCGGGCTTCGACAAATGAT
TCTCCTGAACCTGGTCCCAGGATGGGCTACTAGAGCGCGCGGGTTTCTAGTG
TTCCAGGCCCTGGGATGAGGTTTAAAAAAAAGCTCTTTTCGACTGAGTTCTT
CAGAGCTTTCCACCACACTGCTGCTGATACGGGTTGCTGTAACATGGGGCT
GGTTGGAGGTCTGGGAGGGCGCATCTGGTTAGTTAGCTCACA

Shorter transcript (185bp on agarose gel) sequenced with the forward primer B19-9:

5' GNCGNCGGNNACACTGGTANCCCCGCGCTCTAGTACGCCCATCCCCGGGAC
CAGTGGCGAGTAAATCGGGTGGCGAAGCCCGATTTCCTCCGAAAGTTTAGC
TGCACTCGTGAGAAAGGCTCTCAGTACACCTTTGGGACAGGCTTCTGAA
CTGGTTAGTTGGGATGATTAGTGTTGGGACGGTA

- 351 -
When compared to B19 genomic DNA (M13178), the longer transcript (upper band) corresponds to positions: 384-406 and 1910-2193, with an actual transcript size of 305 bp.

When compared to B19 genomic DNA (M13178), the shorter transcript (lower band) corresponds to positions: 384-406 and 2030-2193, with an actual size of 185 bp.

In accordance with previous reports (Ozawa et al., 1987; St Amand et al., 1991), this study confirmed the presence of one splicing donor site (GT) and two acceptor sites (AG) at position 407-408, 1908-1909 and 2028-2029, respectively. A more recent study observed a slice donor site at nt 441 always coupled with the acceptor site at position 2030 (Brunstein et al., 2000), a splicing pattern that was not found in the present study.

III.5. Human parvovirus B19 removal/inactivation studies

The results of the DNA assay and infectivity assay for all five virus removal/inactivation techniques are given below. The B19 DNA titre was determined from the standard curve using the B19 International Standard and the number of infectious units/ml for each sample was calculated from the end-point dilution of the infectivity assay as described previously.

III.5.1. Virus removal by nanofiltration using Planova® filters: Asahi Kasei Pharma

The filtration experiments were performed at NIBSC by Dr S. Satoh (Asahi Kasei Pharma Corporation, Japan) and Mr T. Sato (Asahi Kasei Deutschland, Germany). Reconstituted 25% human albumin was diluted 1:50 in saline to obtain a 0.5% albumin solution (600ml). The latter was prefiltered through a 35N Planova® filter (0.5 bar) in order to remove aggregates of protein, which might have been generated by the
lyophilisation process. Control samples A1 and A2 (0.5ml) were taken from the 0.5% albumin prefiltration feed while samples B1 and B2 (0.5ml) were from the prefiltration filtrate. The second step included the preparation of the spiked solution by mixing 550ml of the prefiltered albumin with 1000μl of stock virus (1x10^{12} IU/ml). Spiked albumin was then filtered through a 35N Planova® filter (0.5 bar). Controls C1 and C2 (0.5ml) were duplicate samples of the parvovirus B19 spiked albumin (feed solution) while samples D1 and D2 (0.5ml) were taken after filtration with the 35N Planova® filter. The melting curve of sample C1 at 1:10,000 dilution on figure 3.69 showed only the B19-specific peak at the melting temperature of 84.8°C. This temperature was within the melting temperature range determined previously for validation purposes (84.4°C to 85°C).
Two pore sizes of Planova® filters were tested in this experiment, namely 15N and 20N. Three different runs were performed for each filter size, using a new filter for each run (60ml of feed for each run). The filtrations were run under a dead-end mode (figure 3.70), under constant pressure (0.5 bar) and at room temperature in a Class 1 Microbiological Safety cabinet.

![Figure 3.70: Dead-end and constant pressure Planova® filtration procedure](image)

Eluate fractions of ~0.7ml were collected for each filtration. These collection samples were numbered 1 to 43 for the first 15N Planova® filter, 44 to 86 for the first 20N Planova® filter, 87 to 129 for the second 15N Planova® filter, 130 to 172 for the second 20N Planova® filter, 173 to 215 for the third 15N Planova® filter and lastly 216 to 258 for the third 20N Planova® filter. The fractions were stored at -70°C.
Parvovirus B19 DNA of every other collection sample was extracted, together with a sample of the B19 IS 99/800, and several negative controls (B19-antibody negative plasma provided by Dr J. Saldanha, B19-antibody negative serum given by Dr B. Cohen and duplicate RNAase-free water controls). The extracted DNA was then amplified by LightCycler PCR. Ten-fold dilutions (ranging in concentration from 10^6 to 10^3 IU/ml) of the DNA extracted from the B19 IS were amplified in parallel and the results used to plot a standard curve. The concentrations of the samples were read off the standard curve. Fluorescence was generated by both the amplicon and the primer dimers, as shown by the samples melting curves. Observation of the latter showed that, in samples whose concentration was less than 1x10^3 IU/ml, the fluorescent signal was due to the generation of primer dimers. Such samples were thus considered to be negative. In order to test all the samples (and to include dilutions of the B19 international standard for generation of a standard curve in each run), it was necessary to perform a total of twelve runs on the LightCycler.

Table 3.14 records the different LightCycler runs with the controls and nanofiltration collection samples tested in each run. All three negative controls (negative plasma, negative serum and RNAase-free water) were found negative in all the LightCycler runs.
Table 3.14: LightCycler runs and negative controls results for nanofiltration

<table>
<thead>
<tr>
<th>Run</th>
<th>Controls and collection samples tested</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>A1, A2, B1, B2, C1, C2, D1, D2, 1 to 13</td>
</tr>
<tr>
<td>2</td>
<td>15 to 41</td>
</tr>
<tr>
<td>3</td>
<td>43 to 68</td>
</tr>
<tr>
<td>4</td>
<td>68 to 86</td>
</tr>
<tr>
<td>5</td>
<td>87 to 107</td>
</tr>
<tr>
<td>6</td>
<td>109 to 130</td>
</tr>
<tr>
<td>7</td>
<td>132 to 154</td>
</tr>
<tr>
<td>8</td>
<td>156 to 173</td>
</tr>
<tr>
<td>9</td>
<td>175 to 177</td>
</tr>
<tr>
<td>10</td>
<td>179 to 215</td>
</tr>
<tr>
<td>11</td>
<td>216 to 244</td>
</tr>
<tr>
<td>12</td>
<td>246 to 258</td>
</tr>
</tbody>
</table>

The following tables (3.15 to 3.21) compile the log₁₀ of B19 DNA concentrations, as well as the gel electrophoresis result for the experimental controls and the collection samples for each filter tested. Photos of all the agarose gels can be viewed in appendix 3.

Table 3.15: Experimental controls for nanofiltration

<table>
<thead>
<tr>
<th>Control sample</th>
<th>Log₁₀ DNA concentration (IU/ml)</th>
<th>Agarose gel result</th>
</tr>
</thead>
<tbody>
<tr>
<td>A1</td>
<td>3.30</td>
<td>+ (faint)</td>
</tr>
<tr>
<td>A2</td>
<td><limit of quantitation</td>
<td>+ (faint)</td>
</tr>
<tr>
<td>B1</td>
<td>3.30</td>
<td>+ (faint)</td>
</tr>
<tr>
<td>B2</td>
<td>3.00</td>
<td>+</td>
</tr>
<tr>
<td>C1</td>
<td>10.69</td>
<td>+</td>
</tr>
<tr>
<td>C2</td>
<td>10.77</td>
<td>+</td>
</tr>
<tr>
<td>D1</td>
<td>9.60</td>
<td>+</td>
</tr>
<tr>
<td>D2</td>
<td>9.77</td>
<td>+</td>
</tr>
</tbody>
</table>
Table 3.16: Results for the first 15N Planova® filter

<table>
<thead>
<tr>
<th>Collection sample</th>
<th>Log_{10} DNA concentration (IU/ml)</th>
<th>Agarose gel result</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>3.69</td>
<td>+</td>
</tr>
<tr>
<td>3</td>
<td>4.60</td>
<td>+</td>
</tr>
<tr>
<td>5</td>
<td>4.60</td>
<td>+</td>
</tr>
<tr>
<td>7</td>
<td>4.60</td>
<td>+</td>
</tr>
<tr>
<td>9</td>
<td>4.69</td>
<td>+</td>
</tr>
<tr>
<td>11</td>
<td>4.77</td>
<td>+</td>
</tr>
<tr>
<td>13</td>
<td>4.84</td>
<td>+</td>
</tr>
<tr>
<td>15</td>
<td>4.30</td>
<td>+</td>
</tr>
<tr>
<td>17</td>
<td>4.30</td>
<td>+</td>
</tr>
<tr>
<td>19</td>
<td>4.30</td>
<td>+</td>
</tr>
<tr>
<td>21</td>
<td>4.00</td>
<td>+</td>
</tr>
<tr>
<td>23</td>
<td>4.00</td>
<td>+</td>
</tr>
<tr>
<td>25</td>
<td>4.00</td>
<td>+</td>
</tr>
<tr>
<td>27</td>
<td>4.30</td>
<td>+</td>
</tr>
<tr>
<td>29</td>
<td>4.47</td>
<td>+</td>
</tr>
<tr>
<td>31</td>
<td>4.00</td>
<td>+</td>
</tr>
<tr>
<td>33</td>
<td>4.00</td>
<td>+</td>
</tr>
<tr>
<td>35</td>
<td>4.00</td>
<td>+</td>
</tr>
<tr>
<td>37</td>
<td>4.00</td>
<td>+</td>
</tr>
<tr>
<td>39</td>
<td>4.00</td>
<td>+</td>
</tr>
<tr>
<td>41</td>
<td>4.30</td>
<td>+</td>
</tr>
<tr>
<td>43</td>
<td>4.30</td>
<td>+</td>
</tr>
</tbody>
</table>
Table 3.17: Results for the first 20N Planova® filter

<table>
<thead>
<tr>
<th>Collection sample</th>
<th>Log_{10} DNA concentration (IU/ml)</th>
<th>Agarose gel result</th>
</tr>
</thead>
<tbody>
<tr>
<td>44</td>
<td>4.00</td>
<td>+</td>
</tr>
<tr>
<td>46</td>
<td>4.00</td>
<td>+</td>
</tr>
<tr>
<td>48</td>
<td>4.30</td>
<td>+</td>
</tr>
<tr>
<td>50</td>
<td>4.30</td>
<td>+</td>
</tr>
<tr>
<td>52</td>
<td>4.00</td>
<td>+</td>
</tr>
<tr>
<td>54</td>
<td>4.30</td>
<td>+</td>
</tr>
<tr>
<td>56</td>
<td>4.47</td>
<td>+</td>
</tr>
<tr>
<td>58</td>
<td>4.30</td>
<td>+</td>
</tr>
<tr>
<td>60</td>
<td>4.30</td>
<td>+</td>
</tr>
<tr>
<td>62</td>
<td>4.30</td>
<td>+</td>
</tr>
<tr>
<td>64</td>
<td>4.00</td>
<td>+</td>
</tr>
<tr>
<td>66</td>
<td>4.30</td>
<td>+</td>
</tr>
<tr>
<td>68</td>
<td>4.47</td>
<td>+</td>
</tr>
<tr>
<td>70</td>
<td>4.30</td>
<td>+</td>
</tr>
<tr>
<td>72</td>
<td>4.60</td>
<td>+</td>
</tr>
<tr>
<td>74</td>
<td>3.84</td>
<td>+</td>
</tr>
<tr>
<td>76</td>
<td>3.84</td>
<td>+</td>
</tr>
<tr>
<td>78</td>
<td>3.30</td>
<td>+</td>
</tr>
<tr>
<td>80</td>
<td>3.84</td>
<td>+</td>
</tr>
<tr>
<td>82</td>
<td>3.69</td>
<td>+</td>
</tr>
<tr>
<td>84</td>
<td>3.69</td>
<td>+</td>
</tr>
<tr>
<td>86</td>
<td>3.30</td>
<td>+</td>
</tr>
</tbody>
</table>
Table 3.18: Results for the second 15N Planova® filter

<table>
<thead>
<tr>
<th>Collection sample</th>
<th>Log<sub>10</sub> DNA concentration (IU/ml)</th>
<th>Agarose gel result</th>
</tr>
</thead>
<tbody>
<tr>
<td>87</td>
<td>3.00</td>
<td>+</td>
</tr>
<tr>
<td>89</td>
<td>4.00</td>
<td>+</td>
</tr>
<tr>
<td>91</td>
<td>4.00</td>
<td>+</td>
</tr>
<tr>
<td>93</td>
<td>4.00</td>
<td>+</td>
</tr>
<tr>
<td>95</td>
<td>4.00</td>
<td>+</td>
</tr>
<tr>
<td>97</td>
<td>3.77</td>
<td>+</td>
</tr>
<tr>
<td>99</td>
<td>3.84</td>
<td>+</td>
</tr>
<tr>
<td>101</td>
<td>3.47</td>
<td>+</td>
</tr>
<tr>
<td>103</td>
<td>4.00</td>
<td>+</td>
</tr>
<tr>
<td>105</td>
<td>3.77</td>
<td>+</td>
</tr>
<tr>
<td>107</td>
<td>3.69</td>
<td>+</td>
</tr>
<tr>
<td>109</td>
<td>3.84</td>
<td>+</td>
</tr>
<tr>
<td>111</td>
<td>3.69</td>
<td>+</td>
</tr>
<tr>
<td>113</td>
<td>3.77</td>
<td>+</td>
</tr>
<tr>
<td>115</td>
<td>3.69</td>
<td>+</td>
</tr>
<tr>
<td>117</td>
<td>3.69</td>
<td>+</td>
</tr>
<tr>
<td>119</td>
<td>3.84</td>
<td>+</td>
</tr>
<tr>
<td>121</td>
<td>3.69</td>
<td>+</td>
</tr>
<tr>
<td>123</td>
<td>4.00</td>
<td>+</td>
</tr>
<tr>
<td>125</td>
<td>4.00</td>
<td>+</td>
</tr>
<tr>
<td>127</td>
<td>3.47</td>
<td>+</td>
</tr>
<tr>
<td>129</td>
<td>3.30</td>
<td>+</td>
</tr>
</tbody>
</table>
Table 3.19: Results for the second 20N Planova® filter

<table>
<thead>
<tr>
<th>Collection sample</th>
<th>Log_{10} DNA concentration (IU/ml)</th>
<th>Agarose gel result</th>
</tr>
</thead>
<tbody>
<tr>
<td>130</td>
<td><limit of quantitation</td>
<td>+</td>
</tr>
<tr>
<td>132</td>
<td>3.00</td>
<td>+</td>
</tr>
<tr>
<td>134</td>
<td>3.60</td>
<td>+</td>
</tr>
<tr>
<td>136</td>
<td>4.00</td>
<td>+</td>
</tr>
<tr>
<td>138</td>
<td>3.47</td>
<td>+</td>
</tr>
<tr>
<td>140</td>
<td>3.60</td>
<td>+</td>
</tr>
<tr>
<td>142</td>
<td>3.60</td>
<td>+</td>
</tr>
<tr>
<td>144</td>
<td>3.69</td>
<td>+</td>
</tr>
<tr>
<td>146</td>
<td>3.69</td>
<td>+</td>
</tr>
<tr>
<td>148</td>
<td>3.60</td>
<td>+</td>
</tr>
<tr>
<td>150</td>
<td>4.00</td>
<td>+</td>
</tr>
<tr>
<td>152</td>
<td>3.90</td>
<td>+</td>
</tr>
<tr>
<td>154</td>
<td>4.00</td>
<td>+</td>
</tr>
<tr>
<td>156</td>
<td>3.60</td>
<td>+</td>
</tr>
<tr>
<td>158</td>
<td>3.60</td>
<td>+</td>
</tr>
<tr>
<td>160</td>
<td>3.30</td>
<td>+</td>
</tr>
<tr>
<td>162</td>
<td>3.60</td>
<td>+</td>
</tr>
<tr>
<td>164</td>
<td>3.47</td>
<td>+</td>
</tr>
<tr>
<td>166</td>
<td>3.00</td>
<td>+</td>
</tr>
<tr>
<td>168</td>
<td>3.47</td>
<td>+</td>
</tr>
<tr>
<td>170</td>
<td>3.00</td>
<td>+</td>
</tr>
<tr>
<td>172</td>
<td>3.30</td>
<td>+</td>
</tr>
</tbody>
</table>
Table 3.20: Results for the third 15N Planova® filter

<table>
<thead>
<tr>
<th>Collection sample</th>
<th>Log_{10} DNA concentration (IU/ml)</th>
<th>Agarose gel result</th>
</tr>
</thead>
<tbody>
<tr>
<td>173</td>
<td><limit of quantitation</td>
<td>+ (faint)</td>
</tr>
<tr>
<td>175</td>
<td>3.30</td>
<td>+</td>
</tr>
<tr>
<td>177</td>
<td>3.00</td>
<td>+</td>
</tr>
<tr>
<td>179</td>
<td>3.30</td>
<td>+</td>
</tr>
<tr>
<td>181</td>
<td>3.60</td>
<td>+</td>
</tr>
<tr>
<td>183</td>
<td>3.00</td>
<td>+</td>
</tr>
<tr>
<td>185</td>
<td>3.30</td>
<td>+</td>
</tr>
<tr>
<td>187</td>
<td>3.30</td>
<td>+</td>
</tr>
<tr>
<td>189</td>
<td>3.30</td>
<td>+</td>
</tr>
<tr>
<td>191</td>
<td>3.00</td>
<td>+</td>
</tr>
<tr>
<td>193</td>
<td>3.47</td>
<td>+</td>
</tr>
<tr>
<td>195</td>
<td>3.47</td>
<td>+</td>
</tr>
<tr>
<td>197</td>
<td>3.00</td>
<td>+</td>
</tr>
<tr>
<td>199</td>
<td>3.30</td>
<td>+</td>
</tr>
<tr>
<td>201</td>
<td>3.00</td>
<td>+</td>
</tr>
<tr>
<td>203</td>
<td>3.47</td>
<td>+</td>
</tr>
<tr>
<td>205</td>
<td>3.30</td>
<td>+</td>
</tr>
<tr>
<td>207</td>
<td>3.30</td>
<td>+</td>
</tr>
<tr>
<td>209</td>
<td>3.17</td>
<td>+</td>
</tr>
<tr>
<td>211</td>
<td>3.60</td>
<td>+</td>
</tr>
<tr>
<td>213</td>
<td>3.60</td>
<td>+</td>
</tr>
<tr>
<td>215</td>
<td>3.69</td>
<td>+</td>
</tr>
</tbody>
</table>
Table 3.21: Results for the third 20N Planova® filter (N/D: Not Done)

<table>
<thead>
<tr>
<th>Collection sample</th>
<th>Log_{10} DNA concentration (IU/ml)</th>
<th>Agarose gel result</th>
</tr>
</thead>
<tbody>
<tr>
<td>216</td>
<td><limit of quantitation</td>
<td>N/D</td>
</tr>
<tr>
<td>218</td>
<td><limit of quantitation</td>
<td>N/D</td>
</tr>
<tr>
<td>220</td>
<td>3.00</td>
<td>N/D</td>
</tr>
<tr>
<td>222</td>
<td><limit of quantitation</td>
<td>N/D</td>
</tr>
<tr>
<td>224</td>
<td>3.30</td>
<td>N/D</td>
</tr>
<tr>
<td>226</td>
<td><limit of quantitation</td>
<td>N/D</td>
</tr>
<tr>
<td>228</td>
<td>3.00</td>
<td>N/D</td>
</tr>
<tr>
<td>230</td>
<td><limit of quantitation</td>
<td>N/D</td>
</tr>
<tr>
<td>232</td>
<td>3.00</td>
<td>N/D</td>
</tr>
<tr>
<td>234</td>
<td>3.30</td>
<td>N/D</td>
</tr>
<tr>
<td>236</td>
<td><limit of quantitation</td>
<td>N/D</td>
</tr>
<tr>
<td>238</td>
<td><limit of quantitation</td>
<td>N/D</td>
</tr>
<tr>
<td>240</td>
<td><limit of quantitation</td>
<td>N/D</td>
</tr>
<tr>
<td>242</td>
<td><limit of quantitation</td>
<td>N/D</td>
</tr>
<tr>
<td>244</td>
<td>3.30</td>
<td>N/D</td>
</tr>
<tr>
<td>246</td>
<td>3.00</td>
<td>+</td>
</tr>
<tr>
<td>248</td>
<td>3.30</td>
<td>+</td>
</tr>
<tr>
<td>250</td>
<td>3.47</td>
<td>+</td>
</tr>
<tr>
<td>252</td>
<td>3.00</td>
<td>+</td>
</tr>
<tr>
<td>254</td>
<td>3.30</td>
<td>+</td>
</tr>
<tr>
<td>256</td>
<td>3.39</td>
<td>+</td>
</tr>
<tr>
<td>258</td>
<td><limit of quantitation</td>
<td>+</td>
</tr>
</tbody>
</table>

A summary of the six experiments with 15N and 20N filters is shown in table 3.22, where the average log_{10} reduction was calculated.

The statistics were done by Mr A. Heath (Department of Informatics, NIBSC). The overall log_{10} reduction mean for the 15N and 20N filters were 5.88 and 6.26, respectively, and the standard deviations were 0.44 and 0.51, respectively. Given the variability in the data, the difference in log_{10} reduction was found not significant (p=0.38) between the two filter sizes, using a t-test. Therefore, both 15N and 20N filters can efficiently be used for parvovirus B19 nanofiltration.
Table 3.22: Results summary

<table>
<thead>
<tr>
<th>Experiment number</th>
<th>Filter size</th>
<th>Pre-filtration log_{10} DNA concentration (IU/ml)</th>
<th>Post-filtration log_{10} DNA concentration (IU/ml)</th>
<th>Log_{10} reduction</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>15</td>
<td>9.68</td>
<td>4.27</td>
<td>5.41</td>
</tr>
<tr>
<td>2</td>
<td>15</td>
<td>9.68</td>
<td>3.75</td>
<td>5.93</td>
</tr>
<tr>
<td>3</td>
<td>15</td>
<td>9.68</td>
<td>3.39</td>
<td>6.29</td>
</tr>
<tr>
<td>4</td>
<td>20</td>
<td>9.68</td>
<td>3.89</td>
<td>5.79</td>
</tr>
<tr>
<td>5</td>
<td>20</td>
<td>9.68</td>
<td>3.49</td>
<td>6.19</td>
</tr>
<tr>
<td>6</td>
<td>20</td>
<td>9.68</td>
<td>2.87</td>
<td>6.81</td>
</tr>
</tbody>
</table>

III.5.2. Virus inactivation by dry-heat treatment at 80°C on the freeze-dried 8Y product: Bioproducts Laboratory, UK

High titre B19 virus stock (1x10^{12} IU/ml) was used by Dr P. Roberts at BPL for the inactivation experiment by dry heating. The spiking step, for both controls and test samples, was performed at a ratio of 1 in 100 before freeze-drying and dry-heating. Three controls were prepared; the spiked product control, the spiked medium control and the unspiked 8Y product. The first control contained the product: BPL’s intermediate purity factor VIII (8Y), which had been spiked with B19. The second control consisted of medium (MEM with FCS), which had also been spiked with human parvovirus B19. Finally, the last control was unspiked factor VIII (8Y). Duplicates were prepared for each of the control samples. Three additional samples were product spiked with B19 and subjected to freeze-drying using the standard cycle for this product. The freeze-dried products were either left unheated, as was the case for spiked test sample 1, or subjected to dry-heat treatment for various times: spiked test sample 2 was heated to

- 364 -
Chapter III

80°C for 24 hours while spiked sample 3 was incubated at 80°C for 72 hours. The parvovirus B19 DNA titres and the infectivity were determined in all six samples.

Table 3.23 shows the results of the B19 DNA concentrations obtained by LightCycler PCR and the number of infectious units per ml obtained by the infectivity assay.

Table 3.23: Results of virus inactivation by dry-heat treatment at 80°C on freeze-dried factor VIII (8Y), including controls

<table>
<thead>
<tr>
<th>Sample</th>
<th>Log₁₀ DNA concentration (IU/ml)</th>
<th>Log₁₀ infectious units/ml</th>
</tr>
</thead>
<tbody>
<tr>
<td>Spiked product control</td>
<td>10.60</td>
<td>5.0</td>
</tr>
<tr>
<td>Spiked medium control</td>
<td>10.60</td>
<td>7.0</td>
</tr>
<tr>
<td>Unspiked 8Y product</td>
<td>4.46</td>
<td><limit of detection</td>
</tr>
<tr>
<td>Spiked test sample 1 (unheated)</td>
<td>10.17</td>
<td>6.0</td>
</tr>
<tr>
<td>Spiked test sample 2 (heated at 80°C for 24 hours)</td>
<td>9.43</td>
<td>3.5</td>
</tr>
<tr>
<td>Spiked test sample 3 (heated at 80°C for 72 hours)</td>
<td>9.49</td>
<td><limit of detection</td>
</tr>
</tbody>
</table>

A contamination of the 8Y unspiked product was detected as the B19 DNA titre was found to be 10⁴ IU/ml. However, no infectious units could be detected, suggesting that either the infectivity assay was not sensitive enough to detect such low infectivity or the virus present was not infectious. The dry-heat treatment at 80°C for 24 hours reduced infectivity by log₁₀ 2.2 while a longer treatment of 72 hours resulted in a reduction of infectivity to such a level that it became undetectable by the assay. Dry-heating
III.5.3. Virus inactivation by SuperFluids™: Aphios Inc., USA

For each of the six experiments showed in table 3.24, 0.5ml of B19 virus stock (1x10^{12} IU/ml) was diluted in 12.25ml of normal human plasma (supplied by NIBSC) and 12.25ml of MEM media (Gibco). All experiments were done at Aphios Inc and three supercritical fluids (Freon-22, Freon-23 and N₂O/CO₂) were used at either 25°C or 50°C.

<table>
<thead>
<tr>
<th>Experiment number</th>
<th>SuperFluids™</th>
<th>Pressure (bars)</th>
<th>Temperature (°C)</th>
<th>Flow rate (ml/min)</th>
<th>No. of Stages</th>
</tr>
</thead>
<tbody>
<tr>
<td>NIBSC-01</td>
<td>Freon-22</td>
<td>206</td>
<td>50</td>
<td>4</td>
<td>2</td>
</tr>
<tr>
<td>NIBSC-02</td>
<td>Freon-22</td>
<td>206</td>
<td>25</td>
<td>4</td>
<td>1</td>
</tr>
<tr>
<td>NIBSC-03</td>
<td>Freon-23</td>
<td>206</td>
<td>50</td>
<td>4</td>
<td>1</td>
</tr>
<tr>
<td>NIBSC-04</td>
<td>Freon-23</td>
<td>206</td>
<td>25</td>
<td>4</td>
<td>1</td>
</tr>
<tr>
<td>NIBSC-05</td>
<td>N₂O/CO₂ᵃ</td>
<td>206/137ᵇ</td>
<td>50</td>
<td>4</td>
<td>2</td>
</tr>
<tr>
<td>NIBSC-06</td>
<td>N₂O/CO₂ᵃ</td>
<td>206/137ᵇ</td>
<td>25</td>
<td>4</td>
<td>2</td>
</tr>
</tbody>
</table>

ᵃN₂O/CO₂: N₂O with trace quantities of CO₂
ᵇ206 bars in first chamber and 137 bars in the second chamber

Five or six samples were produced in each of the six experiments. A 2.5ml aliquot of the feed was taken at the start of the treatment and stored at 4°C during the run (named...
Chapter III

“before”) and a second 2.5ml sample was placed at the same temperature as the SuperFluids™ system for the same duration as a control (named “time and temperature”). The remaining 20ml of 1:50 diluted B19 was used as feed for the run.

Once the system (isobaric chamber, connecting lines, valves and gauges) was pressurised with the supercritical fluid, the sample was pumped through the isobaric chamber at the rate of 4 ml/min. Sample #1 was collected at this stage and was considered representative of the product stream. The supercritical fluid was then pumped through the system at a lower flow rate (1ml/min), in order to displace any sample remaining in the system, at which stage sample #2 was collected. Finally, the system was depressurised to atmospheric pressure (1.01bars) and sample #3 was collected. Samples #2 and #3 are considered representative of waste streams.

The results of these experiments are shown in tables 3.25 to 3.30.

<table>
<thead>
<tr>
<th>Sample</th>
<th>Log₁₀ DNA concentration (IU/ml)</th>
<th>Log₁₀ infectious units/ml</th>
</tr>
</thead>
<tbody>
<tr>
<td>“Before”</td>
<td>11.00</td>
<td>5.0</td>
</tr>
<tr>
<td>CFI-treated #1</td>
<td>10.69</td>
<td>3.0</td>
</tr>
<tr>
<td>CFI-treated #2</td>
<td>11.47</td>
<td>3.5</td>
</tr>
<tr>
<td>CFI-treated #2</td>
<td>10.77</td>
<td>3.0</td>
</tr>
<tr>
<td>CFI-treated #3</td>
<td>11.69</td>
<td><limit of detection</td>
</tr>
<tr>
<td>“Time and temperature”</td>
<td>11.69</td>
<td>5.0</td>
</tr>
</tbody>
</table>
Table 3.26: Results for experiment NIBSC-02

<table>
<thead>
<tr>
<th>Sample</th>
<th>Log$_{10}$ DNA concentration (IU/ml)</th>
<th>Log$_{10}$ infectious units/ml</th>
</tr>
</thead>
<tbody>
<tr>
<td>“Before”</td>
<td>11.47</td>
<td>5.0</td>
</tr>
<tr>
<td>CFI-treated #1</td>
<td>11.30</td>
<td>5.0</td>
</tr>
<tr>
<td>CFI-treated #1</td>
<td>11.30</td>
<td>4.5</td>
</tr>
<tr>
<td>CFI-treated #2</td>
<td>10.69</td>
<td>5.5</td>
</tr>
<tr>
<td>CFI-treated #3</td>
<td>10.90</td>
<td>5.0</td>
</tr>
<tr>
<td>“Time and temperature”</td>
<td>10.88</td>
<td>4.0</td>
</tr>
</tbody>
</table>

Table 3.27: Results for experiment NIBSC-03

<table>
<thead>
<tr>
<th>Sample</th>
<th>Log$_{10}$ DNA concentration (IU/ml)</th>
<th>Log$_{10}$ infectious units/ml</th>
</tr>
</thead>
<tbody>
<tr>
<td>“Before”</td>
<td>11.30</td>
<td>4.0</td>
</tr>
<tr>
<td>CFI-treated #2</td>
<td>11.95</td>
<td>3.5</td>
</tr>
<tr>
<td>CFI-treated #3 (3ml)</td>
<td>11.84</td>
<td>4.0</td>
</tr>
<tr>
<td>CFI-treated #3 (3.7ml)</td>
<td>11.23</td>
<td>4.5</td>
</tr>
<tr>
<td>“Time and temperature”</td>
<td>11.23</td>
<td>4.5</td>
</tr>
</tbody>
</table>

Table 3.28: Results for experiment NIBSC-04

<table>
<thead>
<tr>
<th>Sample</th>
<th>Log$_{10}$ DNA concentration (IU/ml)</th>
<th>Log$_{10}$ infectious units/ml</th>
</tr>
</thead>
<tbody>
<tr>
<td>“Before”</td>
<td>10.47</td>
<td>4.5</td>
</tr>
<tr>
<td>CFI-treated #1</td>
<td>10.47</td>
<td>6.0</td>
</tr>
<tr>
<td>CFI-treated #1</td>
<td>10.30</td>
<td>5.5</td>
</tr>
<tr>
<td>CFI-treated #2</td>
<td>10.47</td>
<td>4.5</td>
</tr>
<tr>
<td>CFI-treated #3</td>
<td>10.00</td>
<td>6.5</td>
</tr>
<tr>
<td>“Time and temperature”</td>
<td>10.47</td>
<td>6.0</td>
</tr>
</tbody>
</table>
Table 3.29: Results for experiment NIBSC-05

<table>
<thead>
<tr>
<th>Sample</th>
<th>Log₁₀ DNA concentration (IU/ml)</th>
<th>Log₁₀ infectious units/ml</th>
</tr>
</thead>
<tbody>
<tr>
<td>"Before"</td>
<td>10</td>
<td>4.0</td>
</tr>
<tr>
<td>CFI-treated #1</td>
<td>10</td>
<td><limit of detection</td>
</tr>
<tr>
<td>CFI-treated #1</td>
<td>10</td>
<td><limit of detection</td>
</tr>
<tr>
<td>CFI-treated #2</td>
<td>10.47</td>
<td>4.5</td>
</tr>
<tr>
<td>CFI-treated #3</td>
<td>10.47</td>
<td>5.0</td>
</tr>
<tr>
<td>"Time and temperature"</td>
<td>10.69</td>
<td>4.5</td>
</tr>
</tbody>
</table>

Table 3.30: Results for experiment NIBSC-06

<table>
<thead>
<tr>
<th>Sample</th>
<th>Log₁₀ DNA concentration (IU/ml)</th>
<th>Log₁₀ infectious units/ml</th>
</tr>
</thead>
<tbody>
<tr>
<td>"Before"</td>
<td>10.30</td>
<td>5.5</td>
</tr>
<tr>
<td>CFI-treated #1</td>
<td>10.30</td>
<td>4.5</td>
</tr>
<tr>
<td>CFI-treated #1</td>
<td>10.30</td>
<td>5.0</td>
</tr>
<tr>
<td>CFI-treated #2</td>
<td>10.30</td>
<td>6.5</td>
</tr>
<tr>
<td>CFI-treated #2</td>
<td>9.90</td>
<td>6.0</td>
</tr>
<tr>
<td>"Time and temperature"</td>
<td>10.30</td>
<td>5.0</td>
</tr>
</tbody>
</table>

The B19 DNA titre remained relatively unchanged for all the samples in these experiments. In NIBSC-01, with SuperFluids™ Freon-22 at 206 bars and 50°C in a two-stage laminar flow CFI unit, no infectivity was detected in "CFI-treated #3" sample (infectivity assay repeated twice). This experiment showed that the treatment resulted in at least a log₁₀ 4 reduction in infectivity. On the other hand, there was no significant reduction in the infectivity of the treated samples compared with the controls was observed in experiments NIBSC-02, 03, 04 and 06. In experiment NIBSC-05 using a
III.5.4. Virus inactivation by the INACTINE™ system: Vitex, USA

Some B19 virus stock (1×10^{12} IU/ml) was sent to VI Technologies, where it was diluted 1:20 in negative serum and where all inactivation experiments were performed. As preliminary experiments, these studies were performed on AS1 RBCs storage solution only, which was spiked 10% v/v with the 1:20 virus dilution. The inactivation experiments were done in duplicate and samples was labelled A and B. Samples labelled TS3, TS6, TS18 and TS22 were treated for 3, 6, 18 and 22 hours, respectively. Samples labelled PCO and PC22 were controls, which were spiked samples incubated for 0 and 22 hours, but not treated with INACTINE™. Three additional controls were included in the experiments; the spiked dilution of human parvovirus B19 (1:20) used for spiking and two cytotoxicity controls. Cytotoxicity control 1 (CC1) contained AS1, PEN 110 and the medium used to quench the PEN110 (STS/MOPS). Instead of removing PEN 110 to a non-toxic level by cell washing, the PEN 110 reaction was chemically quenched, which is common practice for virus inactivation studies (Lazo et al., 2002). Cytotoxicity control 2 (CC2) consisted of the RBC resuspension medium AS1.

In order to evaluate the potential cytotoxic effect of AS1 medium, PEN 110 and STS/MOPS medium, both cytotoxicity controls were incubated with UT-7/EPO-S1 cells following the same protocol as the infectivity assay. CC1 and CC2 were diluted into pH 5.7 phosphate buffer and a negative control inoculated with pH 5.7 phosphate buffer only was included in the experiment. Two time points were investigated: 2 hours after incubation of the cells and controls at 4°C and 2 days post-inoculation. At each
time point, the cells were examined under the light microscope for cytopathic effects and the live cells were counted.

The microscopic examination of the UT-7/EPO-S1 cells after 2 hours and 2 days post-inoculation did not detect any cytopathic effect as compared to the negative controls which were inoculated with pH 5.7 phosphate buffer only. The cell counts are shown in tables 3.31 (CC1) and 3.32 (CC2). There was no significant difference between the cell counts of the negative controls and those of the cytotoxicity controls CC1 and CC2, which suggested that AS1 medium, STS/MOPS medium, STS/MOPS medium and PEN 110 did not have any cytotoxic effect on UT-7/EPO-S1 cells.

Table 3.31: Cell counts with cytotoxicity control 1 (CC1)

<table>
<thead>
<tr>
<th>Sample</th>
<th>Cell count after 2 hours incubation at 4°C (cells/ml)</th>
<th>Cell count 2 days post-inoculation at 37°C (cells/ml)</th>
</tr>
</thead>
<tbody>
<tr>
<td>CC1 neat</td>
<td>2.95 x10^3</td>
<td>4.97 x10^3</td>
</tr>
<tr>
<td>CC1 1:10</td>
<td>3.65 x10^5</td>
<td>4.27 x10^5</td>
</tr>
<tr>
<td>CC1 1:100</td>
<td>2.52 x10^5</td>
<td>4.35 x10^5</td>
</tr>
<tr>
<td>CC1 1:1,000</td>
<td>2.47 x10^5</td>
<td>4.32 x10^5</td>
</tr>
<tr>
<td>CC1 1:10,000</td>
<td>2.1 x10^5</td>
<td>4.8 x10^5</td>
</tr>
<tr>
<td>Negative control</td>
<td>2.22 x10^5</td>
<td>3.9 x10^5</td>
</tr>
</tbody>
</table>
Chapter III

Table 3.32: Cell counts with cytotoxicity control 2 (CC2)

<table>
<thead>
<tr>
<th>Sample</th>
<th>Cell count after 2 hours incubation at 4°C (cells/ml)</th>
<th>Cell count 2 days post-inoculation at 37°C (cells/ml)</th>
</tr>
</thead>
<tbody>
<tr>
<td>CC1 neat</td>
<td>2.07 x10^5</td>
<td>4.25 x10^5</td>
</tr>
<tr>
<td>CC1 1:10</td>
<td>1.82 x10^5</td>
<td>3.65 x10^5</td>
</tr>
<tr>
<td>CC1 1:100</td>
<td>2.22 x10^5</td>
<td>4.01 x10^5</td>
</tr>
<tr>
<td>CC1 1:1,000</td>
<td>2.1 x10^5</td>
<td>4.15 x10^5</td>
</tr>
<tr>
<td>CC1 1:10,000</td>
<td>2 x10^5</td>
<td>4.2 x10^5</td>
</tr>
<tr>
<td>Negative control</td>
<td>2.62 x10^5</td>
<td>4.8 x10^5</td>
</tr>
</tbody>
</table>

Samples were tested by the B19 infectivity assay after determination of the B19 DNA concentration and the results are shown in table 3.33.

Table 3.33: Results of virus inactivation by INACTINE™ treatment, including controls

<table>
<thead>
<tr>
<th>Sample</th>
<th>Log_{10} DNA concentration (IU/ml)</th>
<th>Log_{10} infectious units/ ml</th>
</tr>
</thead>
<tbody>
<tr>
<td>TS3A</td>
<td>7.30</td>
<td><limit of detection</td>
</tr>
<tr>
<td>TS6A</td>
<td>6.47</td>
<td><limit of detection</td>
</tr>
<tr>
<td>TS18A</td>
<td>4.47</td>
<td><limit of detection</td>
</tr>
<tr>
<td>TS22A</td>
<td>3.60</td>
<td><limit of detection</td>
</tr>
<tr>
<td>PC0A</td>
<td>10</td>
<td>5.5</td>
</tr>
<tr>
<td>PC22A</td>
<td>10</td>
<td>5</td>
</tr>
<tr>
<td>TS3B</td>
<td>5</td>
<td><limit of detection</td>
</tr>
<tr>
<td>TS6B</td>
<td>4</td>
<td><limit of detection</td>
</tr>
<tr>
<td>TS18B</td>
<td><limit of quantitation</td>
<td><limit of detection</td>
</tr>
<tr>
<td>TS22B</td>
<td><limit of quantitation</td>
<td><limit of detection</td>
</tr>
<tr>
<td>PC0B</td>
<td>7.47</td>
<td>3.0</td>
</tr>
<tr>
<td>PC22B</td>
<td>7.69</td>
<td>1.5</td>
</tr>
<tr>
<td>B19 1:20</td>
<td>11.60</td>
<td>7.0</td>
</tr>
</tbody>
</table>
In experiment A, the results for the non-treated spiked controls (PC0A and PC22A) showed high DNA titres of log$_{10}$ 10 and comparable log$_{10}$ infectivity titres of 5.5 and 5, respectively. The DNA titre log$_{10}$ reduction between PC0A and TS3A, the first sample taken out, was log$_{10}$ 3, which was quite significant after only 3 hours of treatment. Then the B19 DNA titre in samples decreased by log$_{10}$ 1 at each time point, except between 6 and 18 hours, where the DNA titre decreased by log$_{10}$ 2. Infectivity at the different time point samples was not detectable, even at the first time point after 3 hours of treatment.

In experiment B, a log$_{10}$ 2 reduction was observed in the DNA titre from time 0 to time 3 hours followed by a further log$_{10}$ 1 reduction after another 3 hours treatment. No B19 DNA could be detected in the following two time points after 18 and 22 hours. As in experiment A, the infectivity of these time point samples was not detectable, suggesting a decrease in infectivity when compared to PC0B sample.

III.5.5. Virus inactivation by S-59: the Helinx® technology: Cerus Corporation, USA

High titre B19 virus JS isolate (1×10^{12} IU/ml) was used for the spiking experiments, where it was diluted at 1:10 into PBS, with a final volume of 10ml. A 6 mL aliquot was treated with 150μM Amotosalen HCl (S-59) and 3.0 Joules/cm2 (J/cm2) UVA illumination. A 1ml aliquot of the untreated 1:10 sample, which was also a control for the shipping and multiple freeze/thaws was sent back to NIBSC for analysis, along with a 3ml aliquot of the treated sample. Aliquots of the same samples were also kept at Cerus Corporation to assay in an EliSpot assay.

Parvovirus B19 DNA titres were measured by LightCycler real-time PCR, using B19 international standard as a reference. In addition, serial dilutions of the samples were
used to infect UT-7/EPO-S1 cells, from which RNA was extracted after 2 days. The presence of B19-specific mRNA transcripts was detected by RT-PCR amplification.

Table 3.34 shows the results obtained at NIBSC for the B19 DNA quantification and the infectivity assay.

<table>
<thead>
<tr>
<th>Sample</th>
<th>Log$_{10}$ DNA concentration (IU/ml)</th>
<th>Log$_{10}$ infectious units/ ml</th>
</tr>
</thead>
<tbody>
<tr>
<td>Untreated</td>
<td>10.95</td>
<td>7.5</td>
</tr>
<tr>
<td>Treated 3J</td>
<td>9.30</td>
<td>3.0</td>
</tr>
</tbody>
</table>

The results showed that the log$_{10}$ DNA concentration for the untreated and 3J treated samples were 8.45 and 3.3, respectively. The infectivity titre for the treated sample was log$_{10}$ 2.8 while that of the untreated sample was log$_{10}$ 6.8, suggesting a log$_{10}$ 4 reduction.
Chapter IV: General discussion
Up to now, model viruses, such as canine (CPV), porcine (PPV) and murine (MVM) paroviruses, have been used to study the efficacy of inactivation procedures for human parovirus B19 because of the lack of a reproducible infectivity assay for the latter. Although CPV and B19 have similar properties, notably antigenic, there is no cross-reactivity of antibodies to CPV with B19, indicating different surface structures (Chapman and Rossmann, 1993; Agbandje et al., 1994). These differences were confirmed by recent studies at the Paul Erlich Institute, Germany. The first study, which investigated the efficacy of viral inactivation by pasteurisation using both PPV and B19, revealed that heat resistance of B19 markedly differs from heat resistance of animal paroviruses (Blümel, 2004). B19 was inactivated after 10 minutes at 60°C by at least log10 4 whereas porcine parovirus was resistant at 60°C. The second study looked at low pH treatment to inactivate MMV and B19 and found that the virus clearance for the latter was greater than log10 5 after 2 hours at pH 4, whereas MMV was resistant over 9 hours (Boschetti et al., 2004). These data show that parovirus B19 was much more vulnerable toward low pH conditions than MMV. These new findings highlight the fact that animal paroviruses are not suitable models to evaluate B19 inactivation since they seem to behave differently.

The present study was designed to develop a robust and reproducible infectivity assay for parovirus B19. This assay was then used to evaluate several novel pathogen inactivation and removal methods. In addition, a reproducible quantitative DNA assay was developed using the WHO International Standard for B19 DNA. Several approaches were investigated to determine parovirus B19 infectivity. The initial attempts used mobilized stem cells (CD34+) from peripheral blood in a variety of formats: IFA staining of inoculated cells, detection of mRNA transcripts specific for parovirus B19 in inoculated cells and a BFU-E reduction assay for B19. The FACS
results for the CD34+ cell preparations showed that CD34+ cell isolation from mobilised peripheral blood was not completely efficient since these cells were not the sole cell population in the samples. However, since the majority of the cells isolated were actually bearing CD34, this result might not have interfered with the outcome of the IFA. It was not possible to demonstrate viral replication in any of the samples of CD34+ cells inoculated with B19 virus with the antibodies tested i.e. mouse monoclonal antibody anti-VP1/VP2, human monoclonal antibody anti-NS1 or rabbit polyclonal antibody. However, it was possible to amplify B19 specific mRNA transcripts from B19 inoculated cells isolated from the peripheral blood of one of the patients. This result suggested that viral replication was occurring in these haematopoietic stem cell progenitors, but at a level that was not detectable by immunofluorescence. In contrast, when CD34+ cells were plated in Fox’s medium to obtain BFU-E colonies, cells from the resulting colonies were susceptible to B19 infection and this could be demonstrated by IFA using anti VP1/VP2 monoclonal antibody. However, this result was not consistent, and positive results were only obtained with cells from a few patients. Only a minority of the cells was infected and specific fluorescence, in contrast to detection of mRNA, could only be detected 3-7 days post infection.

Since cells from different patients were used in the IFA and RT-PCR detection of mRNA transcripts, this might account for the difference in results. Such variability had already been observed in data from the BFU-E reduction assay, which used apheresis cells collected from different patients every week. It would have been better to have tested CD34+ cells isolated from the same patient by IFA and mRNA transcript amplification but this was not possible due to the limited number of cells obtained from any one patient. Another explanation could be that these CD34+ cells might only support viral transcription but not translation into proteins, which could account for the
detection of B19 specific mRNA transcripts by PCR but not detection of viral proteins by IFA.

The results of the BFU-E reduction assays were dependent on the source of the cells. One factor that could have influenced the results of the BFU-E reduction assay was the anti-B19 IgG status of the donors and this was tested in some of the samples, where serum was available. Theoretically, CD34+ cells from patients who were anti-B19 IgG positive could contain sufficient antibody which could neutralise all or part of the B19 inoculum resulting in a decrease in the BFU-E reduction percentage compared with cells from B19 antibody negative patients. In practice, the data showed that this was not the case and the figures for donors 17 and 19 were examined more closely. These two patients were chosen because the former presented the strongest IFA results and the highest cut off value (9.3) for anti-B19 IgG whereas the latter showed no positive staining by IFA and a clear negative result in EI. When inoculated with the same virus dilution, 2x10^7 IU/ml, the percentage BFU-E reduction for patient 17 (IgG positive) was 54.88% whereas that for patient 19 (IgG negative) was 31.01%. These results do not support the theory that cells from B19 antibody positive patients lead to a decrease in the BFU-E percentage reduction result. Alternatively, the anti-B19 IgG present in the serum of patients might not have been neutralising antibodies or that the apheresis samples used in this study were free from antibodies.

In addition to the discrepancy of results seen for B19 infection in primary cells from different patients, other important issues were the availability of these cells and their accessibility. Since one of the aims of this thesis was to develop an infectivity assay that could be used widely in research and diagnostic laboratories, it was crucial for the cells used to be readily available and accessible. This was not the case for either the apheresis cells or the mobilised peripheral blood from which CD34+ cells could be isolated.
Therefore, B19 susceptible continuous cell lines, which subsequently became available, were used for the establishment of a B19 infectivity assay.

When continuous cell lines were investigated, either no immunofluorescence could be detected, such as in TF-1 cells, or a very small proportion of cells showed infectivity: only ~1% of UT-7/EPO-S1 cells, ~5% of UT-7/EPO cells and ~10% of KU812 and KU812Ep6 cells displayed fluorescence when inoculated with high titre parvovirus B19 (≥10⁹ IU/ml) and stained with mouse monoclonal antibody anti-VP1/VP2 (Novocastra). The brightest fluorescence was found in KU812Ep6 cells. The semi-permissiveness of the cells might account for the lack of sensitivity of the IFA. Alternatively, incomplete replication, such as production of replicative intermediates and transcription without translation resulting in a non-productive infection or cell death by apoptosis as has been observed in previous studies may also explain these results (Leruez et al., 1994; Gallinella et al., 2000; Morita et al., 2001). In addition to the other drawbacks, the need for very high titre inoculum resulted in the use of this assay being abandoned for a more sensitive and reliable assay, which was the detection of mRNA transcripts by nucleic acid amplification.

Although there have been several reports in the literature of continuous cell lines, usually of erythroid lineage, supporting the replication of parvovirus B19 (Shimomura et al., 1992; Munshi et al., 1993; Takahashi et al., 1993; Kumatsu et al. 1993; Nakazawa et al., 1989; Miyagawa et al., 1999), the ability of these cells to support replication of B19 has been poor compared with other virus-cell culture systems (such as polio virus replication in Vero cells (Montagnon et al., 1983).

Early on in this study, a comparison of various continuous cell lines, namely KU812, KU812Ep6 and UT-7/EPO, showed that the most suitable cells for the B19 infectivity
assay were KU812Ep6. However, due to a strict confidentiality agreement with the Japanese laboratory providing those cells, they could not be used to determine the efficacy of virus removal/ inactivation techniques by private companies. In the meantime, a clonal cell line, called UT-7/EPO-S1, was reported to be superior to its parental line (UT-7/EPO) at supporting the replication of B19 (Morita et al., 2001). The UT-7/EPO-S1 cells were thus tested in the B19 infectivity assay and appeared to be stable and reliable, giving consistent results at various passages (tested up to passage n+53). Optimisation of the infectivity assay, which depended on the detection of B19 mRNA transcripts, was done, including the number of cells to be inoculated with the virus (2x10^5 cells), mRNA extraction method (from cell cytoplasm) and time of extraction post-infection (2 days). The evaluation of the optimal method of nucleic acid extraction for this particular assay involved the comparison of extraction of total nucleic acids (Nuclisens™; Organon Teknika) with extraction of poly A+ RNA from whole cells (Oligotex direct mRNA kit; Qiagen) or from cell cytoplasm (Oligotex direct mRNA kit; Qiagen). The best method was found to be poly A+ RNA from cell cytoplasm. This result was to be expected since it would result in a better yield of mRNA than the extraction of total nucleic acid and since the spliced transcripts would be found in the cell cytoplasm. The splicing event occurs in the nucleus, where the transcript is capped at the 5' end, has the introns removed and is polyadenylated at the 3' end. The mRNA is then transported through nuclear pores to the cytoplasm, where it is available to be translated. In conclusion, after establishing that the Oligotex direct mRNA extraction from cell cytoplasm (Qiagen) was the most suitable and specific method for the isolation of mRNA, the batch format was also confirmed to be the most efficient way to provide optimum yield. Replicate infectivity assays of a stock of B19 indicated that the 95% detection limit of this assay was log_{10} -6.03 dilution (range -5.82 - 380 -
Chapter IV

to 6.24), equivalent to $\log_{10} 5.97$ IU/ml and the 50% detection limit was $\log_{10} -6.67$
(range -6.46 to -6.87), equivalent to $\log_{10} 5.35$ IU/ml. This validation study showed
good reproducibility of the infectivity assay, which was much better than that of the
BFU-E reduction assay. This assay was used for the evaluation of the inactivation
protocols investigated. The B19 isolate JS, which had high DNA and infectivity titres,
was used in these studies. High DNA titre inoculi were essential since the ratio of DNA
concentration to infectious units was high ($10^4:1$ to $10^5:1$). This phenomenon was mainly
due to the semi-permissive nature of the cell line UT-7/EPO-S1 used in the infectivity
assay, although the presence of a high proportion of defective, non-infectious particles
cannot be ruled out.

Multiplex RT-PCR conditions were also optimised by looking at different primer
combinations, actin primers concentration and annealing temperature. Parvovirus B19-
specific primers B19-9 and XPP-2 were chosen in the presence of Q buffer for greater
specificity. The optimum concentration of actin-specific primers was found to be
5pmol/µl and the annealing temperature was set at 50°C for best results.

A final parameter examined in this study was the influence of hypoxia on the
susceptibility of cells to B19 infection following the results of a published study which
indicated that cells grown in hypoxic conditions had increased susceptibility to B19
infection (Caillot-Fauquet et al., 2004a). Three sets of conditions were investigated:
normal oxygen concentration (20%) before and after inoculation with JS isolate, normal
oxygen concentration (20%) before but hypoxia (3%) post-inoculation and lastly
hypoxia (3%) before and after inoculation. Extraction of mRNA was performed 24, 48
and 72 hours post-inoculation. No B19 replication could be detected in the first time
point (24 hours). However, in those UT-7/EPO-S1 cells cultured in normal conditions
(20%) before and after inoculation, as well as those first cultured with 20% oxygen then
3%, the number of infectious particles detected was 10^7 inf.u./ml after 48 and 72 hours. When the cells were incubated in hypoxia (3%) before and after inoculation with B19, the number of infectious particles detected was 10^8 inf.u./ml after 48 and 72 hours. Hypoxic conditions only after the addition of the virus did not seem to change the number of infectious units detected whereas hypoxia before and after infection seem to improve the results of the infectivity assay slightly ($\log_{10} 1$). Even if this variation was not due to the assay variability but to the actual hypoxic conditions, it was not significant enough to justify the use of special equipment that might not be accessible to all laboratories. Although both the cell lines used in the present study (UT-7/EPO-S1) and that of Caillet-Fauquet and colleagues (KU812F) were from the erythroid lineage (Caillet-Fauquet et al., 2004a), they could have reacted differently to hypoxic conditions, which might explain why their observations could not be reproduced in the system presented here. It would be interesting to test incubation of the cells in even more severe hypoxic conditions (1%) since it might increase the number of erythroid bursts generated from full-term CD34+ (Cipolleschi et al., 1997) and was also claimed to increase viral capsid protein synthesis, virus replication and virus production in primary erythroid cells (Pillet et al., 2004).

The establishment of the infectivity assay also allowed the study of parvovirus transcription since it was based on the detection of mRNA transcripts. According to a research study by Ozawa et al., there is a splicing donor site (GT) at positions 407 and 408 (on the genome of M13784) and acceptor sites (AG) at positions 1908 and 1909, as well as at positions 2028 and 2029 (Ozawa et al., 1987). The primers used for RT-PCR amplification, named B19-9 and XPP-2, were situated at position 384-405 and 2194-2214, respectively. Therefore, two products were expected of 305bp and 185bp.
Sequencing of these two transcripts was therefore performed to confirm the nature and positions of the spliced products specific to parvovirus B19. When compared to B19 genomic DNA (M13178), the longer transcript (upper band) corresponded to positions 384-406 and 1910-2193 while the shorter transcript (lower band) corresponded to positions 384-406 and 2030-2193. The transcripts sizes were therefore confirmed to be 305 bp and 185 bp, respectively. These results were thus in complete agreement with those of Ozawa et al. since they recognised the splicing donor site and the two splicing acceptor sites described in their transcription map (Ozawa et al., 1987). Nevertheless, the novelty about the present study was that this transcription pattern was observed in the continuous cell line UT-7/EPO-S1, whereas human erythroid bone marrow cells obtained from patients with sickle cell disease had been used by Ozawa and colleagues. This observation thus confirmed that, although semi-permissive to B19 infection, this cell line was a good substitute to primary cells, which were less readily available.

A reproducible, quantitative B19 DNA NAT assay was successfully established. Dilutions of the WHO B19 International Standard were used for quantitation. This reagent was calibrated in arbitrary units, International Units (IU), which were closely related to the number of genomic copies. Thus, 1IU of this reference reagent corresponded to approximately 0.6-0.8 copies, depending on the assay method used (Saldanha et al., 2002). Since it is very difficult to accurately quantitate the number of copies of viral genome in a sample, this titre represents the nearest approximation to the concentration of the virus.

SYBR green was used to detect the amplicons in this assay. However, despite attempts to reduce the background due to primer dimer formation by taking the fluorescence reading at a high temperature where the primer dimers would be expected to be
dissociated, it was clear that some fluorescence due to primer dimers was still obtained. This resulted in a “titre” which was read off the standard curve. However, examination of such samples by ethidium bromide agarose gel electrophoresis showed that these samples were negative as the specific B19 amplicon band was not observed. Therefore, sample with titres at or below 1x10^3 IU/ml were considered negative and this was taken as the lower limit of quantitation of the assay. It is now possible to overcome such problems with the use of fluorescently labeled, specific probes to detect amplicons. Such probes will only hybridise to the target amplicons and any primer dimers or non-specifically amplified DNA will not give a signal. Probes exist in a variety of formats, such as TaqMan, hybridization, Scorpion probes and Molecular Beacons. Programs exist for the optimum selection and design of primers and probes (Strategene). The majority of recent quantitative assays use some form of fluorescently-labelled probe to detect specific amplicons and this would now be the chosen method for any quantitative assay. However, at the time that this work was initiated, quantitative assays using probe technology were relatively rare and expensive. Therefore, an assay based on SYBR green detection was developed for the quantitation of B19 DNA.

The established quantitative assay was very reproducible with a standard deviation of the log_{10} titres for replicate assays done on different days of 0.092 i.e. 95% of individual results from repeat testing of this sample would be expected to fall within approximately two standard deviations of the mean i.e. +/- log_{10} 0.18 IU/ml. The assay was used to titrate three B19 virus isolates which were used in the study as inoculi (JS, LP and JB). In addition, the titres of samples from the inactivation/removal studies were obtained with this assay.
Although the reliability of the infectivity assay was verified by statistical analysis, the clearance figures obtained with these methods are preliminary and approximate and it was not possible (due to time constraints and difficulty in repeating the inactivation protocols several times) to obtain more accurate figures for the inactivation. Nevertheless, the results of this study are sufficient to indicate the success or otherwise of these protocols.

According to the WHO guidelines on viral inactivation and removal procedures intended to assure the viral safety of human blood plasma products, “a robust, effective, reliable process step will be able to remove or inactivate substantial amounts of virus, typically log_{10} 4 or more, be easy to model convincingly and be relatively insensitive to changes in process conditions” (WHO Expert committee on Biological standardization, 2001). Moreover, if the log_{10} reduction is equal to or less than 1, it is considered insignificant.

The present study investigated five methods of virus removal/inactivation, in collaboration with various private companies. The techniques of inactivation were the well established dry-heat treatment at 80°C (BPL, UK) and the novel methods of supercritical fluids (Aphios Inc., USA), INACTINE™ (Vitex, USA) and Helinx® (Cerus Corporation, USA). The last two methods of inactivation are similar in that both compounds used (INACTINE™ and S-59) are able to cross viral membranes and bind to and crosslink nucleic acids (DNA and RNA), thereby preventing replication. High titre human parvovirus B19 (B19 stock virus: isolate JS) was sent to the companies for spiking experiments and samples taken before, during and after the inactivation step were tested.
Viral removal procedures, which include chromatography and nanofiltration, should be distinguished from viral inactivation methods. In the case of viral removal, nucleic acid amplification is enough to evaluate the efficacy of the procedure. The latter is assessed by the viral clearance, which compares the viral load of the spiked material before removal step and at the end of the procedure. Removal depends on the protein composition and the separation conditions used, for instance the constant pressure applied during dead-end nanofiltration. The latter procedure, being non-invasive, has been the preferred virus removal technique because it can preserve both the structure and function of the plasma proteins. The efficacy of this method for the removal of B19 has been hampered by the lack of a suitable *in vitro* infectivity assay. Instead, model paroviruses such as BPV (Burnouf-Radosevich *et al.*, 1994; Omar and Kempf, 2002), PPV (Troccoli *et al.*, 1998) and MVM (Omar and Kempf, 2002) have been used to test this system. These animal paroviruses have a diameter between 15 and 20nm, whereas the B19 virus particles measure between 22 and 24nm in diameter (Cossart *et al.*, 1975). Thus the removal procedure evaluated in the present study was the nanofiltration using 15N and 20N Planova® filters, in collaboration with Asahi Kasei Pharma, Japan. These Planova® filters have already been shown to remove more than $\log_{10} 6.2$ of CPV in IVIG with Planova® 15N and more than $\log_{10} 4.3$ of PPV in factor VIII with Planova® 20N. Therefore, since nanofiltration is dependent on filter pore size, this clearance of animal paroviruses suggests that human parovirus B19 might also be removed by such a technique. The spiked product used in this study was 0.5% albumin solution. It was worth noting that the unspiked albumin solution was found to contain a small amount of B19 DNA ($\sim 1 \times 10^3$ IU/ml in samples A, the prefiltration feed and B, the prefiltration eluate). Since the presence of parovirus B19 DNA in albumin batches has been reported previously (Saldanha and Minor, 1996), in the present study, the albumin
solution, which was of intermediate quality, might also have been contaminated with a low level of B19. As far as the nanofiltration efficiency was concerned, a good virus clearance was observed since the \log_{10} reduction was between 5.41 and 6.81, when looking at 15 and 20N filters, respectively. Although at first glance, it seemed that B19 removal using 20N Planova® filter might be slightly better or almost the same compared to nanofiltration through a 15N filter, statistical analysis demonstrated that there was no significant difference between the two filters.

One of the advantages of Planova® filters, apart from its virus clearance properties, is the good product recovery rates (>95%) with the Planova® 35N filter for proteins up to molecular weight (MW) of about 800,000 (e.g., Factor VIII and IgG), with the Planova® 20N filter for proteins up to MW about 350,000 (e.g., Factor VIII and IgG), and with the Planova® 15N filter for proteins up to MW about 160,000 (e.g., Factor IX and IgG). The latter filter can thus allow the passage of the albumin protein used in the present study. However, the counterpart of this is the loss of larger proteins, as well as the difficult filtration of complex solutions, including whole plasma. The main limitations of nanofiltration remain the pore size of the filters and the relatively low flow rates.

Only one other study had already investigated the removal of parvovirus B19 from haemoglobin solutions by nanofiltration using a BMM-35 filter (mean pore size 35nm) followed by a BMM-15 filter (Abe et al., 2000b). Although the median PCR titre was not changed after the BMM-35 filtration step, the second filter with smaller pore size resulted in more than \log_{10} 6 reduction. Therefore, there was a correlation between the results obtained by Abe and colleagues and those presented here. Omar and Kempf used a different kind of membrane filter, from Pall Corporation, to determine whether antibody-coated viruses become large enough to be retained by nanofiltration with filters having apparent pore size larger than the free virions (Omar and Kempf, 2002).
Their theory was that, if the plasma pool would accidentally become contaminated with B19 from an infected donation, the antibodies present in other donations would bind to the virus particles, which thereby might lose all or part of their infectivity. These immune complexes would have an increased diameter, which should facilitate their removal by nanofiltration. These authors showed that BPV and MVM bound to antibodies were efficiently eliminated by filtration through Pall 20nm filters. However, according to their method, and since the filters pore sizes are larger than the diameter of the free virions, the latter, which are the potentially harmful viruses, would not be removed from the product. Therefore, this technique seems inappropriate to use in the manufacturing process of therapeutic products.

The use of filters with smaller pore sizes, such as Planova® 20N and 15N filters, thus appears the most suitable option for the effective elimination of human parvovirus B19 from albumin solution by nanofiltration.

A production process should include two complementary steps of virus inactivation/removal. The advantages of two methods acting through different mechanisms, frequently an inactivation step by a chemical treatment followed by a robust physical removal step, is the large spectrum of viruses susceptible.

As mentioned in chapter I, several cases of parvovirus B19 transmission by dry heat-treated coagulation factor concentrates have been reported (Yee et al., 1995; Santagostino et al., 1997; Blümel et al., 2002b). Therefore, the efficacy of dry-heating treatment to inactivate human parvovirus B19 needed to be investigated further. In the present study, the average DNA concentrations of the spiked product and medium controls were 10^{10} IU/ml whereas the B19 infectivity titres were $\log_{10} 5.6$ and $\log_{10} 7.6$,
respectively. The log_{10} 2 difference between the product control and the medium control suggest that there might be some effect of the product on the infectivity assay itself. However, since the dry-heat treated spiked samples were compared with the unheated spiked sample, this effect of the product on the assay would not have altered the outcome of the inactivation experiment. Although the DNA titre of factor VIII 8Y (unspiked product) was 10^4 IU/ml, indicating a contamination of the product, no infectious units could be detected since the assay was not sensitive enough to detect such low infectivity. When human parvovirus B19 was studied, the dry-heat treatment at 80°C for 24 hours reduced infectivity by log_{10} 2.2 whereas a longer treatment of 72 hours allowed reduction of infectivity to such a level that it became undetectable in the infectivity assay. Dry-heating treatment at 80°C for 72 hours thus seemed to be an effective inactivation method for human parvovirus B19. However, even after such dry-heat treatment, product 8Y was reported to have transmitted B19 infection to an immunocompetent individual (Yee et al., 1995). This implies that there must have been a massive challenge in that particular batch, possibly during an epidemic year. Although the experimental conditions used here differed from the ones used to study CPV and BPV, the data obtained suggested that this inactivation method might be more effective on human parvovirus B19 than on model animal paroviruses (Roberts and Hart, 2000). This would be in agreement with the study of human albumin pasteurisation, where human parvovirus B19 was inactivated much faster than the animal model PPV (Blümel et al., 2002b). When the dry heat treatment studied here is compared to pasteurisation, it seems that the latter would be more rapid at inactivating B19. However, the data presented is preliminary and further studies should be performed, mainly to evaluate the efficacy of the dry heat procedure at several time points between 24 and 72 hours. This would allow the study of inactivation kinetics and
the determination of the best exposure time for a product such as BPL's intermediate purity factor VIII (8Y). As briefly mentioned above, the other important point that should be investigated is the influence of residual moisture in the lyophilised product. This matter was not taken into consideration in the present study because of its preliminary nature. However, a report investigating the thermal resistance of BPV showed that reducing the residual moisture from 2% to less than 1% resulted in the exposure time at 100°C being prolonged by 2.5 times in order to achieve the same level of inactivation (Brauniger et al., 2000). Whether inactivation of human parvovirus B19 would also be susceptible to the amount of residual moisture in the lyophilised product tested remains to be determined. Both pasteurisation and dry heat treatments have been investigated using these viruses. As far as the former is concerned, although CPV was inactivated within 30 seconds at 60°C in the presence of 0.1M sodium hydroxide (NaOH), the model virus was shown to remain unaffected by heat treatment alone, at 60°C for 16 minutes (Borovec et al., 1998). At a similar temperature, BPV also showed thermal resistance (Brauniger et al., 2000). A recent study compared inactivation of B19 with that of PPV during pasteurisation of human serum albumin (Blümel et al., 2002b). The model virus was resistant to treatment at 60°C whereas B19 was inactivated by log_{10} 4 or more after 10 minutes. This report highlighted that thermal resistance of B19 markedly differs from that of animal parvoviruses. Therefore, inactivation protocol efficiency data obtained with such animal models might not reflect the behaviour of human parvovirus B19. When the efficacy of dry heat treatment for the inactivation of CPV was evaluated, the animal virus presented no residual infectivity after 48 hours at 80°C or 10 hours at 90°C (Hart et al., 1994). An even higher heat resistance was found for BPV at 100°C (Brauniger et al., 2000). When the inactivation of both CPV and BPV by dry heating was compared in two high purity factor VIII concentrates, BPV was also
more resistant to heat treatment than CPV (Roberts and Hart, 2000). The inactivation after 72 hours at 80°C was indeed log_{10} 1.3 and 3.1, respectively in the first product, whereas it was log_{10} 0.2 and 1.3, respectively in the second product. This experiment thus suggested that dry-heat resistance depended not only on the virus itself, but also on the specific product tested. In contrast, Blümel and coworkers found that inactivation of B19 was independent of the albumin product tested (5, 20 and 25% albumin from three manufacturers) and of the specific virus source used for the inactivation (Blümel et al., 2002b). This divergence of opinion about the influence of the product tested might be due to the fact that the products investigated were different: factor VIII concentrate in one case and human serum albumin in the other. Additionally, the viruses used to test the efficacy of the inactivation procedure were also different: animal parvoviruses (CPV and BPV) on one side and human parvovirus B19 on the other. Since these viruses have been shown to behave differently to heat treatment (Blümel et al., 2002b), their thermal resistance might be influenced by different factors such as virus type or product being tested. The other possible explanation for the difference in resistance reported between the products could be differences in the available residual water rather than the products per se.

A couple of other research groups have studied the effects of pasteurisation on B19 erythrovirus by determining the decrease of viral DNA replication (Southern Blotting) and viral protein production (enzyme immunoassay) (Schwarz et al., 1992b) or by infecting the erythroid cell line KU812Ep6, expressing the viral infectivity by its TCID50 ml (Miyagawa et al., 1999). In the first study, plasma was spiked with B19 and treated at 60°C (Schwarz et al., 1992b). Southern blot analysis showed no viral DNA after 20 minutes or more and no viral protein production could be detected in samples treated for 12 minutes or more. However, it was not possible to determine whether the
heat treatment completely inactivated parvovirus B19. The second study showed that B19 infectivity declined from 10^4 TCID50/ml to less than 10 TCID50/ml, which was the lower limit of detection, after 3 hours at 60°C or 30 minutes at 70°C, while it only decreased to $10^{2.5}$ TCID50/ml in samples treated for 8 hours at 50°C (Miyagawa et al., 1999).

The third method tested used SuperFluids™ at various temperatures and pressure. In NIBSC-01, with SuperFluids™ Freon-22 at 206 bars and 50°C in a two-stage laminar flow CFI unit, there was approximately a log$_{10}$ 2 clearance in infectivity titre of samples #1 and #2 compared with the untreated sample, but this may not be significant given the variability of the infectivity assay. In contrast, no infectivity was detected in “CFI-treated #3” sample (infectivity assay repeated twice). The “time and temperature” control sample had a similar infectious titre to the untreated sample indicating that the loss of infectivity was due to the treatment rather than incubation of the sample at an elevated temperature. This experiment showed that the treatment resulted in at least a log$_{10}$ 4 reduction in infectivity. On the other hand, there was no significant reduction in the infectivity of the treated samples compared with the controls observed in experiments NIBSC-02, 03, 04 and 06.

In the NIBSC-05 experiment, more than log$_{10}$ 5 of parvovirus B19 spiked into plasma were inactivated. The SuperFluid™ was a mixture of N$_2$O and CO$_2$ at 50°C and a two-stage laminar flow CFI unit was used (206 and 137 bars). The inactivation was more effective when N$_2$O/CO$_2$ was used compared with Freon-22 and Freon-23. In addition, higher levels of inactivation were obtained by SuperFluids™ at 50°C compared with 25°C. The absolute effect of temperature by itself was negligible and accounted for in time and temperature controls. It should be noted that at 25°C, the N$_2$O/CO$_2$ mixture is
Chapter IV

sub-critical whereas the mixture is supercritical at 50°C (the critical temperatures of N\textsubscript{2}O and CO\textsubscript{2} are respectively 36.41°C and 31.1°C). At 50°C, the N\textsubscript{2}O/CO\textsubscript{2} mixture was supercritical since its pressure (206 bars) exceeded the critical pressures (respectively, 72.7 and 73.8 bars) of both N\textsubscript{2}O and CO\textsubscript{2}. It appears necessary that these fluids (N\textsubscript{2}O/CO\textsubscript{2}) must be supercritical, which can be achieved at pressures in excess of 74 bars and 37°C, in order to achieve high levels of B19 inactivation. In addition, the residence time was remarkably short (less than one minute). Finally, the use of additional isobaric chambers can improve the level of inactivation as seen in the experiment NIBSC-05 where two chambers were used. Thus, these preliminary studies showed that the SuperFluids™ method using N\textsubscript{2}O/CO\textsubscript{2} at 206 bars and 50°C in a two-stage laminar flow CFI unit seemed to be the most efficient one to inactivate human parvovirus B19.

The main advantage that SuperFluids™ have over currently available virus inactivation techniques is their ability to reduce the viral load of both enveloped and non-enveloped viruses. For instance, the viral load of enveloped viruses, such as Sindbis virus, can be reduced more than log\textsubscript{10} 6 (Dr T Castor, personal communication). Similarly, non-enveloped virus loads, like adenovirus or poliovirus, can be decreased by log\textsubscript{10} 5 and 4, respectively. Additionally, the integrity and therapeutic activity of plasma products treated with SuperFluids™ are preserved. However, this technique cannot be used on blood donations that still contain red blood cells because these fluids would damage them. The other advantages of this technique are the fact that they are readily separated, with no toxic residues and that the system can be easily scaled up to production levels with continuous flow operations.
The effect of the INACTINE™ treatment on human parvovirus B19, using PEN110, was also investigated. For experiment A, the results for the non-treated spiked controls (PC0A and PC22A) showed high DNA titres of \(\log_{10} 10 \) and comparable \(\log_{10} \) infectivity titres of 5.5 and 5, respectively. During the treatment, samples were taken at various time points: 3, 6, 18 and 22 hours. The B19 DNA titre in these samples decreased by \(\log_{10} 1 \) at each time point, except between 6 and 18 hours, where the DNA titre decreased by \(\log_{10} 2 \). This can be easily explained by the fact that the time interval was higher between the two samples: 12 hours compared to 3 and 4 hours between the other time points. On average, B19 DNA titres would thus drop by \(\log_{10} 1 \) every 3 to 6 hours. Moreover, the DNA titre \(\log_{10} \) reduction between PC0A and TS3A, the first sample taken out, was \(\log_{10} 3 \), which was quite significant after only 3 hours of treatment. Infectivity at the different time point samples was not detectable, even at the first time point after 3 hours of treatment with compound A, when the DNA titre was \(\log_{10} 7.3 \). Therefore, treatment with compound A seems to be very efficient at inactivating human parvovirus B19, even after a short incubation of 3 hours. In experiment B, the untreated spiked controls showed a B19 DNA titre of \(10^7 \) IU/ml, whereas the infectivity titres were \(\log_{10} 3.47 \) and 2.19 infectious units per ml, after 0 and 22 hours (PC0B and PC22B), respectively. A \(\log_{10} 2 \) reduction was observed in the DNA titre from time 0 to time 3 hours followed by a further \(\log_{10} 1 \) reduction after another 3 hours treatment. No B19 DNA could be detected in the following two time points after 18 and 22 hours. Similarly to experiment A, the infectivity of these time point samples was not detectable, suggesting a decrease in infectivity when compared to PC0B sample.

Although phase I clinical evaluation had shown that the PEN 110 process was able to inactivate both enveloped and non-enveloped viruses and that treated RBCCs were
therapeutically useful (AuBuchon et al., 2002), phase III trials had to be suspended in
PRT RBCs transfused repetitively because of the appearance of antibodies to treated
cells (neoantibodies) (Vitex press release, 17th November 2003). The (photo)chemical
treatments can indeed potentially interact with other targets than their intended ones (i.e.
nucleic acid) and thereby yield an immunogen that could cause a response to treated
cells or, by cross-reactivity, to untreated cells (AuBuchon, 2004). Nevertheless, the
efficacy of this technique to inactivate other pathogens had already been proven in red
blood cells with protozoan parasites (Zavizion et al., 2004), WNV (Mather et al., 2003),
duck HBV (DHBV) as a model of HBV (Aytay et al., 2004) and HIV (Ohagen et al.,
2002). In addition, toxicology studies have found that the trace amount of residual
PEN110 in the purified blood component is well below the level that could present a
risk of reproductive toxicity to the patient (Chapman et al., 2003). Although the DNA
titre of the treated sample was not significantly lower than one of the untreated samples
(greater than $\log_{10} 2$), the number of infectious units, as determined by the infectivity
assay, was reduced significantly by $\log_{10} 5.15$.

Finally, the Baxter INTERCEPT method (treatment with amotosalen S-59 and UVA),
also known as the Helinx® technology, has been demonstrated to inactivate a variety of
blood-borne pathogens, including viruses such as HIV, HBV, HCV (Sawyer et al.,
2003), West Nile virus and SARS coronavirus (Dupuis and Sampson-Johannes, 2003;
Sawyer et al., 2004) and murine CMV (Lin, 2001; Jordan et al., 2004). Bacteria (both
gram negative and positive) and protozoa such as Plasmodium falciparum (Dupuis et
al., 2003) or Trypanosoma cruzi (Van Voorhis et al., 2003) have also been shown to be
inactivated by amotosalen HCL (S-59) and ultraviolet light. However, apart from one
abstract recently submitted to the American Association of Blood Banks (AABB)
meeting (Hanson et al., 2004), there is no report to date on the efficacy of this method on human parvovirus B19. The present collaborative study with Cerus Corporation investigated the efficacy of this photochemical treatment on the inactivation of B19. The results showed that the log_{10} DNA concentration for the untreated and 3J treated samples were 8.45 and 3.3, respectively. The infectivity titre for the untreated sample was log_{10} 6.8 whereas that of the treated sample was log_{10} 2.8, resulting in a log_{10} 4 reduction. Aliquots of the same untreated and treated 3J samples were also tested by scientists at Cerus using an ELISpot assay (Dr. Kent Dupuis, personnel communication). The virus reduction was comparable in both the ELISpot and the infectivity assay developed in the present study. However, the latter seems to be more sensitive than the ELISpot assay since it was able to detect more infectious particles in both the untreated and 3J treated materials. The log_{10} reduction was also more than log_{10} 1 greater in the optimised infectivity assay compared with the ELISpot assay.

Unpublished data concerning B19 inactivation were obtained at Cerus and were kindly communicated by Dr. K Dupuis and Dr. L Sawyer (CA, USA). The restriction linked to inactivation of non-enveloped viruses such as B19 lies in the time necessary for amotosalen S-59 to penetrate the virus capsid. The influence of a pre-incubation period with S-59 prior to UVA illumination was thus investigated. The viable virus titres in both untreated and treated infected platelet concentrates were evaluated by infection of CD34+ cells and detection of their progeny by ELISpot assay. Data have shown that the longer the pre-incubation period with amotosalen, the higher the mean log_{10} reduction (Hanson et al., 2004). When the sample was pre-incubated for less than 5 minutes, the mean log_{10} reduction was only 2.0 whereas it increased to 4.4 after 45 minutes and to 5.8 after 90 minutes pre-incubation with S-59. In comparison with the present study, which did not include a pre-incubation period with S-59 prior to illumination with
Chapter IV

UVA, the log_{10} reduction was only slightly lower than a sample pre-incubated for 90 minutes (log_{10} 5.8) and almost equivalent to a 60 minutes pre-incubation period (log_{10} 5.3). However, it was difficult to conclude on this comparison since the methods used to determine viral infectivity were different: infection of CD34+ cells and ELISpot assay in one case (Hanson et al. 2004) and infection of UT-7/EPO-S1 cells and RT-PCR assay in the present experiment. In the latter, the sample was not deliberately pre-incubated but the time between the addition of S-59 and UVA treatment was around 10-15 minutes. At the time this study was done, the pre-illumination data mentioned above (Hanson et al., 2004) had not been obtained. Due to the divergence of results, further work should be undertaken to investigate the exact role of a pre-exposure to S-59 and whether it is a necessary step in the inactivation of B19.

Platelets constitute an essential component of the coagulation process and may be required by patients with bleeding disorders or those undergoing surgery, cancer chemotherapy, transplantation. Some of the concerns in introducing a viral inactivation step in the manufacture of any product with medicinal properties are the safety aspect as well as the retention of the functional characteristics of the treated product. In the case of platelet concentrates, both these aspects have been investigated regarding the implementation of the Helinx® technology in their preparation. Preclinical safety studies of treated platelets concentrates showed no specific target organ toxicity, reproductive toxicity or carcinogenicity was observed (Ciaravino, 2001; Ciaravi et al., 2001). Moreover, the quality of platelet concentrates prepared from pooled buffy coats and treated by INTERCEPT (S-59 and UVA) was found compatible with that of untreated platelets for up to 7 days of storage (van Rhenen et al., 2000). In addition, a recent study reported only minor \textit{in vitro} effects on the quality of treated platelets (Jansen et al., 2004).
Taking into account that the inactivation rate by this method is related to genome size, another limiting factor in the inactivation of B19 is the small size of its genome. Large genomes such as those in leukocytes are indeed much more susceptible to inactivation than are viruses, such as hepatitis B virus (HBV), which can be inactivated by more than $\log_{10} 5$ (Wollowitz, 2001). Inactivation of parvovirus B19 (by $\log_{10} 5.15$ and 4) therefore seemed comparable to that of HBV, which has, however, a smaller genome than B19 (3.2 kb and 5.5 kb, respectively).

Although the INTERCEPT system appeared to be an efficient method for the inactivation of human parvovirus B19, the data obtained in the present experiment are preliminary and further research should be carried out to determine the optimum conditions that could be applied to blood-bank use.

The results of all the inactivation and removal protocols tested in the present study are summarized in table 4.1.

Table 4.1: Summary of virus inactivation/ removal data

<table>
<thead>
<tr>
<th>PRT</th>
<th>Log$_{10}$ reduction</th>
<th>Treated product</th>
</tr>
</thead>
<tbody>
<tr>
<td>Nanofiltration</td>
<td>>5 for 15N filter</td>
<td>0.5% albumin</td>
</tr>
<tr>
<td></td>
<td>>6 for 20N filter</td>
<td></td>
</tr>
<tr>
<td>Dry heat</td>
<td>>2 after 24 hours</td>
<td>Factor VIII</td>
</tr>
<tr>
<td></td>
<td>Not detected after 72 hours</td>
<td></td>
</tr>
<tr>
<td>Super critical fluids</td>
<td>>5</td>
<td>Human plasma</td>
</tr>
<tr>
<td>PEN 110 (INACTINE™)</td>
<td>Not detected</td>
<td>RBCs storage solution</td>
</tr>
<tr>
<td>Psoralen S-59</td>
<td>>5</td>
<td>PBS</td>
</tr>
</tbody>
</table>
Overall, chemical methods have the advantage that they can be used on cells which do not have a nucleus (RBCs and platelets). However, the chemical introduced into the product can potentially be toxic, mitotic or and carcinogenic and all traces of it need to be removed, adding another step to the inactivation process. Cell washing is usually used to remove the chemical at the completion of the red cell treatment. Moreover, recent press releases from Cerus (Cerus press release, 4th September 2003) and Vitex (Vitex press release, 23rd November 2004) have exposed the issue of autoantibodies production by some patients in their phase III clinical trials for S-303-treated RBCs and INACTINE™-treated RBCs, respectively. Cerus announced that they halted their trials when two patients who were enrolled indeed showed an antibody response but no clinical adverse events after transfusion with the S-303 treated RBCs. Similarly, Vitex announced that it was temporarily suspending enrolment in the ongoing Phase III surgical study for the INACTINE™ pathogen inactivation system for red blood cells. This decision was also made following identification of an immune response to treated RBCs in one patient. Although no clinical consequences of the immune response were apparent, potential modifications to the INACTINE™ treatment process which may result in red cells with reduced immunogenicity have already been identified and the revised process could potentially be ready for clinical trials in the second half of 2005. I would personally be interested in following the progress of these future trials to find out whether this improved chemical inactivation method can reduce the risk of autoantibodies being produced.

On the other hand, physical methods of inactivation have the distinct advantage that no chemical is introduced in the treated product, thereby abolishing any risk for toxicity. However, theses processes cannot be used to treat cells (RBCs and platelets), which
would be destroyed by such treatment. The fact that physical methods can only be used on plasma products is indeed a limiting factor.

In conclusion, this work will enable a better evaluation and characterisation of established pathogen removal /inactivation techniques using B19 rather than a model virus which may have different properties. The selection of the viral inactivation and removal methods to be employed depends on the size and labile nature of the protein being prepared, the method(s) of purification the manufacturer wishes to use, and the nature and titre of viruses which are of concern. Each method of inactivation and removal has special characteristics which need to be taken into account. Whether one or more methods of inactivation and removal are used, in addition to viral safety, the maintenance of protein structure and function is equally important and must be evaluated thoroughly.

Because of its preliminary functions, the present study did not include testing of the final product to show whether the removal/inactivation procedure had affected its biological and medicinal properties. Further investigations should therefore evaluate the product tested before and after the removal/inactivation step. This test seems less relevant for a virus removal step by nanofiltration since the protein chosen to be spiked should be much smaller than the filter pore size.

As far as the established infectivity assay is concerned, its uses are various. As mentioned above, further viral inactivation studies should be performed using this assay to evaluate the efficacy of the technique. In addition, considering the greater incidence and the possible impact of human parvovirus variants on blood products safety, this infectivity assay could be utilised to determine whether such variants might be potentially infectious. It might also be of interest to compare the behaviour of
parvovirus variants with that of B19 as far as viral inactivation is concerned. Although they might be unlikely to differ from B19 when novel inactivation methods are involved, such as INACTINE™, Helinx®, and Superfluids™, they might show different properties when physical inactivation such as dry-heat is applied.

References

Liu Q, Yong CB and Astell CR. 1994. In vitro resolution of the dimer bridge of the minute virus of mice (MVM) genome supports the modified rolling hairpin model for MVM replication. Virology 201(2): 251-262.

References

References

References

Morgan WR and Ward DC. 1986. Three splicing patterns are used to excise the small intron common to all minute virus of mice RNAs. J Virol 60(3): 1170-1174.

Mylonakis E, Dickinson BP, Mileno MD, Flanagan T, Schiffman F, Mega A and Rich JD. 1999. Persistent parvovirus B19 related anemia of seven years’ duration in an HIV-infected patients:
References

References

References

References

Rubinstein AI and Rubinstein DB. 1989. Thermal inactivation by sequential dry-heat treatments at sterilizing temperatures (100 degrees C-boiling) of factor VIII and factor IX concentrates to produce sterile concentrates. Vox Sang 57(4): 272.

References

References

References

References

References

References

References

Appendix 1: BFU-E reduction assay results

Table A1.1: BFU-E reduction assay results for patient 1 (a)

<table>
<thead>
<tr>
<th>Inoculum (IU/ml)</th>
<th>Red colony count</th>
<th>Percentage BFU-E reduction</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Well 1</td>
<td>Well 2</td>
</tr>
<tr>
<td>Control</td>
<td>45</td>
<td>43</td>
</tr>
<tr>
<td>1×10^{10}</td>
<td>21</td>
<td>22</td>
</tr>
<tr>
<td>$1 \times 10^{9.5}$</td>
<td>25</td>
<td>22</td>
</tr>
<tr>
<td>1×10^9</td>
<td>25</td>
<td>32</td>
</tr>
<tr>
<td>1×10^8</td>
<td>34</td>
<td>28</td>
</tr>
<tr>
<td>1×10^7</td>
<td>35</td>
<td>29</td>
</tr>
<tr>
<td>1×10^6</td>
<td>38</td>
<td>27</td>
</tr>
<tr>
<td>1×10^5</td>
<td>43</td>
<td>45</td>
</tr>
</tbody>
</table>

Table A1.2: BFU-E reduction assay results for patient 1 (b)

<table>
<thead>
<tr>
<th>Inoculum (IU/ml)</th>
<th>Red colony count</th>
<th>Percentage BFU-E reduction</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Well 1</td>
<td>Well 2</td>
</tr>
<tr>
<td>Control</td>
<td>20</td>
<td>19</td>
</tr>
<tr>
<td>8×10^9</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>1×10^9</td>
<td>3</td>
<td>1</td>
</tr>
<tr>
<td>1×10^8</td>
<td>6</td>
<td>7</td>
</tr>
<tr>
<td>1×10^7</td>
<td>8</td>
<td>9</td>
</tr>
<tr>
<td>1×10^6</td>
<td>13</td>
<td>10</td>
</tr>
<tr>
<td>1×10^5</td>
<td>9</td>
<td>7</td>
</tr>
</tbody>
</table>

Table A1.3: BFU-E reduction assay results for patient 2

<table>
<thead>
<tr>
<th>Inoculum (IU/ml)</th>
<th>Red colony count</th>
<th>Percentage BFU-E reduction</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Well 1</td>
<td>Well 2</td>
</tr>
<tr>
<td>Control</td>
<td>124</td>
<td>110</td>
</tr>
<tr>
<td>8×10^9</td>
<td>33</td>
<td>16</td>
</tr>
<tr>
<td>1×10^9</td>
<td>36</td>
<td>21</td>
</tr>
<tr>
<td>1×10^8</td>
<td>60</td>
<td>46</td>
</tr>
<tr>
<td>1×10^7</td>
<td>66</td>
<td>50</td>
</tr>
<tr>
<td>1×10^6</td>
<td>80</td>
<td>77</td>
</tr>
<tr>
<td>1×10^5</td>
<td>62</td>
<td>78</td>
</tr>
<tr>
<td>1×10^4</td>
<td>98</td>
<td>92</td>
</tr>
</tbody>
</table>
Table A1.4: BFU-E reduction assay results for patient 3

<table>
<thead>
<tr>
<th>Inoculum (IU/ml)</th>
<th>Red colony count</th>
<th>Percentage BFU-E reduction</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Well 1</td>
<td>Well 2</td>
</tr>
<tr>
<td>Control</td>
<td>33</td>
<td>38</td>
</tr>
<tr>
<td>Control</td>
<td>42</td>
<td>41</td>
</tr>
<tr>
<td>Control mean</td>
<td>37.5</td>
<td>39.5</td>
</tr>
<tr>
<td>1×10^{11}</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>$1 \times 10^{10.5}$</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>1×10^{10}</td>
<td>3</td>
<td>1</td>
</tr>
<tr>
<td>$1 \times 10^{9.5}$</td>
<td>10</td>
<td>13</td>
</tr>
<tr>
<td>1×10^{9}</td>
<td>22</td>
<td>17</td>
</tr>
<tr>
<td>$1 \times 10^{8.5}$</td>
<td>37</td>
<td>35</td>
</tr>
</tbody>
</table>

Table A1.5: BFU-E reduction assay results for patient 4

<table>
<thead>
<tr>
<th>Inoculum (IU/ml)</th>
<th>Red colony count</th>
<th>Percentage BFU-E reduction</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Well 1</td>
<td>Well 2</td>
</tr>
<tr>
<td>Control</td>
<td>34</td>
<td>25</td>
</tr>
<tr>
<td>Control</td>
<td>28</td>
<td>23</td>
</tr>
<tr>
<td>Control mean</td>
<td>31</td>
<td>24</td>
</tr>
<tr>
<td>1×10^{11}</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>$1 \times 10^{10.5}$</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>1×10^{10}</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>$1 \times 10^{9.5}$</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>1×10^{9}</td>
<td>14</td>
<td>19</td>
</tr>
<tr>
<td>$1 \times 10^{8.5}$</td>
<td>27</td>
<td>25</td>
</tr>
</tbody>
</table>

Table A1.6: BFU-E reduction assay results for patient 5

<table>
<thead>
<tr>
<th>Inoculum (IU/ml)</th>
<th>Red colony count</th>
<th>Percentage BFU-E reduction</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Well 1</td>
<td>Well 2</td>
</tr>
<tr>
<td>Control</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>1×10^{12}</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>$1 \times 10^{11.5}$</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>1×10^{11}</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>$1 \times 10^{10.5}$</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>1×10^{10}</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>$1 \times 10^{9.5}$</td>
<td>2</td>
<td>1</td>
</tr>
</tbody>
</table>
Table A1.7: BFU-E reduction assay results for patient 6

<table>
<thead>
<tr>
<th>Inoculum (IU/ml)</th>
<th>Red colony count</th>
<th>Percentage BFU-E reduction</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Well 1</td>
<td>Well 2</td>
</tr>
<tr>
<td>Control</td>
<td>84</td>
<td>79</td>
</tr>
<tr>
<td>1x10^12</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>1x10^11.5</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>1x10^11</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>1x10^10^0.5</td>
<td>0</td>
<td>2</td>
</tr>
<tr>
<td>1x10^10</td>
<td>34</td>
<td>39</td>
</tr>
</tbody>
</table>

Table A1.8: BFU-E reduction assay results for patient 7

<table>
<thead>
<tr>
<th>Inoculum (IU/ml)</th>
<th>Red colony count</th>
<th>Percentage BFU-E reduction</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Well 1</td>
<td>Well 2</td>
</tr>
<tr>
<td>Control</td>
<td>95</td>
<td>110</td>
</tr>
<tr>
<td>1x10^12</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>1x10^11.5</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>1x10^11</td>
<td>79</td>
<td>90</td>
</tr>
<tr>
<td>1x10^10^0.5</td>
<td>N/A</td>
<td>N/A</td>
</tr>
<tr>
<td>1x10^10</td>
<td>67</td>
<td>69</td>
</tr>
</tbody>
</table>

Table A1.9: BFU-E reduction assay results for patient 8

<table>
<thead>
<tr>
<th>Inoculum (IU/ml)</th>
<th>Red colony count</th>
<th>Percentage BFU-E reduction</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Well 1</td>
<td>Well 2</td>
</tr>
<tr>
<td>Control</td>
<td>103</td>
<td>112</td>
</tr>
<tr>
<td>1x10^12</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>1x10^11.5</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>1x10^11</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>1x10^10^0.5</td>
<td>11</td>
<td>9</td>
</tr>
<tr>
<td>1x10^10</td>
<td>46</td>
<td>29</td>
</tr>
</tbody>
</table>
Table A1.10: BFU-E reduction assay results for patient 9

<table>
<thead>
<tr>
<th>Inoculum (IU/ml)</th>
<th>Red colony count</th>
<th>Percentage BFU-E reduction Patient 9</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Well 1</td>
<td>Well 2</td>
</tr>
<tr>
<td>Control</td>
<td>36</td>
<td>21</td>
</tr>
<tr>
<td>Control</td>
<td>28</td>
<td>16</td>
</tr>
<tr>
<td>Control mean</td>
<td>32</td>
<td>18.5</td>
</tr>
<tr>
<td>1x10^10</td>
<td>7</td>
<td>9</td>
</tr>
<tr>
<td>1x10^9.5</td>
<td>16</td>
<td>13</td>
</tr>
<tr>
<td>1x10^9</td>
<td>25</td>
<td>17</td>
</tr>
<tr>
<td>1x10^8.5</td>
<td>20</td>
<td>17</td>
</tr>
<tr>
<td>1x10^8</td>
<td>23</td>
<td>19</td>
</tr>
<tr>
<td>1x10^7.5</td>
<td>12</td>
<td>27</td>
</tr>
</tbody>
</table>

Table A1.11: BFU-E reduction assay results for patient 10 (a and b)

<table>
<thead>
<tr>
<th>Inoculum (IU/ml)</th>
<th>Red colony count</th>
<th>Percentage BFU-E reduction Patient 10a</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Well 1</td>
<td>Well 2</td>
</tr>
<tr>
<td>Control</td>
<td>68</td>
<td>87</td>
</tr>
<tr>
<td>1x10^11</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>1x10^10.5</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>1x10^10</td>
<td>12</td>
<td>11</td>
</tr>
<tr>
<td>1x10^9.5</td>
<td>28</td>
<td>36</td>
</tr>
<tr>
<td>1x10^9</td>
<td>43</td>
<td>38</td>
</tr>
<tr>
<td>1x10^8.5</td>
<td>67</td>
<td>52</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Inoculum (IU/ml)</th>
<th>Red colony count</th>
<th>Percentage BFU-E reduction Patient 10b</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Well 1</td>
<td>Well 2</td>
</tr>
<tr>
<td>Control</td>
<td>56</td>
<td>65</td>
</tr>
<tr>
<td>1x10^11</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>1x10^10.5</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>1x10^10</td>
<td>3</td>
<td>0</td>
</tr>
<tr>
<td>1x10^9.5</td>
<td>12</td>
<td>9</td>
</tr>
<tr>
<td>1x10^9</td>
<td>30</td>
<td>19</td>
</tr>
<tr>
<td>1x10^8.5</td>
<td>23</td>
<td>29</td>
</tr>
</tbody>
</table>
Table A1.12: BFU-E reduction assay results for patient 11

<table>
<thead>
<tr>
<th>Inoculum (IU/ml)</th>
<th>Red colony count</th>
<th>Percentage BFU-E reduction</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Well 1</td>
<td>Well 2</td>
</tr>
<tr>
<td>Control</td>
<td>3</td>
<td>6</td>
</tr>
<tr>
<td>1×10^{11}</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>$1 \times 10^{10.5}$</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>1×10^{10}</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>$1 \times 10^{9.5}$</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>1×10^{9}</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>$1 \times 10^{8.5}$</td>
<td>7</td>
<td>6</td>
</tr>
</tbody>
</table>

Table A1.13: BFU-E reduction assay results for patient 12

<table>
<thead>
<tr>
<th>Inoculum (IU/ml)</th>
<th>Red colony count</th>
<th>Percentage BFU-E reduction</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Well 1</td>
<td>Well 2</td>
</tr>
<tr>
<td>Control</td>
<td>7</td>
<td>11</td>
</tr>
<tr>
<td>1×10^{11}</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>$1 \times 10^{10.5}$</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>1×10^{10}</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>$1 \times 10^{9.5}$</td>
<td>2</td>
<td>0</td>
</tr>
<tr>
<td>1×10^{9}</td>
<td>3</td>
<td>1</td>
</tr>
<tr>
<td>$1 \times 10^{8.5}$</td>
<td>11</td>
<td>3</td>
</tr>
</tbody>
</table>

Table A1.14: BFU-E reduction assay results for patient 13

<table>
<thead>
<tr>
<th>Inoculum (IU/ml)</th>
<th>Red colony count</th>
<th>Percentage BFU-E reduction</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Well 1</td>
<td>Well 2</td>
</tr>
<tr>
<td>Control</td>
<td>90</td>
<td>96</td>
</tr>
<tr>
<td>$1 \times 10^{9.5}$</td>
<td>4</td>
<td>5</td>
</tr>
<tr>
<td>1×10^{9}</td>
<td>12</td>
<td>16</td>
</tr>
<tr>
<td>$1 \times 10^{8.5}$</td>
<td>18</td>
<td>21</td>
</tr>
<tr>
<td>1×10^{8}</td>
<td>25</td>
<td>36</td>
</tr>
<tr>
<td>$1 \times 10^{7.5}$</td>
<td>27</td>
<td>38</td>
</tr>
<tr>
<td>1×10^{7}</td>
<td>50</td>
<td>37</td>
</tr>
</tbody>
</table>
Table A1.15: BFU-E reduction assay results for patient 14

<table>
<thead>
<tr>
<th>Inoculum (IU/ml)</th>
<th>Red colony count</th>
<th>Percentage BFU-E reduction</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Well 1</td>
<td>Well 2</td>
</tr>
<tr>
<td>Control</td>
<td>33</td>
<td>35</td>
</tr>
<tr>
<td>Control</td>
<td>53</td>
<td>35</td>
</tr>
<tr>
<td>Control mean</td>
<td>43</td>
<td>35</td>
</tr>
<tr>
<td>$1 \times 10^{11.5}$</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>1×10^{11}</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>$1 \times 10^{10.5}$</td>
<td>3</td>
<td>0</td>
</tr>
<tr>
<td>1×10^{10}</td>
<td>9</td>
<td>5</td>
</tr>
<tr>
<td>$1 \times 10^{9.5}$</td>
<td>14</td>
<td>16</td>
</tr>
<tr>
<td>1×10^{9}</td>
<td>14</td>
<td>13</td>
</tr>
<tr>
<td>$1 \times 10^{8.5}$</td>
<td>15</td>
<td>24</td>
</tr>
<tr>
<td>1×10^{8}</td>
<td>21</td>
<td>20</td>
</tr>
<tr>
<td>$1 \times 10^{7.5}$</td>
<td>34</td>
<td>35</td>
</tr>
<tr>
<td>1×10^{7}</td>
<td>28</td>
<td>22</td>
</tr>
<tr>
<td>$1 \times 10^{6.5}$</td>
<td>45</td>
<td>51</td>
</tr>
<tr>
<td>1×10^{6}</td>
<td>39</td>
<td>40</td>
</tr>
</tbody>
</table>

Table A1.16: BFU-E reduction assay results for patient 15

<table>
<thead>
<tr>
<th>Inoculum (IU/ml)</th>
<th>Red colony count</th>
<th>Percentage BFU-E reduction</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Well 1</td>
<td>Well 2</td>
</tr>
<tr>
<td>Control</td>
<td>27</td>
<td>34</td>
</tr>
<tr>
<td>Control</td>
<td>23</td>
<td>40</td>
</tr>
<tr>
<td>Control mean</td>
<td>25</td>
<td>37</td>
</tr>
<tr>
<td>$1 \times 10^{9.5}$</td>
<td>6</td>
<td>6</td>
</tr>
<tr>
<td>1×10^{9}</td>
<td>15</td>
<td>21</td>
</tr>
<tr>
<td>$1 \times 10^{8.5}$</td>
<td>25</td>
<td>15</td>
</tr>
<tr>
<td>1×10^{8}</td>
<td>26</td>
<td>17</td>
</tr>
<tr>
<td>$1 \times 10^{7.5}$</td>
<td>39</td>
<td>28</td>
</tr>
<tr>
<td>1×10^{7}</td>
<td>34</td>
<td>37</td>
</tr>
<tr>
<td>$1 \times 10^{6.5}$</td>
<td>26</td>
<td>43</td>
</tr>
<tr>
<td>1×10^{6}</td>
<td>49</td>
<td>36</td>
</tr>
</tbody>
</table>
Table A1.17: BFU-E reduction assay results for patient 16

<table>
<thead>
<tr>
<th>Inoculum (IU/ml)</th>
<th>Red colony count</th>
<th>Percentage BFU-E reduction</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Well 1</td>
<td>Well 2</td>
</tr>
<tr>
<td>Control</td>
<td>45</td>
<td>60</td>
</tr>
<tr>
<td>1×10^8</td>
<td>32</td>
<td>24</td>
</tr>
<tr>
<td>1×10^6</td>
<td>24</td>
<td>43</td>
</tr>
<tr>
<td>1×10^5</td>
<td>36</td>
<td>33</td>
</tr>
<tr>
<td>1×10^6</td>
<td>40</td>
<td>40</td>
</tr>
</tbody>
</table>

Table A1.18: BFU-E reduction assay results for patient 17

<table>
<thead>
<tr>
<th>Inoculum (IU/ml)</th>
<th>Red colony count</th>
<th>Percentage BFU-E reduction</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Well 1</td>
<td>Well 2</td>
</tr>
<tr>
<td>Control</td>
<td>112</td>
<td>123</td>
</tr>
<tr>
<td>1×10^7</td>
<td>63</td>
<td>77</td>
</tr>
<tr>
<td>1×10^6</td>
<td>53</td>
<td>43</td>
</tr>
<tr>
<td>1×10^5</td>
<td>73</td>
<td>66</td>
</tr>
<tr>
<td>1×10^6</td>
<td>92</td>
<td>89</td>
</tr>
</tbody>
</table>

Table A1.19: BFU-E reduction assay results for patient 18

<table>
<thead>
<tr>
<th>Inoculum (IU/ml)</th>
<th>Red colony count</th>
<th>Percentage BFU-E reduction</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Well 1</td>
<td>Well 2</td>
</tr>
<tr>
<td>Control</td>
<td>82</td>
<td>90</td>
</tr>
<tr>
<td>Control mean</td>
<td>74.5</td>
<td>79.5</td>
</tr>
<tr>
<td>1×10^7</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>1×10^6</td>
<td>21</td>
<td>2</td>
</tr>
<tr>
<td>1×10^5</td>
<td>36</td>
<td>6</td>
</tr>
<tr>
<td>1×10^4</td>
<td>105</td>
<td>56</td>
</tr>
<tr>
<td>1×10^3</td>
<td>92</td>
<td>97</td>
</tr>
<tr>
<td>1×10^2</td>
<td>68</td>
<td>120</td>
</tr>
<tr>
<td>1×10^1</td>
<td>64</td>
<td>73</td>
</tr>
<tr>
<td>1×10^0</td>
<td>67</td>
<td>58</td>
</tr>
<tr>
<td>1×10^{-1}</td>
<td>74</td>
<td>84</td>
</tr>
<tr>
<td>1×10^{-2}</td>
<td>81</td>
<td>58</td>
</tr>
<tr>
<td>1×10^{-3}</td>
<td>86</td>
<td>93</td>
</tr>
</tbody>
</table>
Table A1.20: BFU-E reduction assay results for patient 19

<table>
<thead>
<tr>
<th>Inoculum (IU/ml)</th>
<th>Red colony count</th>
<th>Percentage BFU-E reduction Patient 19</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Well 1</td>
<td>Well 2</td>
</tr>
<tr>
<td>Control</td>
<td>36</td>
<td>27</td>
</tr>
<tr>
<td>1x10^{8.5}</td>
<td>28</td>
<td>23</td>
</tr>
<tr>
<td>1x10^{9}</td>
<td>28</td>
<td>25</td>
</tr>
<tr>
<td>1x10^{7.5}</td>
<td>23</td>
<td>10</td>
</tr>
<tr>
<td>1x10^{7}</td>
<td>23</td>
<td>25</td>
</tr>
<tr>
<td>1x10^{6.5}</td>
<td>24</td>
<td>23</td>
</tr>
<tr>
<td>1x10^{6}</td>
<td>31</td>
<td>24</td>
</tr>
</tbody>
</table>

Table A1.21: BFU-E reduction assay results for patient 20

<table>
<thead>
<tr>
<th>Inoculum (IU/ml)</th>
<th>Red colony count</th>
<th>Percentage BFU-E reduction Patient 20</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Well 1</td>
<td>Well 2</td>
</tr>
<tr>
<td>Control</td>
<td>115</td>
<td>84</td>
</tr>
<tr>
<td>1x10^{8.5}</td>
<td>20</td>
<td>26</td>
</tr>
<tr>
<td>1x10^{9}</td>
<td>24</td>
<td>27</td>
</tr>
<tr>
<td>1x10^{7.5}</td>
<td>28</td>
<td>34</td>
</tr>
<tr>
<td>1x10^{7}</td>
<td>60</td>
<td>46</td>
</tr>
<tr>
<td>1x10^{6.5}</td>
<td>99</td>
<td>65</td>
</tr>
<tr>
<td>1x10^{6}</td>
<td>114</td>
<td>112</td>
</tr>
</tbody>
</table>

Table A1.22: BFU-E reduction assay results for patient 21

<table>
<thead>
<tr>
<th>Inoculum (IU/ml)</th>
<th>Red colony count</th>
<th>Percentage BFU-E reduction Patient 21</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Well 1</td>
<td>Well 2</td>
</tr>
<tr>
<td>Control</td>
<td>18</td>
<td>21</td>
</tr>
<tr>
<td>Control mean</td>
<td>10</td>
<td>9</td>
</tr>
<tr>
<td>1x10^{7.5}</td>
<td>1</td>
<td>3</td>
</tr>
<tr>
<td>1x10^{7}</td>
<td>7</td>
<td>2</td>
</tr>
<tr>
<td>1x10^{6.5}</td>
<td>16</td>
<td>5</td>
</tr>
<tr>
<td>1x10^{6}</td>
<td>7</td>
<td>10</td>
</tr>
<tr>
<td>1x10^{5.5}</td>
<td>27</td>
<td>13</td>
</tr>
<tr>
<td>1x10^{5}</td>
<td>30</td>
<td>18</td>
</tr>
</tbody>
</table>
Table A1.23: BFU-E reduction assay results for patient 22

<table>
<thead>
<tr>
<th>Inoculum (IU/ml)</th>
<th>Red colony count</th>
<th>Percentage BFU-E reduction</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Well 1</td>
<td>Well 2</td>
</tr>
<tr>
<td>Control</td>
<td>38</td>
<td>21</td>
</tr>
<tr>
<td>Control</td>
<td>22</td>
<td>19</td>
</tr>
<tr>
<td>Control mean</td>
<td>30</td>
<td>20</td>
</tr>
<tr>
<td>1x10^7</td>
<td>9</td>
<td>10</td>
</tr>
<tr>
<td>1x10^6</td>
<td>11</td>
<td>11</td>
</tr>
<tr>
<td>1x10^5</td>
<td>24</td>
<td>15</td>
</tr>
<tr>
<td>1x10^3</td>
<td>20</td>
<td>14</td>
</tr>
<tr>
<td>1x10^2</td>
<td>19</td>
<td>23</td>
</tr>
</tbody>
</table>

Table A1.24: BFU-E reduction assay results for patient 23

<table>
<thead>
<tr>
<th>Inoculum (IU/ml)</th>
<th>Red colony count</th>
<th>Percentage BFU-E reduction</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Well 1</td>
<td>Well 2</td>
</tr>
<tr>
<td>Control</td>
<td>47</td>
<td>40</td>
</tr>
<tr>
<td>Control</td>
<td>30</td>
<td>23</td>
</tr>
<tr>
<td>Control mean</td>
<td>38.5</td>
<td>31.5</td>
</tr>
<tr>
<td>1x10^7</td>
<td>39</td>
<td>14</td>
</tr>
<tr>
<td>1x10^6</td>
<td>21</td>
<td>20</td>
</tr>
<tr>
<td>1x10^5</td>
<td>28</td>
<td>31</td>
</tr>
<tr>
<td>1x10^4</td>
<td>34</td>
<td>29</td>
</tr>
<tr>
<td>1x10^3</td>
<td>29</td>
<td>21</td>
</tr>
<tr>
<td>1x10^2</td>
<td>32</td>
<td>31</td>
</tr>
</tbody>
</table>

Table A1.25: BFU-E reduction assay results for patient 24

<table>
<thead>
<tr>
<th>Inoculum (IU/ml)</th>
<th>Red colony count</th>
<th>Percentage BFU-E reduction</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Well 1</td>
<td>Well 2</td>
</tr>
<tr>
<td>Control</td>
<td>34</td>
<td>40</td>
</tr>
<tr>
<td>Control</td>
<td>29</td>
<td>41</td>
</tr>
<tr>
<td>Control mean</td>
<td>31.5</td>
<td>40.5</td>
</tr>
<tr>
<td>1x10^6</td>
<td>19</td>
<td>37</td>
</tr>
<tr>
<td>1x10^7</td>
<td>23</td>
<td>28</td>
</tr>
<tr>
<td>1x10^6</td>
<td>26</td>
<td>33</td>
</tr>
<tr>
<td>1x10^5</td>
<td>29</td>
<td>33</td>
</tr>
<tr>
<td>1x10^4</td>
<td>44</td>
<td>41</td>
</tr>
<tr>
<td>1x10^3</td>
<td>30</td>
<td>48</td>
</tr>
</tbody>
</table>
Table A1.26: BFU-E reduction assay results for patient 25

<table>
<thead>
<tr>
<th>Inoculum (IU/ml)</th>
<th>Red colony count</th>
<th>Percentage BFU-E reduction</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Well 1</td>
<td>Well 2</td>
</tr>
<tr>
<td>Control</td>
<td>85</td>
<td>46</td>
</tr>
<tr>
<td>Control</td>
<td>35</td>
<td>38</td>
</tr>
<tr>
<td>Control mean</td>
<td>60</td>
<td>42</td>
</tr>
<tr>
<td>1x10^9</td>
<td>33</td>
<td>35</td>
</tr>
<tr>
<td>1x10^7.5</td>
<td>35</td>
<td>33</td>
</tr>
<tr>
<td>1x10^7</td>
<td>39</td>
<td>23</td>
</tr>
<tr>
<td>1x10^6.5</td>
<td>37</td>
<td>29</td>
</tr>
<tr>
<td>1x10^6</td>
<td>38</td>
<td>35</td>
</tr>
<tr>
<td>1x10^5.5</td>
<td>53</td>
<td>40</td>
</tr>
</tbody>
</table>

Table A1.27: BFU-E reduction assay results for patient 26

<table>
<thead>
<tr>
<th>Inoculum (IU/ml)</th>
<th>Red colony count</th>
<th>Percentage BFU-E reduction</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Well 1</td>
<td>Well 2</td>
</tr>
<tr>
<td>Control</td>
<td>29</td>
<td>29</td>
</tr>
<tr>
<td>Control</td>
<td>32</td>
<td>36</td>
</tr>
<tr>
<td>Control mean</td>
<td>30.5</td>
<td>32.5</td>
</tr>
<tr>
<td>1x10^8</td>
<td>41</td>
<td>16</td>
</tr>
<tr>
<td>1x10^7.5</td>
<td>24</td>
<td>12</td>
</tr>
<tr>
<td>1x10^7</td>
<td>24</td>
<td>19</td>
</tr>
<tr>
<td>1x10^6.5</td>
<td>27</td>
<td>14</td>
</tr>
<tr>
<td>1x10^6</td>
<td>26</td>
<td>21</td>
</tr>
<tr>
<td>1x10^5.5</td>
<td>38</td>
<td>23</td>
</tr>
<tr>
<td>Inoculum (IU/ml)</td>
<td>Red colony count</td>
<td>Percentage BFU-E reduction</td>
</tr>
<tr>
<td>-----------------</td>
<td>------------------</td>
<td>----------------------------</td>
</tr>
<tr>
<td></td>
<td>Well 1</td>
<td>Well 2</td>
</tr>
<tr>
<td>Control</td>
<td>13</td>
<td>7</td>
</tr>
<tr>
<td>Control</td>
<td>7</td>
<td>5</td>
</tr>
<tr>
<td>Control mean</td>
<td>10</td>
<td>6</td>
</tr>
<tr>
<td>1x10^{10}</td>
<td>3</td>
<td>1</td>
</tr>
<tr>
<td>1x10^{9}</td>
<td>4</td>
<td>1</td>
</tr>
<tr>
<td>1x10^{8}</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>1x10^{7.5}</td>
<td>5</td>
<td>1</td>
</tr>
<tr>
<td>1x10^{7}</td>
<td>5</td>
<td>7</td>
</tr>
<tr>
<td>1x10^{6.5}</td>
<td>4</td>
<td>3</td>
</tr>
<tr>
<td>1x10^{6}</td>
<td>7</td>
<td>4</td>
</tr>
<tr>
<td>1x10^{6.5}</td>
<td>3</td>
<td>6</td>
</tr>
<tr>
<td>1x10^{6}</td>
<td>7</td>
<td>7</td>
</tr>
<tr>
<td>1x10^{5.5}</td>
<td>5</td>
<td>3</td>
</tr>
<tr>
<td>1x10^{5}</td>
<td>4</td>
<td>5</td>
</tr>
</tbody>
</table>

Table A1.29: BFU-E reduction assay results for patient 28

<table>
<thead>
<tr>
<th>Inoculum (IU/ml)</th>
<th>Red colony count</th>
<th>Percentage BFU-E reduction</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Well 1</td>
<td>Well 2</td>
</tr>
<tr>
<td>Control</td>
<td>21</td>
<td>18</td>
</tr>
<tr>
<td>Control</td>
<td>15</td>
<td>24</td>
</tr>
<tr>
<td>Control mean</td>
<td>18</td>
<td>21</td>
</tr>
<tr>
<td>1x10^{7}</td>
<td>14</td>
<td>12</td>
</tr>
<tr>
<td>1x10^{6.5}</td>
<td>7</td>
<td>10</td>
</tr>
<tr>
<td>1x10^{6}</td>
<td>15</td>
<td>14</td>
</tr>
<tr>
<td>1x10^{5}</td>
<td>7</td>
<td>4</td>
</tr>
<tr>
<td>1x10^{6.5}</td>
<td>8</td>
<td>3</td>
</tr>
<tr>
<td>1x10^{6}</td>
<td>9</td>
<td>6</td>
</tr>
<tr>
<td>1x10^{5}</td>
<td>12</td>
<td>13</td>
</tr>
<tr>
<td>1x10^{3.5}</td>
<td>13</td>
<td>12</td>
</tr>
<tr>
<td>1x10^{3}</td>
<td>10</td>
<td>13</td>
</tr>
</tbody>
</table>
Table A1.30: BFU-E reduction assay results for patient 29

<table>
<thead>
<tr>
<th>Inoculum (IU/ml)</th>
<th>Red colony count</th>
<th>Percentage BFU-E reduction Patient 29</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Well 1</td>
<td>Well 2</td>
</tr>
<tr>
<td>Control</td>
<td>88</td>
<td>65</td>
</tr>
<tr>
<td>Control</td>
<td>68</td>
<td>99</td>
</tr>
<tr>
<td>Control mean</td>
<td>78</td>
<td>82</td>
</tr>
<tr>
<td>1x10^{10.5}</td>
<td>4</td>
<td>4</td>
</tr>
<tr>
<td>1x10^{10}</td>
<td>28</td>
<td>35</td>
</tr>
<tr>
<td>1x10^{9.5}</td>
<td>43</td>
<td>43</td>
</tr>
<tr>
<td>1x10^{9}</td>
<td>54</td>
<td>64</td>
</tr>
<tr>
<td>1x10^{8.5}</td>
<td>72</td>
<td>61</td>
</tr>
<tr>
<td>1x10^{8}</td>
<td>44</td>
<td>61</td>
</tr>
<tr>
<td>1x10^{7.5}</td>
<td>77</td>
<td>84</td>
</tr>
<tr>
<td>1x10^{7}</td>
<td>87</td>
<td>84</td>
</tr>
<tr>
<td>1x10^{6.5}</td>
<td>75</td>
<td>85</td>
</tr>
<tr>
<td>1x10^{6}</td>
<td>81</td>
<td>99</td>
</tr>
<tr>
<td>1x10^{5.5}</td>
<td>93</td>
<td>85</td>
</tr>
</tbody>
</table>

Table A1.31: BFU-E reduction assay results for patient 30

<table>
<thead>
<tr>
<th>Inoculum (IU/ml)</th>
<th>Red colony count</th>
<th>Percentage BFU-E reduction Patient 30</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Well 1</td>
<td>Well 2</td>
</tr>
<tr>
<td>Control</td>
<td>48</td>
<td>49</td>
</tr>
<tr>
<td>Control</td>
<td>30</td>
<td>34</td>
</tr>
<tr>
<td>Control mean</td>
<td>39</td>
<td>41.5</td>
</tr>
<tr>
<td>1x10^{12}</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>1x10^{11.5}</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>1x10^{11}</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>1x10^{10.5}</td>
<td>7</td>
<td>8</td>
</tr>
<tr>
<td>1x10^{10}</td>
<td>20</td>
<td>19</td>
</tr>
<tr>
<td>1x10^{9.5}</td>
<td>23</td>
<td>23</td>
</tr>
<tr>
<td>1x10^{9}</td>
<td>34</td>
<td>27</td>
</tr>
<tr>
<td>1x10^{8.5}</td>
<td>37</td>
<td>21</td>
</tr>
<tr>
<td>1x10^{8}</td>
<td>26</td>
<td>28</td>
</tr>
<tr>
<td>1x10^{7.5}</td>
<td>36</td>
<td>35</td>
</tr>
<tr>
<td>1x10^{7}</td>
<td>43</td>
<td>34</td>
</tr>
<tr>
<td>1x10^{6.5}</td>
<td>47</td>
<td>38</td>
</tr>
<tr>
<td>1x10^{6}</td>
<td>50</td>
<td>29</td>
</tr>
<tr>
<td>1x10^{5.5}</td>
<td>33</td>
<td>49</td>
</tr>
<tr>
<td>1x10^{5}</td>
<td>55</td>
<td>36</td>
</tr>
</tbody>
</table>
Appendix 2: Cell counts for continuous cell lines growth curves

Table A2.1: Cell count results for KU812Ep6 cell line at 1×10^5 cells/ml starting concentration (n+19)

<table>
<thead>
<tr>
<th>Day after seeding</th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
</tr>
</thead>
<tbody>
<tr>
<td>Well 1</td>
<td></td>
<td>85</td>
<td>144</td>
<td>189</td>
<td>189</td>
<td>206</td>
<td>254</td>
<td>358</td>
<td>261</td>
<td>238</td>
</tr>
<tr>
<td>Well 2</td>
<td></td>
<td>82</td>
<td>153</td>
<td>191</td>
<td>191</td>
<td>226</td>
<td>229</td>
<td>266</td>
<td>220</td>
<td>207</td>
</tr>
<tr>
<td>Well 3</td>
<td></td>
<td>75</td>
<td>155</td>
<td>187</td>
<td>187</td>
<td>207</td>
<td>219</td>
<td>244</td>
<td>216</td>
<td>165</td>
</tr>
<tr>
<td>Well 4</td>
<td></td>
<td>79</td>
<td>140</td>
<td>192</td>
<td>192</td>
<td>214</td>
<td>225</td>
<td>316</td>
<td>220</td>
<td>201</td>
</tr>
<tr>
<td>Mean</td>
<td></td>
<td>80.25</td>
<td>148</td>
<td>189.75</td>
<td>189.75</td>
<td>213.25</td>
<td>231.75</td>
<td>296</td>
<td>232</td>
<td>203</td>
</tr>
<tr>
<td>Cell concentration (cells/ml)</td>
<td>1.00×10^5</td>
<td>2.01×10^5</td>
<td>3.70×10^5</td>
<td>4.74×10^5</td>
<td>4.74×10^5</td>
<td>5.33×10^5</td>
<td>5.79×10^5</td>
<td>7.40×10^5</td>
<td>5.81×10^5</td>
<td>5.08×10^5</td>
</tr>
</tbody>
</table>

Table A2.2: Cell count results for KU812Ep6 cell line at 5×10^4 cells/ml starting concentration (n+19)

<table>
<thead>
<tr>
<th>Day after seeding</th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
</tr>
</thead>
<tbody>
<tr>
<td>Well 1</td>
<td></td>
<td>59</td>
<td>81</td>
<td>177</td>
<td>206</td>
<td>239</td>
<td>244</td>
<td>263</td>
<td>233</td>
<td>241</td>
</tr>
<tr>
<td>Well 2</td>
<td></td>
<td>29</td>
<td>92</td>
<td>154</td>
<td>203</td>
<td>228</td>
<td>242</td>
<td>261</td>
<td>246</td>
<td>214</td>
</tr>
<tr>
<td>Well 3</td>
<td></td>
<td>37</td>
<td>87</td>
<td>158</td>
<td>179</td>
<td>226</td>
<td>231</td>
<td>256</td>
<td>186</td>
<td>194</td>
</tr>
<tr>
<td>Well 4</td>
<td></td>
<td>25</td>
<td>119</td>
<td>161</td>
<td>175</td>
<td>183</td>
<td>285</td>
<td>242</td>
<td>241</td>
<td>220</td>
</tr>
<tr>
<td>Mean</td>
<td></td>
<td>37.5</td>
<td>94.75</td>
<td>162.5</td>
<td>190.75</td>
<td>219</td>
<td>250.5</td>
<td>255.5</td>
<td>222</td>
<td>216</td>
</tr>
<tr>
<td>Cell concentration (cells/ml)</td>
<td>5.00×10^4</td>
<td>9.38×10^4</td>
<td>2.37×10^5</td>
<td>4.06×10^5</td>
<td>4.77×10^5</td>
<td>5.48×10^5</td>
<td>6.26×10^5</td>
<td>6.39×10^5</td>
<td>5.54×10^5</td>
<td>5.41×10^5</td>
</tr>
</tbody>
</table>
Table A2.3: Cell count results for KU812Ep6 cell line at 1x10^4 cells/ml starting concentration (n=19)

<table>
<thead>
<tr>
<th>Day after seeding</th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
</tr>
</thead>
<tbody>
<tr>
<td>Well 1</td>
<td>-</td>
<td>7</td>
<td>28</td>
<td>59</td>
<td>143</td>
<td>180</td>
<td>181</td>
<td>200</td>
<td>223</td>
<td>219</td>
</tr>
<tr>
<td>Well 2</td>
<td>-</td>
<td>5</td>
<td>15</td>
<td>43</td>
<td>135</td>
<td>146</td>
<td>180</td>
<td>151</td>
<td>214</td>
<td>196</td>
</tr>
<tr>
<td>Well 3</td>
<td>-</td>
<td>8</td>
<td>14</td>
<td>54</td>
<td>110</td>
<td>159</td>
<td>175</td>
<td>179</td>
<td>188</td>
<td>191</td>
</tr>
<tr>
<td>Well 4</td>
<td>-</td>
<td>10</td>
<td>24</td>
<td>49</td>
<td>143</td>
<td>174</td>
<td>178</td>
<td>170</td>
<td>188</td>
<td>171</td>
</tr>
<tr>
<td>Mean</td>
<td>-</td>
<td>7.5</td>
<td>20.25</td>
<td>51.25</td>
<td>129</td>
<td>162</td>
<td>179</td>
<td>177</td>
<td>208</td>
<td>202</td>
</tr>
</tbody>
</table>

| Cell concentration (cells/ml) | 5.00x10^4 | 1.88x10^4 | 5.06x10^4 | 1.28x10^5 | 3.23x10^5 | 4.04x10^5 | 4.47x10^5 | 4.42x10^5 | 5.21x10^5 | 5.05x10^5 |

Table A2.4: Cell count results for KU812Ep6 cell line at 1x10^5 cells/ml starting concentration (n=81)

<table>
<thead>
<tr>
<th>Day after seeding</th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
</tr>
</thead>
<tbody>
<tr>
<td>Well 1</td>
<td>-</td>
<td>97</td>
<td>133</td>
<td>227</td>
<td>206</td>
<td>243</td>
<td>256</td>
<td>242</td>
<td>227</td>
<td>197</td>
</tr>
<tr>
<td>Well 2</td>
<td>-</td>
<td>52</td>
<td>159</td>
<td>156</td>
<td>184</td>
<td>202</td>
<td>243</td>
<td>243</td>
<td>209</td>
<td>197</td>
</tr>
<tr>
<td>Well 3</td>
<td>-</td>
<td>61</td>
<td>150</td>
<td>194</td>
<td>197</td>
<td>234</td>
<td>244</td>
<td>233</td>
<td>204</td>
<td>187</td>
</tr>
<tr>
<td>Well 4</td>
<td>-</td>
<td>96</td>
<td>171</td>
<td>188</td>
<td>212</td>
<td>247</td>
<td>233</td>
<td>261</td>
<td>217</td>
<td>195</td>
</tr>
<tr>
<td>Mean</td>
<td>-</td>
<td>76.5</td>
<td>153.25</td>
<td>191.25</td>
<td>199.75</td>
<td>231.5</td>
<td>244</td>
<td>244.75</td>
<td>214.25</td>
<td>194</td>
</tr>
</tbody>
</table>

| Cell concentration (cells/ml) | 1.00x10^5 | 1.91x10^5 | 3.83x10^5 | 4.78x10^5 | 4.99x10^5 | 5.79x10^5 | 6.10x10^5 | 6.12x10^5 | 5.36x10^5 | 4.85x10^5 |
Table A2.5: Cell count results for KU812Ep6 cell line at 5×10^4 cells/ml starting concentration (n+81)

<table>
<thead>
<tr>
<th>Day after seeding</th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
</tr>
</thead>
<tbody>
<tr>
<td>Well 1</td>
<td>28</td>
<td>75</td>
<td>172</td>
<td>169</td>
<td>235</td>
<td>246</td>
<td>229</td>
<td>208</td>
<td>185</td>
<td></td>
</tr>
<tr>
<td>Well 2</td>
<td>30</td>
<td>67</td>
<td>144</td>
<td>175</td>
<td>198</td>
<td>222</td>
<td>236</td>
<td>214</td>
<td>183</td>
<td></td>
</tr>
<tr>
<td>Well 3</td>
<td>41</td>
<td>95</td>
<td>173</td>
<td>173</td>
<td>201</td>
<td>217</td>
<td>204</td>
<td>214</td>
<td>198</td>
<td></td>
</tr>
<tr>
<td>Well 4</td>
<td>32</td>
<td>81</td>
<td>170</td>
<td>176</td>
<td>190</td>
<td>250</td>
<td>250</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mean</td>
<td>32.75</td>
<td>79.5</td>
<td>164.75</td>
<td>173.25</td>
<td>206</td>
<td>233.75</td>
<td>229.75</td>
<td>212</td>
<td>188.66</td>
<td></td>
</tr>
<tr>
<td>Cell concentration (cells/ml)</td>
<td>1.00×10^5</td>
<td>8.19×10^4</td>
<td>1.99×10^5</td>
<td>4.12×10^5</td>
<td>4.33×10^5</td>
<td>5.15×10^5</td>
<td>5.84×10^5</td>
<td>5.74×10^5</td>
<td>5.30×10^5</td>
<td>4.72×10^5</td>
</tr>
</tbody>
</table>

Table A2.6: Cell count results for KU812Ep6 cell line at 1×10^4 cells/ml starting concentration (n+81)

<table>
<thead>
<tr>
<th>Day after seeding</th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
</tr>
</thead>
<tbody>
<tr>
<td>Well 1</td>
<td>3</td>
<td>19</td>
<td>48</td>
<td>130</td>
<td>160</td>
<td>153</td>
<td>161</td>
<td>169</td>
<td></td>
</tr>
<tr>
<td>Well 2</td>
<td>7</td>
<td>9</td>
<td>37</td>
<td>115</td>
<td>159</td>
<td>167</td>
<td>183</td>
<td>164</td>
<td></td>
</tr>
<tr>
<td>Well 3</td>
<td>11</td>
<td>13</td>
<td>49</td>
<td>106</td>
<td>161</td>
<td>145</td>
<td>171</td>
<td>179</td>
<td></td>
</tr>
<tr>
<td>Well 4</td>
<td>5</td>
<td>18</td>
<td>55</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mean</td>
<td>6.5</td>
<td>14.75</td>
<td>47.25</td>
<td>117</td>
<td>160</td>
<td>155</td>
<td>171.66</td>
<td>170.66</td>
<td></td>
</tr>
<tr>
<td>Cell concentration (cells/ml)</td>
<td>1.00×10^4</td>
<td>1.63×10^4</td>
<td>3.69×10^4</td>
<td>1.18×10^5</td>
<td>2.93×10^5</td>
<td>4.00×10^5</td>
<td>3.88×10^5</td>
<td>4.29×10^5</td>
<td>4.27×10^5</td>
</tr>
</tbody>
</table>
Table A2.7: Cell count results for UT-7/EPO cell line at 1x10^5 cells/ml starting concentration (n+19)

<table>
<thead>
<tr>
<th>Day after seeding</th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
</tr>
</thead>
<tbody>
<tr>
<td>Well 1</td>
<td>-</td>
<td>61</td>
<td>172</td>
<td>258</td>
<td>240</td>
<td>278</td>
<td>283</td>
<td>263</td>
<td>229</td>
<td>209</td>
</tr>
<tr>
<td>Well 2</td>
<td>-</td>
<td>43</td>
<td>154</td>
<td>238</td>
<td>261</td>
<td>241</td>
<td>277</td>
<td>229</td>
<td>248</td>
<td>230</td>
</tr>
<tr>
<td>Well 3</td>
<td>-</td>
<td>72</td>
<td>123</td>
<td>200</td>
<td>236</td>
<td>226</td>
<td>274</td>
<td>235</td>
<td>238</td>
<td>194</td>
</tr>
<tr>
<td>Well 4</td>
<td>-</td>
<td>63</td>
<td>127</td>
<td>230</td>
<td>247</td>
<td>259</td>
<td>263</td>
<td>298</td>
<td>212</td>
<td>195</td>
</tr>
<tr>
<td>Mean</td>
<td>-</td>
<td>60</td>
<td>144</td>
<td>232</td>
<td>246</td>
<td>251</td>
<td>274</td>
<td>256</td>
<td>232</td>
<td>207</td>
</tr>
</tbody>
</table>

Cell concentration (cells/ml) 1.00x10^5 1.49x10^5 3.60x10^5 5.79x10^5 6.15x10^5 6.28x10^5 6.86x10^5 6.41x10^5 5.79x10^5 5.18x10^5

Table A2.8: Cell count results for UT-7/EPO cell line at 5x10^4 cells/ml starting concentration (n+19)

<table>
<thead>
<tr>
<th>Day after seeding</th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
</tr>
</thead>
<tbody>
<tr>
<td>Well 1</td>
<td>-</td>
<td>23</td>
<td>78</td>
<td>163</td>
<td>252</td>
<td>296</td>
<td>275</td>
<td>239</td>
<td>252</td>
<td>202</td>
</tr>
<tr>
<td>Well 2</td>
<td>-</td>
<td>23</td>
<td>85</td>
<td>186</td>
<td>220</td>
<td>203</td>
<td>285</td>
<td>233</td>
<td>225</td>
<td>236</td>
</tr>
<tr>
<td>Well 3</td>
<td>-</td>
<td>36</td>
<td>86</td>
<td>147</td>
<td>196</td>
<td>264</td>
<td>243</td>
<td>238</td>
<td>197</td>
<td>195</td>
</tr>
<tr>
<td>Well 4</td>
<td>-</td>
<td>25</td>
<td>75</td>
<td>165</td>
<td>196</td>
<td>265</td>
<td>283</td>
<td>267</td>
<td>239</td>
<td>183</td>
</tr>
<tr>
<td>Mean</td>
<td>-</td>
<td>27</td>
<td>81</td>
<td>165</td>
<td>216</td>
<td>257</td>
<td>272</td>
<td>244</td>
<td>228</td>
<td>204</td>
</tr>
</tbody>
</table>

Cell concentration (cells/ml) 5.00x10^4 6.69x10^4 2.03x10^5 4.13x10^5 5.40x10^5 6.43x10^5 6.79x10^5 6.11x10^5 5.71x10^5 5.10x10^5
Table A2.9: Cell count results for UT-7/EPO cell line at 1×10^4 cells/ml starting concentration (n=19)

<table>
<thead>
<tr>
<th>Day after seeding</th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
</tr>
</thead>
<tbody>
<tr>
<td>Well 1</td>
<td>-</td>
<td>9</td>
<td>12</td>
<td>40</td>
<td>101</td>
<td>160</td>
<td>214</td>
<td>216</td>
<td>199</td>
<td>218</td>
</tr>
<tr>
<td>Well 2</td>
<td>-</td>
<td>13</td>
<td>13</td>
<td>31</td>
<td>74</td>
<td>125</td>
<td>185</td>
<td>205</td>
<td>227</td>
<td>201</td>
</tr>
<tr>
<td>Well 3</td>
<td>-</td>
<td>3</td>
<td>10</td>
<td>44</td>
<td>75</td>
<td>178</td>
<td>205</td>
<td>212</td>
<td>215</td>
<td>174</td>
</tr>
<tr>
<td>Well 4</td>
<td>-</td>
<td>1</td>
<td>16</td>
<td>46</td>
<td>79</td>
<td>134</td>
<td>204</td>
<td>223</td>
<td>195</td>
<td>194</td>
</tr>
<tr>
<td>Mean</td>
<td>-</td>
<td>7</td>
<td>13</td>
<td>40</td>
<td>83</td>
<td>154</td>
<td>201</td>
<td>211</td>
<td>214</td>
<td>197</td>
</tr>
</tbody>
</table>

Cell concentration (cells/ml) 1.00x10^4 1.63x10^4 3.19x10^4 1.01x10^5 2.08x10^5 3.86x10^5 5.03x10^5 5.28x10^5 5.34x10^5 4.92x10^5

Table A2.10: Cell count results for UT-7/EPO cell line at 1×10^5 cells/ml starting concentration (n=80)

<table>
<thead>
<tr>
<th>Day after seeding</th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
</tr>
</thead>
<tbody>
<tr>
<td>Well 1</td>
<td>-</td>
<td>50</td>
<td>171</td>
<td>268</td>
<td>166</td>
<td>123</td>
<td>40</td>
</tr>
<tr>
<td>Well 2</td>
<td>-</td>
<td>56</td>
<td>211</td>
<td>217</td>
<td>176</td>
<td>88</td>
<td>43</td>
</tr>
<tr>
<td>Well 3</td>
<td>-</td>
<td>59</td>
<td>165</td>
<td>206</td>
<td>161</td>
<td>87</td>
<td>43</td>
</tr>
<tr>
<td>Well 4</td>
<td>-</td>
<td>58</td>
<td>116</td>
<td>207</td>
<td>152</td>
<td>103</td>
<td>31</td>
</tr>
<tr>
<td>Mean</td>
<td>-</td>
<td>55.75</td>
<td>165.75</td>
<td>224.5</td>
<td>163.75</td>
<td>100.25</td>
<td>39.25</td>
</tr>
</tbody>
</table>

Cell concentration (cells/ml) 1.00x10^5 1.39x10^5 4.14x10^5 5.61x10^5 4.09x10^5 2.51x10^5 9.81x10^4
Table A2.11: Cell count results for UT-7/EPO cell line at 5×10^4 cells/ml starting concentration (n=80)

<table>
<thead>
<tr>
<th>Day after seeding</th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
</tr>
</thead>
<tbody>
<tr>
<td>Well 1</td>
<td></td>
<td>24</td>
<td>66</td>
<td>174</td>
<td>211</td>
<td>177</td>
<td>181</td>
</tr>
<tr>
<td>Well 2</td>
<td></td>
<td>31</td>
<td>67</td>
<td>159</td>
<td>205</td>
<td>151</td>
<td>125</td>
</tr>
<tr>
<td>Well 3</td>
<td></td>
<td>22</td>
<td>68</td>
<td>154</td>
<td>196</td>
<td>144</td>
<td>125</td>
</tr>
<tr>
<td>Well 4</td>
<td></td>
<td>21</td>
<td>62</td>
<td>168</td>
<td>171</td>
<td>156</td>
<td>84</td>
</tr>
<tr>
<td>Mean</td>
<td></td>
<td>24.5</td>
<td>65.75</td>
<td>163.75</td>
<td>195.75</td>
<td>157</td>
<td>128.75</td>
</tr>
<tr>
<td>cell concentration (cells/ml)</td>
<td>5.00x10^4</td>
<td>6.13x10^4</td>
<td>1.64x10^5</td>
<td>4.09x10^5</td>
<td>4.89x10^5</td>
<td>3.93x10^5</td>
<td>3.22x10^5</td>
</tr>
</tbody>
</table>

Table A2.12: Cell count results for UT-7/EPO cell line at 1×10^4 cells/ml starting concentration (n=80)

<table>
<thead>
<tr>
<th>Day after seeding</th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
</tr>
</thead>
<tbody>
<tr>
<td>Well 1</td>
<td></td>
<td>2</td>
<td>11</td>
<td>23</td>
<td>69</td>
<td>171</td>
<td>232</td>
<td>190</td>
<td>156</td>
</tr>
<tr>
<td>Well 2</td>
<td></td>
<td>7</td>
<td>12</td>
<td>31</td>
<td>70</td>
<td>148</td>
<td>216</td>
<td>185</td>
<td>175</td>
</tr>
<tr>
<td>Well 3</td>
<td></td>
<td>5</td>
<td>11</td>
<td>34</td>
<td>81</td>
<td>138</td>
<td>199</td>
<td>181</td>
<td>170</td>
</tr>
<tr>
<td>Well 4</td>
<td></td>
<td>11</td>
<td>8</td>
<td>46</td>
<td>82</td>
<td>146</td>
<td>203</td>
<td>199</td>
<td>168</td>
</tr>
<tr>
<td>Mean</td>
<td></td>
<td>6.25</td>
<td>10.5</td>
<td>33.5</td>
<td>75.5</td>
<td>150.75</td>
<td>212.5</td>
<td>188.75</td>
<td>167.25</td>
</tr>
<tr>
<td>Cell concentration (cells/ml)</td>
<td>1.00x10^4</td>
<td>1.56x10^4</td>
<td>2.63x10^4</td>
<td>8.38x10^4</td>
<td>1.89x10^5</td>
<td>3.77x10^5</td>
<td>5.31x10^5</td>
<td>4.72x10^5</td>
<td>4.18x10^5</td>
</tr>
</tbody>
</table>
Table A2.13: Cell count results for UT-7/EPO-S1 cell line at 1x10⁵ cells/ml starting concentration

<table>
<thead>
<tr>
<th>Day after seeding</th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
</tr>
</thead>
<tbody>
<tr>
<td>Well 1</td>
<td>-</td>
<td>50</td>
<td>78</td>
<td>68</td>
<td>119</td>
<td>165</td>
<td>243</td>
<td>160</td>
<td>134</td>
<td>115</td>
</tr>
<tr>
<td>Well 2</td>
<td>-</td>
<td>32</td>
<td>66</td>
<td>86</td>
<td>127</td>
<td>127</td>
<td>207</td>
<td>152</td>
<td>131</td>
<td>106</td>
</tr>
<tr>
<td>Well 3</td>
<td>-</td>
<td>41</td>
<td>65</td>
<td>103</td>
<td>138</td>
<td>170</td>
<td>190</td>
<td>201</td>
<td>139</td>
<td>99</td>
</tr>
<tr>
<td>Well 4</td>
<td>-</td>
<td>48</td>
<td>72</td>
<td>85</td>
<td>154</td>
<td>186</td>
<td>192</td>
<td>198</td>
<td>143</td>
<td>102</td>
</tr>
<tr>
<td>Mean</td>
<td>-</td>
<td>42.75</td>
<td>70.25</td>
<td>85.5</td>
<td>134.5</td>
<td>162</td>
<td>208</td>
<td>177.75</td>
<td>136.75</td>
<td>140.67</td>
</tr>
</tbody>
</table>

| Cell concentration (cells/ml) | 1.00x10⁵ | 1.07x10⁵ | 1.76x10⁵ | 2.14x10⁵ | 3.36x10⁵ | 4.05x10⁵ | 5.20x10⁵ | 4.44x10⁵ | 3.42x10⁵ | 3.52x10⁵ |

Table A2.14: Cell count results for UT-7/EPO-S1 cell line at 1x10⁴ cells/ml starting concentration

<table>
<thead>
<tr>
<th>Day after seeding</th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
</tr>
</thead>
<tbody>
<tr>
<td>Well 1</td>
<td>-</td>
<td>18</td>
<td>20</td>
<td>33</td>
<td>52</td>
<td>69</td>
<td>99</td>
<td>168</td>
<td>188</td>
<td>172</td>
</tr>
<tr>
<td>Well 2</td>
<td>-</td>
<td>12</td>
<td>20</td>
<td>26</td>
<td>57</td>
<td>82</td>
<td>115</td>
<td>166</td>
<td>182</td>
<td>214</td>
</tr>
<tr>
<td>Well 3</td>
<td>-</td>
<td>20</td>
<td>13</td>
<td>28</td>
<td>35</td>
<td>71</td>
<td>108</td>
<td>150</td>
<td>147</td>
<td>198</td>
</tr>
<tr>
<td>Well 4</td>
<td>-</td>
<td>25</td>
<td>26</td>
<td>30</td>
<td>37</td>
<td>72</td>
<td>122</td>
<td>200</td>
<td>210</td>
<td>188</td>
</tr>
<tr>
<td>Mean</td>
<td>-</td>
<td>18.75</td>
<td>19.75</td>
<td>29.25</td>
<td>45.25</td>
<td>73.5</td>
<td>111</td>
<td>171</td>
<td>181.75</td>
<td>257.33</td>
</tr>
</tbody>
</table>

<p>| Cell concentration (cells/ml) | 1.00x10⁴ | 4.69x10⁴ | 4.94x10⁴ | 7.31x10⁴ | 1.13x10⁵ | 1.84x10⁵ | 2.78x10⁵ | 4.28x10⁵ | 4.54x10⁵ | 6.43x10⁵ |</p>
<table>
<thead>
<tr>
<th>Days after seeding</th>
<th>Cell count at 20% oxygen (cells/ml)</th>
<th>Cell count at 3% oxygen (cells/ml)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>1.00×10^3</td>
<td>1.00×10^3</td>
</tr>
<tr>
<td>1</td>
<td>1.40×10^3</td>
<td>1.75×10^3</td>
</tr>
<tr>
<td>2</td>
<td>3.30×10^3</td>
<td>2.20×10^3</td>
</tr>
<tr>
<td>3</td>
<td>3.90×10^3</td>
<td>3.00×10^3</td>
</tr>
<tr>
<td>4</td>
<td>5.00×10^3</td>
<td>3.70×10^3</td>
</tr>
<tr>
<td>5</td>
<td>6.90×10^3</td>
<td>4.10×10^3</td>
</tr>
<tr>
<td>6</td>
<td>7.60×10^3</td>
<td>6.10×10^3</td>
</tr>
<tr>
<td>7</td>
<td>8.50×10^3</td>
<td>4.70×10^3</td>
</tr>
<tr>
<td>8</td>
<td>8.30×10^3</td>
<td>2.30×10^3</td>
</tr>
<tr>
<td>9</td>
<td>7.35×10^3</td>
<td>1.60×10^3</td>
</tr>
<tr>
<td>10</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Appendix 3: PCR data for viral removal study and RT-PCR data for viral inactivation studies

1. Planova study

Figure A3.1: LightCycler PCR products for Planova experimental controls and samples 1 to 13 (first 15N filter)

Lane M. PCR markers

Lanes 1 to 4: IS (99/686, positive control)
1. 1x10^6 0 IU/ml
2. 1x10^5 0 IU/ml
3. 1x10^4 0 IU/ml
4. 1x10^3 0 IU/ml

Lanes 9 to 16: Planova experimental controls
9. Sample A1 neat
10. Sample A2 neat
11. Sample B1 neat
12. Sample B2 neat
13. Sample C1 neat
14. Sample C2 neat
15. Sample D1 neat
16. Sample D2 neat

Lanes 6 to 8: Extraction negative controls
6. Negative plasma
7. Negative serum
8. RNAase-free water

Lanes 17 to 23: Planova samples
17. Sample 1 neat
18. Sample 3 neat
19. Sample 5 neat
20. Sample 7 neat
21. Sample 9 neat
22. Sample 11 neat
23. Sample 13 neat

5. RNAase-free water (PCR negative control)
Figure A3.2: LightCycler PCR products for Planova samples 17 to 41 (first 15N filter)

Lane M. PCR markers

Lanes 1 to 4: IS (99/686, positive control)
1. $1 \times 10^{6.0}$ IU/ml
2. $1 \times 10^{5.0}$ IU/ml
3. $1 \times 10^{4.0}$ IU/ml
4. $1 \times 10^{3.0}$ IU/ml

5. RNAase-free water (PCR negative control)

Lanes 6 to 9: Extraction negative controls
6. Negative plasma
7. Negative serum
8. RNAase-free water
9. RNAase-free water

Lanes 10 to 23: Planova samples
10. Sample 15 neat
11. Sample 17 neat
12. Sample 19 neat
13. Sample 21 neat
14. Sample 23 neat
15. Sample 25 neat
16. Sample 27 neat
17. Sample 29 neat
18. Sample 31 neat
19. Sample 33 neat
20. Sample 35 neat
21. Sample 37 neat
22. Sample 39 neat
23. Sample 41 neat
Figure A3.3: LightCycler PCR products for Planova samples 17 to 41 (first 15N filter)

Lane M. PCR markers

Lanes 1 to 4: IS (99/686, positive control)
1. $1 \times 10^6.0$ IU/ml
2. $1 \times 10^5.0$ IU/ml
3. $1 \times 10^4.0$ IU/ml
4. $1 \times 10^3.0$ IU/ml

5. RNAase-free water (PCR negative control)

Lanes 6 to 9: Extraction negative controls
6. Negative plasma
7. Negative serum
8. RNAase-free water
9. RNAase-free water

Lanes 10 to 23: Planova samples
10. Sample 43 neat
11. Sample 44 neat
12. Sample 46 neat
13. Sample 48 neat
14. Sample 50 neat
15. Sample 52 neat
16. Sample 54 neat
17. Sample 56 neat
18. Sample 58 neat
19. Sample 60 neat
20. Sample 62 neat
21. Sample 64 neat
22. Sample 66 neat
23. Sample 68 neat
Figure A3.4: LightCycler PCR products for Planova samples 68 to 86 (second 15N filter)

Lane M. PCR markers

Lanes 1 to 4: IS (99/800, positive control)
1. 1×10^6 IU/ml
2. 1×10^5 IU/ml
3. 1×10^4 IU/ml
4. 1×10^3 IU/ml

Lanes 8 to 17: Planova samples
8. Sample 68 neat
9. Sample 70 neat
10. Sample 72 neat
11. Sample 74 neat
12. Sample 76 neat
13. Sample 78 neat
14. Sample 80 neat
15. Sample 82 neat
16. Sample 84 neat
17. Sample 86 neat

5. RNAase-free water (PCR negative control)
6. Negative plasma (extraction negative control)
7. Positive control (2×10^3 IU/ml)
Figure A3.5: LightCycler PCR products for Planova samples 87 to 107 (first 20N filter)

Lane M. PCR markers

Lanes 1 to 4: IS (99/800, positive control)
1. $1 \times 10^{6.0}$ IU/ml
2. $1 \times 10^{5.0}$ IU/ml
3. $1 \times 10^{4.0}$ IU/ml
4. $1 \times 10^{3.0}$ IU/ml

Lanes 10 to 13: Extraction negative controls
10. Negative plasma
11. Negative serum
12. RNAase-free water
13. RNAase-free water

Lanes 6 to 9: IS (99/800, positive control)
6. $1 \times 10^{6.0}$ IU/ml
7. $1 \times 10^{5.0}$ IU/ml
8. $1 \times 10^{4.0}$ IU/ml
9. $1 \times 10^{3.0}$ IU/ml

Lanes 14 to 24: Planova samples
14. Sample 87 neat
15. Sample 89 neat
16. Sample 91 neat
17. Sample 93 neat
18. Sample 95 neat
19. Sample 97 neat
20. Sample 99 neat
21. Sample 101 neat
22. Sample 103 neat
23. Sample 105 neat
24. Sample 107 neat
Figure A3.6: LightCycler PCR products for Planova samples 109 to 130 (first and second 20N filters)

Lane M. PCR markers
Lanes 1 to 4: IS (99/800, positive control)
1. 1×10^6 IU/ml
2. 1×10^5 IU/ml
3. 1×10^4 IU/ml
4. 1×10^3 IU/ml

5. RNAase-free water (PCR negative control)
Lanes 6 to 9: IS (99/800, positive control)
6. 1×10^6 IU/ml
7. 1×10^5 IU/ml
9. 1×10^3 IU/ml

Lanes 14 to 25: Planova samples
14. Sample 109 neat
15. Sample 111 neat
16. Sample 113 neat
17. Sample 115 neat
18. Sample 117 neat
19. Sample 119 neat
20. Sample 121 neat
21. Sample 123 neat
22. Sample 125 neat
23. Sample 127 neat
24. Sample 129 neat
25. Sample 130 neat (second 20N filter)
Figure A3.7: LightCycler PCR products for Planova samples 132 to 154 (second 20N filter)

Lane M. PCR markers

Lanes 1 to 4: IS (99/800, positive control)
1. 1×10^6 IU/ml
2. 1×10^5 IU/ml
3. 1×10^4 IU/ml
4. 1×10^3 IU/ml

5. RNAase-free water (PCR negative control)

Lanes 6 to 9: IS (99/800, positive control)
6. 1×10^6 IU/ml
7. 1×10^5 IU/ml
8. 1×10^4 IU/ml
9. 1×10^3 IU/ml

Lanes 10 to 13: Extraction negative controls
10. Negative plasma
11. Negative serum
12. RNAase-free water
13. RNAase-free water

Lanes 14 to 25: Planova samples
14. Sample 132 neat
15. Sample 134 neat
16. Sample 136 neat
17. Sample 138 neat
18. Sample 140 neat
19. Sample 142 neat
20. Sample 144 neat
21. Sample 146 neat
22. Sample 148 neat
23. Sample 150 neat
24. Sample 152 neat
25. Sample 154 neat
Figure A3.8: LightCycler PCR products for Planova samples 156 to 173 (second 20N and third 15N filter)

Lane M. PCR markers

Lanes 1 to 4: IS (99/800, positive control)
1. 1×10^6 IU/ml
2. 1×10^5 IU/ml
3. 1×10^4 IU/ml
4. 1×10^3 IU/ml

5. RNAase-free water (PCR negative control)

Lanes 6 to 9: IS (99/800, positive control)
6. 1×10^6 IU/ml
7. 1×10^5 IU/ml
8. 1×10^4 IU/ml
9. 1×10^3 IU/ml

Lanes 10 to 13: Extraction negative controls
10. Negative plasma
11. Negative serum
12. RNAase-free water
13. RNAase-free water

Lanes 14 to 25: Planova samples
14. Sample 156 neat
15. Sample 158 neat
16. Sample 160 neat
17. Sample 162 neat
18. Sample 164 neat
19. Sample 166 neat
20. Sample 168 neat
21. Sample 170 neat
22. Sample 172 neat
23. Sample 173 neat (third 15N filter)
Figure A3.9: LightCycler PCR products for Planova samples 175 and 177 (third 15N filter)

<table>
<thead>
<tr>
<th>Lane</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>M</td>
<td>PCR markers</td>
</tr>
<tr>
<td>1</td>
<td>IS (99/800, positive control)</td>
</tr>
<tr>
<td>2</td>
<td>1x10^60 IU/ml</td>
</tr>
<tr>
<td>3</td>
<td>1x10^50 IU/ml</td>
</tr>
<tr>
<td>4</td>
<td>1x10^40 IU/ml</td>
</tr>
<tr>
<td>5</td>
<td>1x10^30 IU/ml</td>
</tr>
<tr>
<td>6</td>
<td>RNAase-free water (PCR negative control)</td>
</tr>
<tr>
<td>7</td>
<td>Sample 175 neat</td>
</tr>
<tr>
<td>8</td>
<td>Sample 177 neat</td>
</tr>
</tbody>
</table>

Lane M: PCR markers

Lanes 1 to 4: IS (99/800, positive control)
1. 1x10^60 IU/ml
2. 1x10^50 IU/ml
3. 1x10^40 IU/ml
4. 1x10^30 IU/ml
5. RNAase-free water (PCR negative control)

Lanes 6 and 7: Planova samples
6. Sample 175 neat
7. Sample 177 neat
Figure A3.10: LightCycler PCR products for Planova samples 179 to 215 (third 15N filter)

Lane M. PCR markers

Lanes 1 to 4: IS (99/800, positive control)
1. $1 \times 10^6$0 IU/ml
2. $1 \times 10^5$0 IU/ml
3. $1 \times 10^4$0 IU/ml
4. $1 \times 10^3$0 IU/ml

Lanes 6 to 9: IS (99/800, positive control)
6. $1 \times 10^6$0 IU/ml
7. $1 \times 10^5$0 IU/ml
8. $1 \times 10^4$0 IU/ml
9. $1 \times 10^3$0 IU/ml

Lanes 10 to 12: Extraction negative controls
10. Negative plasma
11. Negative serum
12. RNase-free water

Lanes 13 to 31: Planova samples
13. Sample 179 neat
14. Sample 181 neat
15. Sample 183 neat
16. Sample 185 neat
17. Sample 187 neat
18. Sample 189 neat
19. Sample 191 neat
20. Sample 193 neat
21. Sample 195 neat
22. Sample 197 neat
23. Sample 199 neat
24. Sample 201 neat
25. Sample 203 neat
26. Sample 205 neat
27. Sample 207 neat
28. Sample 209 neat
29. Sample 211 neat
30. Sample 213 neat
31. Sample 215 neat
Figure A3.11: LightCycler PCR products for Planova samples 246 to 258 (third 20N filter)

Lane M. PCR markers

Lanes 1 to 4: IS (99/800, positive control)
1. 1x10^60 IU/ml
2. 1x10^50 IU/ml
3. 1x10^40 IU/ml
4. 1x10^30 IU/ml

Lanes 10 to 12: Extraction negative controls
10. Negative plasma
11. Negative serum
12. RNAase-free water

Lanes 6 to 9: IS (99/800, positive control)
6. 1x10^60 IU/ml
7. 1x10^50 IU/ml
8. 1x10^40 IU/ml
9. 1x10^30 IU/ml

Lanes 13 to 19: Planova samples
13. Sample 246 neat
14. Sample 248 neat
15. Sample 250 neat
16. Sample 252 neat
17. Sample 254 neat
18. Sample 256 neat
19. Sample 258 neat
2. BPL study

Figure A3.12: Infectivity assay results for BPL spiked product control

Lane M. PCR markers

Lanes 1 to 8: LP isolate (positive control)
1. 5×10^8 IU/ml inoculum
2. 5×10^7 IU/ml inoculum
3. 5×10^6 IU/ml inoculum
4. 5×10^5 IU/ml inoculum
5. 5×10^4 IU/ml inoculum
6. 5×10^3 IU/ml inoculum
7. 5×10^2 IU/ml inoculum
8. Phosphate buffer pH 5.7

Lanes 9 to 16: BPL spiked product control
9. 4×10^9 IU/ml inoculum
10. 4×10^8 IU/ml inoculum
11. 4×10^7 IU/ml inoculum
12. 4×10^6 IU/ml inoculum
13. 4×10^5 IU/ml inoculum
14. 4×10^4 IU/ml inoculum
15. 4×10^3 IU/ml inoculum
16. Phosphate buffer pH 5.7

Lanes 17 and 18: RT-PCR positive controls
16. 5×10^7 IU/ml inoculum
17. RNAse-free water
Figure A3.13: Infectivity assay results for BPL spiked medium control and spiked test sample 1

Lane M. PCR markers

Lanes 1 to 8: LP isolate (positive control)
1. $5 \times 10^{8.0}$ IU/ml inoculum
2. $5 \times 10^{7.5}$ IU/ml inoculum
3. $5 \times 10^{7.0}$ IU/ml inoculum
4. $5 \times 10^{6.5}$ IU/ml inoculum
5. $5 \times 10^{6.0}$ IU/ml inoculum
6. $5 \times 10^{5.5}$ IU/ml inoculum
7. $5 \times 10^{5.0}$ IU/ml inoculum
8. Phosphate buffer pH 5.7

Lanes 9 to 16: BPL spiked medium control
9. $4 \times 10^{7.0}$ IU/ml inoculum
10. $4 \times 10^{6.5}$ IU/ml inoculum
11. $4 \times 10^{6.0}$ IU/ml inoculum
12. $4 \times 10^{5.5}$ IU/ml inoculum
13. $4 \times 10^{5.0}$ IU/ml inoculum
14. $4 \times 10^{4.5}$ IU/ml inoculum
15. $4 \times 10^{4.0}$ IU/ml inoculum
16. Phosphate buffer pH 5.7

Lanes 17 to 24: BPL spiked test sample 1
17. $1.5 \times 10^{7.0}$ IU/ml inoculum
18. $1.5 \times 10^{6.5}$ IU/ml inoculum
19. $1.5 \times 10^{6.0}$ IU/ml inoculum
20. $1.5 \times 10^{5.5}$ IU/ml inoculum
21. $1.5 \times 10^{5.0}$ IU/ml inoculum
22. $1.5 \times 10^{4.5}$ IU/ml inoculum
23. $1.5 \times 10^{4.0}$ IU/ml inoculum

Lanes 25 and 26: RT-PCR positive controls
25. $5 \times 10^{8.0}$ IU/ml inoculum
26. RNAase-free water
Figure A3.14: Infectivity assay results for BPL spiked test sample 2

Lane M. PCR markers
Lanes 1 to 8: LP isolate (positive control)
1. 5 x 10^8.0 IU/ml inoculum
2. 5 x 10^7.5 IU/ml inoculum
3. 5 x 10^7.0 IU/ml inoculum
4. 5 x 10^6.5 IU/ml inoculum
5. 5 x 10^6.0 IU/ml inoculum
6. 5 x 10^5.5 IU/ml inoculum
7. 5 x 10^5.0 IU/ml inoculum
8. Phosphate buffer pH 5.7

Lanes 9 to 16: BPL spiked test sample 2
9. 2.7 x 10^8.0 IU/ml inoculum
10. 2.7 x 10^7.5 IU/ml inoculum
11. 2.7 x 10^7.0 IU/ml inoculum
12. 2.7 x 10^6.5 IU/ml inoculum
13. 2.7 x 10^6.0 IU/ml inoculum
14. 2.7 x 10^5.5 IU/ml inoculum
15. 2.7 x 10^5.0 IU/ml inoculum
16. Phosphate buffer pH 5.7

Lanes 17 and 18: RT-PCR positive controls
17. 5 x 10^10 IU/ml inoculum
18. RNAase-free water
Figure A3.15: Infectivity assay results for BPL spiked test sample 3

Lane M. PCR markers

Lanes 1 to 8: LP isolate (positive control)
1. 5x10^8.0 IU/ml inoculum
2. 5x10^7.5 IU/ml inoculum
3. 5x10^7.0 IU/ml inoculum
4. 5x10^6.5 IU/ml inoculum
5. 5x10^6.0 IU/ml inoculum
6. 5x10^5.5 IU/ml inoculum
7. 5x10^5.0 IU/ml inoculum
8. Phosphate buffer pH 5.7

Lanes 9 to 12: BPL spiked test sample 3
9. 3.1x10^9.0 IU/ml inoculum
10. 3.1x10^8.5 IU/ml inoculum
11. 3.1x10^8.0 IU/ml inoculum
12. Phosphate buffer pH 5.7

Lanes 13 and 14: RT-PCR positive controls
13. 5x10^7.0 IU/ml inoculum
14. RNAase-free water
Figure A3.16: Infectivity assay results for BPL unspiked 8Y product

Lane M. PCR markers
Lanes 1 to 8: LP isolate (positive control)
1. 5x10^8.0 IU/ml inoculum
2. 5x10^7.2 IU/ml inoculum
3. 5x10^7.0 IU/ml inoculum
4. 5x10^6.5 IU/ml inoculum
5. 5x10^6.0 IU/ml inoculum
6. 5x10^5.5 IU/ml inoculum
7. 5x10^5.0 IU/ml inoculum
8. Phosphate buffer pH 5.7

Lanes 9 to 16: BPL unspiked 8Y product
9. 3x10^6.0 IU/ml inoculum
10. 3x10^5.5 IU/ml inoculum
11. 3x10^5.0 IU/ml inoculum
12. 3x10^5.0 IU/ml inoculum
13. 3x10^2.0 IU/ml inoculum
14. Phosphate buffer pH 5.7

Lanes 15 and 16: RT-PCR positive controls
17. 5x10^6.0 IU/ml inoculum
18. RNAase-free water
3. Aphios study

- **NIBSC-01**

Figure A3.17: Infectivity assay results for NIBSC-01 “before” (panel A) and CFI-treated #1 samples (panel B)

Lane M: PCR markers

- **Lanes 1 to 8: LP isolate (positive control)**
 - 1. $5 \times 10^{7.0}$ IU/ml inoculum
 - 2. $5 \times 10^{6.5}$ IU/ml inoculum
 - 3. $5 \times 10^{6.0}$ IU/ml inoculum
 - 4. $5 \times 10^{5.5}$ IU/ml inoculum
 - 5. $5 \times 10^{5.0}$ IU/ml inoculum
 - 6. $5 \times 10^{4.5}$ IU/ml inoculum
 - 7. $5 \times 10^{4.0}$ IU/ml inoculum
 - 8. Phosphate buffer pH 5.7

- **Lanes 17 to 24: NIBSC-01 CFI-treated #1**
 - 17. $5 \times 10^{9.0}$ IU/ml inoculum
 - 18. $5 \times 10^{8.5}$ IU/ml inoculum
 - 19. $5 \times 10^{8.0}$ IU/ml inoculum
 - 20. $5 \times 10^{7.5}$ IU/ml inoculum
 - 21. $5 \times 10^{7.0}$ IU/ml inoculum
 - 22. $5 \times 10^{6.5}$ IU/ml inoculum
 - 23. $5 \times 10^{6.0}$ IU/ml inoculum
 - 24. Phosphate buffer pH 5.7

- **Lanes 9 to 16: NIBSC-01 “before”**
 - 9. $1 \times 10^{9.0}$ IU/ml inoculum
 - 10. $1 \times 10^{8.5}$ IU/ml inoculum
 - 11. $1 \times 10^{8.0}$ IU/ml inoculum
 - 12. $1 \times 10^{7.5}$ IU/ml inoculum
 - 13. $1 \times 10^{7.0}$ IU/ml inoculum
 - 14. $1 \times 10^{6.5}$ IU/ml inoculum
 - 15. $1 \times 10^{6.0}$ IU/ml inoculum
 - 16. Phosphate buffer pH 5.7

- **Lanes 25 and 26: RT-PCR positive controls**
 - 25. $1 \times 10^{8.0}$ IU/ml inoculum
 - 26. RNAase-free water
Figure A3.18: Infectivity assay results for NIBSC-01 CFI-treated #2 samples

(A) (B)

Lane M. PCR markers
Lanes 1 to 8: LP isolate (positive control)
1. 5x10^7.0 IU/ml inoculum
2. 5x10^6.5 IU/ml inoculum
3. 5x10^6.0 IU/ml inoculum
4. 5x10^5.5 IU/ml inoculum
5. 5x10^5.0 IU/ml inoculum
6. 5x10^4.5 IU/ml inoculum
7. 5x10^4.0 IU/ml inoculum
8. Phosphate buffer pH 5.7

Lanes 9 to 16: NIBSC-01 CFI-treated #2
9. 3x10^9.0 IU/ml inoculum
10. 3x10^8.5 IU/ml inoculum
11. 3x10^8.0 IU/ml inoculum
12. 3x10^7.5 IU/ml inoculum
13. 3x10^7.0 IU/ml inoculum
14. 3x10^6.5 IU/ml inoculum
15. 3x10^6.0 IU/ml inoculum
16. Phosphate buffer pH 5.7

Lanes 17 to 24: NIBSC-01 CFI-treated #2
17. 6x10^9.0 IU/ml inoculum
18. 6x10^8.5 IU/ml inoculum
19. 6x10^8.0 IU/ml inoculum
20. 6x10^7.5 IU/ml inoculum
21. 6x10^7.0 IU/ml inoculum
22. 6x10^6.5 IU/ml inoculum
23. 6x10^6.0 IU/ml inoculum
24. Phosphate buffer pH 5.7

Lanes 25 and 26: RT-PCR positive controls
25. RNAase-free water
26. 1x10^7.0 IU/ml inoculum
Figure A3.19: Infectivity assay results for NIBSC-01 CFI-treated #3 (panel A) and “time and temperature” samples (panel B)

(A)
Lane M. PCR markers
Lanes 1 to 8: LP isolate (positive control)
1. 5x10^7.0 IU/ml inoculum
2. 5x10^6.5 IU/ml inoculum
3. 5x10^6.0 IU/ml inoculum
4. 5x10^5.5 IU/ml inoculum
5. 5x10^5.0 IU/ml inoculum
6. 5x10^4.5 IU/ml inoculum
7. 5x10^4.0 IU/ml inoculum
8. Phosphate buffer pH 5.7
Lanes 9 to 16: NIBSC-01 CFI-treated #3
9. 5x10^9.0 IU/ml inoculum
10. 5x10^8.5 IU/ml inoculum
11. 5x10^8.0 IU/ml inoculum
12. 5x10^7.5 IU/ml inoculum
13. 5x10^7.0 IU/ml inoculum
14. 5x10^6.5 IU/ml inoculum
15. 5x10^6.0 IU/ml inoculum
16. Phosphate buffer pH 5.7
Lanes 25 and 26: RT-PCR positive
25. RNAase-free water
26. 1x10^8.0 IU/ml inoculum

(B)
Lane M.
Lanes 17 to 24: NIBSC-01 “Time and temperature” controls
17. 5x10^9.0 IU/ml inoculum
18. 5x10^8.5 IU/ml inoculum
19. 5x10^8.0 IU/ml inoculum
20. 5x10^7.5 IU/ml inoculum
21. 5x10^7.0 IU/ml inoculum
22. 5x10^6.5 IU/ml inoculum
23. 5x10^6.0 IU/ml inoculum
24. Phosphate buffer pH 5.7
Lanes 25 and 26: RT-PCR positive
25. RNAase-free water
26. 1x10^8.0 IU/ml inoculum
Figure A3.20: Infectivity assay results for NIBSC-02 “before” (panel A) and CFI-treated #1 samples (panel B)

(A) Lane M. PCR markers

Lanes 1 to 8: LP isolate (positive control)
1. $5 \times 10^{7.0}$ IU/ml inoculum
2. $5 \times 10^{6.5}$ IU/ml inoculum
3. $5 \times 10^{6.0}$ IU/ml inoculum
4. $5 \times 10^{5.5}$ IU/ml inoculum
5. $5 \times 10^{5.0}$ IU/ml inoculum
6. $5 \times 10^{4.5}$ IU/ml inoculum
7. $5 \times 10^{4.0}$ IU/ml inoculum
8. Phosphate buffer pH 5.7

Lanes 17 to 24: NIBSC-02 CFI-treated #1
17. $2 \times 10^{9.0}$ IU/ml inoculum
18. $2 \times 10^{8.5}$ IU/ml inoculum
19. $2 \times 10^{8.0}$ IU/ml inoculum
20. $2 \times 10^{7.5}$ IU/ml inoculum
21. $2 \times 10^{7.0}$ IU/ml inoculum
22. $2 \times 10^{6.5}$ IU/ml inoculum
23. $2 \times 10^{6.0}$ IU/ml inoculum
24. Phosphate buffer pH 5.7

(B) Lane M. PCR markers

Lanes 9 to 16: NIBSC-02 “before”
9. $3 \times 10^{9.0}$ IU/ml inoculum
10. $3 \times 10^{8.5}$ IU/ml inoculum
11. $3 \times 10^{8.0}$ IU/ml inoculum
12. $3 \times 10^{7.5}$ IU/ml inoculum
13. $3 \times 10^{7.0}$ IU/ml inoculum
14. $3 \times 10^{6.5}$ IU/ml inoculum
15. $3 \times 10^{6.0}$ IU/ml inoculum
16. Phosphate buffer pH 5.7

Lanes 25 and 26: RT-PCR positive controls
25. RNAase-free water
26. $1 \times 10^{8.0}$ IU/ml inoculum
Figure A3.21: Infectivity assay results for NIBSC-02 CFI-treated #1 sample (panels A and B)

(A)

Lane M: PCR markers
Lanes 1 to 8: LP isolate (positive control)
1. $5 \times 10^{7.0}$ IU/ml inoculum
2. $5 \times 10^{6.5}$ IU/ml inoculum
3. $5 \times 10^{5.5}$ IU/ml inoculum
4. $5 \times 10^{4.0}$ IU/ml inoculum
5. $5 \times 10^{3.5}$ IU/ml inoculum
6. $5 \times 10^{2.0}$ IU/ml inoculum
7. Phosphate buffer pH 5.7

Lanes 9 to 16: NIBSC-02 CFI-treated #1
8. $2 \times 10^{9.0}$ IU/ml inoculum
9. $2 \times 10^{8.5}$ IU/ml inoculum
10. $2 \times 10^{8.0}$ IU/ml inoculum
11. $2 \times 10^{7.5}$ IU/ml inoculum
12. $2 \times 10^{7.0}$ IU/ml inoculum
13. $2 \times 10^{6.5}$ IU/ml inoculum
14. $2 \times 10^{6.0}$ IU/ml inoculum
15. Phosphate buffer pH 5.7

(B)

Lane M: PCR markers
Lanes 16 and 17: RT-PCR positive controls
16. RNAase-free water
17. $1 \times 10^{8.0}$ IU/ml inoculum

Lane: 1,000 bp
750 bp
500 bp
300 bp
150 bp
50 bp
Figure A3.22: Infectivity assay results for NIBSC-02 CFI-treated #2 sample (panels A and B)

(A) (B)

Lane M. PCR markers

Lanes 1 to 8: LP isolate (positive control)
1. $5 \times 10^7.0$ IU/ml inoculum
2. $5 \times 10^6.5$ IU/ml inoculum
3. $5 \times 10^6.0$ IU/ml inoculum
4. $5 \times 10^5.5$ IU/ml inoculum
5. $5 \times 10^5.0$ IU/ml inoculum
6. $5 \times 10^4.5$ IU/ml inoculum
7. $5 \times 10^4.0$ IU/ml inoculum
8. Phosphate buffer pH 5.7

Lanes 9 to 16: NIBSC-02 CFI-treated #2
9. $5 \times 10^9.0$ IU/ml inoculum
10. $3 \times 10^8.5$ IU/ml inoculum
11. $5 \times 10^8.0$ IU/ml inoculum
12. $5 \times 10^7.5$ IU/ml inoculum
13. $5 \times 10^7.0$ IU/ml inoculum
14. $5 \times 10^6.5$ IU/ml inoculum
15. $5 \times 10^6.0$ IU/ml inoculum
16. Phosphate buffer pH 5.7

Lanes 17 and 18: RT-PCR positive controls
16. RNAase-free water
17. $1 \times 10^7.0$ IU/ml inoculum
Figure A3.23: Infectivity assay results for NIBSC-02 CFI-treated #3 (panel A) and “time and temperature” samples (panel B)

Lane M. PCR markers

Lanes 1 to 8: LP isolate (positive control)
1. $5 \times 10^{7.0}$ IU/ml inoculum
2. $5 \times 10^{6.5}$ IU/ml inoculum
3. $5 \times 10^{6.0}$ IU/ml inoculum
4. $5 \times 10^{5.5}$ IU/ml inoculum
5. $5 \times 10^{5.0}$ IU/ml inoculum
6. $5 \times 10^{4.5}$ IU/ml inoculum
7. $5 \times 10^{4.0}$ IU/ml inoculum
8. Phosphate buffer pH 5.7

Lanes 9 to 16: NIBSC-02 CFI-treated #3
9. $8 \times 10^{9.0}$ IU/ml inoculum
10. $8 \times 10^{8.5}$ IU/ml inoculum
11. $8 \times 10^{8.0}$ IU/ml inoculum
12. $8 \times 10^{7.5}$ IU/ml inoculum
13. $8 \times 10^{7.0}$ IU/ml inoculum
14. $8 \times 10^{6.5}$ IU/ml inoculum
15. $8 \times 10^{6.0}$ IU/ml inoculum
16. Phosphate buffer pH 5.7

Lanes 17 to 24: NIBSC-02 “time and temperature”
17. $7.6 \times 10^{9.5}$ IU/ml inoculum
18. $7.6 \times 10^{9.0}$ IU/ml inoculum
19. $7.6 \times 10^{8.5}$ IU/ml inoculum
20. $7.6 \times 10^{8.0}$ IU/ml inoculum
21. $7.6 \times 10^{7.5}$ IU/ml inoculum
22. $7.6 \times 10^{7.0}$ IU/ml inoculum
23. $7.6 \times 10^{6.5}$ IU/ml inoculum
24. Phosphate buffer pH 5.7

Lanes 25 and 26: RT-PCR positive controls
25. RNAase-free water
26. $1 \times 10^{8.0}$ IU/ml inoculum
NIBSC-03

Figure A3.24: Infectivity assay results for NIBSC-03 “before” and CFI-treated #2 samples

Lane M. PCR markers
Lanes 1 to 8: LP isolate (positive control)
1. 5x10^7.0 IU/ml inoculum
2. 5x10^6.5 IU/ml inoculum
3. 5x10^6.0 IU/ml inoculum
4. 5x10^5.5 IU/ml inoculum
5. 5x10^5.0 IU/ml inoculum
6. 5x10^4.5 IU/ml inoculum
7. 5x10^4.0 IU/ml inoculum
8. Phosphate buffer pH 5.7

Lanes 9 to 16: NIBSC-03 “before”
9. 2x10^10.0 IU/ml inoculum
10. 2x10^9.5 IU/ml inoculum
11. 2x10^9.0 IU/ml inoculum
12. 2x10^8.5 IU/ml inoculum
13. 2x10^8.0 IU/ml inoculum
14. 2x10^7.5 IU/ml inoculum
15. 2x10^7.0 IU/ml inoculum
16. Phosphate buffer pH 5.7

Lanes 17 to 24: NIBSC-03 CFI-treated #2
17. 9x10^10.0 IU/ml inoculum
18. 9x10^9.5 IU/ml inoculum
19. 9x10^9.0 IU/ml inoculum
20. 9x10^8.5 IU/ml inoculum
21. 9x10^8.0 IU/ml inoculum
22. 9x10^7.5 IU/ml inoculum
23. 9x10^7.0 IU/ml inoculum
24. Phosphate buffer pH 5.7

Lanes 25 and 26: RT-PCR positive controls
25. RNAase-free water
26. 1x10^8.0 IU/ml inoculum
Figure A3.25: Infectivity assay results for NIBSC-03 CFI-treated #3 samples

Lane M. PCR markers

Lanes 1 to 8: LP isolate (positive control)
1. 5x10^7.0 IU/ml inoculum
2. 5x10^6.5 IU/ml inoculum
3. 5x10^6.0 IU/ml inoculum
4. 5x10^5.5 IU/ml inoculum
5. 5x10^5.0 IU/ml inoculum
6. 5x10^4.5 IU/ml inoculum
7. 5x10^4.0 IU/ml inoculum
8. Phosphate buffer pH 5.7

Lanes 9 to 16: NIBSC-03 CFI-treated #3
9. 7x10^9.0 IU/ml inoculum
10. 7x10^8.5 IU/ml inoculum
11. 7x10^8.0 IU/ml inoculum
12. 7x10^7.5 IU/ml inoculum
13. 7x10^7.0 IU/ml inoculum
14. 7x10^6.5 IU/ml inoculum
15. 7x10^6.0 IU/ml inoculum
16. Phosphate buffer pH 5.7

Lanes 17 to 24: NIBSC-03 CFI-treated #3
17. 1.7x10^11.0 IU/ml inoculum
18. 1.7x10^10.5 IU/ml inoculum
19. 1.7x10^10.0 IU/ml inoculum
20. 1.7x10^9.5 IU/ml inoculum
21. 1.7x10^9.0 IU/ml inoculum
22. 1.7x10^8.5 IU/ml inoculum
23. 1.7x10^8.0 IU/ml inoculum
24. Phosphate buffer pH 5.7

Lanes 25 and 26: RT-PCR positive controls
25. RNAase-free water
26. 1x10^8.0 IU/ml inoculum
Figure A3.26: Infectivity assay results for NIBSC-03 “time and temperature” sample

<table>
<thead>
<tr>
<th>Lane</th>
<th>Description</th>
<th>Concentration</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>PCR markers</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>LP isolate (positive control)</td>
<td>5x10^7.0 IU/ml inoculum</td>
</tr>
<tr>
<td>3</td>
<td></td>
<td>5x10^6.5 IU/ml inoculum</td>
</tr>
<tr>
<td>4</td>
<td></td>
<td>5x10^6.0 IU/ml inoculum</td>
</tr>
<tr>
<td>5</td>
<td></td>
<td>5x10^5.5 IU/ml inoculum</td>
</tr>
<tr>
<td>6</td>
<td></td>
<td>5x10^5.0 IU/ml inoculum</td>
</tr>
<tr>
<td>7</td>
<td></td>
<td>5x10^4.5 IU/ml inoculum</td>
</tr>
<tr>
<td>8</td>
<td></td>
<td>5x10^4.0 IU/ml inoculum</td>
</tr>
<tr>
<td>9</td>
<td>NIBSC-03 CFI-treated #3</td>
<td>1.7x10^10.0 IU/ml inoculum</td>
</tr>
<tr>
<td>10</td>
<td></td>
<td>1.7x10^9.5 IU/ml inoculum</td>
</tr>
<tr>
<td>11</td>
<td></td>
<td>1.7x10^9.0 IU/ml inoculum</td>
</tr>
<tr>
<td>12</td>
<td></td>
<td>1.7x10^8.5 IU/ml inoculum</td>
</tr>
<tr>
<td>13</td>
<td></td>
<td>1.7x10^8.0 IU/ml inoculum</td>
</tr>
<tr>
<td>14</td>
<td></td>
<td>1.7x10^7.5 IU/ml inoculum</td>
</tr>
<tr>
<td>15</td>
<td></td>
<td>1.7x10^7.0 IU/ml inoculum</td>
</tr>
<tr>
<td>16</td>
<td></td>
<td>Phosphate buffer pH 5.7</td>
</tr>
</tbody>
</table>
Figure A3.27: Infectivity assay results for NIBSC-04 “before” sample

Lane M: PCR markers

Lanes 1 to 8: LP isolate (positive control)
1. 5x10^7.0 IU/ml inoculum
2. 5x10^6.5 IU/ml inoculum
3. 5x10^6.0 IU/ml inoculum
4. 5x10^5.5 IU/ml inoculum
5. 5x10^5.0 IU/ml inoculum
6. 5x10^4.5 IU/ml inoculum
7. 5x10^4.0 IU/ml inoculum
8. Phosphate buffer pH 5.7

Lanes 9 to 16: NIBSC-04 “before”
9. 3x10^10.0 IU/ml inoculum
10. 3x10^9.5 IU/ml inoculum
11. 3x10^9.0 IU/ml inoculum
12. 3x10^8.5 IU/ml inoculum
13. 3x10^8.0 IU/ml inoculum
14. 3x10^7.5 IU/ml inoculum
15. 3x10^7.0 IU/ml inoculum
16. Phosphate buffer pH 5.7

Lanes 17 and 18: RT-PCR positive controls
17. RNAase-free water
18. 1x10^2.0 IU/ml inoculum
Figure A3.28: Infectivity assay results for NIBSC-04 CFI-treated #1 samples

Lane M: PCR markers

Lanes 1 to 8: LP isolate (positive control)
1. 5×10^8 IU/ml inoculum
2. 5×10^7 IU/ml inoculum
3. 5×10^6 IU/ml inoculum
4. 5×10^5 IU/ml inoculum
5. 5×10^4 IU/ml inoculum
6. 5×10^3 IU/ml inoculum
7. 5×10^2 IU/ml inoculum
8. Phosphate buffer pH 5.7

Lanes 9 to 16: NIBSC-04 CFI-treated #1
9. 3×10^8 IU/ml inoculum
10. 3×10^7 IU/ml inoculum
11. 3×10^6 IU/ml inoculum
12. 3×10^5 IU/ml inoculum
13. 3×10^4 IU/ml inoculum
14. 3×10^3 IU/ml inoculum
15. 3×10^2 IU/ml inoculum
16. Phosphate buffer pH 5.7

Lanes 17 to 21: NIBSC-04 CFI-treated #1
17. 2×10^8 IU/ml inoculum
18. 2×10^7 IU/ml inoculum
19. 2×10^6 IU/ml inoculum
20. 2×10^5 IU/ml inoculum
21. 2×10^4 IU/ml inoculum

Lanes 22 to 24: NIBSC-04 CFI-treated #1
22. 2×10^5 IU/ml inoculum
23. 2×10^4 IU/ml inoculum
24. Phosphate buffer pH 5.7

Lanes 25 and 26: RT-PCR positive controls
25. RNAase-free water
26. 5×10^8 IU/ml inoculum
Figure A3.29: Infectivity assay results for NIBSC-04 CFI-treated #2 sample

Lane M: PCR markers

Lanes 1 to 8: LP isolate (positive control)
1. 5×10^7 IU/ml inoculum
2. $5 \times 10^6.5$ IU/ml inoculum
3. 5×10^6 IU/ml inoculum
4. $5 \times 10^5.5$ IU/ml inoculum
5. 5×10^5 IU/ml inoculum
6. $5 \times 10^4.5$ IU/ml inoculum
7. 5×10^4 IU/ml inoculum
8. Phosphate buffer pH 5.7

Lanes 9 to 16: NIBSC-04 CFI-treated #2
9. $3 \times 10^{10.0}$ IU/ml inoculum
10. $3 \times 10^{9.5}$ IU/ml inoculum
11. 3×10^9 IU/ml inoculum
12. $3 \times 10^8.5$ IU/ml inoculum
13. 3×10^8 IU/ml inoculum
14. $3 \times 10^7.5$ IU/ml inoculum
15. 3×10^7 IU/ml inoculum
16. Phosphate buffer pH 5.7
Figure A3.30: Infectivity assay results for NIBSC-04 CFI-treated #3 and “time and temperature” samples

Lane M: PCR markers

Lanes 1 to 8: LP isolate (positive control)
1. 5x10^8.0 IU/ml inoculum
2. 5x10^7.5 IU/ml inoculum
3. 5x10^7.0 IU/ml inoculum
4. 5x10^6.5 IU/ml inoculum
5. 5x10^6.0 IU/ml inoculum
6. 5x10^5.5 IU/ml inoculum
7. 5x10^5.0 IU/ml inoculum
8. Phosphate buffer pH 5.7

Lanes 9 to 15: NIBSC-04 CFI-treated #3
9. 1x10^8.0 IU/ml inoculum
10. 1x10^7.5 IU/ml inoculum
11. 1x10^7.0 IU/ml inoculum
12. 1x10^6.5 IU/ml inoculum
13. 1x10^6.0 IU/ml inoculum
14. 1x10^5.5 IU/ml inoculum
15. Phosphate buffer pH 5.7

Lanes 16 to 24: NIBSC-04 “time and temperature”
17. 3x10^8.0 IU/ml inoculum
18. 3x10^7.5 IU/ml inoculum
19. 3x10^7.0 IU/ml inoculum
20. 3x10^6.5 IU/ml inoculum
21. 3x10^6.0 IU/ml inoculum
22. 3x10^5.5 IU/ml inoculum
23. 3x10^5.0 IU/ml inoculum
24. Phosphate buffer pH 5.7

Lanes 25 and 26: RT-PCR positive controls
25. RNAase-free water
26. 5x10^7.0 IU/ml inoculum
Figure A3.31: Infectivity assay results for NIBSC-05 “before” sample

Lane M. PCR markers

Lanes 1 to 8: LP isolate (positive control)
1. $5 \times 10^{8.0}$ IU/ml inoculum
2. $5 \times 10^{7.5}$ IU/ml inoculum
3. $5 \times 10^{7.0}$ IU/ml inoculum
4. $5 \times 10^{6.5}$ IU/ml inoculum
5. $5 \times 10^{6.0}$ IU/ml inoculum
6. $5 \times 10^{5.5}$ IU/ml inoculum
7. $5 \times 10^{5.0}$ IU/ml inoculum
8. Phosphate buffer pH 5.7

Lanes 17 and 18: RT-PCR positive controls
17. RNAase-free water
18. $1 \times 10^{8.0}$ IU/ml inoculum

Lanes 9 to 16: NIBSC-05 “before”
9. $1 \times 10^{10.0}$ IU/ml inoculum
10. $1 \times 10^{9.5}$ IU/ml inoculum
11. $1 \times 10^{9.0}$ IU/ml inoculum
12. $1 \times 10^{8.5}$ IU/ml inoculum
13. $1 \times 10^{8.0}$ IU/ml inoculum
14. $1 \times 10^{7.5}$ IU/ml inoculum
15. $1 \times 10^{7.0}$ IU/ml inoculum
16. Phosphate buffer pH 5.7
Figure A3.32: Infectivity assay results for NIBSC-05 CFI-treated #1 samples

Lane M. PCR markers
Lanes 1 to 8: LP isolate (positive control)
1. 5x10^8.0 IU/ml inoculum
2. 5x10^7.5 IU/ml inoculum
3. 5x10^7.0 IU/ml inoculum
4. 5x10^6.5 IU/ml inoculum
5. 5x10^6.0 IU/ml inoculum
6. 5x10^5.5 IU/ml inoculum
7. 5x10^5.0 IU/ml inoculum
8. Phosphate buffer pH 5.7
Lanes 9 to 16: NIBSC-05 CFI-treated #1
9. 1x10^10.0 IU/ml inoculum
10. 1x10^9.5 IU/ml inoculum
11. 1x10^9.0 IU/ml inoculum
12. 1x10^8.5 IU/ml inoculum
13. 1x10^8.0 IU/ml inoculum
14. 1x10^7.5 IU/ml inoculum
15. 1x10^7.0 IU/ml inoculum
16. Phosphate buffer pH 5.7
Lanes 17 to 24: NIBSC-05 CFI-treated #1
17. 1x10^10.0 IU/ml inoculum
18. 1x10^9.5 IU/ml inoculum
19. 1x10^9.0 IU/ml inoculum
20. 1x10^8.5 IU/ml inoculum
21. 1x10^8.0 IU/ml inoculum
22. 1x10^7.5 IU/ml inoculum
23. 1x10^7.0 IU/ml inoculum
24. Phosphate buffer pH 5.7
Lanes 25 and 26: RT-PCR positive controls
25. RNAase-free water
26. 5x10^8.0 IU/ml inoculum
Figure A3.33: Infectivity assay results for NIBSC-05 CFI-treated #2 samples

Lane M. PCR markers

Lanes 1 to 8: LP isolate (positive control)
1. 5x10^8.0 IU/ml inoculum
2. 5x10^7.5 IU/ml inoculum
3. 5x10^7.0 IU/ml inoculum
4. 5x10^6.5 IU/ml inoculum
5. 5x10^6.0 IU/ml inoculum
6. 5x10^5.5 IU/ml inoculum
7. 5x10^5.0 IU/ml inoculum
8. Phosphate buffer pH 5.7

Lanes 9 to 16: NIBSC-05 CFI-treated #2
9. 3x10^8.0 IU/ml inoculum
10. 3x10^7.5 IU/ml inoculum
11. 3x10^7.0 IU/ml inoculum
12. 3x10^6.5 IU/ml inoculum
13. 3x10^6.0 IU/ml inoculum
14. 3x10^5.5 IU/ml inoculum
15. 3x10^5.0 IU/ml inoculum
16. Phosphate buffer pH 5.7

Lanes 17 and 18: RT-PCR positive controls
17. RNAase-free water
18. 5x10^8.0 IU/ml inoculum
Figure A3.34: Infectivity assay results for NIBSC-05 CFI-treated #3 samples

Lane M. PCR markers
Lanes 1 to 8: LP isolate (positive control)
1. 5x10^7.0 IU/ml inoculum
2. 5x10^6.5 IU/ml inoculum
3. 5x10^6.0 IU/ml inoculum
4. 5x10^5.5 IU/ml inoculum
5. 5x10^5.0 IU/ml inoculum
6. 5x10^4.5 IU/ml inoculum
7. 5x10^4.0 IU/ml inoculum
8. Phosphate buffer pH 5.7

Lanes 9 to 16: NIBSC-05 CFI-treated #3
9. 3x10^6.0 IU/ml inoculum
10. 3x10^5.5 IU/ml inoculum
11. 3x10^5.0 IU/ml inoculum
12. 3x10^4.5 IU/ml inoculum
13. 3x10^4.0 IU/ml inoculum
14. 3x10^3.5 IU/ml inoculum
15. 3x10^3.0 IU/ml inoculum
16. Phosphate buffer pH 5.7

Lanes 17 and 18: RT-PCR positive controls
17. RNAase-free water
18. 5x10^8.0 IU/ml inoculum
Figure A3.35: Infectivity assay results for NIBSC-05 “time and temperature” sample

Lane M. PCR markers

Lanes 1 to 8: LP isolate (positive control)
1. 5x10^7.0 IU/ml inoculum
2. 5x10^6.5 IU/ml inoculum
3. 5x10^6.0 IU/ml inoculum
4. 5x10^5.5 IU/ml inoculum
5. 5x10^5.0 IU/ml inoculum
6. 5x10^5.5 IU/ml inoculum
7. 5x10^6.0 IU/ml inoculum
8. Phosphate buffer pH 5.7

Lanes 9 to 16: NIBSC-05 “time and temperature”
9. 5x10^9.0 IU/ml inoculum
10. 5x10^8.5 IU/ml inoculum
11. 5x10^8.0 IU/ml inoculum
12. 5x10^7.5 IU/ml inoculum
13. 5x10^7.0 IU/ml inoculum
14. 5x10^6.5 IU/ml inoculum
15. 5x10^6.0 IU/ml inoculum
16. Phosphate buffer pH 5.7

Lanes 17 and 18: RT-PCR positive controls
17. RNAase-free water
18. 5x10^8.0 IU/ml inoculum
Figure A3.36: Infectivity assay results for NIBSC-06 “before” sample

<table>
<thead>
<tr>
<th>Lane</th>
<th>Description</th>
<th>Concentration (IU/ml)</th>
</tr>
</thead>
<tbody>
<tr>
<td>M</td>
<td>PCR markers</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>LP isolate</td>
<td>5x10^8.0</td>
</tr>
<tr>
<td>2</td>
<td></td>
<td>5x10^7.5</td>
</tr>
<tr>
<td>3</td>
<td></td>
<td>5x10^7.0</td>
</tr>
<tr>
<td>4</td>
<td></td>
<td>5x10^6.5</td>
</tr>
<tr>
<td>5</td>
<td></td>
<td>5x10^5.0</td>
</tr>
<tr>
<td>6</td>
<td></td>
<td>5x10^5.5</td>
</tr>
<tr>
<td>7</td>
<td></td>
<td>5x10^5.0</td>
</tr>
<tr>
<td>8</td>
<td></td>
<td>Phosphate buffer pH 5.7</td>
</tr>
<tr>
<td>9</td>
<td>NIBSC-06 “before”</td>
<td>2x10^8.0 IU/ml inoculum</td>
</tr>
<tr>
<td>10</td>
<td></td>
<td>2x10^7.5</td>
</tr>
<tr>
<td>11</td>
<td></td>
<td>2x10^7.0</td>
</tr>
<tr>
<td>12</td>
<td></td>
<td>2x10^6.5</td>
</tr>
<tr>
<td>13</td>
<td></td>
<td>2x10^6.0</td>
</tr>
<tr>
<td>14</td>
<td></td>
<td>2x10^5.5</td>
</tr>
<tr>
<td>15</td>
<td></td>
<td>2x10^5.0</td>
</tr>
<tr>
<td>16</td>
<td></td>
<td>Phosphate buffer pH 5.7</td>
</tr>
<tr>
<td>17</td>
<td>RT-PCR positive controls</td>
<td>RNAase-free water</td>
</tr>
<tr>
<td>18</td>
<td></td>
<td>5x10^8.0 IU/ml inoculum</td>
</tr>
</tbody>
</table>
Figure A3.37: Infectivity assay results for NIBSC-06 CFI-treated #1 samples

Lane M. PCR markers

Lanes 1 to 8: LP isolate (positive control)
1. 5×10^7 IU/ml inoculum
2. 5×10^6 IU/ml inoculum
3. 5×10^5 IU/ml inoculum
4. 5×10^4 IU/ml inoculum
5. 5×10^3 IU/ml inoculum
6. 5×10^2 IU/ml inoculum
7. 5×10^1 IU/ml inoculum
8. Phosphate buffer pH 5.7

Lanes 9 to 16: NIBSC-06 CFI-treated #1
9. 2×10^9 IU/ml inoculum
10. $2 \times 10^8.5$ IU/ml inoculum
11. 2×10^8 IU/ml inoculum
12. $2 \times 10^7.5$ IU/ml inoculum
13. 2×10^7 IU/ml inoculum
14. $2 \times 10^6.5$ IU/ml inoculum
15. 2×10^6 IU/ml inoculum
16. Phosphate buffer pH 5.7

Lanes 17 to 24: NIBSC-06 CFI-treated #1
17. 2×10^9 IU/ml inoculum
18. $2 \times 10^8.5$ IU/ml inoculum
19. 2×10^8 IU/ml inoculum
20. $2 \times 10^7.5$ IU/ml inoculum
21. 2×10^7 IU/ml inoculum
22. $2 \times 10^6.5$ IU/ml inoculum
23. 2×10^6 IU/ml inoculum
24. Phosphate buffer pH 5.7

Lanes 25 and 26: RT-PCR positive controls
25. RNAase-free water
26. 5×10^7 IU/ml inoculum
Figure A3.38: Infectivity assay results for NIBSC-06 CFI-treated #2 samples

Lane M. PCR markers

<table>
<thead>
<tr>
<th>Lanes 1 to 8: LP isolate (positive control)</th>
<th>Lanes 9 to 16: NIBSC-06 CFI-treated #2</th>
<th>Lanes 25 and 26: RT-PCR positive controls</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. 5 x 10⁸ IU/ml inoculum</td>
<td>9. 2 x 10⁸ IU/ml inoculum</td>
<td>25. RNAase-free water</td>
</tr>
<tr>
<td>2. 5 x 10⁷ IU/ml inoculum</td>
<td>10. 2 x 10⁷ IU/ml inoculum</td>
<td>26. 5 x 10⁸ IU/ml inoculum</td>
</tr>
<tr>
<td>3. 5 x 10⁷ IU/ml inoculum</td>
<td>11. 2 x 10⁷ IU/ml inoculum</td>
<td></td>
</tr>
<tr>
<td>4. 5 x 10⁶ IU/ml inoculum</td>
<td>12. 2 x 10⁶ IU/ml inoculum</td>
<td></td>
</tr>
<tr>
<td>5. 5 x 10⁵ IU/ml inoculum</td>
<td>13. 2 x 10⁵ IU/ml inoculum</td>
<td></td>
</tr>
<tr>
<td>6. 5 x 10⁶ IU/ml inoculum</td>
<td>14. 2 x 10⁵ IU/ml inoculum</td>
<td></td>
</tr>
<tr>
<td>7. 5 x 10⁵ IU/ml inoculum</td>
<td>15. 2 x 10⁵ IU/ml inoculum</td>
<td></td>
</tr>
<tr>
<td>8. Phosphate buffer pH 5.7</td>
<td>16. Phosphate buffer pH 5.7</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Lanes 17 to 24: NIBSC-06 CFI-treated #2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>17. 8 x 10⁷ IU/ml inoculum</td>
<td></td>
<td></td>
</tr>
<tr>
<td>18. 8 x 10⁶ IU/ml inoculum</td>
<td></td>
<td></td>
</tr>
<tr>
<td>19. 8 x 10⁵ IU/ml inoculum</td>
<td></td>
<td></td>
</tr>
<tr>
<td>20. 8 x 10⁴ IU/ml inoculum</td>
<td></td>
<td></td>
</tr>
<tr>
<td>21. 8 x 10⁴ IU/ml inoculum</td>
<td></td>
<td></td>
</tr>
<tr>
<td>22. 8 x 10³ IU/ml inoculum</td>
<td></td>
<td></td>
</tr>
<tr>
<td>23. 8 x 10³ IU/ml inoculum</td>
<td></td>
<td></td>
</tr>
<tr>
<td>24. Phosphate buffer pH 5.7</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Lane M: PCR markers

Lanes 17 to 24: NIBSC-06 CFI-treated #2

Lanes 25 and 26: RT-PCR positive controls

Note: The table lists the inoculum concentrations for each lane in IU/ml.
Figure A3.39: Infectivity assay results for NIBSC-06 CFI-treated “time and temperature” sample

Lane M. PCR markers

Lanes 1 to 8: LP isolate (positive control)
1. 5x10^7.0 IU/ml inoculum
2. 5x10^6.5 IU/ml inoculum
3. 5x10^6.0 IU/ml inoculum
4. 5x10^5.5 IU/ml inoculum
5. 5x10^5.0 IU/ml inoculum
6. 5x10^4.5 IU/ml inoculum
7. 5x10^4.0 IU/ml inoculum
8. Phosphate buffer pH 5.7

Lanes 9 to 16: NIBSC-06 “time and temperature”
9. 2x10^9.0 IU/ml inoculum
10. 2x10^8.5 IU/ml inoculum
11. 2x10^8.0 IU/ml inoculum
12. 2x10^7.5 IU/ml inoculum
13. 2x10^7.0 IU/ml inoculum
14. 2x10^6.5 IU/ml inoculum
15. 2x10^6.0 IU/ml inoculum
16. Phosphate buffer pH 5.7

Lanes 17 and 18: RT-PCR positive controls
17. RNAase-free water
18. 5x10^8.0 IU/ml inoculum
4. Vitex study

Figure A3.40: Infectivity assay results for Vitex TS3A and TS6A samples

Lane M. PCR markers

Lanes 1 to 8: LP isolate (positive control)
1. 5x10^8.0 IU/ml inoculum
2. 5x10^7.5 IU/ml inoculum
3. 5x10^7.0 IU/ml inoculum
4. 5x10^6.5 IU/ml inoculum
5. 5x10^6.0 IU/ml inoculum
6. 5x10^5.5 IU/ml inoculum
7. 5x10^5.0 IU/ml inoculum
8. Phosphate buffer pH 5.7

Lanes 9 to 14: Vitex TS3A sample
9. 2x10^7.0 IU/ml inoculum
10. 2x10^6.5 IU/ml inoculum
11. 2x10^6.0 IU/ml inoculum
12. 2x10^5.5 IU/ml inoculum
13. 2x10^5.0 IU/ml inoculum
14. Phosphate buffer pH 5.7

Lanes 15 to 20: Vitex TS6A sample
15. 3x10^6.0 IU/ml inoculum
16. 3x10^5.5 IU/ml inoculum
17. 3x10^5.0 IU/ml inoculum
18. 3x10^4.5 IU/ml inoculum
19. 3x10^4.0 IU/ml inoculum
20. Phosphate buffer pH 5.7

Lanes 21 and 22: RT-PCR positive controls
21. 5x10^8.0 IU/ml inoculum
22. RNAase-free water
Figure A3.41: Infectivity assay results for Vitex TS18A, TS22A and PC0A samples

Lane M. PCR markers

Lanes 1 to 8: LP isolate (positive control)
1. 5x10^8.0 IU/ml inoculum
2. 5x10^7.5 IU/ml inoculum
3. 5x10^7.0 IU/ml inoculum
4. 5x10^6.5 IU/ml inoculum
5. 5x10^6.0 IU/ml inoculum
6. 5x10^5.5 IU/ml inoculum
7. 5x10^5.0 IU/ml inoculum
8. Phosphate buffer pH 5.7

Lanes 9 to 12: Vitex TS18A sample
9. 3x10^1.0 IU/ml inoculum
10. 3x10^1.5 IU/ml inoculum
11. 3x10^2.0 IU/ml inoculum
12. Phosphate buffer pH 5.7

Lanes 13 to 16: Vitex TS22A sample
13. 4x10^3.0 IU/ml inoculum
14. 4x10^2.5 IU/ml inoculum
15. 4x10^2.0 IU/ml inoculum
16. Phosphate buffer pH 5.7

Lanes 17 to 24: Vitex PC0A sample
17. 1x10^8.0 IU/ml inoculum
18. 1x10^7.5 IU/ml inoculum
19. 1x10^7.0 IU/ml inoculum
20. 1x10^6.5 IU/ml inoculum
21. 1x10^6.0 IU/ml inoculum
22. 1x10^5.5 IU/ml inoculum
23. 1x10^5.0 IU/ml inoculum
24. Phosphate buffer pH 5.7

Lanes 25 and 26: RT-PCR positive controls
25. 5x10^7.0 IU/ml inoculum
26. RNAase-free water
Figure A3.42: Infectivity assay results for Vitex PC22A and TS3B samples

Lane M. PCR markers

Lanes 1 to 8: LP isolate (positive control)
1. $5 \times 10^{8.0}$ IU/ml inoculum
2. $5 \times 10^{7.5}$ IU/ml inoculum
3. $5 \times 10^{7.0}$ IU/ml inoculum
4. $5 \times 10^{6.5}$ IU/ml inoculum
5. $5 \times 10^{6.0}$ IU/ml inoculum
6. $5 \times 10^{5.5}$ IU/ml inoculum
7. $5 \times 10^{5.0}$ IU/ml inoculum
8. Phosphate buffer pH 5.7

Lanes 9 to 18: Vitex PC22A sample
9. $1 \times 10^{9.0}$ IU/ml inoculum
10. $1 \times 10^{8.5}$ IU/ml inoculum
11. $1 \times 10^{8.0}$ IU/ml inoculum
12. $1 \times 10^{7.5}$ IU/ml inoculum
13. $1 \times 10^{7.0}$ IU/ml inoculum
14. $1 \times 10^{6.5}$ IU/ml inoculum
15. $1 \times 10^{6.0}$ IU/ml inoculum
16. $1 \times 10^{5.5}$ IU/ml inoculum
17. $1 \times 10^{5.0}$ IU/ml inoculum
18. Phosphate buffer pH 5.7

Lanes 19 to 24: Vitex TS3B sample
19. $1 \times 10^{5.0}$ IU/ml inoculum
20. $1 \times 10^{4.5}$ IU/ml inoculum
21. $1 \times 10^{4.0}$ IU/ml inoculum
22. $1 \times 10^{3.5}$ IU/ml inoculum
23. $1 \times 10^{3.0}$ IU/ml inoculum
24. Phosphate buffer pH 5.7

Lanes 25 and 26: RT-PCR positive controls
25. $5 \times 10^{8.0}$ IU/ml inoculum
26. RNAase-free water
Appendix 3

Figure A3.43: Infectivity assay results for Vitex TS6B, TS18B and TS22B samples

Lane M: PCR markers

Lanes 1 to 8: LP isolate (positive control)
1. 5x10^8.0 IU/ml inoculum
2. 5x10^7.5 IU/ml inoculum
3. 5x10^7.0 IU/ml inoculum
4. 5x10^6.5 IU/ml inoculum
5. 5x10^6.0 IU/ml inoculum
6. 5x10^5.5 IU/ml inoculum
7. 5x10^5.0 IU/ml inoculum
8. Phosphate buffer pH 5.7

Lanes 9 to 12: Vitex TS6B sample
9. 1x10^4.0 IU/ml inoculum
10. 1x10^3.5 IU/ml inoculum
11. 1x10^3.0 IU/ml inoculum
12. Phosphate buffer pH 5.7

Lanes 13 to 16: Vitex TS18B sample
13. neat inoculum
14. 10^-0.5 dilution inoculum
15. 10^-1.0 dilution inoculum
16. Phosphate buffer pH 5.7

Lanes 17 to 20: Vitex TS3B sample
17. neat inoculum
18. 10^-0.5 dilution inoculum
19. 10^-1.0 dilution inoculum
20. Phosphate buffer pH 5.7

Lanes 21 and 22: RT-PCR positive controls
25. 5x10^8.0 IU/ml inoculum
26. RNAase-free water
Figure A3.44: Infectivity assay results for Vitex PC0B sample

Lane M. PCR markers

Lanes 1 to 8: LP isolate (positive control)

1. 5x10^8.0 IU/ml inoculum
2. 5x10^7.5 IU/ml inoculum
3. 5x10^7.0 IU/ml inoculum
4. 5x10^6.5 IU/ml inoculum
5. 5x10^6.0 IU/ml inoculum
6. 5x10^5.5 IU/ml inoculum
7. 5x10^5.0 IU/ml inoculum
8. Phosphate buffer pH 5.7

Lanes 9 to 14: Vitex PC0B sample

9. 3x10^7.0 IU/ml inoculum
10. 3x10^6.5 IU/ml inoculum
11. 3x10^6.0 IU/ml inoculum
12. 3x10^5.5 IU/ml inoculum
13. 3x10^5.0 IU/ml inoculum
14. Phosphate buffer pH 5.7

Lanes 15 to 20: RT-PCR positive controls

15. 5x10^8.0 IU/ml inoculum
16. RNAase-free water
Figure A3.45: Infectivity assay results for Vitex PC22B and B19 1:20 dilution samples

Lane M. PCR markers

Lanes 1 to 8: LP isolate (positive control)
1. 5x10^8.0 IU/ml inoculum
2. 5x10^7.5 IU/ml inoculum
3. 5x10^7.0 IU/ml inoculum
4. 5x10^6.5 IU/ml inoculum
5. 5x10^6.0 IU/ml inoculum
6. 5x10^5.5 IU/ml inoculum
7. 5x10^5.0 IU/ml inoculum
8. Phosphate buffer pH 5.7

Lanes 9 to 12: Vitex PC22B sample
9. 3x10^7.0 IU/ml inoculum
10. 3x10^6.5 IU/ml inoculum
11. 3x10^6.0 IU/ml inoculum
12. Phosphate buffer pH 5.7

Lanes 13 to 20: B19 1:20 dilution
13. 4x10^8.0 IU/ml inoculum
14. 4x10^7.5 IU/ml inoculum
15. 4x10^7.0 IU/ml inoculum
16. 4x10^6.5 IU/ml inoculum
17. 4x10^6.0 IU/ml inoculum
18. 4x10^5.5 IU/ml inoculum
19. 4x10^5.0 IU/ml inoculum
20. Phosphate buffer pH 5.7

Lanes 21 and 22: RT-PCR positive controls
21. 5x10^8.0 IU/ml inoculum
22. RNAase-free water
5. Cerus study

Figure A3.46: Infectivity assay results for Cerus untreated sample

Lane M: PCR markers

Lanes 1 to 8: LP isolate (positive control)
1. 5x10^8.0 IU/ml inoculum
2. 5x10^7.5 IU/ml inoculum
3. 5x10^7.0 IU/ml inoculum
4. 5x10^6.5 IU/ml inoculum
5. 5x10^6.0 IU/ml inoculum
6. 5x10^5.5 IU/ml inoculum
7. 5x10^5.0 IU/ml inoculum
8. Phosphate buffer pH 5.7

Lanes 16 and 17: RT-PCR positive controls
16. 5x10^8.0 IU/ml inoculum
17. RNAase-free water

Lanes 9 to 15: Cerus untreated
9. 8x10^6.0 IU/ml inoculum
10. 8x10^5.5 IU/ml inoculum
11. 8x10^5.0 IU/ml inoculum
12. 8x10^4.5 IU/ml inoculum
13. 8x10^4.0 IU/ml inoculum
14. 8x10^3.5 IU/ml inoculum
15. Phosphate buffer pH 5.7
Appendix 3

Figure A3.47: Infectivity assay results for Cerus treated 3J sample

Lane M. PCR markers

Lanes 1 to 8: LP isolate (positive control)
- 1. 5×10^8 IU/ml inoculum
- 2. 5×10^7 IU/ml inoculum
- 3. 5×10^6 IU/ml inoculum
- 4. 5×10^5 IU/ml inoculum
- 5. 5×10^4 IU/ml inoculum
- 6. 5×10^3 IU/ml inoculum
- 7. 5×10^2 IU/ml inoculum
- 8. Phosphate buffer pH 5.7

Lanes 9 to 18: Cerus treated 3J
- 9. 2×10^9 IU/ml inoculum
- 10. 2×10^8 IU/ml inoculum
- 11. 2×10^7 IU/ml inoculum
- 12. 2×10^6 IU/ml inoculum
- 13. 2×10^5 IU/ml inoculum
- 14. 2×10^4 IU/ml inoculum
- 15. 2×10^3 IU/ml inoculum
- 16. 2×10^2 IU/ml inoculum
- 17. 2×10^1 IU/ml inoculum
- 18. Phosphate buffer pH 5.7

Lanes 19 and 20: RT-PCR positive controls
- 19. 5×10^8 IU/ml inoculum
- 20. RNAase-free water