Strategies for surviving down-regulation: effects on tumour cell growth potential and chemosensitivity profile

Thesis

How to cite:


© 2007 Marzia Pennati

Version: Version of Record

Copyright and Moral Rights for the articles on this site are retained by the individual authors and/or other copyright owners. For more information on Open Research Online’s data policy on reuse of materials please consult the policies page.

oro.open.ac.uk
STRATEGIES FOR SURVIVIN DOWN-REGULATION: EFFECTS ON TUMOUR CELL GROWTH POTENTIAL AND CHEMOSENSITIVITY PROFILE

Marzia Pennati
Degree in Biological Sciences

Thesis submitted to the Open University for the degree of Doctor of Philosophy

Discipline of Life Sciences

August 2007

Fondazione IRCCS Istituto Nazionale dei Tumori
Milan-Italy
ABSTRACT
ABSTRACT

Survivin is a bifunctional protein that acts as a suppressor of apoptosis and plays a central role in cell division. The protein is strongly expressed in the most common human neoplasms, has prognostic relevance for some of them, and appears to be involved in tumour cell resistance to anticancer agents and ionizing radiation. On the basis of these findings, survivin has been proposed as an attractive target for new anticancer interventions.

We generated a hammerhead ribozyme (Rz) targeting the CUA\textsubscript{110} triplet in the survivin mRNA and transfected them into the JR8 human melanoma cell line. Cells endogenously expressing Rz were characterized by a lower survivin protein level than parental cells, and showed an increased caspase-9-dependent apoptotic response to treatment with the cytotoxic agents cisplatin and topotecan as well as with γ-irradiation. Moreover, an increased anti-tumour activity of oral topotecan was observed in Rz-expressing cells grown as xenograft tumours in athymic nude mice. In addition, we constructed a Moloney-based retroviral vector expressing Rz, encoded as a chimeric RNA within adenoviral VA1 RNA. Polyclonal cell populations, obtained by infection with the retroviral vector, of two androgen-independent human prostate cancer cell lines (DU145 and PC-3) were characterized by a significant reduction of survivin expression; the cells became polyploid and underwent caspase-9-dependent apoptosis. Survivin inhibition also enhanced their susceptibility to cisplatin-induced apoptosis and prevented tumour formation when cells were xenografted into athymic nude mice.

Again we used RNAi to specifically repress survivin in DU145 and PC-3 cell lines. RNAi-mediated survivin knock-down was able to significantly reduce cell proliferation and to enhance the rate of caspase-9-dependent
apoptosis. Moreover, sequential treatment with survivin-specific siRNA followed by the Hsp90 inhibitor 17-allylamino-17-demethoxy-geldanamycin produced supra-additive anti-proliferative effects in both cell lines.

Finally, we investigated the effects of the novel cdk inhibitor NU6140, in term of ability to potentiate the response to paclitaxel in HeLa cells, in relation to its interference with survivin. Sequential administration of cdk inhibitors resulted in escape from the mitotic block imposed by paclitaxel and significantly increased the apoptotic rate, with inhibition of survivin expression/phosphorylation as the potential mechanism.

Overall, such results suggest that strategies aimed at interfering with survivin expression/activity can be adopted to improve the chemo/radio-sensitivity profile of treatment-refractory human malignancies.
ACKNOWLEDGEMENTS

The present work was performed at the “Struttura complessa Ricerca Traslazionale” - Department of Experimental Oncology & Laboratories of the Fondazione IRCCS Istituto Nazionale dei Tumori of Milan.

I am most grateful to my supervisor Dr Nadia Zaffaroni who has been a constant source of guidance and support and who gave much of her time and interest to this project. I would like also to thank the Director of the UO#10, Dr Maria Grazia Daidone, who gave me the possibility to frequent the laboratories to develop this project.

I would like to thank Professor Gordon Peters, who acted as my English supervisor, for his advice, support and kindness.

In addition, I wish to express my gratitude to all the co-authors for their excellent contributions. A special thank to Dr Marco Folini, Dr Gennaro Colella, Dr Maria Curto, Dr Mara Binda, Dr Francesco Paduano and Dr Raffaella Villa, for their advice and support in performing cellular and molecular biology experiments, and miss Gabriella Abolafio for her technical assistance in flow cytometry analyses.

I also thank Prof Dario Altieri who kindly supplied the survivin cDNA and antibody for the detection of survivin Thr34; Dr Lorenzo Citti for the analysis and production of the ribozymes; Prof Mauro Giacca and Dr Monica Zoppè for the production of the retroviral construct vector; Prof David R Newell who kindly hosted me at the laboratory of the Northern Institute for Cancer Research, Newcastle upon Tyne (UK), in order to perform the experiments with the NU6140.

Finally, I thank my parents Maria Rosa and Giovanni, the whole family and all friends, but most of all I am grateful to my husband Marco for his patience, invaluable encouragement and support.

This thesis is dedicated to my son Tommaso
TABLE OF CONTENTS
# Table of Contents

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>ABSTRACT</td>
<td>2</td>
</tr>
<tr>
<td>ACKNOWLEDGEMENTS</td>
<td>5</td>
</tr>
<tr>
<td>LIST OF FIGURES &amp; TABLES</td>
<td>14</td>
</tr>
<tr>
<td><strong>CHAPTER 1</strong> INTRODUCTION</td>
<td>18</td>
</tr>
<tr>
<td>1. APOPTOSIS</td>
<td>19</td>
</tr>
<tr>
<td>1.1. Features of Apoptosis</td>
<td>20</td>
</tr>
<tr>
<td>1.2. Apoptotic Death Pathways</td>
<td>23</td>
</tr>
<tr>
<td>1.2.1. Death Receptor-Mediated Apoptotic Events</td>
<td>25</td>
</tr>
<tr>
<td>1.2.2. Mitochondria-Mediated Apoptotic Events</td>
<td>26</td>
</tr>
<tr>
<td>1.2.3. Caspases</td>
<td>31</td>
</tr>
<tr>
<td>1.3. Regulators of Apoptosis</td>
<td>33</td>
</tr>
<tr>
<td>1.3.1. Bcl-2 Family Proteins</td>
<td>34</td>
</tr>
<tr>
<td>1.3.2. Inhibitor Apoptosis Proteins (IAPs) Family</td>
<td>38</td>
</tr>
<tr>
<td>1.4. Apoptosis &amp; Cancer</td>
<td>43</td>
</tr>
<tr>
<td>2. SURVIVIN</td>
<td>48</td>
</tr>
<tr>
<td>2.1. Protein Structure of Survivin</td>
<td>48</td>
</tr>
<tr>
<td>2.2. Survivin &amp; Inhibition of Apoptosis</td>
<td>54</td>
</tr>
<tr>
<td>2.3. Survivin &amp; Cell Division</td>
<td>57</td>
</tr>
<tr>
<td>2.4. Regulation of Survivin Function</td>
<td>59</td>
</tr>
<tr>
<td>2.5. Survivin Expression in Normal &amp; Tumour Tissues</td>
<td>61</td>
</tr>
<tr>
<td>2.6. Survivin as a Determinant of Treatment Resistance</td>
<td>63</td>
</tr>
<tr>
<td>3. SURVIVIN-DIRECTED CANCER THERAPY</td>
<td>67</td>
</tr>
<tr>
<td>3.1. Molecular Antagonists</td>
<td>68</td>
</tr>
<tr>
<td>3.1.1. Antisense Oligonucleotides</td>
<td>69</td>
</tr>
<tr>
<td>3.1.1.1. Cellular Uptake of Antisense Oligonucleotides</td>
<td>75</td>
</tr>
<tr>
<td>3.1.1.2. Survivin Inhibition by Antisense Oligonucleotides</td>
<td>76</td>
</tr>
<tr>
<td>3.1.2. Ribozymes &amp; siRNAs</td>
<td>78</td>
</tr>
<tr>
<td>3.1.2.1. Ribozymes</td>
<td>78</td>
</tr>
<tr>
<td>3.1.2.2. Small Interfering RNA (siRNAs)</td>
<td>84</td>
</tr>
<tr>
<td>3.1.2.3. Ribozyme &amp; siRNA Delivery Systems</td>
<td>87</td>
</tr>
<tr>
<td>3.1.2.3.1. Exogenous Delivery</td>
<td>88</td>
</tr>
<tr>
<td>3.1.2.3.2. Endogenous Delivery</td>
<td>89</td>
</tr>
</tbody>
</table>
3.1.2.3.2.1. Viral Delivery  89
3.1.2.3.2.2. Nonviral Delivery  95
3.1.3. Survivin Inhibition by Ribozymes & siRNAs  96

3.2. Gene Therapy  98
3.2.1. Dominant Negative Mutants  98
3.2.2. The Survivin Gene Promoter  100

3.3. Small Molecule Antagonists  100
3.3.1. Cyclin-Dependent Kinase (CDK) Inhibitors  100
3.3.2. Hsp90 Inhibitors  103
3.3.3. Other Small Molecules  105

CHAPTER 2 AIMS OF THE STUDY  107

CHAPTER 3 MATERIAL & METHODS  110

1. GENERAL PROCEDURES  111
1.1. Drugs  111
  1.1.1. Cisplatin Preparation  111
  1.1.2. Topotecan Preparation  111
  1.1.3. Temozolomide Preparation  112
  1.1.4. Paclitaxel Preparation  112
  1.1.5. 17-AAG Preparation  112
  1.1.6. Purvalanol A Preparation  113
  1.1.7. NU6140 Preparation  113
1.2. Human Tumour Cell Lines  113
  1.2.1. Human Tumour Cell Lines Growth Conditions  114
1.3. Nucleic Acids Quantification  116
1.4. Protein Concentration Determination  117
  1.4.1. Calibration Curve Preparation  117
  1.4.2. Protein Concentration Quantification  118
1.5. Agarose Gel Preparation  119
1.6. SDS-Polyacrylamide Gel Preparation  119
1.7. Non-Denaturating Polyacrylamide Gel Preparation  121
1.8. Preparation of the Plasmid Vectors  121
  1.8.1. Preparation of Competent JM109 E. Coli Cells for Transformation  122
  1.8.2. Transformation of Bacteria  123
# Table of Contents

1.8.3. Small Scale Preparation of Plasmid DNA ("miniprep") 124  
1.8.4. Storage of Vector-Transformed Bacteria 125  
1.8.5. Large Scale Preparation of Plasmid DNA ("maxiprep") 125  

2. SPECIFIC PROCEDURES  127  

## 2.1. Design and Synthesis of Ribozymes Targeting Survivin mRNA  

2.1.1. Annealing of Complementary Pairs of Oligonucleotides 128  
2.1.2. Synthesis of Ribozyme-Expressing Plasmid Vectors 129  
  2.1.2.1. Digestion of the pRC/CMV Plasmid Vector 129  
  2.1.2.2. Purification of *HindIII*/XbaI-Digested pRC/CMV Vector 129  
  2.1.2.3. Cloning of the Ribozyme Sequences into the pRC/CMV Vector 130  
2.1.3. Synthesis of VA1-Fusion Ribozymes 131  
  2.1.3.1. Digestion of the pBS-VA1 Plasmid Vector 131  
  2.1.3.2. Cloning of the Ribozyme Sequences into the pBS-VA1 Vector 131  
  2.1.3.3. Digestion of the VA1-Ribozyme Cassette 132  
  2.1.3.4. Blunting of the VA1-Ribozyme Cassette 132  
  2.1.3.5. Digestion of the pCLXSN Plasmid Vector 132  
  2.1.3.6. Cloning of the VA1-Ribozyme Cassette into the pCLXSN Vector 133  

## 2.2. In Vitro Catalytic Activity 133  

2.2.1. *In Vitro* Ribozyme Transcription 133  
  2.2.1.1. Linearization of the pRc/Rz and pRc/mutRz Plasmids 133  
  2.2.1.2. *In Vitro* Transcription of Ribozymes 134  
2.2.2. Synthesis of the Synthetic Substrate 135  
  2.2.2.1. Linearization of the pCI-Surv Plasmid 135  
  2.2.2.2. *In Vitro* Transcription of the Synthetic Substrate 135  
2.2.3. *In Vitro* Cleavage Reaction 136  

## 2.3. Transfection of Cells with the Ribozyme Expression Vectors 136  

## 2.4. Transduction of Cells with the Ribozyme Expression Vectors 137  

2.4.1. Transfection of HEK293gp cells 137  
2.4.2. Infection of Prostate Cancer Cells 138  

## 2.5. Reverse Transcriptase-PCR Analysis of Ribozyme Expression 138
<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.5.1. Cell Preparation</td>
<td>139</td>
</tr>
<tr>
<td>2.5.2. Total RNA Isolation</td>
<td>139</td>
</tr>
<tr>
<td>2.5.3. Synthesis of First Strand cDNA by Reverse Transcriptase Reaction</td>
<td>140</td>
</tr>
<tr>
<td>2.5.4. PCR Reactions</td>
<td>141</td>
</tr>
<tr>
<td>2.5.5. Gel Electrophoresis and Densitometric Quantification of PCR Products</td>
<td>142</td>
</tr>
<tr>
<td>2.6. Small Interfering RNA Design</td>
<td>143</td>
</tr>
<tr>
<td>2.7. Transfection of Prostate Cancer Cells with siRNAs</td>
<td>145</td>
</tr>
<tr>
<td>2.8. Expression of Survivin and Apoptosis-Related Proteins</td>
<td>145</td>
</tr>
<tr>
<td>2.8.1. Protein Extract Preparation</td>
<td>145</td>
</tr>
<tr>
<td>2.8.2. Immunoprecipitation</td>
<td>146</td>
</tr>
<tr>
<td>2.8.3. Western Blot Analysis</td>
<td>147</td>
</tr>
<tr>
<td>2.8.3.1. SDS-Polyacrylamide Gel Electrophoresis</td>
<td>147</td>
</tr>
<tr>
<td>2.8.3.2. Transfer of Fractionated Proteins into Nitrocellulose Filter</td>
<td>148</td>
</tr>
<tr>
<td>2.8.3.3. Immunological Detection of Nitrocellulose-Immobilised Proteins</td>
<td>149</td>
</tr>
<tr>
<td>2.9. Evaluation of Survivin Gene Expression by RT-PCR Analysis</td>
<td>150</td>
</tr>
<tr>
<td>2.9.1. Cell Preparation</td>
<td>150</td>
</tr>
<tr>
<td>2.9.2. Total RNA Extraction</td>
<td>151</td>
</tr>
<tr>
<td>2.9.3. Synthesis of First Strand cDNA by Reverse Transcription Reaction</td>
<td>152</td>
</tr>
<tr>
<td>2.9.4. PCR Reactions</td>
<td>153</td>
</tr>
<tr>
<td>2.9.5. Gel Electrophoresis and Densitometric Quantification of PCR Products</td>
<td>154</td>
</tr>
<tr>
<td>2.10. The Cytotoxic Activity of Different Drugs on Cell Lines</td>
<td>155</td>
</tr>
<tr>
<td>2.10.1. Colony Formation Assay</td>
<td>155</td>
</tr>
<tr>
<td>2.10.2. Cell Proliferation Assay</td>
<td>156</td>
</tr>
<tr>
<td>2.11. The Cytotoxic Activity of Ionising Radiation on Cell Lines</td>
<td>157</td>
</tr>
<tr>
<td>2.11.1. Irradiation</td>
<td>157</td>
</tr>
<tr>
<td>2.11.2. Clonogenic Assay</td>
<td>158</td>
</tr>
<tr>
<td>2.12. Cell Cycle Analysis</td>
<td>159</td>
</tr>
<tr>
<td>2.13. Apoptosis Analysis</td>
<td>159</td>
</tr>
<tr>
<td>2.13.1. Evaluation of Apoptotic Morphology by Fluorescent Microscopy</td>
<td>160</td>
</tr>
</tbody>
</table>
# Table of Contents

2.13.2. The Terminal dUTP Nick-End Labeling (TUNEL) Assay 160  
2.13.3. Evaluation of Caspase-9 and Caspase-9 Catalytic Activity 161  

2.14. Detection of Telomerase Activity 161  
2.14.1. Protein Extract Preparation 161  
2.14.2. Labeling of the TS Primer 162  
2.14.3. The Telomere Repeat Amplification Protocol (TRAP) Assay 162  
2.14.4. Polyacrylamide Gel Electrophoresis 163  
2.14.5. Quantification of Telomerase Activity 164  

2.15. In Vivo Studies 164  
2.15.1. Tumour Injection 165  
2.15.2. Reverse Transcriptase-PCR Analysis of Ribozyme Expression 166  
2.15.2.1. RNA Isolation from Tissues 166  
2.15.2.2. RT-PCR Reaction and Gel Electrophoresis 167  

2.16. Statistical Analysis 167  

# Chapter 4 Results 169  

1. Ribozyme-Mediated Down-Regulation of Survivin Expression Sensitises Human Melanoma Cells to Drug and Radiation Treatment 170  
1.1. In Vitro Catalytic Activity of the Anti-Survivin Ribozyme 172  
1.2. Ribozyme-Mediated Attenuation of Survivin Expression in JR8 Melanoma Cells 174  
1.3. Survivin Inhibition Sensitises JR8 Melanoma Cells to Drug-Induced Apoptosis 176  
1.4. Survivin Inhibition Enhances the Antitumour Activity of Topotecan in Vivo 180  
1.5. Ribozyme-Mediated Survivin Inhibition Sensitises JR8 Melanoma Cells to Ionising Radiation 184  

2. Ribozyme-Mediated Inhibition of Survivin Expression Increases Spontaneous and Drug-Induced Apoptosis and Decreases the Tumorigenic Potential of Human Prostate Cancer Cells 189  
2.1. Construction of a Retroviral Vector for Targeted Intracellular Expression of an Anti-Survivin Ribozyme and Transduction of Prostate Cancer Cells 190
2.2. Ribozyme-Mediated Survivin Inhibition Enhances Spontaneous and Drug-Induced Apoptosis in Prostate Cancer Cells 194

2.3. Effect of Survivin Inhibition on Tumorigenic Potential of Prostate Cancer Cells 197

3. SILENCING OF SURVIVIN GENE BY SMALL INTERFERING RNAS PRODUCES SUPRA-ADDITIVE GROWTH SUPPRESSION IN COMBINATION WITH 17-ALLYLAMINO-17-DEMETHOXY-GELDANAMYCIN IN HUMAN PROSTATE CANCER CELLS 198

3.1. Silencing of Survivin Gene by siRNAs in Prostate Cancer Cells 199

3.2. siRNA-Mediated Silencing of Survivin Gene Causes Cell Proliferation Decline and Apoptosis Induction in Prostate Cancer Cells 202

3.3. siRNA-Mediated Silencing of the Survivin Gene Increases the Sensitivity of Prostate Cancer Cells to 17-Allylamino-17-Demethoxy-Geldanamycin 205

4. POTENTIATION OF PACLITAXEL-INDUCED APOPTOSIS BY THE NOVEL CYCLIN-DEPENDENT KINASE INHIBITOR NU6140: A POSSIBLE ROLE FOR SURVIVIN DOWN-REGULATION 212

4.1. Effect of Cdk Inhibitors, Alone or in Combination with Paclitaxel, on Tumour Cell Growth 214

4.2. Effects of Cdk Inhibitors on Cell Cycle Progression and Apoptosis 218

4.3. Effects of Cdk Inhibitors on Survivin Expression 219

4.4. Effects of Combined Treatment with Paclitaxel and Cdk Inhibitors on Cell Cycle Phase Distribution and Apoptosis 222

4.5. Effects of Combined Treatment with Paclitaxel and Cdk Inhibitors on Survivin Activation 226

CHAPTER 5 DISCUSSION 228

CHAPTER 6 FUTURE PERSPECTIVES 246

CHAPTER 7 BIBLIOGRAPHY 250

APPENDIX ABBREVIATIONS 300
Figure 1. Schematic representation of the two major apoptotic pathways in human cells: the "extrinsic" (the death receptor-mediated) and "intrinsic" (mitochondrial) programmed cell death.

Figure 2. Signalling pathways triggered by death receptors.

Figure 3. Mitochondrial apoptotic pathway.

Figure 4. Schematic representation of caspase structure.

Figure 5. The Bcl-2 protein family.

Figure 6. Schematic structure of the domains of the mammalian IAP family.

Figure 7. Map of XIAP activities and interactions.

Figure 8. Representation of survivin protein structure.

Figure 9. Representation of the survivin dimer.

Figure 10. Schematic representation of the alternative splicing variants of survivin.

Figure 11. The role of survivin in the apoptosis pathways.

Figure 12. The role of survivin in the cell cycle.

Figure 13. Summary of the current strategies for survivin targeting in cancer therapy.

Figure 14. Schematic representation of the most exploited antisense approaches.

Figure 15. Mechanisms of action of antisense oligonucleotides.

Figure 16. Sites for chemical modifications of ribonucleotides.

Figure 17. Example of the antisense oligonucleotides chemically modified.

Figure 18. The method of entry of DNA–polymer complexes.

Figure 19. Structure of a hammerhead ribozyme.

Figure 20. Schematic representation of the catalytic cycle for a hammerhead ribozyme.

Figure 21. Gene silencing by RNAi.

Figure 22. Schematic representation of the genomic organisation of a retrovirus.

Figure 23. Production of an infectious retroviral particle and infection of a target cell.

Figure 24. Structure of small-molecule direct cdk modulators.

Figure 25. Ribozyme structure.

Figure 26. Structures of siRNAs.

Figure 27. In vitro catalytic activity.

Figure 28. Ribozyme expression in JR8 melanoma cell clones.

Figure 29. Survivin expression in melanoma cell clones.

Figure 30. Clonogenic cell survival curves obtained after exposure of melanoma cell clones to topotecan.

Figure 31. Induction of apoptosis in melanoma cell clones exposed to topotecan and cisplatin.

Figure 32. Caspase activation in melanoma cell clones treated with topotecan and cisplatin.

Figure 33. Ribozyme expression in tumours grown in nude mice.
Figure 34. Growth curves of JR8, JR8/mutRz and JR8/Rz melanoma cells in athymic nude mice.

Figure 35. Effect of ribozyme-mediated survivin inhibition on the anti-tumorigenic activity of oral topotecan in melanoma xenografts.

Figure 36. Clonogenic cell survival curves obtained after γ-irradiation of melanoma cell clones.

Figure 37. Induction of apoptosis in melanoma cell clones exposed to γ-irradiation.

Figure 38. Caspase activation in melanoma cell clones exposed to γ-irradiation.

Figure 39. Ribozyme expression in prostate cancer cells.

Figure 40. Survivin expression in prostate cancer cells.

Figure 41. Effect of survivin inhibition on cell cycle progression.

Figure 42. Induction of spontaneous apoptosis in prostate cell clones.

Figure 43. Caspase activation in prostate cell clones exposed to cisplatin.

Figure 44. Effect of ribozyme-mediated survivin inhibition on the tumorigenic potential of human prostate cancer cells.

Figure 45. Survivin mRNA expression in DU145 cells.

Figure 46. Survivin protein expression in DU145 cells.

Figure 47. Effect of siRNA-mediated silencing of survivin on the expression of the other anti-apoptotic proteins.

Figure 48. Effects of siRNA-mediated survivin down-regulation on in vitro growth of DU145 cells.

Figure 49. Effects of siRNA-mediated survivin down-regulation on the apoptotic rate of DU145 cells.

Figure 50. Effects of siRNA-mediated survivin down-regulation on the apoptotic rate of DU145 cells.

Figure 51. Dose-response survival curves of DU145 cells exposed to siRNA in combination with 17-AAG.

Figure 52. Effects of siRNA-mediated survivin down-regulation combined with 17-AAG treatment on the expression/activity of Hsp90 client proteins.

Figure 53. Survivin protein expression in DU145 cells after exposure to siRNA and 17-AAG.

Figure 54. Caspase activation in DU145 cells after exposure to siRNA and 17-AAG.

Figure 55. Survivin protein expression in PC-3 cells.

Figure 56. Dose-response survival curves of PC-3 cells exposed to siRNA in combination with 17-AAG.

Figure 57. Survivin protein expression in PC-3 cells after exposure to siRNA and 17-AAG.

Figure 58. Chemical structure of NU6140 and purvalanol A.

Figure 59. Clonogenic cell survival curves obtained after exposure of HeLa cells to cdk inhibitors.

Figure 60. Effect of NU6140 and purvalanol A on cell cycle and apoptosis.
Figure 61. Caspase activation in HeLa cells after exposure to NU6140 and purvalanol A.

Figure 62. Down-regulation of survivin protein by cdk inhibitor treatment.

Figure 63. Down-regulation of survivin mRNA by cdk inhibitor treatment.

Figure 64. Effect of cdk inhibitor treatment on survivin phosphorylation.

Figure 65. Effect of combined treatment with paclitaxel followed by cdk inhibitors on cell cycle progression and apoptosis.

Figure 66. Proteolytic processing of caspase-9 and caspase-3 by combined treatment of tumour cells with paclitaxel followed by cdk inhibitors.

Figure 67. Activation of caspases by combined treatment of HeLa cells with paclitaxel followed by cdk inhibitors.

Figure 68. Activation of caspases by combined treatment of OAW42/e and OAW42/Surv cells with paclitaxel followed by cdk inhibitors.

Figure 69. Effect of combined treatment of HeLa cells with paclitaxel followed by cdk inhibitors on survivin phosphorylation.

Table I. Features of apoptosis.

Table II. Description of the main gene delivery systems.

Table III. Cytotoxic activity of topotecan, cisplatin and temozolomide in melanoma cell clones.

Table IV. Effects of oral topotecan on tumorigenicity (tumour take) of JR8/mutRz and JR8/Rz melanoma cells in nude mice.

Table V. Effect of survivin inhibition on the growth of melanoma cells in nude mice.

Table VI. Effect of oral topotecan on the growth of melanoma cells in nude mice.

Table VII. Survival curve parameters of melanoma cell.

Table VIII. Cytotoxic effect of NU6140 and purvalanol A against HeLa cells as single agents and in combination with paclitaxel.

Table IX. Cytotoxic effect of NU6140 against OAW42/e and OAW42/Surv cells as single agent and in combination with paclitaxel.
Chapter 1
INTRODUCTION
Chapter 1

INTRODUCTION

1. APOPTOSIS

Apoptosis and necrosis represent two distinct types of cell death, which have been defined morphologically and biochemically [Kiechle & Zang, 2002].

Apoptosis, or programmed cell death, first described by Kerr, Wyllie and Currie [1972], plays important roles in the elimination of unnecessary, damaged or infected cells in multicellular organisms [Cory et al, 2002; Opferman & Korsmeyer, 2003]. Deregulation of apoptosis results in pathological conditions ranging from cancer [Vaux et al, 1988; Strasser et al, 2000; Opferman & Korsmeyer, 2003; Danial & Korsmeyer, 2004] to autoimmune diseases [Strasser et al, 2000; Franz et al, 2006].

Apoptosis is an active process characterized by morphological changes including condensation and fragmentation of the nucleus, shrinkage of the cytoplasm, and the formation of apoptotic bodies that contain fragments of the nucleus encircled by cytoplasm and cell membrane [Kerr & Kumar, 1998]. Apoptotic cells are rapidly eliminated by phagocytic cells including macrophages [Fadok et al, 1998]. Because their plasma membrane remains intact, apoptotic cells do not trigger an inflammatory response [Levine & Koh, 1999]. In contrast, necrosis is a passive form of cell death associated with inflammation, resulting from a non-specific injury such as blunt trauma, exposure to a toxin, or the loss of blood supply [Cohen, 1993; Kerr & Kumar, 1998; Proskuryakov et al, 2003; Edinger & Thompson, 2004]. Necrosis is characterized by cellular and organelle swelling, rupture of the plasma membrane and release of cytoplasmic contents, in addition to other events,
triggering a pronounced inflammatory response [Levine & Koh, 1999; Proskuryakov et al, 2003].

Apoptosis can be divided into three stages [Kroemer et al, 1997]. In the first stage, the cell receives an apoptotic signal. A variety of stimuli both internal and external to the cell can activate apoptotic pathways. These include ligation of a cell surface receptor, removal of essential growth factor, exposure to various chemical agents [Au et al, 1997; Edinger & Thompson, 2004; Fumarola & Guidotti, 2004]. In addition, the exposure of a cell to UV, ionising radiation, or heat can also induce apoptosis [Sarin et al, 1996; Rehemtulla et al, 1997; Basu & Kolesnick, 1998; Garcia-Bermejo et al, 1998; Zundel & Giacca et al, 1998; Edinger & Thompson, 2004; Oancea et al, 2004; Boehm, 2006]. The cell integrates the various signals and may or may not execute the apoptosis. This process involves several signal transduction pathways such as the activation (or inactivation) or serine/threonine and tyrosine kinases and phosphatases. The final decision to undergo apoptosis depends upon several factors including the relative levels of both apoptotic and survival factors, as well as the metabolic state of the cell. In the final stage of the apoptosis, a degradative pathway is activated [Kroemer et al, 1997].

1.1. Features of Apoptosis

The biochemical and morphological changes induced by apoptosis influence different aspects of the cell from the plasma membrane to the nucleus (Table I).
Table I. Features of apoptosis.

<table>
<thead>
<tr>
<th>Structure</th>
<th>Alteration</th>
</tr>
</thead>
<tbody>
<tr>
<td>Plasma membrane</td>
<td>Exposure of phosphatidylserine</td>
</tr>
<tr>
<td></td>
<td>Membrane blebbing</td>
</tr>
<tr>
<td></td>
<td>Loss of integrity</td>
</tr>
<tr>
<td></td>
<td>Loss of potassium gradient</td>
</tr>
<tr>
<td>Cytoplasm</td>
<td>Loss of cytoplasmic volume</td>
</tr>
<tr>
<td></td>
<td>Degradation of cytoskeletal proteins</td>
</tr>
<tr>
<td>Mitochondria</td>
<td>Rupture of outer membrane</td>
</tr>
<tr>
<td></td>
<td>Swelling of matrix</td>
</tr>
<tr>
<td></td>
<td>Release of apoptotic proteins</td>
</tr>
<tr>
<td></td>
<td>Loss of transmembrane gradient</td>
</tr>
<tr>
<td>Nucleus</td>
<td>Nuclear fragmentation</td>
</tr>
<tr>
<td></td>
<td>Chromatin condensation</td>
</tr>
<tr>
<td></td>
<td>DNA fragmentation</td>
</tr>
</tbody>
</table>

The plasma membrane is composed of a variety of phospholipids including both aminophospholipids (phosphatidylserine and phosphatidylethanolamine) and choline phospholipids (phosphatidylcholine, sphingomyelin) [Schlegel et al, 1996]. In the normal cellular state, the cell maintains an asymmetry between the phospholipid content of the inner and outer leaflet of the plasma membrane by actively translocating phosphatidylserine from the outer to the inner leaflet. In apoptosis, this asymmetry is lost as phosphatidylserine equilibrates between the inner and outer leaflets [Hampton et al, 1996; Bratton et al, 1997]. Another prominent apoptotic change concerning the structure of the plasma membrane is the formation of blebs, the small membrane-enclosed pieces of cytoplasm and condensed nuclear material [Cohen, 1993].
Cytoplasmic changes during apoptosis include the loss of cytoplasmic volume and degradation of cytoskeletal proteins [Cohen, 1993]. Cytoplasmic shrinkage results primarily from two processes: (i) the formation of blebs results in a loss of volume, and (ii) the loss of a potassium gradient that is normally maintained by the plasma membrane results in osmotic shrinkage of the cytoplasm [Dallaporta et al, 1999]. The degradation of cytoskeletal proteins is a consequence of the actions of caspases both directly cleaving proteins and activating other degradative enzymes [Krammer, 1999].

The mitochondrion consists of both an inner and outer phospholipid membrane. The inner membrane defines the central matrix space with mitochondrial DNA and where protein synthesis and respiration occurs [Scheffler, 2001]. Mitochondria normally maintain a voltage ($\Delta\psi_m$) and pH gradient across the inner membrane that is used by the $F_1/F_0$-ATPase in the formation of ATP [Scheffler, 2001]. During apoptosis this gradient is often lost, and is associated with the osmotic swelling of the matrix, the break of the outer mitochondrial membrane, and the release of pro-apoptotic proteins from the inter-membrane space [Kroemer et al, 2007].

In its normal state, the nucleus is a spherical structure with a relatively diffuse staining pattern. This staining pattern reflects different chromatin states with darker regions indicating inactive stretches of DNA bundled together with histones [Ferri & Kroemer, 2001]. Specific alterations are observed as a result of apoptosis and include the condensation of the nucleus [Thompson et al, 1999]. The nucleus fragments into several sections released from the cell as part of apoptotic bodies [Zamzami & Kroemer, 1999]. A reduction in the total DNA content of the cell is thus a sign of an
apoptotic cell death. On a biochemical level, these nuclear changes are associated with the activation of several different endonucleases. The action of the DNA degradative enzymes results in the formation of small fragments of DNA, often in multiples of 180 base-pairs reflecting basic nucleosome structure [Darzynkiewicz et al, 1997; Zamzami & Kroemer, 1999].

1.2. Apoptotic Death Pathways

Two major pathways of apoptosis have been identified in mammalian cells (Figure 1). An extrinsic pathway is triggered by the binding of ligands [Yuan, 1997] to cell-surface trimeric membrane death receptors and leads to caspase-8 activation. An intrinsic pathway involves mitochondria, which respond to pro-apoptotic signals by releasing cytochrome c, which in turn binds and activates the apoptotic protease activating factor-1 (Apaf-1), causing assembly of a multi-protein caspase-activating complex (apoptosome) and leading to activation of caspase-9 and initiation of a protease cascade [Cryns & Yuan, 1999]. Both pathways can be activated by genotoxic and metabolic stress, and result in the activation of effector caspases-3, -6 and -7 which cleave a variety of distinct substrates, resulting in nuclear fragmentation and cellular disassembly.
Figure 1. Schematic representation of the two major apoptotic pathways in human cells: the "extrinsic" (the death receptor-mediated) and "intrinsic" (mitochondrial) programmed cell death. Apoptosis can be initiated by the death-receptor pathway that acts through caspase-8 or mitochondrial pathway that acts through caspase-9. Both apoptotic pathways converge to activate the effector caspases. Cell death is also regulated by the Bcl-2 and IAP protein families. Bcl-2 proteins are thought to regulate the mitochondria permeability transition by inhibiting (Bcl-2 and Bcl-xL) or promoting (Bax and Bid) cytochrome c release. IAP proteins prevent processing of initiator caspase-9 from the apoptosome and inhibit the activity of the effector caspases. Proteins that are released by mitochondria during the permeability transition (i.e. cytochrome c and SMAC/Diablo) facilitate caspase activation by forming the apoptosome or relieving the caspase-inhibitory function of IAP proteins.
1.2.1. Death Receptor-Mediated Apoptotic Events

The extrinsic pathway is a primary mediator of cellular immunity, but can also be activated in response to drug therapy. The death receptor-mediated apoptotic events are initiated by binding of death receptors such as fibroblast-associated (Fas), tumour necrosis factor receptor (TNF-R), and TNF-related apoptosis-inducing ligand receptor (TRAIL-R) to their ligands [Trauth et al, 1989] (Figure 2).

![Figure 2. Signalling pathways triggered by death receptors.](image)

After binding of FASL or APO2L/TRAIL, the death receptors Fas assemble the DISC complex: through the adaptor protein FADD, they recruit and activate the apoptosis-initiating proteases caspase-8. The physical proximity of the recruited enzymes in the ligand-induced signalling complex leads to their autoactivation by proteolysis, thereby triggering intracellular signalling cascades that induce specific cellular responses. After binding of TNF, TNF-R1 first recruits TRADD as a platform adaptor, and, in turn, assembles a complex which involves FADD and caspase-8 and triggers apoptosis in a manner similar to the other death receptors. Death receptor DR3 assembles signalling complexes that are similar to those of TNF-R1. Death domains are indicated in red; death-effector domains in green; caspase domains are shown in blue. [Adapted from Gupta et al, 2005]
This binding initiates ligation of the receptors and transmission of the apoptotic signals through motifs called death domains (DDs), death effector domains (DED), and caspase recruitment domains (CARD). The DDs are found in cytoplasmic proteins including Fas-associated protein with death domain (FADD), TNF receptor-associated protein with death domain (TRADD), and receptor-interacting protein (RIP) and in transmembrane proteins, including Fas, TNF-R1, TRAIL-R1/DR4, and TRAIL-R2/DR5. The DED are found in the adaptor molecules and in pro-caspases-8 and -10 and play an important role in death receptor-induced apoptosis where the interactions between death effector domains of the adaptor molecules and of pro-caspases-8 or -10 enable formation of the death-inducing signalling complex (DISC) [Lee et al, 2000]. The binding of the DISC (including the DED, the DED-containing adaptor molecules and the DED-containing cysteine protease caspase-8) to pro-caspase-8 initiates the caspase cascade [Weber & Vincenz, 2001]. These events can be regulated by Flip (FADD-like interleukin-1-converting enzyme-inhibitory protein), which prevents caspase activation [Peter, 2004].

1.2.2. Mitochondria-Mediated Apoptotic Events

In death receptor-mediated apoptosis, the apoptotic pathway is activated by the interaction of a relatively small number of structurally-related ligands with a relatively small number of structurally-related cell surface receptors. In contrast, mitochondrial apoptosis can be induced by a variety of agents
including chemotherapeutic drugs, reactive oxygen species, kinase and phosphatase inhibitors, UV and ionizing irradiation, and environmental stresses including growth factor withdrawal, heat, and osmolarity changes [Shimizu et al, 1996; Kroemer et al, 1997; Lilly et al, 1999; Galluzzi et al, 2006; Kroemer et al, 2007].

Cellular response to DNA-damage is a very complex process, involving a multitude of proteins that sense the damage, transduce signals into cells and execute cellular responses. This network of events includes a protein kinase cascade that connects the detection of DNA damage to the activation of transcription factors, which in turn regulate the expression of genes implicated in specific cellular pathways, including DNA repair mechanisms, cell-cycle checkpoints, cellular senescence and apoptosis [Zhou & Elledge, 2000; Sancar et al, 2004]. In response to the different types of DNA damage, the cell cycle checkpoints are activated to delay or arrest cell cycle progression, presumably in order to allow time to repair damaged DNA [Nyberg et al, 2002]. The blockage of DNA replication leads to collapse of replication forks and DNA double-strand breaks (DSBs) formation, which are thought to be crucial downstream apoptosis triggering lesions [Roos & Kaina, 2006]. DSBs are recognised by proteins that exert both kinase and repair activity. The most-important ‘sensors’ are ATM (ataxia telangiectasia mutated) and ATR (ataxia telangiectasia and Rad3 related) proteins, members of the phosphatidylinositol-3-kinase-related family [Durocher & Jackson, 2001; Ismail et al, 2005]. Whereas ATM is activated by ionizing radiation-induced DSBs, ATR is activated in response to UV light and presumably all chemical agents that give rise to stalled DNA replication forks.
Chapter 1

Introduction

[Dart et al, 2004]. Upon activation, ATM phosphorylates various downstream substrates such as p53, Nbs1, MDC1, 53BP1, Rad9, Chk1 and Chk2, H2AX and BRCA1 [Lavin et al, 2005; Roos & Kaina, 2006]. ATM, and presumably also ATR, exerts three crucial functions: regulation and stimulation of DSB repair, signaling cell-cycle checkpoints and signaling apoptosis via p53 [Lavin et al, 2005]. Once phosphorylated, p53 becomes stabilised and blocks proliferation by up-regulation of p21^{waf1}, which triggers G_1/S arrest. It has been suggested that at low levels of DSBs only a minor fraction of p53 is activated, driving the transcription of the p21 gene and causing cell-cycle arrest. By contrast, with high levels of DSBs, p53 becomes metabolically stable and transcriptionally activated, and accumulates above a particular threshold, inducing the transcriptional activation of pro-apoptotic genes such as Bax (Bcl-2-associated X protein), PUMA (p53 up-regulated modulator of apoptosis) and FAS receptor [Roos & Kaina, 2006]. p53 activation results from post-translational modifications (i.e., phosphorylations, acetylations or covalent attachments of small ubiquitin-like proteins), whereas p53 instability is due to its ubiquitination and proteosomal degradation. Both these processes are transiently suppressed after DNA damage [Bernstein et al, 2002].

Most human tumours lose the expression of a functional p53. However, it has been demonstrated that crucial DNA damage can activate a p53-independent apoptosis via backup systems [Roos & Kaina, 2006]. There are several strategies that cells seem to employ to trigger p53-independent DNA damage-induced apoptosis. The first one involves the p53 homologs p63 and p73 [Roos & Kaina, 2006]. It has been proposed that, upon DNA damage,
ATM and ATR activate Chk1 and Chk2, which in turn activate E2F1. This in turn stimulates transcription of the p73 gene, giving rise to an increased level of p73 protein [Urist et al., 2004]. Whereas p53 requires p63 and p73 for triggering apoptosis, p73 has a pro-apoptotic activity even in the absence of p53 [Flores et al., 2002; Roos & Kaina, 2006]. p73-induced apoptosis was shown to be mediated by transcriptional up-regulation of PUMA, NOXA and Bax [Melino et al., 2004; Flinterman et al., 2005]. Another factor implicated in p53-independent apoptosis is NF-kB (nuclear factor-kB), which is generally anti-apoptotic as it transcribes anti-apoptotic genes. However, under some circumstances (i.e., topoisomerase inhibitor treatment [Piret et al., 1999], NF-kB exhibits pro-damage-signaled apoptosis, by inducing the transcription of a growing number of genes related to apoptosis, including Fas ligand [Schmitt et al., 2007].

Another trigger of apoptosis upon DNA damage is the inhibition of RNA synthesis, which leads to a decline in the level of critical gene products such as MKP1 (mitogen-activated protein kinase phosphatase). This causes sustained activation of JNK (Jun kinase) and AP-1, which stimulates death-receptor activation [Roos & Kaina, 2006].

The mitochondria-mediated apoptotic pathway is mediated by the mitochondrial release of cytochrome c [Kiechle & Zang, 2002; Reed, 2000; Zimmerman et al., 2002; Kroemer et al., 2007] (Figure 3). Bcl-2 homologous protein (including Bax) may oligomerize and form pores in the outer mitochondrial membrane, resulting in either a decrease in the inner mitochondrial transmembrane potential [Green, 2000] or opening of the voltage-dependent anion channel [Shimizu et al., 2001] releasing cytochrome
c from the space between the inner and outer mitochondrial membranes [Goldstein et al, 2000].

**Figure 3. Mitochondrial apoptotic pathway.**

Mitochondrial outer membrane permeabilization occurs when the pro-apoptotic Bcl-2 family proteins (Bax and/or Bak) are activated by BH3-only proteins in response to apoptosis-inducing signals. This results in the release of proteins of the mitochondrial intermembrane space, including cytochrome c and SMAC/Diablo. Cytochrome c activates Apaf-1, which oligomerizes to form the apoptosome, that in turn recruits and activates caspase-9. The activated caspase-9 cleaves and activates executioner caspases. IAPs block caspase-9 function and are themselves regulated by SMAC/Diablo.

Cytosolic cytochrome c induces the formation of the multi-subunit apoptosome composed of Apaf-1, pro-caspase-9 and either ATP or dATP [Hengartner, 2000; Ceconni & Gouss, 2001; Auchon et al, 2002; Zimmerman et al, 2002] (Figure 3). Activated caspase-9 recruits and activates caspases-3.
and/or -6 and -7. Anti-apoptotic members of the Bcl-2 family, such as Bcl-2 and Bcl-xL, control cytochrome c and SMAC/Diablo release [Thomadaki & Scorilas, 2006], whereas activation of caspase-9 and downstream caspases is controlled by the family of inhibitor of apoptosis proteins (IAPs) [Vaux & Silke, 2003] (Figure 3).

1.2.3. Caspases

The final pathway that leads to execution of the death signal in both intrinsic and extrinsic pathways of apoptosis is the activation of a series of proteases termed caspases [Thornberry & Lazebnik, 1998; Shi, 2002]. The name is derived from the specificity of these cysteine proteases to cleave their substrates after an aspartic acid [Thornberry & Lazebnik, 1998]. To date, more than 14 caspases have been identified [Kumar, 2007]. Of these, caspases-2, -8, -9, and -10 are thought to be initiator caspases, while caspases-3, -6 and -7 are considered to be death effectors. Other caspases including caspase-1, -4, -5, -11, -13 and -14 have been implicated in the inflammatory response [Scott & Saleh, 2007]. Caspase-12, which localizes to the endoplasmic reticulum, may play a role in the endoplasmic reticulum stress response [Nakagawa et al, 2000]. Generally, the cleavage of caspase specific substrates results in the biochemical destruction of the cell and phenotypic changes associated with the apoptotic program.

In cells, caspases exist as inactive zymogens that require processing to become biologically active. It is generally accepted that this occurs by either auto-proteolysis or by the proteolytic actions of other caspases. The
zymogenic form of the caspase, the pro-caspase, contains an amino terminal pro-domain, a large subunit (~20 kDa) containing the active cysteine residue, a small subunit (~10 kDa) and a variable length linker region which separates the large and small subunits [Nunez & Del Peso, 1998] (Figure 4).

![Figure 4. Schematic representation of caspase structure.](image)

Caspases are cysteine proteases produced in cells as inactive precursors (pro-caspase) containing common structural elements: a pro-domain, a large and a small subunits and a linker region. The active site cysteine is harbored within a conserved QACXG motif in the large subunit. The caspase is activated by proteolysis that occurs at aspartate residues, residing between the pro-domain and the large subunit and within the linker region. The active caspase is a tetramer made of two large/small subunit heterodimers each with an active site.

Aspartate cleavage sites are found between the pro-domain and the large subunit as well as within the inter-domain linker. Caspase activation occurs by proteolytic cleavage of the linker region, thus allowing the large and small subunits to assemble into a functionally active heterodimer [Wilson et al, 1994; Nunez & Del Peso, 1998; Wolf & Green, 1999]. Initiator caspases have a long pro-domain, which contain either a CARD (caspase-2 and -9) or a
DED (caspase-8 and -10) domain [Slee et al, 1999]. Interaction of either the DED or CARD with corresponding regions in other initiator caspases or adaptor proteins facilitates clustering and auto-proteolysis of initiator caspases. Once activated, initiator caspases act in a hierarchical manner to cleave and activate death effector caspases. Subsequently, activated effector caspases can activate remaining initiator caspases. This system of activation enables rapid caspase mobilization and cascade amplification [Wolf & Green, 1999].

The downstream caspases induce cleavage of protein kinases, cytoskeletal proteins, DNA repair proteins, inhibitory subunits of endonucleases, and finally, destruction of "housekeeping" cellular functions. Caspases also affect cytoskeletal structure, cell cycle regulation, and signalling pathways, ultimately leading to the morphologic manifestations of apoptosis, such as DNA condensation and fragmentation, and membrane blebbing [Thornberry & Lazebnik, 1998; Kumar, 2007].

1.3. Regulators of Apoptosis

At the molecular level, the intrinsic pathway is primarily governed by a series of proteins belonging to two distinct groups [Hengartner, 2000]: those of the Bcl-2 family and those of the Inhibitors of Apoptosis Proteins (IAPs) family.
1.3.1. Bcl-2 Family Proteins

The bcl-2 gene was first discovered in human B-cell lymphomas where, by chromosomal translocations, it was moved into juxtaposition with strong enhancer elements in the immunoglobulin heavy-chain locus [Tsujimoto et al, 1985]. Bcl-2 gene has been established to be a proto-oncogene that prolongs cell survival by inhibiting apoptosis. Subsequent studies have demonstrated that Bcl-2 can prevent or delay apoptosis induced by a large variety of stimuli in many cell types [Hockenbery et al, 1990; Willis et al, 2003; Thomadaki & Scorilas, 2006; Zinkel et al, 2006]. However, the exact mechanism of its protective action remains unclear. Several hypotheses have been proposed to explain the anti-apoptotic function of Bcl-2. Bcl-2 may prevent the release of the mitochondria activators of the cytosolic caspases [Thomadaki & Scorilas, 2006]. The association of Bcl-2 with the Apaf-1 may prevent the cytochrome c release and the activation of the two effector caspases, caspase-9 and -3. Also, Bcl-2 might act by modulating the collapse of the mitochondrial transmembrane potential that occurs during apoptosis [Hockenbery et al, 1990; Kroemer et al, 2007].

Members of the Bcl-2 family are characterized by the presence of distinct conserved sequence motifs known as Bcl-2 homology (BH) domains designated BH1, BH2, BH3 and BH4, which correspond to α-helical segments [Adams & Cory, 2007] (Figure 5). This family members are either anti- or pro-apoptotic. Generally, the anti-apoptotic members (such as Bcl-2, Bcl-xL, Mcl-1, A1, Bcl-W) display sequence homology in all four BH domains [Adams & Cory, 2007], whereas the pro-apoptotic members (such as Bax,
Bak, Bcl-xL, Bok) have homologous BH1-3 domains [Puthalakath & Strasser, 2002; Adams & Cory, 2007] (Figure 5).

![Diagram of the Bcl-2 protein family]

**Figure 5. The Bcl-2 protein family.**
Most anti-apoptotic Bcl-2 family members express four Bcl-2 homology domains (BH) as well as a putative transmembrane domain (TM) responsible for their preferred localization at inner membranes. The pro-apoptotic Bcl-2 family members can be divided into two groups: i, the Bax sub-family (Bax, Bak, Bok) resemble Bcl-2 closely in structure and possess three out of four BH domains; ii, the more distantly related 'BH3-only' proteins only share one BH3 domain with all other Bcl-2 family members. [Adapted from Ranger et al, 2001]

Pro-apoptotic Bcl-2 family members, upon activation by apoptotic stimuli, are capable of forming heterodimers with anti-apoptotic members. Deletion and mutagenesis studies show that the BH3 domains among pro-apoptotic members are critical for their pro-apoptotic and heterodimerization function [Opferman & Korsmeyer, 2003]. Thus, the α-helical BH3 domain serves as a
critical death domain among pro-apoptotic members. The hypothesis that the BH3 domain of pro-apoptotic members may be required and sufficient for mediating pro-apoptotic function is supported by the discovery of a third subset of the pro-apoptotic members of the Bcl-2 family (such as Bid, Bad, Bik, Bim, Bmf, Puma) that have sequence homology only in the BH3 domains [Huang & Strasser, 2000] (Figure 5).

Different Bcl-2-like proteins have different cytoplasmic distributions. Both Bcl-2 and Bcl-xL have a carboxy-terminal membrane insertion sequence, and the majority of these proteins are found to be associated with mitochondrial membranes, endoplasmic reticulum, and nucleus [Jacobson et al., 1993; Wolter et al., 1997; Minn et al., 1998]. In their inactive state, the pro-apoptotic members, Bad, Bax and Bid have primarily a cytoplasmic location. However, upon activation, they translocate to the mitochondria [Wolter et al., 1997; Goping et al., 1998; Khaled et al., 1999; Ruffolo et al., 2000]. Bid and Bik can directly induce mitochondria to release cytochrome c, and they may also act to inhibit the anti-apoptotic actions of Bcl-2 and Bcl-xL via the formation of heterodimers [Shimizu et al., 2000].

Several different cellular mechanisms exist to modulate the activity of both the pro- and anti-apoptotic function of Bcl-2 proteins. The dimerization state of Bcl-2 family members affects their activity [Korsmeyer, 1999]. One function of the anti-apoptotic Bcl-2 and Bcl-xL is to dimerize with pro-apoptotic Bax to neutralize its activity. As a heterodimer, Bax is inactive, but once free to dimerize with itself, Bax is able to induce apoptosis [Gross et al., 1998; Minn et al., 1998]. Altering the expression levels of pro- and anti-apoptotic family members can either promote or inhibit apoptosis [Adams & Cory, 2007]. In
fact, when the amount of Bcl-2 is greater than or equal to the amount Bax, a given cell is protected from apoptosis. However, when the amount of Bax exceeds the amount Bcl-2, a cell is more prone to undergo apoptosis. Moreover, Bcl-2 proteins can be altered by phosphorylation [Ito et al, 1997; Maundrell et al, 1997; Thomadaki & Scorilas, 2006]. In its un-phosphorylated state, Bad dimerizes with Bcl-2 and Bcl-x\textsubscript{L}, neutralizing their anti-apoptotic activity (and allowing Bax to self-associate) [Yang et al, 1995]. However, when Bad is phosphorylated, it is sequestered by a protein, and therefore cannot interact with and neutralize Bcl-2 and Bcl-x\textsubscript{L} [Zha et al, 1998; Korsmeyer, 1999]. The function of Bcl-2 family members can be altered by cleavage. During Fas-mediated apoptosis, caspases have been shown to cleave both Bcl-2 and Bcl-x\textsubscript{L} [Clem et al, 1998; Fujita et al, 1998]. The cleaved products are no longer protective, and in fact become pro-apoptotic [Clem et al, 1998; Fujita et al, 1998]. Bid is another Bcl-2 protein that is activated by caspase cleavage. While the full-length protein is inactive, after caspase-8-mediated cleavage, Bid induces cytochrome c release from the mitochondria [Li et al, 1998; Luo et al, 1998; Gross et al, 1999].

Finally, the conformation of Bcl-2 proteins modifies their activity. The best evidence for this mechanism comes from studies of Bax [Khaled et al, 1999]. In its inactive state, Bax exists in a conformation in which it is resistant to protease cleavage. However, upon activation and translocation to mitochondria, the amino-terminal region of this protein becomes susceptible to protease cleavage, suggesting that a conformational change has occurred [Khaled et al, 1999].
1.3.2. Inhibitor Apoptosis Proteins (IAPs) Family

The Inhibitors of Apoptosis Proteins (IAPs) family are a group of anti-apoptotic proteins that are conserved in several species [Deveraux & Reed, 1999]. These proteins characterized by one or more 70–80 amino-acid baculoviral IAP repeat (BIR) domains. The BIR domain is a characteristic cysteine-and histidine-rich protein folding domain that chelates zinc and forms a compact globular structure consisting of four or five α-helices and a variable number of antiparallel β-pleated sheets. The core of a BIR domain consists of the variable consensus sequence, C(X)2 C(X)6 (X)3 D(X)5 H(X)6 C, where X is any amino acid [Deveraux & Reed, 1999]. They were first discovered in baculoviruses, a group of viruses specific to insects [Birnbaum et al, 1994] and proteins containing BIR domains have been identified in a wide range of eukaryotic species, including the fission yeast *Schizosaccharomyces pombe*, the budding yeast *Saccharomyces cerevisiae*, the nematode *Caenorhabditis elegans*, the fly *Drosophila melanogaster*, and several mammalian species including mice, rats, chickens, pigs, and humans [Deveraux & Reed, 1999].

The first mammalian IAP homologue to be identified was neuronal apoptosis inhibitory protein (NAIP) (Figure 6), which was isolated during a positional cloning effort to identify the causative gene for spinal muscular atrophy [Roy et al, 1995]. In contrast to the baculoviral IAPs, which possess two BIR domains and a carboxy-terminal RING zinc-finger, NAIP encodes three BIR domains and a very large and unique carboxy-terminus containing a nucleotide-binding oligomerization domain [Koonin & Aravid, 2000].
Subsequent to the identification of NAIP, the IAP family expanded with the identification of cellular IAP1 (cIAP1, hIAP2), cIAP2 (hIAP1), and X-chromosome-linked IAP (XIAP) (Figure 6), all of which contain three BIR domains and a carboxy-terminal RING finger [Rothe et al, 1995; Duckett et al, 1996; Liston et al, 1996; Uren et al, 1996]. Finally were identified survivin (with a single BIR and the carboxy-terminal coiled-coil domain) [Ambrosini et al, 1997], Livin or ML-IAP (with a single BIR and the carboxy-terminal RING finger) [Lin et al, 2000; Vucic et al, 2000; Kasof & Gomes, 2001], the testis-specific IAP (Ts-IAP, with a single BIR and the carboxy-terminal RING finger) [Lagace et al, 2001; Richter et al, 2001], and the Apollon/BRUCE (with a single BIR and the carboxy-terminal ubiquitin-conjugating enzyme) [Hauser et al, 1998; Verhagen et al, 2001] (Figure 6).

Figure 6. Schematic structure of the domains of the mammalian IAP family. The first mammalian IAP homologue, NAIP, encodes three BIR domains and a very large and unique carboxy-terminus containing a nucleotide-binding oligomerization domain; cIAP1, cIAP2 and XIAP contain three BIR domains and a carboxy-terminal RING finger; survivin contains a single BIR and the carboxy-terminal coiled-coil domain; Livin and Ts-IAP encode a single BIR and carboxy-terminal RING finger; and BRUCE contains a single BIR and an UBC motif.
The characterization of IAP proteins suggests that they function as suppressor of cell death in a variety of tissue culture systems, including triggers of both the endogenous and exogenous pathways of apoptosis [LaCasse et al., 1998; Deveraux & Reed, 1999; Wright & Duckett, 2005]. It was subsequently shown that the IAPs could directly inhibit the activity of several recombinant caspases in vitro [Deveraux et al., 1997; Roy et al., 1997; Maier et al., 2002], and structure-function studies of IAP family proteins have demonstrated a requirement for at least one BIR domain for suppression of apoptosis, although other domains found within some IAPs may also be required under certain circumstances. Several of the mammalian, fly, and viral IAPs have a RING domain located near their carboxyl termini (Figure 6). The necessity for the RING domain for suppression of apoptosis appears to depend on cellular context. In fact, some reports have indicated that the baculoviral IAPs require both amino-terminal BIR domains and the carboxy-terminal RING domain for their anti-apoptotic function in insect cells [Clem & Miller, 1994; Harvey et al., 1997]. By contrast, the human proteins cIAP1, cIAP2, and XIAP have been reported to retain anti-apoptotic function in the absence of their carboxy-terminal RING domains [Deveraux et al., 1997; Roy et al., 1997; Takahashi et al., 1998].

The BIR domains of the IAPs are the most fully characterized functional units of the IAPs. Each BIR domain folds into a functionally independent structure that chelates a zinc ion and consists of a globular head and an unstructured tail derived from the amino-terminal ‘linker’ region located upstream of the individual BIR domains. Specific interactions with initiator (caspase-9) and effector (caspase-3 and -7) caspases have been mapped to
individual BIR domains. As a general rule, the IAPs containing multiple BIRs employ the third BIR domain to inhibit caspase-9, and the second BIR domain functions to inhibit caspase-3 and -7 [Roy et al, 1997; Takahashi et al, 1998; Maier et al, 2002]. As regards single BIR-containing proteins, Ts-IAP inhibits caspase-9 [Richter et al, 2001], while the survivin and livin inhibit caspase-3, -7 and -9 [Lin et al, 2000; Vucic et al, 2000; Kasof & Gomes, 2001; Shin et al, 2001].

Among the mammalian IAPs that are known to be involved in apoptosis, X-linked IAP (XIAP) has been characterized extensively (Figure 7).

![Figure 7. Map of XIAP activities and interactions.](image)

This protein contains three BIR domains and a C-terminal RING motif. The second BIR domain (BIR2) specifically binds to and inhibits active caspase-3 and caspase-7, whereas BIR3 potently targets active caspase-9 [Shi, 2002]. No specific function has been identified for the BIR1 domain of XIAP. The
linker segment that immediately precedes the BIR2 domain of XIAP binds to the active site of effector caspase-3 and caspase-7, hence, preventing substrate binding and subsequent catalysis. By contrast, the BIR3 domain of XIAP employs a different method to inhibit the initiator caspase, caspase-9. Caspase-9 becomes catalytically active through a conformational change when bound by Apaf-1, and thus appears to be unique among the caspases in that there is no absolute requirement for proteolytic activation. In addition to its ability to proteolytically process caspase-3, caspase-9 can undergo a self-cleavage event in the linker region between the p20 and p10 subunits. The XIAP BIR3 domain directly binds caspase-9 via this newly exposed amino terminus and the interaction is stabilized through additional contacts with the enzyme. Using purified caspase-9 and XIAP BIR3, in the absence of Apaf-1 and cytochrome c, it was demonstrated that this interaction prevents caspase-9 homodimerization and stabilizes the enzyme in an inactive state similar to its monomeric form [Shiozaki et al, 2003]. It has been proposed that a similar change in caspase-9 morphology occurs within the apoptosome complex as a consequence of XIAP binding. Caspase-9 can also undergo further cleavage catalysed by caspase-3. This proteolytic event further increases the enzymatic activity of caspase-9, and was proposed to remove the peptide sequence that binds XIAP [Srinivasula et al, 2001].

In the intrinsic cell death pathway, the key event leading to the activation of caspases is the release of several pro-apoptotic proteins from the intermembrane space of mitochondria into the cytosol [Wang, 2001]. One such protein is SMAC/Diablo [Du et al, 2000; Verhagen et al, 2000]. The newly synthesized SMAC/Diablo protein contains 239 amino acids. Its N-
terminal 55 residues encode the mitochondrial-targeting sequence and are proteolytically removed in the mature SMAC/Diablo protein [Du et al, 2000]. This cleavage results in the exposure of four hydrophobic amino acids, Ala-Val-Pro-Ile, at the N-terminus of mature SMAC/Diablo. This tetrapeptide represents the founding member of a family of IAP-binding motifs in mammals and fruit flies [Shi, 2002]. Structural analysis reveals that this tetrapeptide motif binds to a highly conserved surface groove on the BIR3 domain of XIAP [Liu et al, 2000; Wu et al, 2000] (Figure 7). The interactions between SMAC/Diablo and IAPs requires that the N-terminus of the tetrapeptide is exposed, which explains why only the mature form of SMAC/Diablo is functional in cells. Before apoptosis, accidental activation of either caspase-9 or caspase-3 and caspase-7 might not lead to cell death because of the inhibitory effect of IAPs. During apoptosis, SMAC/Diablo is released from mitochondria and re-activates the processed initiator and effector caspases by relieving IAP-mediated inhibition.

1.4. Apoptosis & Cancer

In cancer cells, the growth equilibrium, determined as the ratio between the rate of cell proliferation and incidence of apoptosis, is uncontrolled, and the increase in abnormal proliferation of cancer cells causes tumour invasion and metastatic potential [Olopade et al, 1997]. The goal of most cancer therapies, including radiotherapy, chemotherapy, immunotherapy and gene therapy is the reduction or elimination of cancer
cells. Drug resistance is a major problem that limits the success of the treatment. In fact, most tumours are intrinsically resistant to chemotherapy prior to treatment. Other tumours, initially sensitive, recur and are resistant not only to the initial therapeutic agents, but also to other drugs not used in the treatment. Drug resistance, whether intrinsic or acquired, is believed to cause treatment failure in over 90% of patients with metastatic cancer, and resistant micrometastatic tumour cells may also reduce the effectiveness of chemotherapy in the adjuvant setting.

Cancer cell resistance to chemotherapy can occur at many levels, including increased drug efflux and decreased drug influx, drug inactivation, alterations in drug target, processing of drug-induced damage. Apoptosis pathways are also extremely related to drug sensitivity and resistance. Apoptosis in tumour cells plays a critical role in chemotherapy-induced tumour cell killing thus suggesting that blockade of the apoptosis-inducing pathway could be another mechanism for multidrug resistance [Kim et al, 2002]. Several studies have demonstrated that high Bcl-2 expression in cancers (particularly lymphomas) correlates with poor response to chemotherapy [Campos et al, 1993; Hermine et al, 1996; Bonetti et al, 1998; Schmitt et al, 2000; Reed & Pellecchia, 2005; Adams & Cory, 2007]. However, other studies have shown either no correlation between Bcl-2 expression and drug response [Colleoni et al, 1999; Bottini et al, 2000; Sjostrom et al, 2002; Adams & Cory, 2007], or an association between Bcl-2 and good prognosis [Fontanini et al, 1995; Sjostrom et al, 2002; Adams & Cory, 2007]. Some clinical studies have also demonstrated a correlation between Bax expression and response to chemotherapy [Krajewski et al,
1995; Kymionis et al, 2001; Adams & Cory, 2007); however, such an correlation was not confirmed in other studies [Campos et al, 1993; Paradiso et al, 2001; Adams & Cory, 2007]. It has been also demonstrated that NAIP XIAP, clAP1, and clAP2, diminish apoptosis triggered by a number of agents including camptothecin and menadione in vitro [Liston et al, 1996]. However, it has been found that expression of clAP1, clAP2, and XIAP did not predict response to chemotherapy in patients with advanced non-small cell lung cancer [Ferreira et al, 2001]. Finally, silencing of Apaf-1 has been reported in melanoma cell lines and clinical samples [Soengas et al, 2001]. The Apaf-1-deficient melanoma cells exhibited diminished apoptosis in response to doxorubicin [Soengas et al, 2001].

Resistance to apoptosis causes a decrease in the sensitivity of cancer cells to drugs, resulting in the failure of chemotherapy. Since the induction of apoptosis following chemotherapy is associated with the activation of pro-apoptotic genes and the suppression of anti-apoptotic genes, attenuation of pro-apoptotic genes and increases in anti-apoptotic genes causes resistance to apoptosis [Kaufmann & Vaux, 2003]. Thus, targeting apoptosis-related genes may lead to new strategies to increase the therapeutic effect of cancer chemotherapy. In vitro studies have shown that targeting death receptors with recombinant death ligands or agonistic antibodies can induce apoptosis and/or enhance chemotherapy-induced apoptosis [Petak et al, 2000; Fan et al, 2004; Longley et al, 2004; Wu et al, 2004]. Most pre-clinical studies are focused on local administration of rFasL, or the use of FasL-expressing vectors as gene therapy [Timmer et al, 2002]. However, it has been developed a non-hepatotoxic agonistic Fas antibody [Timmer et al, 2002],
suggesting that it is possible to develop less toxic Fas antibodies. Apoptosis mediated by Fas can be inhibited by cytoplasmic factors, including c-FLIP, which binds to the DISC and inhibits caspase-8 activation [Krueger et al, 2001]. Moreover, c-FLIP overexpression has been found to inhibit death receptor-mediated apoptosis in a number of *in vitro* studies [Hu et al, 1997; Irmel et al, 1997; Srinivasula et al, 1997]. Small RNA interfering targeting of c-FLIP dramatically sensitises a panel of colon cancer cell lines to 5-FU, oxaliplatin, and CPT-11 [Galligan et al, 2005], suggesting an important role for c-FLIP in regulating colon cancer cell chemosensitivity. A promising clinical approach may be to target the TRAIL receptors, as TRAIL has been shown to exert marked anticancer activity without systemic toxicity in mice [Ashkenazi et al, 2002]. Approaches for targeting TRAIL receptors are currently being tested in the clinic.

At mitochondrial level, *in vitro* studies have demonstrated that down-regulation of Bcl-2 and Bcl-X<sub>L</sub> using antisense techniques sensitises cells to chemotherapy [Teixeira et al, 1995; Zangemeister-Wittke et al, 2003; Hayward et al, 2004; Adams & Cory, 2007], whereas loss of Bax expression has been found to decrease chemosensitivity [Zhang et al, 2000; Adams & Cory, 2007]. An antisense oligonucleotide against Bcl-2 (oblimersen) has been in phase III clinical trials for melanoma, CLL and multiple myeloma, as well as in phase II clinical trials for several other cancers [Cummings et al, 2004; Gleave & Monia, 2005], but the results in the clinic are not very promising [Fesik, 2005]. Recently antisense oligonucleotides have been used to reduce IAP protein levels in cancer cells. Down-regulation of XIAP protein levels induced apoptosis in chemoresistant ovarian cancer cells [Sasaki et al,
2. Survivin

The mammalian IAP survivin is a bifunctional protein that facilitates tumour cell evasion from apoptosis and promotes mitotic progression [Altieri & Marchisio, 1999].

Survivin was discovered in 1997 by hybridisation screening of a human genomic library with the cDNA of the effector cell protease receptor-1 (EPR-1) [Ambrosini et al, 1997]. Survivin has a particular relationship to EPR-1: in fact its sequence is complementary to and in the reverse orientation of EPR-1.

2.1. Protein Structure of Survivin

The survivin human gene spans 14.7 kb, and is located on the telomeric position of chromosome 17 at band q25 [Ambrosini et al, 1998]. It comprises three introns and four exons, a TATA-less proximal promoter, and approximately 200 nt GC-rich regions upstream of exon 1 [Ambrosini et al, 1997]. The gene encodes a 16.5 kDa protein of 142 amino acids. The amino-terminal portion of survivin consists of three α helices (residues 14-21, 31-41, 68-80) and 3 β-sheets (residues 43-45, 55-58, 61-64), which closely resemble the BIR domain that is conserved in the IAP family [Ambrosini et al, 1997; Chantalat et al, 2000] (Figure 8). Differently from other IAPs, survivin contains only one BIR and a carboxy-terminus coiled-coil, but no RING finger or other identifiable domain [LaCasse et al, 1998].
The amino-terminal portion of survivin consists of three α helices (residues 14-21, 31-41, 68-80) and 3 β-sheets (residues 43-45, 55-58, 61-64), which closely resemble the BIR domain. Differently from other IAPs, survivin contains only one BIR and a carboxy-terminus coiled-coil, but no RING finger or other identifiable domain. [Adapted from Verdecia et al, 2000]

Crystal structure analysis of survivin revealed that it exists as a dimer, with the two BIR domains forming a “bow-tie-shape” [Chantalat et al, 2000] (Figure 9). The carboxy-terminal helix is not involved in the dimerization of survivin but extends outward from the entwined BIR structure [Chantalat et al, 2000].

Figure 8. Representation of survivin protein structure.

Figure 9. Representation of the survivin dimer.
[Adapted from Verdecia et al, 2000]
The survivin gene is subjected to alternative splicing (Figure 10). Human survivin gene has four dominant (1, 2, 3, and 4) and two hidden (2B and 3B) exons. Alternative splicing of its pre-mRNA produces four different mRNAs, which encode four distinct proteins, survivin, survivin-2B, survivin-ΔEx3 [Mahotka et al, 1999], and survivin-3B [Badran et al, 2004] (Figure 10).

![Figure 10. Schematic representation of the alternative splicing variants of survivin.](image)

Human survivin gene has four dominant (1, 2, 3, and 4) and two hidden (2B and 3B) exons. Alternative splicing of its pre-mRNA produces different mRNAs, which encode five distinct proteins, survivin, survivin-2B, survivin-ΔEx3, survivin-3B, and survivin 2α.

Survivin (142 aa) is derived from exons 1-4; survivin-2B (167 aa) has an additional 23 aa derived from a 69-bp cryptic exon (2B) within intron 2, which is spliced into survivin mRNA in frame between exons 2 and 3 (Figure 10);
survivin-ΔEx3 (137 aa) is derived from exons 1, 2, and 4, a frameshift read-through variant due to exon 3 escape (Figure 10); and the survivin-3B (120 aa) consists of the N-terminal 113 aa of survivin (coded by exons 1, 2, and 3) plus seven new aa sequences at carboxy-terminal tail encoded by a DNA sequence (exon 3B) from intron 3 (Figure 10). Recently, an additional splice variant, survivin 2α, has been identified [Caldas et al, 2005]. Structurally, the transcript consists of 2 exons: exon 1 and exon 2, as well as a 3' 197 bp region of intron 2 (Figure 10). Acquisition of a new in-frame stop codon within intron 2 results in an open reading frame of 225 nucleotides, predicting a truncated 74 amino acid protein [Caldas et al, 2005a].

Little is known about the differential functions of survivin alternative splice forms, which are generally expressed at lower levels than the wild-type survivin. However, it has been reported that the expression of survivin-2B is predominant in some neuroblastoma with a good prognosis, but it is expressed at low levels in most malignant tissues [Islam et al, 2000]. In renal cell carcinomas (RCC), while the expression levels of survivin and survivin-ΔEx3 did not show a decrease in late tumour stages in comparison with the early and intermediate tumour stages in 57 clinical RCC samples, survivin-2B expression was significantly decreased in late tumour stages [Mahotka et al, 2002a], indicating a possible unfavourable role of these splicing variant in the development of this tumour type. In gastric cancer, the expression of survivin-ΔEx3, survivin-2B, and survivin (dominant transcript) was found in clinical samples, irrespective of their histological type, grade, or stage [Krieg et al, 2002; Meng et al, 2004]. However, survivin-2B expression was significantly decreased in later tumour stage in comparison with early stage
Chapter 1

INTRODUCTION

[Krieg et al, 2002; Meng et al, 2004], and inversely correlated with tumour differentiation and invasion [Meng et al, 2004]. The expression of survivin and survivin-ΔEx3 remained unchanged in different stages of cancer [Krieg et al, 2002], and the expression level of survivin-ΔEx3 is inversely correlated with apoptotic index [Meng et al, 2004]. It was also reported that survivin-2B expression was dominant in benign brain tumours in comparison with the malignant ones [Yamada et al, 2003], and that survivin-ΔEx3 expression was prominent in comparison with survivin-2B expression in survivin-expressing acute lymphocytic leukaemia and chronic lymphocytic leukaemia patient bone marrow samples [Nakagawa et al, 2004].

Preliminary data would suggest that heterodimerisation of survivin with survivin-ΔEx3 is essential for the inhibition of mitochondrial-dependent apoptosis [Caldas et al, 2005b], further suggesting a possible anti-apoptotic role for survivin-ΔEx3. In addition, the different subcellular localisation of survivin-ΔEx3 (in nucleus) and survivin-2B (in cytoplasm) [Mahotka et al, 2002b] suggests their potential different functions. These observations indicate that survivin-ΔEx3 and survivin-2B may play an opposing role in tumour progression and tumorigenesis. Moreover, it has been demonstrated in exogenous expression assays that survivin 2α attenuates the anti-apoptotic activity of survivin [Caldas et al, 2005a]. More recently, it was reported that despite their ability to interact with wild-type survivin, alternative splice isoforms such as survivin-ΔEx3 and survivin-2B do not play a role in mitosis since they do not localize with the chromosomal passenger complex in vivo as a consequence of their reduced affinity for the survivin partner Borealin [Noton et al, 2006]. Moreover, these splice variants cannot rescue
cell proliferation inhibited by RNAi-mediated survivin depletion [Noton et al, 2006].

Survivin exhibits cell cycle-dependent expression at mitosis. This requires canonical CDE/CHR boxes in the proximal survivin promoter [Kobayashi et al, 1999; Badie et al, 2000] acting as G1-repressor elements to shut down gene transcription in interphase cells [Kobayashi et al, 1999]. Survivin levels are regulated by rapid changes in protein stability. Poly-ubiquitination on multiple Lys residues and proteasomal-dependent destruction has been proposed as a mechanism to maintain low levels of survivin in interphase cells [Zhao et al, 2000], thus further enhancing cell cycle periodicity. In addition, mitotic phosphorylation of survivin on Thr34 by p34^cdc2^-cyclin B1 has been associated with increased survivin stability at metaphase [O'Connor et al, 2002]. It has been suggested that this pathway is dominant in normal cells and constitutes the primary function of survivin in adult tissues [Yang et al, 2004; Altieri, 2006].

Other non-cell-cycle-dependent mechanisms driving survivin gene transcription independent of mitosis have been described, which involve tissue patterning circuits (Wnt/β-catenin) [Kim et al, 2003], cytokine activation (STAT3) [Gritsko et al, 2006], costimulatory messages (OX-40) [Song et al, 2005] and pleiotropic signaling mechanisms (AKT, NFkB) [Mitsiades et al, 2002] that are operative during development and generally up-regulated in cancer cells [Vogelstein & Kinzler, 2004] and can explain survivin overexpression in the large majority of human tumours. It has been recently suggested that these non-cell-cycle-dependent pathways are dominant in tumours. This hypothesis also relies on the fact that a transgenic mouse
model expressing the green fluorescent protein reporter gene under the control of the minimal survivin promoter demonstrated that expression of survivin in development and tumour formation is largely independent of cell-cycle-dependent transcription of the survivin gene at mitosis [Xia & Altieri, 2006]. The fraction of survivin produced through these non-cell-cycle-dependent mechanisms mediates apoptosis inhibition through intermolecular cooperation with cofactors including the hepatitis B virus X interacting protein [Marusawa et al, 2003], a target of the oncogenic viral HBX protein, and XIAP [Dohi et al, 2004a].

### 2.2. Survivin & Inhibition of Apoptosis

Survivin plays an important role in the suppression of apoptosis by either directly or indirectly inhibiting the activity of caspases (Figure 11).

![Figure 11. The role of survivin in the apoptosis pathways.](image)

Survivin may regulate apoptosis (A) directly inhibiting the caspases responsible for induction and execution of apoptosis; (B) indirectly inhibiting caspase function by regulating SMAC/Diablo.
The IAP family members have been shown to suppress apoptosis by direct inhibition of caspases [Deveraux & Reed, 1999] via the BIR domains [Miller, 1999] (Figure 11A). The structure of survivin has been compared to another IAP family member, XIAP (Figure 7). XIAP inhibits caspase-3 and caspase-7 via a linker region between the first two BIR domains, and also binds to and inhibits caspase-9 through its third BIR (BIR3) domain [Sun et al, 1999]. The BIR domain of survivin appears closely related in three-dimensional structure to the BIR3 domain of XIAP, suggesting the possibility that survivin binds caspase-9 [Shi, 2000]. The interaction between survivin and caspase-9, and the functional implications of this interaction, have been studied through mutagenesis. Loss of phosphorylation at Thr$^{34}$ on the T34A mutant of survivin results in dissociation of an immunoprecipitable survivin-caspase-9 complex on the mitotic apparatus, allowing caspase-9 dependent apoptosis [O'Connor et al, 2000].

Survivin may also inhibit caspase activity indirectly (Figure 11B). There is evidence of an indirect regulation of caspase activity by survivin in the mitochondrial pathway of apoptosis. Haepatocytes of heterozygous survivin knockout mice contain low basal levels of activated pro-caspase-8, Bid, pro-caspase-9, and pro-caspase-3, and have increased susceptibility to Fas-induced apoptosis [Conway et al, 2002]. Fas-induced apoptosis is associated with release of cytochrome c and up-regulation of survivin in the mitochondria as well as in the nucleus and cytosol [Conway et al, 2002]. Upon Fas stimulation in cell culture, survivin has been shown to interact with cdk4, which releases p21 from its complex with cdk4 [Suzuki et al, 2000] making it possible for p21 to complex with caspase-3, the initial step in inactivating...
caspase-3 in the mitochondria. In addition, overexpression of a second mitochondrial-derived activator of caspases, SMAC/Diablo, increases Apo-2L/TRAIL-induced caspase-3 activity, and down-regulates the activity of survivin and other IAPs such as XIAP and cIAP1 [Guo et al, 2002]. SMAC/Diablo is released from mitochondria into the cytosol along with cytochrome c during execution of the mitochondrial apoptosis pathway. SMAC/Diablo can promote apoptosis by binding to and suppressing the inhibitory effects of the IAP proteins [Du et al, 2000]. Survivin may possibly function to inhibit caspase activity indirectly via binding to and sequestering SMAC/Diablo, thus preventing SMAC/Diablo binding to other IAPs [Du et al, 2000] (Figure 11B).

The mechanism of caspase-3 inhibition by survivin remains controversial. There are reports indicating that purified survivin directly binds to caspase-3 and inhibits its activity in vitro [O'Connor et al, 2000; Shin et al, 2001]. However, the survivin protein lacks the linker region found in other IAP members that is responsible for their interaction with caspase-3 [Sun et al, 1999].

Moreover, subcellular compartmentalization of survivin in mitochondria seems to play a role in the anti-apoptotic function of the protein. Specifically, the existence of a mitochondrial pool of survivin was recently reported, and it was found that, in response to cell death stimulation, mitochondrial survivin is rapidly discharged and released into the cytosol, where it prevents caspase activation and inhibits apoptosis [Dohi et al, 2004b]. In addition, survivin was not seen in mitochondria in normal tissues, suggesting that mitochondrial survivin is exclusively associated with tumour transformation [Dohi et al,
A very recent study found that survivin has a nuclear export signal and that in cancer cells the anti-apoptotic and mitotic roles of survivin can be separated through mutation of its NES, which abrogates the cytoprotective activity of the protein but still allows mitosis to proceed [Colnaghi et al, 2006].

2.3. Survivin & Cell Division

During the cell cycle, survivin localizes to various components of the mitotic apparatus [Vagnarelli & Earnshaw, 2004] (Figure 12).

![Figure 12. The role of survivin in the cell cycle. Survivin is detected on centromeres at prophase/metaphase, in the spindle midzone during anaphase/telophase, but is no longer detected by the end of telophase. Survivin has been found to be localized to kinetochores until metaphase; to the spindle midzone in anaphase and in the cleavage plane during telophase and cytokinesis.](image-url)
Survivin is first detected on centromeres at prophase/metaphase; it is present in the spindle midzone during anaphase/telophase, but is no longer detected by the end of telophase [Li et al, 1998; Uren et al, 2000]. Moreover, survivin is localized to kinetochores until metaphase, then to the spindle midzone in anaphase and in the cleavage plane during telophase and cytokinesis [Skoufias et al, 2000].

In summary, survivin exists in two immunohistochemically distinct pools, with a nuclear pool localised to kinetochores of metaphase chromosomes and to the central spindle midzone at anaphase, and a cytosolic pool associated with interphase microtubules, centrosomes, spindle poles and mitotic spindle microtubules at metaphase and anaphase [Fortugno et al, 2002]. The microtubule-associated pool appears to be quantitatively predominant and functionally relevant. These findings, together with the phenotype of knockout mice (which is characterised by a catastrophic defect of microtubule assembly, with absence of mitotic spindle, formation of multinucleated cells and 100% embryonic lethality [Uren et al, 2000]), are consistent with a critical role of survivin in mitosis to preserve the mitotic apparatus and to allow normal mitotic progression. In fact, it has been demonstrated that survivin down-regulation causes pleiotropic cell-division defects [Li et al, 1999; Chen et al, 2000]. Moreover, forced expression of survivin in HeLa epithelial carcinoma cells profoundly influenced microtubule dynamics and also caused stabilization of microtubules against nocodazole-induced depolymerization, thus indicating that survivin may facilitate evasion from checkpoint mechanisms of growth arrest and, consequently, promote resistance to drugs targeting the mitotic spindle [Giodini et al, 2002].
Additional evidence indicates that survivin also participates in the regulation of chromosome segregation [Kallio et al, 2001], and that the protein cooperates together with the chromosomal passenger proteins INCENP and Aurora-B to perform its mitotic duties [Carvalho et al, 2003].

2.4. Regulation of Survivin Function

A critical requisite for survivin function was identified in the phosphorylation on threonine 34 [O'Connor et al, 2000]. The only kinase recognized to phosphorylate survivin is p34^{cdc2}-cyclinB1, a cyclin-dependent kinase that is only active during certain points in the cell cycle [O'Connor et al, 2000]. The p34^{cdc2}-cyclin B1 was shown, in vivo, to physically associate with survivin and to phosphorylate survivin on Thr^{34} during mitosis. A direct link between survivin and p34^{cdc2}-cyclin B1 was independently confirmed using array technology in gene-profiling studies of large-cell non-Hodgkin's lymphoma; it was associated with an activated B-cell phenotype and unfavourable disease progression [Kuttler et al, 2002]. Mutants of p34^{cdc2}-cyclin B1 prevent survivin phosphorylation, and the enzyme can be co-immunoprecipitated with survivin in cells that have been synchronized in mitosis. Although other members of the cdc2 family of kinases may also associate with survivin [Suzuki et al, 2000], they are active only during certain cell cycle transitions, and thus the activity of survivin as an apoptosis-blocking protein is likely restricted to dividing cells. The p53-dependent repression of cdc2 expression has been demonstrated during G2-arrest.
[Passalris et al, 1999], suggesting the hypothesis that p53 loss is associated with greater phosphorylation of survivin and thus more complete suppression of apoptosis.

Expression of non-phosphorylatable survivin Thr^{34}→Ala prevented phosphorylation of endogenous survivin, resulting in apoptosis of various cancer cell types [O'Connor et al, 2000], and suppressed cell growth in vivo [Grossman et al, 2001; Mesri et al, 2001]. Moreover, inhibitors of cyclin-dependent kinases (cdk) such as flavopiridol or the more p34^{cdc2}-specific inhibitor, purvalanol A, were tested in tumour cells arrested at mitosis with paclitaxel, which induces hyperphosphorylation of survivin on Thr^{34} [Zaffaroni et al, 2002]. Sequential administration of cdk inhibitors resulted in escape from the mitotic block imposed by paclitaxel, marked activation of mitochondrial-dependent apoptosis and anticancer activity in vivo [O'Connor et al, 2002].

A physical interaction with the molecular chaperone heat shock protein 90 (Hsp90), which involves the Hsp90 ATPase domain and the survivin BIR domain, was shown to be essential for the stability and function of survivin. In fact, targeted antibody-mediated disruption of the survivin-Hsp90 complex in cancer cells resulted in proteasomal degradation of survivin, mitochondrial-dependent apoptosis, and mitotic arrest [Fortugno et al, 2003].
2.5. Survivin Expression in Normal & Tumour Tissues

One of the most significant features of survivin is its differential expression in cancer versus normal tissues. Survivin expression in normal tissues is developmentally regulated and the protein was found to be absent or low in most terminally differentiated tissues [Ambrosini et al, 1997]. However, recent studies tend to attribute a role to survivin in regulating the function of normal adult cells [Fukuda et al, 2006] including vascular endothelial cells [Mesri et al, 2001], polymorphonuclear cells [Altznauer et al, 2004], T cells [Xing et al, 2004], erythroid cells [Gurbuxani et al, 2005], and haematopoietic progenitor cells [Fukuda & Pelus, 2001]. Moreover, survivin expression was reported in adult liver cells [Deguki et al, 2002], gastrointestinal tract mucosa [Chiou et al, 2003] and ovarian granulosa cells [Wang et al, 2004]. However, although survivin is expressed in normal tissues characterized by self-renewal and proliferation, its expression is significantly lower than in transformed cells. In fact, several studies have demonstrated strong survivin expression in most human solid tumour types and haematologic malignancies [Altieri, 2003]. Expression of survivin has also been detected in a variety of benign and preneoplastic lesions including polyps of the colon, breast adenomas, Bowen's disease and hypertrophic actinic keratosis [Altieri, 2003], suggesting that re-expression of survivin may occur early during malignant transformation or following a disturbance in the balance between cell proliferation and cell death. The up-regulation of survivin at the transcriptional level in human tumours has been confirmed in genomewide searches, which indicated survivin as the fourth top 'transcriptome' in cancers of various histology.
[Velculescu et al, 1999]. Moreover, global deregulation of the survivin gene mediated by oncogenes such as STAT3 [Gritsko et al, 2006], E2F [Jiang et al, 2004], and activated H-Ras [Sommer et al, 2003; Fukuda & Pelus, 2004], or by loss of tumour suppressors like wild type p53 [Hoffman et al, 2002] or the adenomatous polyposis coli protein [Zhang et al, 2001], seems to be responsible for the enhanced expression of survivin in tumours.

Growing evidence suggests that survivin expression in cancer cells is associated with clinicopathologic variables of aggressive disease and may represent an important prognostic marker for patient outcome. In fact, several studies on different types of solid tumours and haematologic malignancies showed that high levels of the protein were predictive of tumour progression in terms of either disease-free or overall survival [Altieri, 2003]. In several neoplasms the association with tumour progression was corroborated in the context of a comprehensive analysis of gene-expression profiling by DNA microarray or PCR-based assay. As it is possible to immunohistochemically distinguish two intracellular pools of survivin, a nuclear and a cytosolic one, the prognostic significance of the protein has been analyzed in some studies as a function of its intracellular localization, and inconsistent and sometimes contrasting results have been obtained regarding the prognostic value of nuclear survivin expression [Fengzhi et al, 2005]. The different prognostic value of survivin may reflect differences in methods to detect its expression and/or a differential expression of survivin splice variants.
2.6. Survivin as a Determinant of Treatment Resistance

Considering that apoptosis is the primary mode of cell death induced by several classes of chemical and physical agents commonly used in cancer therapy, it has been hypothesized that survivin expression/up-regulation could be crucial in determining the chemo- and radio-sensitivity profiles of tumour cells. This possibility is supported by several experimental evidences demonstrating that survivin is able to counteract a broad range of different apoptotic stimuli.

Giodini et al [2002] first reported that infection of HeLa cells with an adenoviral vector expressing survivin suppressed apoptosis induced by taxol. Successively, studies performed on human ovarian carcinoma cell lines and clinical specimens clearly indicated that survivin is involved in regulating cell sensitivity to taxanes. Specifically, the OAW42 and IGROV-1 human ovarian cancer cell lines were transfected with the human survivin cDNA. Stable transfection with survivin cDNA was able to protect these cells from the cytotoxic effects induced by paclitaxel and taxotere, with IC_{50} values for the survivin-transfectant cell populations 4-6-fold those of the control cells [Zaffaroni et al, 2002]. Zhang et al [2005] showed that forced expression of wild type survivin in human prostate cancer cell lines increased the resistance to taxol in vitro and in vivo. In addition, in the clinical setting, in advanced ovarian cancer patients receiving a paclitaxel+platinum-based regimen, the overexpression of the anti-apoptotic protein correlated with a lower clinical or pathologic complete remission rate (with respect of those
treated patients where survivin expression was found to be low or absent) [Zaffaroni et al, 2002].

It has been reported that taxol-induced microtubule stabilization and mitotic arrest increase the expression of survivin, which engenders a cell survival pathway to counteract taxol-induced apoptosis [O’Connor et al, 2002]. Interestingly, using a taxol-resistant ovarian cancer cell clone, PTX10, with a β-tubulin mutation at the taxol binding site, Zhou et al [2004] found that taxol treatment failed to induce mitotic arrest and survivin expression. However, the finding that taxol induced an apoptotic response in these cells suggests that mitotic arrest is not strictly required for taxol-induced apoptosis. It is also possible that the mitotic survival pathway is not the only one by which cancer cells counteract taxol-induced apoptosis. In fact, Ling et al [2004] reported that induction of survivin by taxol in MCF-7 cells is an early event and is independent of taxol-mediated G2/M arrest, suggesting a role for survivin in taxol resistance not only during mitosis but outside of the mitotic checkpoint as well. There is evidence that the mTOR pathway, which constitutes a sensor network for stress conditions, is involved in resistance to paclitaxel by increasing survivin levels [Vaira et al, 2006]. In fact, it has been recently reported that IGF-1-mediated mTOR activation in prostate cancer cells positively modulated survivin levels by favoring stabilization and translation of a survivin mRNA pool, and that mTOR inhibition with rapamycin, alone or in combination with paclitaxel, abolished survivin increase. Consistent with a critical reduction of the anti-apoptotic threshold maintained by survivin, the paclitaxel plus rapamycin combination was more
effective than either treatment in reducing cell viability of in the presence of IGF-1 [Vaira et al, 2006].

An increase in survivin expression has also been reported in prostate cancer [Nomura et al, 2005] and thyroid cancer [Tirro et al, 2006] cell lines permanently resistant to cisplatin as well as in colorectal cancer cells resistant to TRAIL [van Geelen et al, 2004]. Zhang et al [2005] showed that survivin mediates resistance to anti-androgen therapy with flutamide in prostate cancer cells. Specifically, these authors suggested that up-regulation of survivin via insulin-like growth factor-1/AKT signaling during androgen blockade may be one of the mechanisms by which prostate cancer cells develop resistance to anti-androgens. Paik et al [2004] showed that survivin was one of the sixteen genes predictive of recurrence in tamoxifen-treated breast cancer patients.

Regarding the role of survivin in determining the response of human tumour cells to radiation, Asanuma et al [2000] first reported that survivin acts as a constitutive radio-resistance factor in pancreatic cancer cells. Specifically, in a panel of established cell lines they found an inverse relationship between survivin mRNA expression and in vitro sensitivity to X-irradiation. Moreover, they demonstrated that survivin mRNA expression was increased by sublethal doses of X-irradiation, which would suggest that the protein also acts as an inducible radioresistance factor. Rodel et al [2003] also showed an inverse correlation between survivin expression and apoptotic response to irradiation in a panel of colorectal carcinoma cell lines. More recently, in a translational study of 59 rectal cancer patients treated with a combination of radiotherapy and chemotherapy, the same authors
reported that increased survivin expression was associated with a significantly increased risk of local tumour recurrence [Rodel et al, 2005]. It is worthy of note that survivin can contribute to radiation resistance also by promoting the survival of tumour vascular endothelial cells. In fact, induction of vascular endothelial apoptosis was recently shown to be a major determinant of overall tumour response to radiotherapy [Garcia-Barros et al, 2003]. Radiation may induce tumour cells to secrete cytokines such as vascular endothelial growth factor, which in turn could inhibit radiation-induced apoptosis of vascular endothelial cells by up-regulating survivin expression, as already demonstrated for drug-induced apoptosis [Tran et al, 2002].
3. **SURVIVIN-DIRECTED CANCER THERAPY**

In recent years considerable efforts have been made to validate survivin as a new target in cancer therapy. In this context, a collection of different approaches to counteract survivin in tumour cells, including antisense oligonucleotides, ribozymes, small interfering RNAs (siRNAs) and dominant-negative mutants, as well as cyclin-dependent kinase inhibitors, have been proposed with the dual aim to inhibit tumour growth potential and to enhance tumour cell response to apoptosis-inducing anticancer agents (Figure 13).

Figure 13. Summary of the current strategies for survivin targeting in cancer therapy.  
**A**, Molecular antagonists able to target survivin mRNA and inhibit translation; **B**, Dominant negative mutants able to inhibit survivin dimerization or survivin activation; **C**, Small molecule antagonists able to inhibit survivin phosphorylation on Thr$^{34}$ residue (CDK inhibitors) or to counteract survivin-Hsp90 interaction (Hsp90 inhibitors). In **B** and **C**, the wild type protein is reported in its dimeric arrangement [Muchmore *et al*, 2000].
3.1. Molecular Antagonists

A number of technologies have been used in an attempt to down-regulate gene expression. At present, there are three well documented genetic approaches being pursued to affect the ablation of defective gene production (Figure 14).

![Figure 14. Schematic representation of the most exploited antisense approaches.](image)

Antisense oligonucleotides block translation (occupancy mechanism) (1) or induce the degradation (RNase H-mediated mechanism) (2) of the mRNA. Catalytic nucleic acids (ribozymes and DNA enzyme) lead to mRNA degradation through a cleavage mechanism. siRNA, the effectors molecules of the RNA interference pathway after being recruited into RISC complex induce degradation of the target mRNA [Adapted from Kurreck et al, 2003].
The use of antisense RNA or deoxyoligonucleotides [Milligan et al, 1993; Crook & Bennet, 1996; Pan & Clawson, 2006], serve primarily to block gene expression by interfering with RNA translation. Ribozyme and DNA enzyme are catalytically active oligonucleotides that not only bind, but can also cleave, their target RNA in a highly sequence-specific manner [Sun et al, 1997; Welch et al, 1998; Rossi, 1999]. In recent years, considerable progress has been made through the development of novel chemical modifications to stabilize oligonucleotides against nucleolytic degradation and enhance their target affinity. In addition, RNA interference has been established as a third, highly efficient method of suppressing gene expression in mammalian cells by the use of 21–23-mer small interfering RNA (siRNA) molecules [Elbashir et al, 2001].

3.1.1. Antisense Oligonucleotides

Among the anticancer approaches, antisense-based strategies, first developed as a powerful means for target validation, represent a useful tool to inhibit specific gene expression for therapeutic purposes [Kurreck, 2003]. In fact, several antisense oligonucleotides (AS-ONs) are being tested in clinical trials on patients with cancer or other diseases [Dean & Bennet, 2003; Kureck, 2003]. Antisense oligomers are nucleic acid-related molecules that target a given RNA within cells in a sequence-specific manner, through Watson-Crick base pairing. The modality of action of AS-ONs can be distinguished in two main mechanisms (Figure 15).
The modality of action defined as cleavage mechanism leads to degradation of the RNA target through the oligomer-mediated recruitment of RNase H (a family of ubiquitously expressed enzymes that cleaves the RNA strand of an RNA/DNA heteroduplex) or RNase L. Conversely, the modality of action, defined as a non-RNA-cleaving mechanism, is based on a steric block of RNA transcription/translation mediated by oligonucleotides that do not recruit endonucleases, such as peptide nucleic acids (PNAs) and 2’-alkyl oligomers (i.e. occupancy mediated mechanism) [Crooke, 1999].

One of the major challenges for antisense approaches is the stabilization of oligonucleotides, which as unmodified oligodeoxynucleotides are rapidly degraded in biological fluids by nucleases. A vast number of chemically
modified nucleotides have been used in antisense experiments. In general, three types of modifications of ribonucleotides can be distinguished (Figure 16): analogs with unnatural bases, modified sugars (especially at the 2' position of the ribose) or altered phosphate backbones. A variety of heterocyclic modifications have been described, which can be introduced into AS-ONs to strengthen base-pairing and thus stabilize the duplex between AS-ONs and their target mRNAs.

![Figure 16. Sites for chemical modifications of ribonucleotides.](image)

Three types of modifications of ribonucleotides can be distinguished: analogs with unnatural bases (B), modified sugars or altered phosphate backbones. [Adapted from Kurreck et al, 2003].

Phosphorothioate oligodeoxynucleotides (PTO) are the major representatives of first generation DNA analogs, which are widely employed in clinical trials [Crooke, 1999] (Figure 17). In the PTO molecule, one of the nonbridging oxygen atoms of the phosphodiester linkage is replaced by a sulfur atom, which enhances resistance to nuclease action. The mechanism of action of these oligomers relies on RNase H activation. The major disadvantage of PTO is their binding to certain proteins, particularly those that interact with polyanions such as heparin-binding proteins [Brown et al,
1994; Rockwell et al, 1998]. The reason for this nonspecific interaction is not yet fully understood, but it may cause cellular toxicity [Levin, 1999] and reduce their therapeutic index [Pirollo et al, 2003].

Figure 17. Example of the antisense oligonucleotides chemically modified. 'B' denotes one of the base adenine, guanine, cytosine or thymine.

The problems associated with PTO are to some degree solved in second generation oligonucleotides containing nucleotides with alkyl modifications at
the 2' position of the ribose. 2'-O-methyl and 2'-O-methoxy-ethyl RNA (Figure 17) are the most important members of this class. Such oligomers are less toxic than PTO and possess enhanced stability and binding affinity to the target with respect to their analogous RNA or DNA counterparts. However, 2'-O-alkyl oligomers do not activate RNase H to induce the cleavage of the target RNA, and their antisense effect is a consequence of the occupancy-mediated mechanism [Crooke, 1999; Dean & Bennet, 2003; Kureck, 2003] (Figure 15).

In recent years a variety of modified nucleotides have been developed to improve properties such as target affinity, nuclease resistance and pharmacokinetics. Peptide nucleic acids (PNAs) belong to the third generation of antisense oligonucleotides and are the most intensively studied DNA analogs [Kurreck, 2003]. In PNAs, the phosphate backbone is replaced by a pseudopetide linkage composed of N-(2-aminoethyl) glycine units (Figure 17). The uncharged nature of the PNA internucleotide backbone increases the stability of the PNA/nucleic acid duplex and affords greater resistance to protease and nuclease than unmodified ODNs [Gambari, 2001] but does not lead to degradation of the RNA target by recruiting RNase H. The Watson-Crick base-pairing rules are strictly observed in hybrids of PNA and nucleic acids [Egholm et al, 1993; Smulevitch et al, 1996; Gambari, 2001]. Moreover, PNAs are better at discriminating between base-pair mismatches [Egholm et al, 1993; Gambari, 2001] and are less likely to bind to proteins through non-sequence-specific interactions than PTOs. The lack of electrostatic repulsion between the two strands in a PNA/nucleic acid duplex also leaves the melting temperature largely independent of the salt
concentration. Their favourable properties have led to the use of PNAs for different applications in oncology. A number of experiments with permeabilised cells, isolated nuclei and also intact cells has demonstrated the potential of PNA in antigene or antisense applications to down-regulate the transcription or translation of cancer-related genes. PNA invasion of the DNA double helix to form a stable PNA-DNA hybrid was found to effectively block gene transcription [Ray & Norden, 2000; Knauert & Glazer, 2001; Pooga et al, 2001]. The N3'-P5' phosphoroamidates (NPs) are another example of a modified phosphate backbone, in which the 3'-OH group of the sugar residue is replaced by a 3'-NH group [Kurreck, 2003] (Figure 17). Such a modification confers to the oligonucleotide high binding affinity to the target RNA and a greater nuclease resistance. One of the most promising candidates of chemically modified nucleotides developed in the last few years is locked nucleic acid (LNA), a ribonucleotide containing a methylene bridge that connects the 2'-oxygen of the ribose with the 4'-carbon [Braasch & Corey, 2001; Vester B & Wengel J, 2004; Karkare S & Bhatnagar, 2006] (Figure 17). Introduction of LNA into a DNA oligonucleotide induces a conformational change of the DNA/RNA duplex towards the A-type helix [Bondensgaard et al, 2000] and therefore prevents RNase H cleavage of the target RNA.
3.1.1.1. Cellular Uptake of Antisense Oligonucleotides

An important hurdle for successful antisense applications is the cellular uptake of the molecules. In cultured cells, internalization of naked DNA is usually inefficient, due to the charged oligonucleotides having to cross a hydrophobic cell membrane. A number of methods have therefore been developed for \textit{in vitro} and \textit{in vivo} delivery of oligonucleotides [Huges \textit{et al}, 2001; Liang \textit{et al}, 2002]. By far the most commonly and successfully used delivery systems are liposomes and charged lipids, which can either encapsulate nucleic acids within their aqueous center or form lipid–nucleic acid complexes as a result of opposing charges (Figure 18). These complexes are usually internalized by endocytosis. For efficient release of the ONs from the endosomal compartment, many transfection reagents contain helper lipids that disrupt the endosomal membrane and help to set the oligonucleotides free. A number of macromolar delivery systems have been developed recently that mediate a highly efficient cellular uptake and protect the bound oligonucleotides against degradation in biological fluids.

Further polymers for the delivery of AS-ONs consist of amino acids or sugars. Evidence has been provided, however, that the structural properties of a peptide conjugated to an oligonucleotide do not significantly alter its ability to cross mammalian plasma membranes [Oehlke \textit{et al}, 2002]. Therefore, aspects other than improved translocation across the membrane are likely to be responsible for enhanced biological activity of peptide-oligonucleotide derivatives.
Another strategy for effective targeting of AS-ONs to specific tissues or organs is receptor-mediated endocytosis. For this purpose, oligonucleotides are conjugated to antibodies or ligands that are specifically recognized by a certain receptor, which mediates their uptake into target cells. For example, coupling of a radioactively labelled PNA to a transferrin receptor monoclonal antibody made the antisense agent transportable through the blood–brain barrier [Shi et al, 2000].

![Figure 18. The method of entry of DNA–polymer complexes.](image)

DNA and polymer are mixed to form complexes that are overlaid onto a monolayer of cells. Uptake occurs by endocytosis. The mechanism of release from the endosome still remain unclear. Transport to the nucleus occurs by active transport through the nuclear pore complex and represents the major barrier for the efficient uptake of foreign DNA. [Adapted from Parker et al, 2003]

3.1.1.2. Survivin Inhibition by Antisense Oligonucleotides

The use of antisense to ablate expression of endogenous survivin mRNA and protein has consistently shown promising results in several independent studies (Figure 13A).
Chapter 1

INTRODUCTION

Grossman et al [1999] first demonstrated that transfection of survivin antisense triggered spontaneous apoptosis in the absence of other stimuli in YUSAC2 and LOX human melanoma cell lines. Successively, several studies dealing with the use of survivin antisense oligonucleotides, delivered to the cells as chemically synthesized molecules or through the use of expression vectors, consistently showed that specific inhibition of survivin mRNA and protein could reduce cell proliferation and induce caspase-dependent apoptosis in established cell lines of different tumour origins including lung, bladder, head and neck, and thyroid cancers, sarcomas and lymphomas [Ansell et al, 2004; Cao et al, 2004; Fuessel et al, 2004; Sharma et al, 2005; Du et al, 2006]. Moreover, down-regulation of survivin was shown to sensitise human tumour cells to cytotoxic drugs such as etoposide and cisplatin [Sharma et al, 2005], as well as ionizing radiation [Sah et al, 2006]. Antisense-mediated survivin knockdown also caused inhibition of tumour growth in xenograft models [Ansell et al, 2004; Cao et al, 2004] and sensitised lung cancer xenografts to radiotherapy [Cao et al, 2004]. Kanwar et al [2001] demonstrated that survivin inhibition resulted in increased sensitivity to immunotherapy in murine EL-4 thymic lymphoma. Specifically, tumours injected with plasmids encoding survivin antisense were significantly inhibited in their growth. Such growth delay was further enhanced by concomitant injection of the T-cell costimulator B7-1.

Supported by a favorable safety profile, the first antisense oligonucleotide, LY2181308 (ISIS 23722, Lilly and Co, and ISIS Pharmaceuticals Inc), already entered the clinic and is currently undergoing phase I trials in patients with advanced cancers.
3.1.2. Ribozymes & siRNAs

3.1.2.1. Ribozymes

Ribozymes are small RNA molecules that possess specific endonucleolytic activity and catalyze the hydrolysis of specific phosphodiester bonds, resulting in cleavage of RNA target sequences [Puerta-Fernandez et al., 2003]. In nature, existing catalytic RNAs include hammerhead, hairpin, hepatitis delta virus (HDV) and Varkud Satellite (VS) RNA, group I and group II introns [Khan & Lal, 2003] and the RNA subunit of RNase P [Khan & Lal, 2003]. In addition, recent structural and chemical analyses strongly suggest that ribosomal RNA is an enzyme [Cech, 2000]. Similarly, there is evidence that the RNA component of the spliceosome may also have enzymatic properties [Collins & Saville, 1990].

The discovery of ribozymes and fundamental studies on the mechanisms of self-splicing have revealed details on the catalytic core and the secondary and tertiary structure of RNA folding leading to ribozyme-mediated cleavage of RNA. Ribozymes were initially believed to be metalloenzymes requiring divalent metal ions for catalysis and it was thought that all ribozymes operate through a similar mechanism of action. However, a unique RNA hairpin was shown to behave like a ribozyme in the absence of divalent metal ions [Earnshaw & Gait, 1998; Murray et al., 1998; Burke, 2002].

The specificity of the cleavage is determined by Watson-Crick base-pairing between ribozymes and nucleotides near the cleavage site of the target RNA. By altering substrate recognition sequences, several
intramolecular cis-cleaving ribozymes can be designed to cleave any RNA in trans. Theoretically, these trans-cleaving ribozymes can be designed to cleave any RNA species in a sequence-specific manner by incorporating the flanking sequences complementary to the target. After the cleavage reaction, the substrate is accessible to ribonucleases, a step that guarantees its permanent inactivation and offers a considerable advantage over the simple physical blockage obtained with complementary oligodeoxynucleotides.

Ribozymes are grouped into two classes on the basis of their size: the large and the small ribozymes. The large group contains group I and II introns, and the RNA subunit of RNase P. Group I and II introns are found in bacteria and in the organelles of higher plants, fungi and algae [Lai & Hall, 1997; Khan et al, 2000; Woodson, 2002]. These introns are spliced out of their hnRNA by a two-step mechanism. In the first step of splicing, the 5'-spliced site is attacked by the 3'-OH of the external guanosine group (group I). Whereas, in group II intron it is attacked by the 2'-OH of the internal adenosine residue or by a hydroxide ion. In the second step, the 3'-OH of the 3'-end of the upstream exon attacks the 3'-spliced site to produce the splicing products. RNase P is an endonuclease that generates the mature 5'-ends of tRNAs. In bacterial RNase P, the RNA subunit (RNase P ribozyme) has catalytic activity and the protein component is thought to act only to facilitate the binding of the anionic RNase P ribozyme to its substrate. During the cleavage of RNase P ribozyme, a scissile-site phosphate is attacked by a hydroxide ion to leave a 3'-oxygen and produce a 5'-phosphate terminus [Chen et al, 1994; Kirsebom, 2001].
The class of small ribozymes comprises hammerhead, HDV (hepatitis delta-viroid) hairpin and VS ribozymes. Each of the naturally existing ribozymes catalyse the endonucleolytic cleavage of RNA via a mechanism that involves nucleophilic attack by a 2'-OH group on the phosphorus of the neighbouring phosphodiester bond, generating 5'-OH and 2',3'-cyclic phosphate termini. The cleavage reaction catalysed by these ribozymes appears to proceed with the inversion of the configuration at the phosphorus atom, suggesting a direct in-link attack with development of a pentacoordinate transition or intermediate state [Stage-Zimmermann & Uhlenbeck, 1998].

The smallest of the naturally occurring catalytic RNAs that were identified to date are the hammerhead ribozymes (Figure 19), which were found in several plant virus satellite RNAs, viroids and as transcripts of a nuclear satellite DNA (a riboprotein particle of about 12 S in oocytes of Triturus) [Foster & Sympson, 1987].

![Figure 19. Structure of a hammerhead ribozyme.](image-url)
The hammerhead ribozyme consists of a highly conserved catalytic core, which cleaves substrate RNA at NHH triplets 3' to the second H, where N is any nucleotide and H is any nucleotide but guanidine. [Adapted from Sun et al, 2000]
A large number of studies have been performed to provide a better understanding of the mechanism of ribozyme-mediated catalysis. In general, a minimal kinetic description for one turnover of hammerhead ribozyme reaction (Figure 20) involves assembly of ribozyme and substrate, cleavage of the phosphodiester bond, generating a product with a cyclic phosphate terminus and a product with a hydroxyl terminus that remains bound to the ribozyme, and release of the products. A Michaelis-Menten mechanism has been established by using multiple- and single-turnover conditions for the formation of the ribozyme-substrate complex and its subsequent conversion to products [Perreault et al, 1990; Hammann C & Lilley, 2002]. Under multiple-turnover conditions, the substrate is in excess of the ribozyme so that the ribozyme can catalyse the cleavage of several substrate molecules. The catalytic rate constant, \( k_{\text{cat}} \), is a measure of the rate-limiting step, which can be cleavage, conformational transitions of the ribozyme-substrate complex, or product release. When a ribozyme with six bases in each arm was used in kinetic analysis, \( k_{\text{cat}} \) and \( K_m \) were within typical values of 1–2 min\(^{-1}\) and 20–200 nM, respectively. Extension of the helical arms generally results in an increased stability and markedly decreased \( k_{\text{cat}} \) [Hertel et al, 1994]. Under single-turnover conditions, the ribozyme is in excess of the substrate, and such conditions are normally used for cleavage of long mRNA substrate. Cleavage rates are generally several orders of magnitude lower, compared with the rates obtained for short substrate [Heidenreich et al, 1994]. The presence of \( \text{Mg}^{2+} \) is essential for the cleavage, and convincing evidence suggested that \( \text{Mg}^{2+} \) not only assists in RNA folding but also participates directly in the cleavage mechanism [Dahm & Uhlenbeck, 1991].
The hammerhead ribozyme consists of a highly conserved catalytic core, which cleaves substrate RNA at NHH triplets 3' to the second H, where N is any nucleotide and H is any nucleotide but guanidine [Kore et al, 1998] (Figure 19). One assumption is that the inability to cleave 3' of G is due to an unfavourable interaction with C3 in the core [Baidya & Uhlenbeck, 1997; Blount KF & Uhlenbeck, 2005]. NMR studies have confirmed that this base pair exists and that it stabilizes the ground state ribozyme-substrate complex [Simmore et al, 1998]. However, an additional contribution to the lack of cleavage comes from destabilizing the transition state. Various pyrimidine nucleoside analogues have been used as H [Baidya et al, 1997]. Although all such modifications had no effect on binding of the substrates to the ribozyme, cleavage occurred more slowly than when H was cytidine. Comparative studies revealed that the reaction rate (k_{cat}) decreases in the following order: AUC, GUC>GUA, AUA, CUC>AUU, UUC, UUA>GUU, CUA>UUU, CUU. This indicates that functional groups at the cleavage site are important for transition state formation.

In addition to the catalytic core, a particular cleavage site in a target RNA can be specifically recognized by creating, in the hammerhead ribozyme recognition arms, flanking sequences complementary to specific target RNA molecules.

It has been demonstrated the possibility to prepare ribozyme libraries that are targeted to multiple mRNA substrates by randomizing the sequences of the recognition arms. Such libraries can be used as knock down libraries to interfere with the activities of several gene products. Ribozymes can be screened and target genes that appear responsible for a particular phenotype can be identified by introducing a ribozyme library into cells. Isolation of cells
with the phenotype of interest allows the rescue of the ribozyme of interest. Moreover, the examination of DNA database allows rapid identification of the gene responsible for the phenotype of interest using the sequence of the rescued ribozyme. Such a methodology has been recently used to identify genes involved in cell migration and invasion, two processes that are essential features of tumour metastasis [Suyama et al, 2003a; Suyama et al, 2003b].

Figure 20. Schematic representation of the catalytic cycle for a hammerhead ribozyme.

The ribozyme binds through the flanking arms to its RNA substrate, via Watson-Crick interactions (1). Once the ribozyme-substrate complex has formed, the cleavage reaction mediated by the catalytic domain of the enzyme leads to cleavage of the phosphorodiester linkage located at the 3' end of a NHH consensus sequence (2). Release of the products make the ribozyme available for another cycle of the reaction (3). [Adapted from Zaffaroni & Folini, 2004]
Owing to their ability to efficiently inhibit specific gene expression, ribozymes have been used to validate a number of disease-related (mainly cancer-related) genes as potential targets for new therapeutic interventions.

3.1.2.2. Small Interfering RNA (siRNAs)

RNA interference (RNAi) is a natural mechanism of sequence-specific, post-transcriptional gene silencing. RNAi may play an important role in protecting the genome against instability caused by transposons and repetitive sequences, and it represents an evolutionary conserved anti-viral defense pathway in animals and plants [Elbashir et al, 2002]. Moreover, RNAi has emerged as a powerful mechanism for sequence-specific modulation of gene expression and seems to provide a higher potency than conventional antisense strategies, presumably because it relies on natural site-directed cleavage machinery [Elbashir et al, 2002].

In mammalian cells RNAi can be triggered by several double-stranded RNAs (dsRNA) or dsRNA domain-containing molecules. Endogenously expressed dsRNA domains are converted into the nucleus by specific ribonucleases in the form of precursors that are successively processed in the cytoplasm to give rise to micro RNAs (miRNAs). The miRNAs are believed to bind to sites that have partial sequence complementarity in the 3' untranslated region of their target mRNA, causing repression of translation and inhibition of protein synthesis [Dykxhoorn et al, 2003; Izquierdo et al, 2005]. By contrast, exogenously-introduced dsRNA (e.g. viral genome) are
processed in the cytoplasm by the endoribonuclease Dicer into small duplex RNAs, the 21-23 nucleotide-long terminal effectors molecule, known as small interfering RNAs (siRNA), characterized by a 2-3 nucleotide overhang at the 3' terminus [Dykxhoorn et al, 2003; Izquierdo et al, 2005] (Figure 21).

![Figure 21. Gene silencing by RNAi.](image)

When dsRNA enters the cell, it is recognised by the enzyme complex Dicer and cleaved to yield siRNA. The siRNAs then bind to a multiprotein complex to form the RISC. Activation of the RISC is accompanied by the unwinding of the siRNA duplex, and one strand of the siRNA then guides RISC to cleave the target mRNA.

The resulting siRNAs are then assembled to form an RNA/protein complex, referred to as the RNA-induced silencing complex (RISC)
The double-stranded siRNA is then unwound, leaving the antisense strand to guide RISC to its homologous target mRNA for endonucleolytic cleavage. The target mRNA is cleaved in the centre of the duplex region arising from the annealing of the antisense strand of siRNA and the target mRNA, a process that ultimately results in the target degradation.

Different effectors molecules have been identified as inductors of gene expression silencing in mammalian cells through the activation of the RNAi pathway. Specifically, short hairpin RNAs (shRNAs) are transcribed from plasmid- or viral-based vectors as a pre-siRNA in which the sense and antisense strands are linked by a short spacer. The pre-siRNA is then predicted to form a 19-nucleotide-long stem-loop structure, the terminal effectors shRNA. Short hairpin RNAs are usually coded downstream of an RNA polymerase III promoter (e.g. U6 small nucleolar RNA or human RNase H1 promoters) although the use of inducible or tissue-specific RNA polymerase II promoters has been described [Dykxhoorn et al, 2003; Izquierdo et al, 2005]. By contrast, pre-synthesized siRNA are RNA duplexes formed by two complementary single strands. In this case, a siRNA may be obtained by the annealing of two in vitro transcribed 21-nucleotide-long single strands leaving two nucleotides unpaired at the 3' terminus [Dykxhoorn et al, 2003; Izquierdo et al, 2005] or as preformed duplexes, usually provided by specialized companies.

To date the siRNA technology has been validated in several mammalian experimental models but its therapeutic usefulness for human diseases is still under intensive investigation. In fact, although the effect of siRNAs on gene
expression has been demonstrated to be rapid and persistent (days/weeks), the main limitation to be overcome before such technology will be exploited in the clinical practice is represented by the selectivity for the target RNA, delivery and stability inside cells, similarly to ribozyme- and antisense-based approaches.

3.1.2.3. Ribozyme & siRNA Delivery Systems

The most challenging aspect of the use of ribozymes and siRNAs for therapeutic purposes is delivering these molecules to their site of action, the RNA target located within the cytoplasm or nucleus. Delivery requires that the oligonucleotide survive local or systemic administration long enough to bind to the target cells, cross the cytoplasmic membrane or become released from an endosomal/lysosomal vesicle, pass through the nuclear membrane, and be able to functionally hybridise to the target RNA.

There are two approaches to deliver ribozymes and siRNAs to cells for the successful inhibition of gene expression. One is exogenous delivery where the presynthesised molecules are delivered directly to cells. The other is endogenous delivery, which provides the gene encoding the ribozyme and siRNA, as part of a vector, to the cells where transcription generates the ribozyme and siRNA.
3.1.2.3.1. Exogenous Delivery

Exogenous delivery, at first glance, looks simple, straightforward and attractive. Presynthesised ribozymes can be delivered directly to cells or administered to an animal. This mode of application is identical to that of the antisense oligonucleotides method. Given the amount of accumulated experience, it is not surprising that most of the delivery techniques used in the ribozyme field are adopted from the AS-ODN strategy. Exogenous delivery requires stabilization of oligonucleotides against nuclease degradation. This is particularly true for ribozymes, which are rapidly degraded by RNases. AS-ODNs are customarily protected by incorporation of phosphorothioates, but ribozymes demand modification of the 2'-OH group, which the RNases also require for cleavage. Stabilization should not compromise catalytic activity of the ribozyme, thus the choice of derivative and its placement are crucial. In general, poor uptake is a challenge for exogenous delivery of ribozymes to cells in culture. Significant improvement can be achieved with the help of carrier such as cationic liposomes.

Chemically synthesized or in vitro transcribed siRNAs are probably the most easy and direct approach to induce RNA interference in mammalian cells. 21-nucleotide RNAs specific to the mRNA target are synthesized and annealed in vitro by heating to 90°C followed by slow cooling to 37°C. Such RNA duplexes are transfected into cells by generating liposomes incubated with cationic lipids, electroporation, covalent binding to hydrophobic carrier molecules or covalent coupling to cell penetrating peptides [Wadhwa et al, 2004]. The defence interferon system against viruses, however, is very
sensitive to the presence of double-stranded RNA, and under certain conditions, siRNA can activate the interferon system complicating the interpretation of the experiments. The removal of the 5'-triphosphate end when siRNA is synthesized in vitro using phage T7 RNA polymerase, instead of chemical methods, is important to avoid the interferon response in mammalian cells [Izquierdo et al, 2005]. High doses should also be avoided because they will again induce interferon in vivo and in some instances may cause unexpected and divergent changes in the levels of untargeted proteins [Izquierdo et al, 2005].

3.1.2.3.2. Endogenous Delivery

The search for ways to introduce genes into cancer cells led to significant improvements in viral and nonviral vector development (Table II).

3.1.2.3.2.1. Viral Delivery

A number of viral delivery systems are available for gene delivery of DNA or oligonucleotides into mammalian cells, either in vitro or in vivo (Table II). The most common vector systems are based on retroviruses, adeno-associated virus (AAV), adenovirus, and herpes simplex virus (HSV) [Boulaiz et al, 2005; Tan et al, 2006]. Other viral vectors are based on lentiviruses, human citomegalovirus (CMV), Epstein-Barr virus (EBV), poxviruses, negative-strand RNA viruses (influenza virus), alphaviruses, and herpesvirus
saimiri [Boulaiz et al, 2005; Tan et al, 2006]. Moreover extremely interesting appears the construction of a hybrid adenoviral/retroviral vector, which has successfully been used for in vivo gene transduction [Barquiner et al, 2004; Ghosh et al, 2004; Warrington & Herzog, 2006].

Table II. Description of the main gene delivery systems.

<table>
<thead>
<tr>
<th>Vectors</th>
<th>Characteristics</th>
<th>Disadvantages</th>
</tr>
</thead>
<tbody>
<tr>
<td>Viral Delivery</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Retroviruses</td>
<td>Relatively high titers ($10^6$-$10^7$ cfu/ml)</td>
<td>Random insertion of viral genome, which may possibly result in mutagenesis</td>
</tr>
<tr>
<td></td>
<td>Broad cell tropism</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Stable gene expression</td>
<td>Possibility of replication virus formation by homologous recombination</td>
</tr>
<tr>
<td></td>
<td>No toxic effect on infected cells</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Total insert capacity in the virion in the range of 10 kb</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Only infection of dividing cells</td>
<td></td>
</tr>
<tr>
<td>Lentiviruses</td>
<td>Infection of nondividing cells</td>
<td>Serum conversion to HIV-1</td>
</tr>
<tr>
<td></td>
<td>Broad cell tropism</td>
<td>Possible proviral insertional mutagenesis in target cells</td>
</tr>
<tr>
<td></td>
<td>Stable gene expression</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Total insert capacity in the virion in the range of 10 kb</td>
<td></td>
</tr>
<tr>
<td>Adenoviruses</td>
<td>Very high titers ($10^{10}$ pfu/ml)</td>
<td>Host immune response</td>
</tr>
<tr>
<td></td>
<td>Transiently high levels of gene expression</td>
<td>Not suitable for long-term expression due to the lack of integration into host genome</td>
</tr>
<tr>
<td></td>
<td>Total insert capacity in the vector in the range of 10 kb</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Infection of nondividing cells</td>
<td>Complicate vector genome</td>
</tr>
<tr>
<td>Adeno-associated viruses (AAV)</td>
<td>Infection of nondividing cells</td>
<td>Difficult to obtain high titers of pure viruses</td>
</tr>
<tr>
<td></td>
<td>Viral integration specific for human chromosome 19</td>
<td>Limited capacity for foreign genes (about 4 kb)</td>
</tr>
<tr>
<td></td>
<td>(only for wild-type AAV)</td>
<td>Lack of specific integration for recombinant AAV vector</td>
</tr>
<tr>
<td></td>
<td>No toxic effect on infected cells</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Nonpathogenic for infected cells</td>
<td></td>
</tr>
<tr>
<td>Nonviral Delivery</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cationic liposomes</td>
<td>Not infectious</td>
<td>Non specific targeting</td>
</tr>
<tr>
<td></td>
<td>No limit to the size of DNA</td>
<td>Low transfection efficiency</td>
</tr>
<tr>
<td></td>
<td>Low degree of toxicity</td>
<td>Difficult in vivo application</td>
</tr>
</tbody>
</table>
Adenovirus, a class of DNA viruses, can successfully deliver genes to the nucleus. However, these viruses provide only transient expression of the gene and generate a strong antibody response, thus the infected cells are rapidly removed and repeated application is not possible [Ali et al, 1994; Relph et al, 2005; Young et al, 2006]. Adeno-associated virus is an alternative vector for ribozyme delivery [Bertrand et al, 1997; Lewin & Hauswirth, 2001]. It is appealing for several reasons. It is non-pathogenic and does not require dividing cells to integrate the gene into the host genome.

Retroviruses are among the most efficient tools for gene transduction of mammalian cells. For this reason, they were successfully used in the early gene therapy clinical trials for the treatment of inherited genetic diseases and cancer [Young et al, 2006; Rodrigues et al, 2007]. A number of different retroviruses are in use as gene delivery vehicles. The most common retroviral vector is based on the amphotropic Moloney murine leukaemia virus (MoMuLV) [Shinnick et al, 1981]. This system is particularly suitable for efficient in vitro cell transduction: the amphotropic MoMuLV has a broad cell tropism, it can be produced at relatively high titers ($10^6$-$10^7$ iu/ml), and allows for long-term transgene expression because of the viral integration in the host chromosomal DNA. Another important feature of retroviruses is that although they do not elicit immune responses in the host, they are susceptible to rapid degradation by the complement [Takeuchi et al, 1994]. This is a major limitation for in vivo retroviral-mediated gene transfer.

The viral RNA encodes 3 genes called gag, pol and env which encode the capsid core proteins (gag), reverse transcriptase, integrase and protease (pol) and the envelope antigens (env) (Figure 22). Gag (Group specific
Antigens) is the precursor to the internal structure of the retrovirus also known as the "core". It gives rise to four different polypeptides. The three common to all retroviruses are the capsid (the largest protein composed of 200–270 amino acids, the matrix (derived from the amino terminus of the Gag gene, is a membrane associated protein), and the nucleocapsid (a 60-90 amino acid protein that binds the viral RNA). Pol gives rise to three polypeptides: the protease, the reverse transcriptase (with RNase H activity) and integrase. Finally, Env gives rise to two polypeptides: the transmembrane "spike" protein (gp41 in HIV) and the knob-like surface protein gp120. Together these form the surface antigen gp160 characteristic to retroviruses. These proteins are initially inserted into the host cell membrane and are acquired by the virus particle at a later stage during budding.

Figure 22. Schematic representation of the genomic organisation of a retrovirus. The retroviral genome is flanked by a long terminal repeat sequence (LTR) and encodes 3 genes which encode the capsid core proteins (gag), reverse transcriptase, integrase and protease (pol) and the envelope antigens (env).

The retroviral genome is flanked by a long terminal repeat sequence (LTR) (Figure 22). This region contains all signals necessary for gene expression, including the enhancer, promoter, transcription initiation, transcription terminator and polyadenylation signal. The size of the LTR varies...
considerably among the different retroviruses. The integrated provirus has two LTRs; the 5' LTR normally acts as an RNA polymerase II promoter whereas the 3' LTR functions as the terminator sequence. An LTR is composed of three elements: U3, R and U5 regions. U3 includes most of the transcriptional control elements and carries the promoter/enhancer sequence. It is the unique, non-coding region of 75–250 nucleotides which is in the first part of the genome to be reverse transcribed, forming the 3' end of the provirus genome. R region is usually a short (18–250 nucleotide) sequence that provides the sequence homology for strand transfer during reverse transcription of the RNA genome. Finally, U5 region carries the poly A-site and, together with the R region, determines the poly A addition. It is a unique non-coding region of 200-1,200 nucleotides that forms the 5' end of the provirus after reverse transcription. Both U3 and U5 regions contain the Att sites required for integration.

The key factor in using a retrovirus as a gene delivery vehicle is biosafety. The main goal of the vector design is to ensure that a replication incompetent virus is generated. Separation of the packaging function from the genetic material to be transferred makes this possible. A basic retroviral vector contains the cis-acting elements required for replication as a virus, but lacks some or all of the viral genes, which are replaced by foreign coding sequences. For a retroviral vector to replicate as a virus, it is necessary to provide the missing viral gene(s) in trans. Moreover, retroviral particles are difficult to concentrate, as they are fragile and can be destroyed during the precipitation. This problem can be circumvented by pseudotyping the retroviral core with the G glycoprotein of vesicular stomatitis virus (VSV-G).
This envelope stabilizes the retroviral particles, which can then be easily concentrated by ultracentrifugation of the retroviral supernatant [Romano et al., 1999]. Engineered cell lines that express the viral genes from heterologous promoters are used to produce vector virus. These genetically-engineered cell lines are called packaging or helper cells. There are various packaging cell lines that can be used to generate retroviruses; the choice of packaging cells depends on the host range or tropism of the desired virus (Figure 23).

Figure 23. Production of an infectious retroviral particle and infection of a target cell.
A replication-incompetent vector encoding a gene of interest (x) is introduced into a packaging line (1). This cell line encodes the proteins necessary for production of viral particles. The viral transcript is packaged into viral particles, which are thus budded from the packaging cell. The replication-incompetent retroviral vector interacts with a host-cell receptor and enters into the target cell (2), where the virus reverse transcribes its RNA genome and integrates it into the host genome.
3.1.2.3.2.2. Nonviral Delivery

As an alternative to viral vectors, several DNA-based plasmid vectors for transient and stable expression of ribozymes and siRNA have been developed [Brummelkamp et al, 2002; Sui et al, 2002].

Nonviral gene delivery makes use of lipo/polycation reagents such as liposomes, cationic lipids, or cationic polymers complexed with the foreign DNA for transfection [Azzam & Domb, 2004; Tiera, 2006] (Figure 18), or physical methods such as microinjection, gene gun delivery, or the use of uncomplexed, "naked" plasmid DNA. All these methods are less efficient than viral transduction and there are viability complications due to toxicity as well as evidence that unmethylated plasmid DNA amplified in bacteria is immunogenic [Deng et al, 1999; Loisel et al, 2001]. However, there are few restrictions on the size of the gene of interest.

Briefly, the plasmid carries the genetic information required to express a foreign protein or ribozyme or siRNA: all the necessary sequences for subcloning the gene of interest, elements needed for bacterial propagation and amplification of the plasmid as well as eukaryotic promoters, poly(A) signals and antibiotic resistance genes for selection of stable cell lines. Newer features of plasmids allow for a choice of episomal or extra-chromosomal maintenance, integration, site-specific integration, and the ability to turn gene expression on or off. DNA–polymer complexes enter cells either by charge-mediated interactions with proteoglycans or by receptor-mediated endocytosis. Either method results in delivery to lysosomes followed by release and transport to the nucleus. DNA transport across the
nuclear membrane through the nuclear pores requires active transport, is limited to particles 100 nm in size, and is the major barrier to overcome in nonviral gene delivery [Tachibana et al, 2001].

The key principles for nonviral delivery systems are to avoid undesirable interactions with surface proteins and the extracellular matrix, and to avoid self-aggregation. Thus, the DNA and reagent must complex, preferably in a predictable ratio, and the DNA must condense or the particle will be too large to pass through the nuclear pore. Furthermore, the complex should allow endolysosomal release, but not inhibit downstream cellular processes, that is, transcription and translation.

### 3.1.3. Survivin Inhibition by Ribozymes & siRNAs

As an alternative antisense strategy for survivin inhibition (Figure 13A), Choi et al [2003] developed two hammerhead ribozymes able to cleave the human survivin mRNA at nucleotide position +279 and +28 and cloned them into a replication-deficient adenoviral vector. These authors showed that survivin down-regulation increased the apoptotic response to etoposide in transduced MCF-7 breast cancer cells.

Several studies on experimental human tumour models have demonstrated the feasibility of the use of the small interfering RNAs approach for the inhibition of cancer-related genes including survivin (Figure 13A).
Carvalho et al [2003] first used RNAi to specifically repress survivin in HeLa cells. These authors showed that survivin was no longer detectable in cultures 60 hours after transfection with specific siRNAs and that survivin-depleted cells were delayed in mitosis and accumulated in prometaphase with misaligned chromosomes. Several studies dealing with the use of chemically synthesized siRNAs or plasmid/viral vectors encoding short hairpin RNAs showed that RNAi-mediated survivin knockdown was able to reduce tumour cell proliferative potential and induce caspase-dependent apoptosis in a variety of human tumour cell models [Lens et al, 2003; Beltrami et al, 2004; Yang et al, 2004; Ai et al, 2006; Nakao et al, 2006; Jiang et al, 2006], as well as to decrease the formation of new tumours and the growth of already established lesions in nude mice [Jiang et al, 2006; Li et al, 2006]. Survivin down-regulation also induced an enhanced apoptotic response of tumour cells of different histologic origin to several stimuli, including treatment with vincristine [Jiang et al, 2006], doxorubicin [Li et al, 2006; Yonesaka et al, 2006], TNF-alpha [Li et al, 2006] and APO2L/TRAIL [Nakao et al, 2006], and caused radio-sensitisation of a sarcoma cell line expressing wild-type p53 [Kappler et al, 2005]. Finally, Coma et al [2004] demonstrated that transfection of endothelial cells with survivin-specific siRNAs induced a marked increase in the rate of apoptosis, a dose-dependent inhibition of their migration on vitronectin, and a decrease in capillary formation.
3.2. Gene Therapy

Two main gene therapy approaches targeting survivin have been successfully developed. One is based on the use of plasmids or viral vectors to deliver dominant-negative survivin mutants to tumour cells (Figure 13B) and the second involves the use of the survivin gene promoter to drive the expression of cytotoxic genes in tumour cells [Lo et al, 2005].

3.2.1. Dominant Negative Mutants

Two mutations in survivin have been characterized for what appears to be a dominant negative effect on the function of the endogenous molecule (Figure 13B).

Grossman et al [1999] first demonstrated that transfection of YUSAC2 and LOX melanoma cell lines with a mutant carrying a cysteine 84\rightarrow alanine (Cys84Ala) mutation in the survivin BIR domain increased the apoptotic index and enhanced the sub-G1 apoptotic cell fraction in both tumour models. More recently, Tu et al [2005] showed that adeno-associated viral vector-mediated transfer of the survivin mutant Cys84Ala induced apoptosis and mitotic catastrophe in colon cancer cells, inhibited angiogenesis and tumour growth in a colon cancer xenograft model in vivo, and strongly enhanced the antitumour activity of 5-fluorouracil. By using a phosphorylation-defective survivin threonine 34\rightarrow alanine (Thr34\rightarrow Ala) mutant, Grossman et al [2001] demonstrated the induction of spontaneous apoptosis in different melanoma...
cell lines as well as an increased apoptotic response following cisplatin treatment. Conditional expression of Thr34→Ala in these cells prevented tumour formation upon subcutaneous injection in 13 of 15 CB.17 severely combined immunodeficient (SCID) mice. Such treatment also caused a significant reduction (60-70%) in the growth rate of already established tumours and enhancement of apoptosis [Grossman et al, 2001]. Mesri et al [2001] investigated the effect of a replication-deficient adenovirus encoding the survivin Thr34→Ala dominant-negative mutant (pAd-T34A) in human tumour cells of various origin in vitro and in vivo. They showed that infection with pAd-T34A caused enhanced spontaneous and paclitaxel-induced apoptosis in cell lines of different tumour origin while not affecting the growth of proliferating normal human cells not expressing survivin. In vivo experiments on the MCF-7 human breast cancer xenograft model demonstrated that pAd-T34A was able to suppress de novo tumour formation, inhibit the growth of already established tumours by approximately 40%, and reduce intraperitoneal tumour dissemination. Moreover, tumours infected with pAd-T34A showed massive apoptosis and loss of proliferating cells. Very recently, using a recombinant fusion protein containing the TAT transduction domain and the Thr34→Ala dominant-negative mutant (TAT-Surv-T34A), Yan et al [2006] observed an induction of caspase-dependent apoptosis in melanoma cells. Moreover, repeated intraperitoneal injection of TAT-Surv-T34A resulted in a marked reduction of the growth and mass of established subcutaneous tumours in mice.
3.2.2. The Survivin Gene Promoter

The second gene therapy approach involves the use of the survivin gene promoter to drive the expression of cytotoxic genes in tumour cells [Lo et al, 2005]. It was shown that when coupled to the pro-apoptotic protein Bik, administration of the suicidal construct as a DNA-liposome formulation suppressed the growth of human lung cancer in vitro and in vivo [Chen et al, 2004]. Van Houdt et al [2006] showed recently that survivin promoter-based conditionally replicative adenoviruses (CRAds), composed of survivin promoter-regulated E1 gene expression and an RGD-4C capsid modification, efficiently replicated within and killed a variety of established glioma cell lines but were inactive in a normal liver culture. Moreover, survivin promoter-based CRAds significantly inhibited the growth of glioma xenografts in vivo.

3.3. Small Molecule Antagonists

3.3.1. Cyclin-Dependent Kinase (CDK) Inhibitors

If survivin phosphorylation on Thr by p34^cdk2 is required for cancer cell viability, it should be possible to target this step with a more generally applicable pharmacological approach (Figure 13C). Indeed, kinase inhibitors and in particular antagonists of cdk have emerged as promising anticancer drugs for their ability to disrupt a number of cell proliferation and cell survival pathways [Davies et al, 2002]. In particular, the flavone cdk inhibitor of
Flavopiridol, a semisynthetic small molecular derivative of rohitukine, is has been explored in the clinic for its ability to induce apoptosis in various tumour cell types [Senderowicz, 2003].

Flavopiridol (NSC 649890, L86-8275 or HMR 1275) is a semisynthetic small molecular derivative of rohitukine, an alkaloid isolated from Dysoxylum binectariferum (Figure 24). Initially, flavopiridol demonstrated potent effects on cell proliferation (IC50=66 nM) in 60 National Cancer Institute human tumour cell lines, with no obvious tumour-type selectivity [Day & Grant, 2003]. Antitumour effect has also been observed in xenograft models of various tumour-types treated with this compound [Day & Grant, 2003]. Flavopiridol is a potent small molecule inhibitor of multiple cdks, including cdk1 (cdc2), cdk2, cdk4, cdk6, and cdk7 [Senderowicz & Sausville, 2000]. It inhibits cdks by binding to their ATP-binding pocket [Senderowicz & Sausville, 2000]. Flavopiridol also causes transcriptional repression of cyclin D1 [Senderowicz & Sausville, 2000]. By inhibiting cyclin H-cdk7, it inhibits the phosphorylation of cdks at threonine 160/161 [Senderowicz & Sausville, 2000]. These activities result in the arrest of the cell cycle in the G1/S or G2/M and mediate the anti-proliferative effect of flavopiridol in tumour cells. Flavopiridol has also been shown to induce apoptosis, to inhibit transcription and to have anti-angiogenic activity [Day & Grant, 2003].

As a member of the first generation of cdk inhibitors, flavopiridol is not particularly selective for a specific cdk. However, more selective cdk inhibitors have since been developed. Several of these compounds are being evaluated for antitumour activity in preclinical model systems. Purine-based cdk inhibitors display greater selectivity for cdks 1, 2 and probably 5, but exhibit no inhibitory activity toward cdks 4 and 6. Some of these inhibitors
have been reported to exert potent antitumour activity, including olomucine, roscovitine, and purvalanols.

Purvalanol A and B, are olomucine derivatives (Figure 24) which exhibit potent and selective inhibition of cdks 1 and 2. *In vitro* studies demonstrated that purvalanol inhibits cell growth ($IC_{50}=2.5 \mu M$) and induces G2/M arrest. These effects are linked to inhibition of cdk1 and p42/p44 mitogen-activated protein kinase, both of which have been identified as intracellular targets of purvalanol [Day & Grant, 2003]. Administration of purvalanol did not appear to trigger extensive activation of caspases; however, induction of apoptosis might be highly dependent upon the concentration of cdk inhibitors [Day & Grant, 2003].

![Structure of small-molecule direct cdk modulators.](image)

In the context of a strategy focused on pharmacologic inhibition of mitotic phosphorylation of survivin on Thr34 to accelerate protein destruction and counteract its function [O'Connor *et al*, 2002], cdk inhibitors such as flavopiridol or the more $p34^{cdc2}$-specific inhibitor, purvalanol A, were tested in tumour cells arrested at mitosis with paclitaxel, which induces
hyperphosphorylation of survivin on Thr\textsuperscript{34} [Zaffaroni \textit{et al}, 2002]. Sequential administration of cdk inhibitors resulted in escape from the mitotic block imposed by paclitaxel, marked activation of mitochondrial-dependent apoptosis, and anticancer activity \textit{in vivo} [O'Connor \textit{et al}, 2002].

3.3.2. Hsp90 Inhibitors

A structure-based rational screening for antagonists of the survivin-Hsp90 complex identified a cell-permeable peptidomimetic derived from the survivin sequence Lys\textsuperscript{79}-Leu\textsuperscript{87}, shepherdin [Plescia \textit{et al}, 2005]. In addition to counteracting survivin-Hsp90 interaction, the molecule inhibited Hsp90 chaperone function by competing with ATP binding. Specifically, shepherdin was able to destabilize several Hsp90 client proteins (including Akt, cdk6 and telomerase) and to induce cell death via apoptotic and non-apoptotic mechanisms in cell lines of different tumour types. The cytotoxicity of shepherdin was seen to be independent of the proliferative activity of the cell model, concomitant overexpression of other cytoprotective factors such as Bcl-2, and p53 status. Moreover, shepherdin appeared to be selective in its antitumour activity since it did not affect viability of normal cells or tissues, including haematopoietic progenitors. Systemic administration of shepherdin \textit{in vivo} was safe and well tolerated and inhibited the growth of already established prostate and breast cancers without inducing systemic or organ toxicity. Moreover, immunohistochemical analysis of Hsp90 client proteins carried out in tumours samples at the end of shepherdin treatment showed a
nearly complete loss of Akt levels and severely attenuated survivin expression [Plescia et al, 2005]. The clinical development of shepherdin with respect to its optimal formulation and pharmacokinetic profile is currently under way through the National Cancer Institute (NCI) Rapid Access to Intervention Development (RAID) program.

Since the shepherdin residues between Lys\textsuperscript{79} and Gly\textsuperscript{83} were shown to be essential for Hsp90 binding, a new five-residue peptide containing the Lys\textsuperscript{79}-Gly\textsuperscript{83} sequence (called shepherdin[79-83]) was successively synthesized [Gyurkocza et al, 2006]. The oligopeptide inhibited the formation of the survivin-Hsp90 complex and competed with ATP binding to Hsp90. Cell-permeable shepherdin[79-83] induced rapid killing in different types of human acute myeloid leukaemia cell lines and in patient-derived AML peripheral blasts but not in normal mononuclear cells. Moreover, when systemically delivered, shepherdin[79-83] abolished the growth of AML xenograft tumours without systemic or organ toxicity [Gyurkocza et al, 2006]. We have recently used shepherdin as a scaffold to rationally identify low-molecular-weight compounds that may act as structurally novel Hsp90 inhibitors. Through a combined structure- and dynamics-based computational design strategy, the nonpeptidic small molecule 5-aminoimidazole-4-carboxamide-1-\(\beta\)-D-ribofuranoside (AICAR) was selected to bind the Hsp90 N-terminal domain, mimicking the chemical and conformational properties of shepherdin. AICAR was shown to destabilize several Hsp90 client proteins \textit{in vivo}, including survivin, and to exhibit anti-proliferative and pro-apoptotic activity in multiple tumour cell lines, while not affecting proliferation of normal human fibroblasts [Meli et al, 2006].
3.3.3. Other Small Molecules

Additional small molecules that target survivin have been developed and some of them are currently being evaluated in clinical trials. One of those that directly affect survivin expression, tetra-O-methyl nordihydroguaiaretic acid (M(4)N), was shown to suppress Sp1-dependent survivin gene transcription and activate the mitochondrial apoptotic pathway in transformed cells [Chang et al, 2004]. Moreover, M(4)N suppressed the growth of human xenograft tumours following systemic treatment [Park et al, 2005]. However, considering that the compound is a global transcription inhibitor, both survivin-dependent and survivin-independent pathways are thought to be responsible for drug-induced cell death in tumours [Huang et al, 2006].

YM155 is a small molecule that selectively inhibits survivin gene transcription and protein expression in several tumour cell lines. It showed marked anti-proliferative activity (in the nanomolar range) in a broad spectrum of human tumour cell lines and induced tumour regression in lymphoma, prostate cancer and non-small cell lung cancer xenografts [Mita et al, 2006]. Moreover, preliminary evidence of the clinical activity of the compound was derived from a phase I open-label study in which 41 patients with different tumour types were treated with 7-day continuous intravenous infusion of YM155 and objective responses were observed in 3 patients with non-Hodgkin's lymphoma [Mita et al, 2006]. The compound is currently being evaluated in a phase II study for patients with stage III and stage IV melanoma.
Other small molecules currently in the clinic were shown to indirectly affect survivin expression. Some of them, including STAT3 [Turkson, 2004] and T-cell factor [Emami et al, 2004] antagonists, caused the suppression of survivin gene transcription, whereas others, such as the ErbB2 antagonist lapatinib [Xia et al, 2006], markedly inhibited survivin expression by acting at the post-translational level through the promotion of the ubiquitin-proteasome-mediated degradation of the protein [Xia et al, 2006].

Overall, these data clearly validate survivin as a good target for cancer therapy thus indicating that interfering with survivin expression/activity by means of novel strategies may provide a viable approach to kill cancer cells selectively. Moreover, the notion that this factor plays a crucial role also in tumour angiogenesis would suggest that its targeting can increase the overall tumours treatment response not only through direct interference with the apoptotic pathways in cancer cells but also by favouring the apoptotic involution of newly formed tumour vasculature.
Chapter 2
AIMS OF THE STUDY
Apoptosis is a physiological process by which unwanted or useless cells are eliminated during development and other normal biological processes. Resistance to apoptotic stimuli is a hallmark feature of various malignancies including cancer. One of the mechanisms through which tumour cells acquire resistance to apoptosis is by overexpression of Inhibitor of Apoptosis Proteins (IAPs), a group of anti-apoptotic proteins that interact with and inhibit the enzymatic activity of caspases. Survivin is a structurally unique member of the IAP family, which is involved in control of cell division and inhibition of apoptosis. This protein is undetectable in most terminally differentiated normal tissues but is selectively expressed in the most common human neoplasms and associated with clinical tumour progression. Survivin also appears to be involved in tumour cell resistance to some anticancer agents as well as ionising radiation. It has been reported that survivin inhibition by use of the oligonucleotide antisense, mutant dominant negative, ribozyme and small interfering RNA, renders tumour cells more susceptible to treatment with chemotherapeutic agents and ionising radiation. On the basis of these findings, survivin has been proposed as a promising therapeutic target for novel anticancer therapies.

The present study is aimed to develop different approaches to induce a specific inhibition of survivin expression/activity in human cancer cells with the final aim to sensitize tumour cells to the effects of apoptosis-inducing anticancer agents.
Specifically, we proposed to inhibit:

✓ survivin expression through the use of hammerhead ribozymes and small interfering RNA targeting different portions of survivin mRNA;
✓ survivin activity through the use of specific cdk inhibitors.

The knock down phenotype arising from the exposure of tumour cells to different inhibitors was evaluated in terms of cell proliferative and tumorigenic potential, susceptibility to activate programmed cell death and chemosensitivity profile.
Chapter 3

MATERIAL & METHODS
1. **GENERAL PROCEDURES**

1.1. **Drugs**

Cisplatin was obtained from Pharmacia-Upjohn (Milan, Italy). Topotecan was purchased from Smith-Kline Beecham Pharmaceuticals (King of Prussia, PA, USA). Temozolomide was obtained from Schering Plough Inc (Madison, NJ, USA). Paclitaxel was purchased from Sigma (Milan, Italy). The 17-allylamino-17-demethoxy-geldanamycin (17-AAG) was kindly provided by Dr E. Sausville (NCI, Bethesda, MA, USA). Purvalanol A was purchased from Tocris (Bristol, United Kingdom). NU6140 was kindly provided by Prof D.R. Newell (University of Newcastle, Newcastle upon Tyne, United Kingdom).

1.1.1. **Cisplatin Preparation**

To obtain a 1 mg/ml cisplatin stock solution, 10 ml of PBS were added to cisplatin powdered stock and the drug was completely dissolved by vigorous vortexing immediately before use.

1.1.2. **Topotecan Preparation**

To obtain a 1 mg/ml topotecan stock solution, 10 ml of sterile water were added to topotecan powdered stock and the drug was completely dissolved,
stored at -20°C and diluted in complete culture medium immediately before use.

1.1.3. Temozolomide Preparation

To obtain a 1 mg/ml temozolomide stock solution, 10 ml of DMSO were added to temozolomide powdered stock and the drug was completely dissolved, stored at -20°C and diluted in complete culture medium immediately before use.

1.1.4. Paclitaxel Preparation

To obtain a 1 mg/ml paclitaxel stock solution, 10 ml of DMSO were added to paclitaxel powdered stock and the drug was completely dissolved, stored at -20°C and diluted in complete culture medium immediately before use.

1.1.5. 17-AAG Preparation

To obtain a 1 mg/ml 17-AAG solution, 10 ml of DMSO were added to the powder stock and the drug was completely dissolved, stored at -20°C and diluted in complete culture medium immediately before use.
1.1.6. Purvalanol A Preparation

To obtain a 1 mg/ml purvalanol A stock solution, 10 ml of DMSO were added to purvalanol A powdered stock and the drug was completely dissolved, stored at -20°C and diluted in complete culture medium immediately before use.

1.1.7. NU6140 Preparation

To obtain a 1 mg/ml NU6140 stock solution, 10 ml of DMSO were added to NU6140 powdered stock and the drug was completely dissolved, stored at -20°C and diluted in complete culture medium immediately before use.

1.2. Human Tumour Cell Lines

The melanoma cell line (JR8) was kindly supplied by Dr. Zupi (Experimental Chemotherapy Laboratory, Regina Elena Cancer Institute, Rome, Italy). The cell lines derived from untreated patients with prostate carcinoma (DU145 and PC-3) and uterine cervix carcinoma (HeLa), were purchased from American Type Culture Collection (ATCC, Rockville, MD, USA). The ovarian cancer cell lines, OAW42/e and OAW42/Surv were previously obtained after transfection of the OAW42 parental cell line (purchased from ATCC) with the empty pCI-neo vector and the pCI-neo
expression vector carrying the full-length human survivin cDNA (pCI-surv) [Zaffaroni et al, 2002].

1.2.1. Human Tumour Cell Lines Growth Conditions

All cell lines were maintained as monolayers in 25-cm² flasks (Corning-Costar Italia, Milan, Italy) at 37°C in a 5% CO₂ humidified atmosphere in an air incubator (Heraeus Sepatech, Milan, Italy).

JR8, DU145 and PC-3 were maintained in RPMI-1640 medium (Cambrex Italia, Milan, Italy), supplemented with 10% (v/v) FBS, 2 mM L-glutamine, and 0.1% (v/v) gentamycin, at a density of 0.6 x 10⁵ cells per 25-cm² flask. HeLa cells were cultured using D-MEM/F12 medium (Cambrex), supplemented with 10% (v/v) FBS, 2 mM L-glutamine and 0.1% (v/v) gentamycin, at a density of 0.8 x 10⁵ cells per 25-cm² flask. OAW42/e and OAW42/Surv were maintained D-MEM/F12 medium (Cambrex), supplemented with 10% (v/v) FBS, 2 mM L-glutamine, 0.25 units/ml insulin, 0.1% (v/v) gentamycin, 1 mg/ml G418, at a density of 1 x 10⁵ cells per 25-cm² flask.

All tumour cells were cultured as follow: at set time points, specific growth medium was removed from the 25-cm² flask and the cell monolayer was washed twice with 5 ml 37°C-heated PBS. One ml of a Trypsin-EDTA solution (Cambrex) was then added to each flask. After a 5 minutes-incubation at 37°C with gentle shaking, cell detachment was checked under the microscope (Nikon TMS, Folabo, Buccinasco, Italy) and trypsin activity was blocked by addition of 5 ml of complete medium. Five ml-suspension
containing detached cells was transferred in a sterile 15 ml conical tube (Falcon-Becton Dickinson Italia, Milan, Italy) and centrifuged at 1,500 rpm for 5 minutes at room temperature in a Varifuge 3.OR centrifuge (Heraeus Sepatech). Cell pellet was then carefully resuspended in 5 ml of growth medium and a small aliquot (100 µl) was transferred in a plastic 20 ml-vial (Falcon-Becton Dickinson) containing 10 ml of the isoton solution (azide-free balanced electrolyte solution; Coulter Scientific, Luton, United Kingdom). Single-cell suspension was checked under the microscope in a Burker camera, and the number of detached cells was calculated by counting in a particle counter (Coulter Counter, Coulter Scientific).

Frozen stocks of human tumour cell lines were prepared as follows. Cells in logarithmic growth phase were detached from the flasks and counted as previously described. The percentage of viable cells was also determined by Trypan blue dye exclusion test by mixing, in a 0.5 ml clean conical tube (Eppendorf Italia, Milan, Italy) 5 µl of detached cells suspension, 45 µl of PBS and 50 µl of Trypan blue dye (Sigma). Five µl of Trypan blue dye-stained cell suspension were placed onto a Burker camera and checked under the microscope. The number of viable cells generally exceeded 95%. After counting, the cell suspension was centrifuged at 1,500 rpm for 5 minutes at 4°C. The supernatant was removed and the cell pellet was carefully resuspended in 4°C-cold freezing medium [D-MEM/F12 medium supplemented with 40% (v/v) FBS] at a density of 5 x 10^6 viable cells/ml. One ml of such a cell suspension was then transferred in a 2 ml sterile Nalgene tube (Nalgene Company, Rochester, NY, USA) and placed on ice. One ml of cryoprotective medium [basal EAGLE'S medium with HANKS' BBSS and
15% (v/v) dimethylsulfoxide (DMSO) (Cambrex) was added to each tube and after a gentle resuspension, the tube was placed onto a Cryo 1°C Freezing Container (Nalgene) and stored at –80°C for the initial freezing step. After 16-24 hours, frozen cells were removed from the freezing container and stored under liquid nitrogen vapours in the Barnstead/Thermolyne containers (Barnstead/Thermolyne, Dubuque, IO, USA).

For cell thawing, frozen cells were incubated in a 37°C water bath (PBI International Italia, Milan, Italy), transferred into a sterile 15 ml conical tube containing 10 ml of complete growth medium and centrifuged at 1,500 rpm for 5 minutes at room temperature. The cell pellet was then resuspended in 15 ml of growth medium and cells were seeded in a 25-cm² flask.

1.3. Nucleic Acids Quantification

Concentration and quality of solutions containing DNA, RNA or oligonucleotides were determined by spectrophotometric analysis as follows. In two clean 1.5 ml tube (Eppendorf), a suitable volume of nucleic acid-containing solution (generally, 5 and 10 μl) was gently mixed with RNase- or DNase-free distilled water to a final volume of 200 μl to obtain a 1:40 and 1:20 dilutions. As the blank sample, a third clean tube containing 200 μl of RNase- or DNase-free distilled water was also prepared. The content of each tube was transferred into quartz cuvettes (Perkin-Elmer Italia, Monza, Italy), the cuvettes were then placed onto a Lambda 11/Bio spectrophotometer (Perkin-Elmer) and absorbance values at 260 nm ($A_{260nm}$) and 280 nm
(A_{280nm}) of wave length were measured. The A_{260nm} and A_{280nm} values obtained with the blank sample were subtracted from the absorbance values obtained with the nucleic acid-containing samples, and DNA, RNA or oligonucleotide concentration was then calculated using these formulae:

\[
\text{pg/ml of DNA} = (A_{260nm}) \times (\text{DILUTION FACTOR}) \times (50 \ \mu g/ml)
\]
\[
\text{pg/ml of RNA} = (A_{260nm}) \times (\text{DILUTION FACTOR}) \times (40 \ \mu g/ml)
\]
\[
\text{pg/ml of oligonucleotide} = (A_{260nm}) \times (\text{DILUTION FACTOR}) \times (30 \ \mu g/ml)
\]

The nucleic acid concentration was expressed as the mean of the values (\mu g/ml) obtained in the two independently-prepared and -measured dilutions.

The quality of nucleic acid solutions was evaluated by calculating the A_{260nm}/A_{280nm} ratio. It is well known that for both DNA and oligonucleotide, a ratio of 1.8-2 was indicative of a good-quality preparation, whereas high quality RNA solutions are characterised by a A_{260nm}/A_{280nm} ratio of 2.

1.4. Protein Concentration Determination

Protein concentration was determined according to Bradford [1976].

1.4.1. Calibration Curve Preparation

Solutions of bovine serum albumin (BSA) (0.001 \mu g/\mu l, 0.0025 \mu g/\mu l, 0.005 \mu g/\mu l, 0.01 \mu g/\mu l, 0.025 \mu g/\mu l and 0.05 \mu g/\mu l) were prepared by dissolving powdered BSA (Sigma) in distilled water. In a 1.5 ml tube, 250 \mu l
of each BSA solution were mixed with 150 µl of distilled water and 100 µl of Biorad Protein assay dye (Biorad, Milan, Italy). In the blank sample, 400 µl of distilled water were mixed with 100 µl of Biorad Protein assay dye. Samples were rapidly transferred into disposable 96 well plate (Corning-Costar) and the absorbance at 595 nm wave length of each calibration point was measured using a microtiter plate reader (PBI International). The absorbance value corresponding the blank sample was then subtracted from the values obtained in the BSA-containing samples. Each calibration sample was run in triplicate.

1.4.2. Protein Concentration Quantification

Concentration of extracted proteins was determined by mixing in a 1.5 ml tube 5 µl of protein extracts with 95 µl of Biorad Protein assay dye and distilled water to a final volume of 500 µl. Samples were rapidly transferred into 96 well plate and the absorbance at 595 nm wave length was measured in the spectrophotometer plate reader. From the calibration curve, it was possible to determine the protein concentration of each sample. Also in this case, each sample was run in triplicate.
1.5. Agarose Gel Preparation

All agarose gel electrophoresis experiments were carried out using Hoefer horizontal electrophoresis units (Amersham-Pharmacia Biotech Italia, Cologno Monzese, Italy).

Gels of different sizes and percentages (w/v = grams of powdered agarose per 100 ml of running buffer) were prepared in clean glass bottles by mixing suitable amounts of powdered agarose (Sigma) in 1x TAE [0.04 M Tris-Acetate (Sigma), 0.001 M EDTA (Sigma)] or 1x TBE [0.09 M Tris-Borate (Sigma), 0.002 M EDTA] running buffers. Agarose was dissolved by heating in a microwave, cooled to about 50°C, transferred onto the casting tray and, after the insertion of a clean comb, left to polymerise at room temperature. When polymerisation was completed, the comb was removed and solidified agarose gel was transferred into the running tray and submerged with running buffer.

1.6. SDS-Polyacrylamide Gel Preparation

All SDS-polyacrylamide gels used for protein separation (8 centimetres high/10 centimetres length/1 millimetres thick) were prepared as described by Laemmli [1970] and run in a Hoefer SE 600 vertical electrophoresis slab unit (Amersham). Resolving gel (10 ml) was prepared in a 15 ml conical tube (Falcon-Becton Dickinson) by mixing a suitable volume of 40% (w/v) polyacrylamide stock solution (acrylamide:N,N'-methylenebisacrylamide
molar ratio = 29:1) (Sigma) with 0.1 ml of 10% (w/v) SDS solution (Sigma) [final concentration = 0.1% (w/v)], 2.5 ml of 1.5 M Tris-HCl pH 8.8 solution (Sigma) (final concentration = 375 mM), 100 µl of 10% (w/v) APS (Sigma) [final concentration = 0.1% (w/v)] and 6 µl of TEMED (Sigma) [final concentration = 0.06% (v/v)], and subsequently poured into the gap between glass plates (previously washed with absolute ethanol) leaving sufficient space for the stacking gel. The poured resolving polyacrylamide gel solution was immediately and carefully overlaid with 0.1% (w/v) SDS solution (the overlay prevents oxygen from diffusing into the gel and inhibiting polymerisation) and the gel was placed in a vertical position at room temperature to polymerise. When polymerisation was complete (within 20-40 minutes), the overlay was poured off and the top of the gel was carefully washed several times with distilled water to remove any unpolymerised acrylamide. The stacking gel (2 ml) containing 5% (w/v) polyacrylamide (acrylamide:N,N'-methylenebisacrylamide molar ratio = 29:1), 0.1% (w/v) SDS, 125 mM Tris-HCl pH 6.8, 0.1% (w/v) APS and 0.1% (v/v) TEMED was prepared in a 15 ml conical tube and poured directly onto the surface of the polymerised resolving gel. A clean comb was immediately inserted into the stacking gel solution and the gel was placed in vertical position to polymerise. When polymerisation was complete, the comb was removed, the wells were washed with distilled water to remove any unpolymerised acrylamide and the gel was mounted in the electrophoresis apparatus containing TGS running buffer [25 mM Tris base, 250 mM Glycine (Sigma), 0.1% (w/v) SDS, pH 8.3] in both upper and lower buffer reservoirs.
1.7. Non-Denaturing Polyacrylamide Gel Preparation

Non-denaturing polyacrylamide gels (16 centimetres high/16 centimetres length/1.5 millimetres thick) were prepared and run in a Hoefer SE 600 vertical electrophoresis slab unit (Amersham).

Polyacrylamide gel solution (30 ml) containing 10% (w/v) polyacrylamide (acrylamide : N,N'-methylenebisacrylamide molar ratio = 19:1), 0.5x TBE buffer, 0.07% (w/v) APS and 0.035% (v/v) TEMED, was prepared in a 50 ml conical tube and subsequently poured into the gap between glass plates (previously washed with absolute ethanol). A clean comb was immediately inserted and the gel was placed in vertical position to polymerise. When polymerisation was completed, the comb was removed, the wells were washed with 0.5x TBE buffer to remove any unpolymerised acrylamide and the gel was mounted in the electrophoresis apparatus containing 0.5x TBE running buffer in both upper and lower reservoirs.

1.8. Preparation of the Plasmid Vectors

To obtain a permanent and stable source of pRc/CMV (Invitrogen, San Diego, CA, USA), pCI-neo (Promega Italia, Milan, Italy) and pCLXSN (Imgenex, San Diego, CA, USA) vectors carrying ribozyme and survivin sequences, the following procedures were performed.
1.8.1. Preparation of Competent JM109 E. Coli Cells for Transformation

Fifty µl of sterile JM109 E. coli cellular suspension (Promega) were mixed, in a sterile 50 ml conical tube, with 10 ml of sterile LB medium [1% (w/v) Bacto-Tryptone (Invitrogen), 0.5% (w/v) Bacto-Yeast extract (Invitrogen), 1% (w/v) NaCl (Sigma), pH 7.0] and allowed to grow in a 37°C-heated shaking incubator (GFL3031; Folabo) at 225 rpm over night. One ml of such liquid bacterial culture was then transferred into a sterile 500 ml bottle containing 100 ml of sterile LB medium and the bottle was placed into the 37°C-heated shaking incubator at 225 rpm.

To harvest bacterial cells in logarithmic growth phase, 2 hours later, 1 ml of liquid culture was transferred, under a laminar flow, in a disposable cuvette and the absorbance at 600 nm of wave length was read on the spectrophotometer. E. coli concentration in the liquid culture was calculated by considering that 1 $A_{600nm}$ unit corresponds to about $8 \times 10^6$ bacterial cells/ml. When $A_{600nm}$ of the liquid culture reached 0.3 units (corresponding to $240 \times 10^6$ cells/ml; $24 \times 10^9$ cells in 100 ml) the bacterial suspension was transferred, under a laminar flow, in two ice-cold sterile 50 ml conical tubes and the cell growth was stopped by placing the tubes on ice for 15 minutes. E. coli cells were pelleted by a 3,000 rpm centrifugation at 4°C for 10 minutes and, after the removal of LB medium, cell pellets were pooled in the same tube by gentle resuspension in 10 ml of ice-cold sterile 0.1 M CaCl$_2$ solution (Sigma). After addition of 40 ml of ice-cold sterile 0.1 M CaCl$_2$ solution, bacterial suspension was incubated on ice for 30 minutes and subsequently centrifuged at 3,000 rpm for 10 minutes at 4°C. The supernatant was then
removed and the cell pellet was carefully resuspended in 5 ml of an ice-cold sterile 0.1 M CaCl₂-15% (v/v) glycerol (Sigma) solution. Such a bacterial suspension was incubated on ice for 24 hours. At the end of incubation, the bacterial suspension was mixed by gentle pipetting, divided in 500 μl-aliquots (4.8 x 10⁹ cells/ml; 2.4 x 10⁹ cells in each 500 μl-aliquot) in sterile 0.5 ml Nalgene tubes, frozen by snap freezing in liquid nitrogen and stored at -80°C.

Fifty μl (240 x 10⁶ cells) of freshly-prepared competent cells were transformed with 50 ng of a DNA vector able to confer ampicillin resistance and 1/100,000 (dilution factor, 10⁵) of the bacterial suspension was plated as described in the 2.1.9.2 section. Transformation efficiency, calculated on the basis of the formula

\[
\frac{\text{(NUMBER OF COLONIES) \times (10⁵) \times (DILUTION FACTOR)}}{50 \text{ ng}}
\]

was expressed as the number of colony forming units (CFU) per μg of plasmid DNA. Generally, 10⁶-10⁸ CFU per μg of plasmid DNA were indicative of a good preparation of competent bacterial cells.

1.8.2. Transformation of Bacteria

In an ice-cold 10 ml Falcon 2059 tube (Falcon-Becton Dickinson), 240 x 10⁶ of competent bacterial cells (50 μl; section 2.9.1) were diluted to a final volume of 100 μl with 0.1 M CaCl₂ and 50 ng (5 μl) of purified vector were then added. The mixture was gently mixed by tapping and the tube was chilled on ice for 30 minutes, incubated for 90 seconds at 42°C in a water
bath and for 2 minutes on ice. After a 5-minute incubation at room
temperature, 900 μl of LB medium were added and tube was placed into a
37°C-heated shaking incubator at 225 rpm for 2 hours. The tube was then
centrifuged at 3,000 rpm for 5 minutes at room temperature, 950 μl of
supernatant LB were removed and bacterial cell pellet was resuspended in
the remaining 50 μl, plated onto 90-mm dish (Corning-Costar) containing
selective solid LB medium [liquid LB medium, 1.5% (w/v) agar (Invitrogen),
50 μg/ml ampicillin (Mead-Johnson, Rome, Italy)] and incubated over night at
37°C. Each colony, representing ampicillin-resistant/transformed growing
bacterial cells, was picked-up with a sterile disposable loop, dissolved in a
50 ml conical tube containing 10 ml of liquid LB medium supplemented with
ampicillin (50 μg/ml final concentration) and allowed to grow over night
at 37°C with 225 rpm shaking.

1.8.3. Small Scale Preparation of Plasmid DNA ("miniprep")

To confirm the presence of plasmids in ampicillin-resistant liquid culture,
8 ml of the bacterial suspension were used for "miniprep" by using Qiagen
Plasmid Mini Kit (Qiagen, Hilden, Germany) according to the manufacturer's
instructions. Plasmid DNA concentration was determined
spectrophotometrically as described in the section 1.3.

Electrophoretic analysis was performed on 1% (w/v) agarose mini gel
prepared and run in 1x TAE buffer. About 500 ng of extracted and original
DNA vectors were loaded and separated at 90 volt (SE300 power supply;
Amersham) at room temperature for 1 hour in the presence of 500 ng of λ-
BstI11 molecular weight marker (Sigma). DNA fragments were visualised by
placing the gel onto the UV-transilluminator (260 nm wave length) (Biorad)
after a 30-minutes staining with 1 μg/ml ethidium bromide (Invitrogen)-1x
TAE buffer staining and a 30-minute 1x TAE buffer destaining.

1.8.4. Storage of Vector-Transformed Bacteria

In a 2 ml sterile Nalgene tube, 1.6 ml of ampicillin-resistant liquid bacterial
culture and 0.4 ml of sterile pure glycerol (final concentration (v/v) = 20%)
were mixed by a vortex mixer and frozen by snap freezing in liquid nitrogen
and stored at -80°C.

1.8.5. Large Scale Preparation of Plasmid DNA (“maxiprep”)

By means of a sterile spatula, frozen bacterial cells were scraped from the
2 ml sterile Nalgene tube and dissolved in 10 ml of 50 μg/ml ampicillin
containing-LB medium (contained in a 50 ml conical tube) and allowed to
grow at 37°C in a shaking incubator at 225 rpm. After 8 hours, 10 ml liquid
culture was mixed with 100 ml of fresh 50 μg/ml ampicillin containing-LB
medium into a 500 ml glass bottle and cells were left to grow over night at
37°C and 225 rpm.

Bacterial cells were pelleted by a 30-minute centrifugation at 4,000 rpm at
4°C and, after removal of LB medium, plasmid DNA was purified with the
Qiagen Plasmid Maxi Kit (Qiagen) according to the manufacturer's instructions.

Concentration and quality of the plasmid DNA were evaluated as described in the section 1.3.
2. **Specific Procedures**

2.1. Design and Synthesis of Ribozymes Targeting Survivin mRNA

The ribozyme design was performed by an *in silico* approach using the already described, home-developed computing method [Mercatanti *et al*, 2002], which predicts the regions of the survivin mRNA (GeneBank Accession N. NM_001168.1) endowed with the most probable conformational accessibility. Many NHH consensus cleavage triplets (N= any nucleotide, H= A, C, U) lie within these accessible regions, therefore they were recognized to be suitable targets for hammerhead ribozymes. A series of catalytic ribozyme sequences were correspondingly deduced. The final analysis accounting for the correct structure-activity relationship enabled us to select the hammerhead ribozyme addressed to the CUA_{110} triplet located on the survivin mRNA. The ribozyme sequence, Rz (Figure 25), was synthesized by *in vitro* transcription. A mutant ribozyme (mutRz) obtained by deleting the G_{12} from the catalytic core (as indicated by the circled letter in Figure 25) and an irrelevant ribozyme (CTR) directed against the FIV primer bonding site, were designed and synthesized to obtain the negative controls. Single-stranded synthetic DNA oligonucleotides encoding active and control ribozymes were obtained from MWG Biotech (Ebersberg, Germany). The oligonucleotide sequences were the following:

Rz+ 5'-AGCTTTCTTGGATGATGGCCGAAAGCCGAAAGAGATGT-3'

Rz- 5'-CTAGACATCTCTTCGGCGCTTCGCTCATCAGCACATCAAGA-3'

mutRz+ 5'-AGCTTTCTTGGATGATGGCCGAAAGCCGAAAGAGATGT-3'

mutRz- 5'-CTAGACATCTCTTCGGCGCTTCGCTCATCAGCACATCAAGA-3'
2.1.1. Annealing of Complementary Pairs of Oligonucleotides

In a microcentrifuge tube, the complementary oligonucleotides were mixed together at a 1:1 molar ratio. The oligonucleotide mixture was then diluted to a final concentration of 1 pmol/μl with a phosphate buffer containing salt [10 mM Tris, 1 mM EDTA, 50 mM NaCl (pH 8.0) or 100 mM sodium phosphate, 150 mM NaCl, 1 mM EDTA (pH 7.5)]. The oligonucleotides were incubated at 95°C for 5 minutes, and then the heat was gradually reduce until the oligonucleotides have reached room temperature. The double-stranded DNA probe was stored at -20°C. Annealing of the complementary
oligonucleotides produced two fragments with *HindIII* and *XbaI* protruding ends.

### 2.1.2. Synthesis of Ribozyme-Expressing Plasmid Vectors

#### 2.1.2.1. Digestion of the pRC/CMV Plasmid Vector

In a 1.5 ml tube, an aliquot containing 30 μg of pRC/CMV plasmid was mixed with 60 units of *HindIII* and *XbaI* restriction enzymes (Promega), 1x digestion buffer specific for both enzymes (Buffer E) (Promega) and distilled water to a final volume of 100 μl. The mixture was then incubated at 37°C in a water bath. After 1 hour, the reaction was stopped by addition of 5 μl of 0.5 M EDTA, pH 8. The digestion of the vector template was verified as described in the 1.8.3. section by loading about 200 ng of digested vector with the same amount of undigested plasmid DNA and 500 ng of λ-*BstEII* molecular weight marker.

#### 2.1.2.2. Purification of *HindIII/XbaI*-Digested pRC/CMV Vector

Digestion mixture was diluted to a final volume of 400 μl with distilled water. An equal volume of phenol (Sigma)/chloroform/isoamyllic alcohol (Carlo Erba Reagenti, Milan, Italy) solution [25:24:1, (v/v/v)] was then added. The tube was extensively mixed by tapping and centrifuged at 12,000 rpm at 4°C for 5 minutes, then the aqueous upper phase, containing plasmid DNA, was recovered and placed in a clean 1.5 ml tube and an equal volume of
chloroform/isoamyl alcohol solution [24:1, (v/v)] was added. After mixing, the tube was centrifuged and the aqueous upper phase was recovered and placed in a clean 1.5 ml conical tube. To precipitate plasmid DNA, the aqueous phase was mixed with sodium acetate, pH 5.2 (Sigma), (0.3 M final concentration) then, after addition of 2 volumes of -20°C-cold 100% ethanol, the solution was mixed for a few seconds using the vortex and placed for 1 hour at -80°C. The sample was then centrifuged at 12,000 rpm at 4°C for 30 minutes, and, after ethanol removal, pelleted DNA was washed twice with 70% (v/v) ethanol and dried for 3 minutes with a speed-vacuum centrifuge (Heraeus). Dried plasmid vector was then dissolved in distilled water and quantified spectrophotometrically.

2.1.2.3. Cloning of the Ribozyme Sequences into the pRC/CMV Vector

In a 1.5 ml tube, 10 μl of each fragment was mixed with 3 μl digested plasmid, 4 μl 5x ligation buffer, 1 μl T4 DNA ligase, and sterile distilled water to a final volume of 20 μl. Tubes were incubated overnight at 16°C. The resulting plasmids were named pRc/Rz and pRc/mutRz. A permanent and stable source of the plasmids were obtained as described in 1.8.2. and 1.8.4. sections.
2.1.3. Synthesis of VA1-Fusion Ribozymes

2.1.3.1. Digestion of the pBS-VA1 Plasmid Vector

In a 1.5 ml tube, 30 μg of pBS-VA1 plasmid [Prislei et al, 1997] was mixed with 60 units of HindIII and XbaI restriction enzymes (Promega), 1x digestion buffer specific for both enzymes (Buffer E) (Promega) and distilled water to a final volume of 100 μl. The mixture was then incubated at 37°C in a water bath. After 1 hour, the reaction was stopped by addition of 5 μl of 0.5 M EDTA, pH 8. The digestion of the vector template was verified as described in the 1.8.3 section by loading about 200 ng of digested vector with the same amount of undigested plasmid DNA and 500 ng of λ-BstEII molecular weight marker. The mixture was then purified and quantified as described in the 2.1.2.2. section.

2.1.3.2. Cloning of the Ribozyme Sequences into the pBS-VA1 Vector

In a 1.5 ml tube, 10 μl of each fragment was mixed with 3 μl digested plasmid, 4 μl 5x ligation buffer, 1 μl T4 DNA ligase, and sterile distilled water to a final volume of 20 μl. Tubes were incubated overnight at 16°C.
Chapter 3

2.1.3.3. Digestion of the VA1-Ribozyme Cassette

In a 1.5 ml tube, 30 µg of VA1-ribozyme cassette was mixed with 60 units of EcoRI and HindIII restriction enzymes (Promega), 1x digestion buffer specific for both enzymes (Buffer H) (Promega) and distilled water to a final volume of 100 µl. The mixture was then incubated at 37°C in a water bath. After 1 hour, the reaction was stopped by addition of 5 µl of 0.5 M EDTA, pH 8. The digestion of the template was verified as described in the 1.8.3 section by loading about 200 ng of digested vector with the same amount of undigested plasmid DNA and 500 ng of λ-BstEII molecular weight marker.

2.1.3.4. Blunting of the VA1-Ribozyme Cassette

In a 1.5 ml tube, 0.1 pmol of VA1-ribozyme cassette was mixed with 1 µl of T4 DNA polymerase (Promega), 1x of reaction buffer (Promega) and distilled water to a final volume of 10 µl. The mixture was then incubated 5 minutes at 70°C followed by 5 minutes at 37°C. The reaction was stopped by addition of DNA dilution buffer to bring the DNA concentration to 1 µg/50 µl. The mixture was then purified and quantified as described in the 2.1.2.2. section.

2.1.3.5. Digestion of the pCLXSN Plasmid Vector

In a 1.5 ml tube, 30 µg of pCLXSN plasmid was mixed with 60 units of NheI restriction enzyme (Promega), 1x digestion buffer specific for both
enzymes (Buffer H) (Promega) and distilled water to a final volume of 100 µl. The mixture was then incubated at 37°C in a water bath. After 1 hour, the reaction was stopped by addition of 5 µl 0.5 M EDTA, pH 8. The digestion of the vector template was verified as described in the 1.8.3 section by loading about 200 ng of digested vector with the same amount of undigested plasmid DNA and 500 ng of λ-BstEII molecular weight marker. The mixture was then purified and quantified as described in the 2.1.2.2. section.

2.1.3.6. Cloning of the VA1-Ribozyme Cassette into the pCLXSN Vector

In a 1.5 ml tube, 10 µl of each VA1-ribozyme cassette was mixed with 3 µl digested plasmid, 4 µl 5x ligation buffer, 1 µl T4 DNA ligase, and sterile distilled water to a final volume of 20 µl. Tubes were incubated overnight at 16°C. The resulting plasmids were named pCLXSN/Rz and pCLXSN/CTR. A permanent and stable source of the plasmids were obtained as described in 1.8.2. and 1.8.4. sections.

2.2. In Vitro Catalytic Activity

2.2.1. In Vitro Ribozyme Transcription

2.2.1.1. Linearization of the pRc/Rz and pRc/mutRz Plasmids

In a 1.5 ml tube, 30 µg of pRc/Rz and pRc/mutRz plasmids were mixed with 60 units of XbaI restriction enzyme (Promega), 1x specific digestion
buffer (Buffer E) (Promega) and distilled water to a final volume of 100 μl. The mixture was then incubated at 37°C in a water bath. After 1 hour, the reaction was stopped by addition of 5 μl 0.5 M EDTA, pH 8. The linearization of the vector template was verified as described in the 1.8.3. section by loading about 200 ng of digested vector with the same amount of undigested plasmid DNA and 500 ng of λ-BstEII molecular weight marker. The mixtures were then purified and quantified as described in the 2.1.2.2. section.

### 2.2.1.2. In Vitro Transcription of Ribozymes

In a 0.5 ml tube, 20 μg of the resulting linear templates were in vitro transcribed in 0.2 ml of a reaction mixture composed of 260 units recombinant RNAsin ribonuclease inhibitor (Promega), 0.25 mM each of ribonucleotide triphosphates, 5 mM DTT, 1x transcription buffer (40 mM Tris-HCl, pH 8, 8 mM MgCl₂, 2 mM spermidine), and 200 units T7 RNA polymerase (Takara, Shuzo Co., Otsu Shiga, Japan). The reaction mixtures were incubated for 2 hours at 37°C and then treated with 20 units RQ1 RNase-free DNase (Promega) for 20 minutes at 37°C. The products were then purified and quantified as described in the 2.1.2.2. section.
2.2.2. Synthesis of the Synthetic Substrate

2.2.2.1. Linearization of the pCI-Surv Plasmid

In a 1.5 ml tube, 30 μg of pCI-surv plasmid was mixed with 60 units of StyI restriction enzyme (Promega), 1x specific digestion buffer (Buffer H) (Promega) and distilled water to a final volume of 100 μl. The mixture was then incubated at 37°C in a water bath. After 1 hour, the reaction was stopped by addition of 5 μl 0.5 M EDTA, pH 8. The linearization of the vector template was verified as described in the 1.8.3. section by loading about 200 ng of digested vector with the same amount of undigested plasmid DNA and 500 ng of λ-BstEII molecular weight marker. Digestion mixtures were then purified as described in the 2.1.2.2. section.

2.2.2.2. In Vitro Transcription of the Synthetic Substrate

In a 0.5 ml tube, 10 pg (6.25 pmoles) of StyI-linearised vector was in vitro transcribed in a solution containing 260 units recombinant RNAsin ribonuclease inhibitor (Promega), 0.25 mM each of ribonucleotide triphosphates, 5 mM DTT, 1x transcription buffer (40 mM Tris-HCl, pH 8, 8 mM MgCl₂, 2 mM spermidine), 200 units T7 RNA polymerase (Takara), and 10 μCi [γ-³²P]-ATP (800 Ci/mmmole) (Amersham). The reaction mixtures were incubated for 2 hours at 37°C and then treated with 20 units RQ1 RNase-free DNase (Promega) for 20 minutes at 37°C. Labelled DNA was purified and recovered as described in the 2.1.2.2. section with some modifications.
Labelled DNA pellet was washed 4 times with 70% ethanol; the dried DNA pellet was dissolved in distilled water (50 µl) and cpm corresponding to 1 µl of this DNA solution was evaluated by "Cerenkov counting" at the β-counter (Tri-Carb Liquid Scintillation Analyzer; Camberra-Packard Italia, Milan, Italy). Assuming a DNA recovery of 50% after purification steps, a solution at a concentration of 100 ng/µl with a specific activity of 50,000-100,000 cpm/ng was generally obtained.

2.2.3. In Vitro Cleavage Reaction

The synthetic ³²P-substrate RNA (10 nM) was mixed with 10-1000 nM Rz or with 1000 nM mutRz in 50 mM Tris-HCl, pH 7.5. The mixtures were heated for 5 minutes at 90°C, cooled at 37°C, and then incubated in the presence of 50 mM MgCl₂. The cleavage reactions were performed at 37°C for 120 minutes. Reactions were stopped by adding an equal volume of stop solution (95% formamide, 20 mM EDTA, 0.05% bromophenol blue, 0.02% xylene cyanol FF). Products were resolved on a 5% polyacrylamide/7 M urea gel and the results were quantified by densitometric analysis.

2.3. Transfection of Cells with the Ribozyme Expression Vectors

After harvesting in logarithmic growth phase, JR8 cells were seeded in 6-well plates (Corning-Costar) in 2 ml of fresh media at a density yielding approximately 50% confluency at the time of transfection. The plates were
then incubated at 37°C in a 5% CO₂ humidified atmosphere in the air incubator for 24 hours. In a 0.5 ml tube, 5 μg of pRc/Rz vector (or pRc/mutRz vector) were complexed with 30 μg of DOTAP (N-(1-(2,3 dioleoyloxy) propyl)-N,N,N-trimethylammoniummethyl sulphate) (Boehringer Mannheim, Mannheim, Germany). The reaction mixtures were incubated for 20 minutes at 37°C and then added to the wells. Twenty-four hours after transfection the culture medium containing the DOTAP/DNA mixture was replaced by a selection medium containing G418 to a final concentration of 2 mg/ml. The transfected cells were exposed to G418 for 1 month for the selection of different cellular clones. Two polyclonal populations, JR8/Rz and JR8/mutRz cells expressing the active and the mutant ribozymes respectively, were selected for the study.

2.4. Transduction of Cells with the Ribozyme Expression Vectors

2.4.1. Transfection of HEK293gp cells

Twenty-four hours prior to transfection, HEK293gp packaging cells (constitutively expressing gag and pol genes) [Somia et al, 2000] were seeded in 4 ml of fresh media at a density of 2 x 10⁶ cells in 6-well plates (Corning-Costar). Just prior to transfection, the medium was removed and the fresh growth medium was gently added. In a 0.5 ml tube, 5 μg of plasmid vector (pCLXSN/Rz or pCLXSN/CTR) was complexed with 5 μg of VSV-G-encoding plasmid, 36 μl of 2 M CaCl₂, 300 μl of 2x HeBS and sterile distilled water to a final volume of 600 μl. This solution was then added to the cells.
and the plate was gently swirled to ensure uniform mixing. After 6 hours incubation at 37°C in a 5% CO₂ humidified atmosphere, the transfection cocktail was washed out and replaced with fresh medium. The viral particle-containing supernatants were collected 24, 48 and 72 hours after transfection and filtered through a 0.45-µm filter.

2.4.2. Infection of Prostate Cancer Cells

Twenty-four hours prior to transfection, DU145 and PC-3 prostate cancer cells were seeded in 4 ml of fresh media at a density of 1 x 10⁶ cells in 6-well plates (Corning-Costar). Just prior to transfection, the medium was removed and replaced with 1 ml of viral particle-containing supernatants, 1 ml of fresh complete media and polybrene (8 µg/ml). The cells were cultured for 72 hours in the presence of the virus and then maintained in RPMI medium supplemented with G418 for 1 month and four polyclonal cell populations, two expressing the anti-survivin ribozyme (DU145/Rz and PC-3/Rz) and two expressing the control ribozyme (DU145/CTR and PC-3/CTR), were selected for the study.

2.5. Reverse Transcriptase-PCR Analysis of Ribozyme Expression

Ribozyme expression in parental (JR8, DU145 and PC-3), transfected (JR8/Rz and JR8/mutRz) and infected (DU145/Rz, PC-3/Rz, DU145/CTR and PC-3/CTR) cells was evaluated by RT-PCR analysis.
2.5.1. Cell Preparation

Cells in logarithmic growth phase were detached from the flasks by means of sterile Trypsin-EDTA solution, transferred into a sterile a 15 ml conical tube and pelleted by a 5-minute centrifugation at 1,500 rpm at 4°C. Single-cell suspension was obtained by resuspending cell pellets in 10 ml of sterile PBS; the suspension was checked under the microscope, and a small aliquot (100-500 µl) was transferred in the isoton solution and counted in the particle counter.

An aliquot of cell suspensions containing about 5-10 x 10^6 cells was then transferred in a sterile 1.5 ml tube, cells were pelleted by a 30-second centrifugation at 12,000 rpm at 4°C. After removal of PBS, cell pellets were washed twice with 1 ml of sterile PBS. At the end of the last wash, PBS was removed and total RNA was extracted from the cells.

2.5.2. Total RNA Isolation

All extraction and manipulation steps were performed under sterile conditions using Diethylpirocarbonate (DEPC) (Sigma)-treated or 'RNase-free' certified chemicals and plastic disposable materials.

Total cellular RNA was obtained from fresh or frozen cell pellets by means of the Trizol Reagent (Invitrogen) according to the manufacturer's instructions. The amount of extracted RNA was determined spectrophotometrically.
Quality of isolated RNA was checked by gel electrophoresis analysis carried out by using a 1% (w/v) agarose mini gel (10 centimetres length/6 centimetres wide) prepared in 1x TAE buffer. An aliquot corresponding to about 1 µg of extracted ribonucleic acid was mixed in a RNase-free 0.5 ml tube with an equal volume of sequencing gel loading buffer [95% (v/v) Formamide (Sigma), 20 mM EDTA pH 8, 0.05% (w/v) bromophenol blue and 0.05% (w/v) xylene cyanol (Sigma)], heated at 100°C for 3 minutes (to completely destroy possible RNA secondary structures), chilled on ice for further 3 minutes and loaded. RNA samples were run at a constant voltage of 90 volts for 1 hour at room temperature. The gel was then stained for 30 minutes at room temperature with gentle shaking in the ethidium bromide staining solution (1 µg/ml ethidium bromide prepared in 1x TAE buffer) and destained for further 30 minutes at room temperature with gentle shaking in 1x TAE buffer. RNA was visualised by means of the UV transilluminator and photographed on a 667 Polaroid film (Polaroid LtD-St. Albans, United Kingdom). The presence of well defined and visible bands corresponding to both 28S and 18S ribosomal RNA was indicative of a good RNA preparation.

Total RNA extracted from each cell line was stored at -80°C as 1 µg aliquots.

2.5.3. Synthesis of First Strand cDNA by Reverse Transcriptase Reaction

Total RNA extracted from each cell line was reverse transcribed by using RNA PCR Core Kit (Perkin-Elmer). In a RNase-free 0.5 ml reaction tube
(Perkin-Elmer), 1 μg of total RNA was mixed with 2.5 μM random hexamers, 20 units of RNase inhibitor, 2.5 mM MgCl₂, 1mM each dNTP, 1x PCR buffer (10 mM Tris-HCl pH 8.3, 50 mM KCl), 50 units of MuLV reverse transcriptase and RNase-free water to a final volume of 20 μl. Tubes were incubated at room temperature for 15 minutes (to allow annealing between random hexamers and RNA). First strand cDNA synthesis and MuLV reverse transcriptase inactivation were then obtained by a 42°C-incubation for 30 minutes and a 5-minute heating at 95°C, respectively, in a hot-bonnet thermal cycler (MJ Research/M-Medical-Florence, Italy). Samples were stored at 4°C until they were used in PCR reactions.

2.5.4. PCR Reactions

To analyze ribozyme expression, the resultant cDNAs were amplified using T7 (5'-TAA TAC GAC TCA CTA TAG GGA GA-3') and SP6 (5'-CG ATT TAG GTG ACA CTA TAG-3') or VA1 sense (5'-GGG CAC TCT TCC GTG GTC-3') and VA1 anti-sense (5'-AAA GGA GCG CTC CCC CGT TG-3') primers in melanoma and prostate cancer cells, respectively. All primers used were synthesised and supplied in lyophilised form by MWG Biotech. For each primer, 100 μM stock solution was prepared by dissolving the lyophilised primer in an opportune volume of 1x TE pH 8 (10 mM Tris-HCl, 1 mM EDTA) by extensive vortexing. The successive dilutions were prepared in distilled water.
The vectors pRc/Rz, pRc/mutRz, pCLXSN/Rz and pCLXSN/CTR were used as controls for the correct fragment size during PCR amplification.

The PCR amplification was performed using the RNA PCR Core Kit (Perkin-Elmer) as follows. In DNase-free 0.5 ml PCR reaction tubes, 125 ng of total RNA reverse transcribed in first strand cDNA (or plasmid vector) were mixed with 1 µM T7 and SP6 (or VA1 sense and antisense) primers, 0.625 units of AmpliTaq DNA polymerase, 1x PCR buffer, 2 mM MgCl₂ and DNase-free water to a final volume of 25 µl. Tubes were then placed in a hot-bonnet thermal cycler and PCR products were obtained performing 1 cycle at 95°C for 5 minutes followed by 30 cycles each formed by a denaturation step of 1 minute at 95°C, an annealing step of 1 minute at 47°C for T7/SP6 primers (62°C for VA1 sense and antisense) and an extension step of 1 minute at 72°C followed by a final extension cycle of 5 minutes at 72°C.

It is important to stress that these experimental conditions were selected on the basis of preliminary experiments to ensure that the PCR was still in the exponential phase when the reaction was stopped.

2.5.5. Gel Electrophoresis and Densitometric Quantification of PCR Products

Twenty-five µl PCR solution were mixed with 5 µl 6x gel loading buffer (0.25% (w/v) of both bromophenol blue and xylene cyanol, 30% (v/v) glycerol in distilled water) and samples were loaded onto 3% (w/v)-1x TAE buffer agarose gel. Electrophoretic separation was performed at 90 volts in 1x TAE
buffer and was stopped when bromophenol blue dye reached the bottom of
the gel. Agarose gel was then stained for 30 minutes at room temperature
with gentle shaking in the ethidium bromide-1x TAE buffer staining solution
and destained for a further 30 minutes at room temperature with gentle
shaking in 1x TAE buffer. PCR products were visualised on the UV-
transilluminator and photographed on a 665 Polaroid film. Negative copy of
the film was developed by using 18% (w/v) sodium sulphite (Sigma)
according to the manufacturer's instructions and it was used for densitometric
quantification of the PCR products by means of a HP ScanJet IIcx/t scanner
(HewlettPackard Italia, Milan, Italy) and IQ software (Molecular Dynamics
Ltd., Kemsing, United Kingdom).

2.6. Small Interfering RNA Design

Four different siRNAs (siRNA2 [Carvalho et al, 2003], siRNA3, siRNA7
and siRNA10) targeting specific consensus sequences (5'-AA(N19)UU-3',
where N is any nucleotide) within the survivin mRNA were designed by using
the siRNA target finder tool (http://www.ambion.com/techlib/misc/siRNA_
finder) (Figure 26). A blast search (http://www.ncbi.nlm.nih.gov/BLAST) for
selected siRNA sequences was performed to ensure that only a single gene
was targeted. A scramble siRNA, made of a sequence with no significant
homology to any known human mRNA, was used as control (siRNActr)
throughout the study (Figure 26) [Elbashir et al, 2001].
Schematic representation of the survivin pre-mRNA and location of each target sequence in survivin mRNA (GeneBank accession n. NM_001168.1). The scramble siRNA (siRNAactr) denotes a siRNA that had no significant homology to any known human mRNA [Elbashir et al, 2001] and was used to control the specificity of the RNAi reaction.

All siRNAs were purchased from MWG Biotech as preformed and purified duplexes, made of 19 ribonucleotides with two extra thymidine bases forming a 3' overhang on both strands (Figure 26). Each siRNA was resuspended in water and the stock solutions (20 μM) were stored at 4°C until use.
2.7. Transfection of Prostate Cancer Cells with siRNAs

The day before transfection, prostate cancer cells were seeded at a density of 2.5-5.0 x 10^5 per 25 cm^2 flask. A given amount of each siRNA was diluted in 50 μl of Opti-MEM® I reduced serum medium (Invitrogen). The Lipofectamine2000™ (Lipo2000) was diluted in 50 μl of Opti-MEM® I medium and incubated for 5 minutes at room temperature. After the incubation, the diluted siRNA was combined with the diluted Lipo2000 (total volume is 100 μl) and incubated for 20 minutes at room temperature to allow the siRNA:Lipo2000 complexes to form. The mixtures were then applied to the cells in a final volume of Opti-MEM® I medium giving a final siRNA concentration of 100 nM. After incubation for 8 hours at 37°C, RPMI-1640 medium supplemented with serum was added. Cells were then cultured for an additional 24-48 hours at 37°C before further analysis.

2.8. Expression of Survivin and Apoptosis-Related Proteins

The expression of survivin and some of the most important proteins involved in the control of apoptosis was determined by Western blot analysis.

2.8.1. Protein Extract Preparation

Cells in logarithmic growth phase were detached from the flasks by means of Trypsin-EDTA solution, transferred in a 15 ml conical tube and pelleted by
a 5-minute centrifugation at 1,500 rpm at 4°C. To obtain a single-cell suspension, cell pellets were dissolved by repeated pipetting in 10 ml of PBS. Cell suspension was checked under the microscope, and a small aliquot (100 μl) was transferred in the isoton solution and counted in the particle counter.

An aliquot of cell suspension containing about 5 x 10^6 cells was then transferred in a 1.5 ml conical tube and cells were pelleted by a 15-second centrifugation at 12,000 rpm at 4°C. After removal of PBS, cell pellets were again washed twice with PBS. At the end of the last wash, PBS was removed and cells were resuspended by gentle pipetting in 50 μl of ice-cold lysis buffer [1% Nonidet P-40, 10 mM NaF, 1 mM NaVO_4, 1 mM NaPPO_4, 10 μg/ml leupeptin, 10 μg/ml aprotinin, 1 mM AEBSF, 1x PBS]. Cell suspensions were incubated on ice for 30 minutes. The homogenates were then centrifuged 5 minutes at 12,000 rpm at 4°C and supernatants containing the protein extracts were transferred in a clean 0.5 ml conical tubes.

Protein concentration was determined as described in section 1.4, and protein extracts were stored at -80°C as 50 μg aliquots.

2.8.2. Immunoprecipitation

For the assessment of the Thr³⁴-phosphorylated form of survivin, 100 μg of precleared, detergent-solubilized protein extracts were mixed with 50 μl of a 20% (v/v) protein A-Sepharose slurry (Amersham) 50:50 protein A slurry (Sigma) and immunoprecipitated with the anti-human survivin antibody
(20 µg/ml). The formation of immune complexes was carried out by a 4°C-incubation on a shaking platform. The protein A-Sepharose/anti-survivin antibody/survivin ternary immune complexes were then collected to the bottom of the tube by a 12,000 rpm-centrifugation for 2 minutes at 4°C. After the supernatant phase removal, immune complexes pellets were washed twice with 100 µl of lysis buffer.

2.8.3. Western Blot Analysis

Equivalent amounts of cellular extracts were fractionated, blotted onto solid support and immunoassayed to qualitatively evaluate the expression of survivin protein and apoptosis-related proteins.

2.8.3.1. SDS-Polyacrylamide Gel Electrophoresis

An 12% (w/v) polyacrylamide resolving gel was used to obtain the separation of survivin, Bcl-2, Bcl-\(x_\text{l}\), Bax, caspase-3, caspase-9, Akt and cdk6. An aliquot of cellular extracts containing 40 µg of proteins were mixed with 20 µl of colour markers for SDS-PAGE and protein transfer spanning a molecular weight range of 6.5-205 KDa (Sigma) in a 1.5 conical tube. An equal volume of 2x SDS loading buffer (100 mM Tris-HCl pH 6.8, 4% (w/v) SDS, 0.2% (w/v) bromophenol blue (Sigma), 20 (v/v) glycerol and 200 mM DTT) was then added. Tubes were heated at 100°C for 5 minutes, chilled on
ice for an additional 5 minutes, centrifuged at 4°C at 12,000 rpm for 5 seconds and loaded onto the SDS-PAGE system.

Proteins were fractionated running the gel at constant voltage (150 volt) by means of a Biorad 200/2.0 power supply (Biorad). The run was stopped when the 6.8 KDa band of the colour marker reached the bottom of the gel.

2.8.3.2. Transfer of Fractionated Proteins into Nitrocellulose Filter

Protein blotting was performed in an electrophoresis protein transfer unit (Biorad). When the SDS-PAGE was approaching the end of its run, four pieces of Whatman 3MM (Whatman International LtD., Maidstone, United Kingdom) and one piece of nitrocellulose filter (Hybond ECL, Amersham) to the exact size of the resolving gel were cut and soaked for at least 5 minutes in transfer buffer [50 mM Tris base, 100 mM Glycine, 0.01% (w/v) SDS, 20% (v/v) methanol (Carlo Erba Reagenti), pH 7.5]. At the end of the run, the glass plates holding the SDS-polyacrylamide gel were removed from the electrophoresis tank, the glass plates were opened and, by means of a scalpel, the stacking gel was removed. The resolving gel was placed exactly on the top of nitrocellulose filter and then sandwiched between two pairs of transfer buffer wetted-Whatman 3MM papers. Possible air bubbles trapped were displaced by repeated rolling with a pipette tip. The sandwich was then placed between two transfer buffer wetted-porous pads and two plastic supports and the entire construction was immersed in the electrophoresis transfer tank containing transfer buffer with the nitrocellulose filter placed
toward the anode. Transfer of the protein from the gel to nitrocellulose membrane was carried out at room temperature for 2 hours at 70 volt (constant voltage) by means of a Biorad 200/2.0 power supply.

2.8.3.3. Immunological Detection of Nitrocellulose-Immobilised Proteins

At the end of the transfer, the nitrocellulose filter was recovered from the sandwich and, in order to verify the correct protein blotting, it was stained for 5 minutes in a clean tray containing a Ponceau S red dye solution (Sigma) with gentle agitation at room temperature. When the bands of proteins were visible, the filter was destained with several washes of distilled water at room temperature. To completely destain the Ponceau S red dye bound to the proteins, nitrocellulose slices were washed three times for 20 minutes at room temperature on a shaking platform with blocking solution [5% (w/v) dried-nonfat milk (Regilait, Barcelona, Spain), 0.1% (v/v) Tween-20 (Sigma) and PBS]; filter slices were then incubated at room temperature on a shaking platform in blocking solution to mask potential nonspecific antibodies binding sites and, thus, to reduce general background. After 1 hour, blocking solution was removed and filters were incubated over night at 4°C on a shaking platform with the specific antibody-containing solution. Detection of proteins of interest was achieved by using polyclonal antibodies anti-survivin, Bcl-2, Bcl-xL, Bax, Akt and cdk6 (Abcam Ltd, Cambridge, United Kingdom) or monoclonal antibodies anti-caspase-3, caspase-9 and \( \beta \)-actin (Abcam), diluted in blocking solution. At the end of the over night incubation, primary
antibodies were removed and filter slices were washed 3 times for 20 minutes with T-PBS wash solution [0.1% (v/v) Tween-20 in PBS] at room temperature on a shaking platform. Nitrocellulose filters were then incubated at room temperature on a shaking platform with the secondary anti-mouse or anti-rabbit Ig horseradish peroxidase-linked whole antibodies (Amersham) diluted 1:1000 in blocking solution. After a 1-hour hybridisation, secondary antibodies were removed and filter slices were washed three times for 20 minutes at room temperature on a shaking platform with T-PBS wash solution followed by a rapid wash with PBS. Antibodies bound to proteins of interest on nitrocellulose slices were detected by means of the enhanced chemoluminescence system (ECL) (Amersham) according to the manufacturer's instructions using Hyperfilm MP films (Amersham).

2.9. Evaluation of Survivin Gene Expression by RT-PCR Analysis

The expression of survivin gene in cancer cells was quantified by RT-PCR analysis.

2.9.1. Cell Preparation

Cells were detached from the flasks by means of sterile Trypsin-EDTA solution, transferred into a sterile a 15 ml conical tube and pelleted by a 5-minute centrifugation at 1,500 rpm at 4°C. Single-cell suspension was obtained by resuspending cell pellets in 10 ml of sterile PBS, the suspension
was checked under the microscope, and a small aliquot (100 µl) was transferred in the isoton solution and counted in the particle counter.

An aliquot of cell suspensions containing about 5-10 x 10^6 cells was then transferred in a sterile 1.5 ml tube, cells were pelleted by a 15-second centrifugation at 12,000 rpm at 4°C. After removal of PBS, cell pellets were washed twice with 1 ml of sterile PBS. At the end of the last wash, PBS was removed and total RNA was extracted from the cells.

2.9.2. Total RNA Extraction

All extraction and manipulation steps were performed under sterile conditions using DEPC-treated or RNase-free certified chemicals and plastic disposable materials.

Total cellular RNA was obtained from fresh or frozen cell pellets by means of the Trizol Reagent (Invitrogen) according to the manufacturer's instructions. The amount of extracted RNA was determined spectrophotometrically. Quality of isolated RNA was checked by gel electrophoresis analysis carried out by using a 1% (w/v) agarose mini gel (10 centimetres length/6 centimetres wide) prepared in 1x TAE buffer. An aliquot corresponding to about 1 µg of extracted ribonucleic acid was mixed in a RNase-free 0.5 ml tube with an equal volume of sequencing gel loading buffer [95% (v/v) Formamide (Sigma), 20 mM EDTA pH 8, 0.05% (w/v) bromophenol blue and 0.05% (w/v) xylene cyanol (Sigma)], heated at 100°C for 3 minutes (in order to completely destroy possible RNA secondary
structures), chilled on ice for further 3 minutes and loaded. RNA samples were run at a constant voltage of 90 volts for 1 hour at room temperature. The gel was then stained for 30 minutes at room temperature with gentle shaking in the ethidium bromide staining solution (1 μg/ml ethidium bromide prepared in 1x TAE buffer) and destained for further 30 minutes at room temperature with gentle shaking in 1x TAE buffer. RNA was visualised by means of the UV transilluminator and photographed on a 667 Polaroid film. The presence of well defined and visible bands corresponding to both 28S and 18S ribosomal RNA was indicative of a good RNA preparation.

Total RNA extracted from each cell line was stored at -80°C as 1 μg aliquots.

2.9.3. Synthesis of First Strand cDNA by Reverse Transcription Reaction

Total RNA extracted from each cell line was reverse transcribed by using RNA PCR Core Kit (Perkin-Elmer). In a RNase-free 0.5 ml reaction tube (Perkin-Elmer), 1 μg of total RNA was mixed with 2.5 μM random hexamers, 20 units of RNase inhibitor, 2.5 mM MgCl₂, 1 mM each dNTP, 1x PCR buffer (10 mM Tris-HCl pH 8.3, 50 mM KCl), 50 units of MuLV reverse transcriptase and RNase-free water to a final volume of 20 μl. Tubes were incubated at room temperature for 15 minutes (to allow annealing between random hexamers and RNA). First strand cDNA synthesis and MuLV reverse transcriptase inactivation were then obtained by a 42°C-incubation for 30
minutes and a 5-minute heating at 95°C, respectively, in a hot-bonnet thermal cycler. Samples were stored at 4°C until they were used in PCR reactions.

2.9.4. PCR Reactions

Primers used were synthesised and supplied in lyophilised form by MWG Biotech:

survivin sense 5'-AGCCCTTTCTCAAGGACCAC-3'
survivin antisense 5'-TGACAGATAAGGAACCTGCA-3'
β-actin sense 5'-GGGAATTCAAAACTGGAACGGTGAAGG-3'
β-actin antisense 5'-GGAAGCTTATCAAAGTCCTCGGCCACA-3'

For each primer, 100 µM stock solution was prepared by dissolving the lyophilised primer in an opportune volume of 1x TE pH 8 (10 mM Tris-HCl, 1 mM EDTA) by extensive vortexing. The successive dilutions were prepared in distilled water.

Non-competitive quantitative PCR amplification was performed using the RNA PCR Core Kit (Perkin-Elmer) as follows. In DNase-free 0.5 ml PCR reaction tubes, 125 ng of total RNA reverse transcribed in first strand cDNA were mixed with 1 µM sense and antisense survivin primers, 0.1 µM sense and antisense β-actin primers, 0.625 units of AmpliTaq DNA polymerase, 1x PCR buffer, 2 mM MgCl₂ and DNase-free water to a final volume of 25 µl. Tubes were then placed in a hot-bonnet thermal cycler and both 864 bp survivin and 620 bp β-actin PCR products were obtained performing 1 cycle
at 95°C for 2 minutes followed by 30 cycles each formed by a denaturation step of 1 minute at 95°C, an annealing step of 30 seconds at 62°C and an extension step of 30 seconds at 72°C followed by a final extension cycle of 7 minutes at 72°C.

It is important to stress that these experimental conditions were selected on the basis of preliminary experiments to ensure that the PCR was still in the exponential phase when the reaction was stopped.

2.9.5. Gel Electrophoresis and Densitometric Quantification of PCR Products

Twenty-five μl of PCR solution were mixed with 5 μl of 6x gel loading buffer (0.25% (w/v) of both bromophenol blue and xylene cyanol, 30% (v/v) glycerol in distilled water) and samples were loaded onto 3% (w/v)-1x TAE buffer agarose gel. Electrophoretic separation was performed at 110 volts in 1x TAE buffer and was stopped when bromophenol blue dye reached the bottom of the gel. Agarose gel was then stained for 30 minutes at room temperature with gentle shaking in the ethidium bromide-1x TAE buffer staining solution and destained for a further 30 minutes at room temperature with gentle shaking in 1x TAE buffer. PCR products were visualised on the UV-transilluminator and photographed on a 665 Polaroid film. Negative copy of the film was developed by using 18% (w/v) sodium sulphite (Sigma) according to the manufacturer's instructions and it was used for densitometric quantification of the PCR products by means of a HP ScanJet llcx/t scanner.
(HewlettPackard) and IQ software (Molecular Dynamics). The relative expression level of survivin was normalised to that of β-actin.

2.10. The Cytotoxic Activity of Different Drugs on Cell Lines

2.10.1. Colony Formation Assay

After harvesting in logarithmic growth phase, melanoma cell clones, HeLa, OAW42/e and OAW42/Surv cells were plated in plastic dishes (Corning-Costar) in 5 ml of fresh media at a different density (ranging from 250 to 2000 cells/dish) depending on the drug concentration to be used.

Immediately before cell treatment, drug stock solutions were diluted in specific growth media and cells were exposed to cisplatin (1.0-20 µg/ml) for 1 hour, topotecan (1.0-10 ng/ml) for 24 hours, temozolomide (0.1-10 µg/ml) for 24 hours, or to paclitaxel (1.0-10 nM), NU6140 and purvalanol A (1.0-10 µM), singly administrated or in combination. For the paclitaxel and cdk inhibitors combination, two schedules were tested: a) a 24-hour paclitaxel treatment followed by a 24-hour incubation with NU6140 or purvalanol A; b) a 24-hour NU6140 or purvalanol A treatment followed by a 24-hour incubation with paclitaxel. Control cells were exposed to 1% (v/v) DMSO. At the end of the different treatments, drug-containing medium was removed from each well, cells were washed with PBS and incubated at 37°C in a 5% CO₂ humidified atmosphere for 10 days to form colonies.

Colonies consisting of at least 50 cells were stained with crystal violet in 70% v/v ethanol/water and counted under the microscope. Each
experimental point was run four times. The colony-forming efficiency was calculated from the number of colonies counted and the number of morphologically intact single cells seeded.

The *in vitro* effect of drugs was expressed in terms of IC$_{50}$, i.e., the concentration able to inhibit clonogenic cell survival by 50%. The plating efficiency (PE) was calculated from the number of colonies counted and the number of cells seeded. The surviving fraction (SF) was calculated as follows:

$$SF = \frac{\text{PE of treated sample}}{\text{PE of control}}.$$  

2.10.2. Cell Proliferation Assay

After harvesting in logarithmic growth phase, DU145 and PC-3 cells were seeded in 6-well plates (Corning-Costar) in 2 ml of fresh media at 40 x 10$^3$ cells/well. Plates were then incubated at 37°C in a 5% CO$_2$ humidified atmosphere in the air incubator for 24 hours.

Immediately before cell treatment, cisplatin stock solution was diluted in specific growth media and cells were treated with increasing concentrations of cisplatin (1.0-20 µg/ml) for 1 hour. At the end of the treatment, drug-containing medium was removed from each well, cells were washed with PBS and incubated at 37°C in a 5% CO$_2$ humidified atmosphere for 3 days.

To assess siRNA-mediated inhibition of cell proliferation, prostate cancer cells were transfected with 100 nM of each siRNA as described in the 2.7 section. In combination experiments, following an 8-hour transfection with
siRNA2, cells were exposed for 72 hours to different concentrations (from 5 to 500 ng/ml) of 17-AAG (previously reconstituted in sterile DMSO and then diluted with sterile water to the final dose). Cells were then harvested immediately at the end of treatment (day 3), or after an additional 4 days in drug-free medium (day 7).

At the end of treatments, medium was removed from each well, cells were washed three times with PBS (3 ml/well) and detached from the plates by a 5-minute incubation at 37°C with Trypsin-EDTA solution (1 ml/well). Trypsin activity was stopped by addition of a 10% (v/v) FBS-PBS solution (5 ml/well) and cells were transferred in the isoton solution. Single-cell suspensions were obtained by repeated pipetting, checked under the microscope and counted in a particle counter. Cell viability was determined by the Trypan blue dye exclusion test. Each experimental sample was run in triplicate and the results were expressed as percentage variation in the number of viable cells in treated compared to control cells.

2.11. The Cytotoxic Activity of Ionising Radiation on Cell Lines

2.11.1. Irradiation

After harvesting in logarithmic growth phase, melanoma cells were irradiated at room temperature using a 137Cs γ-irradiator (IBL-437, Oris, France) at a dose rate of 7.2 Gy/min. Immediately after irradiation or 72 hours after irradiation, cells were processed for colony formation or apoptosis experiments, respectively, as outlined below.
2.11.2. Clonogenic Assay

After treatment with 1-10 Gy ionizing radiation, melanoma cells were plated at appropriate concentrations in plastic dishes (ranging from 250 to 2000 cells/dish) and incubated at 37°C in an atmosphere of 5% CO\textsubscript{2} and 95% air for 10 days. Colonies consisting of at least 50 cells were stained with crystal violet in 70% v/v ethanol/water and counted under the microscope. The colony-forming efficiency was calculated from the number of colonies counted and the number of morphologically intact single cells seeded. The surviving fractions of treated cells relative to unirradiated cells were determined, and the data were fitted to the multitarget single-hit model of cell inactivation:

\[ \frac{S}{S_0} = 1 - (1 - e^{-D/D_0})^n \]

where \( S/S_0 \) is the surviving fraction and \( D \) is the dose (Gy). The parameters \( n \) and \( D_0 \) were calculated using ELMAT software (kindly provided by Dr. Benassi, Regina Elena Cancer Institute, Rome, Italy). Triplicate determinations of each radiation dose were performed and an intra-experiment average was calculated. The points shown on the clonogenic survival curves are the inter-experiment averages (and their relative standard deviations) calculated from at least three intra-experiment averages.
2.12. Cell Cycle Analysis

Fresh cells (1 x 10^6, 0.5 ml) were fixed by a drop-to drop addition of cellular suspension to 4.5 ml of -20°C cold 70% ethanol present in a 5 ml Nalgene tube. Fixed cells were stored at -20°C until they were subjected to flow cytometric analysis.

Immediately before analysis, fixed cells were collected by a 1,500 rpm-centrifugation at 4°C for 5 minutes, transferred into a 1.5 ml tube and washed twice with 0.5 ml of PBS. Cell pellets were then resuspended in 0.5 ml of the solution A [50 µg/ml propidium iodide (Sigma), 50 mg/ml RNase A and 0.05% (v/v) Nonidet P-40] and stained at 4°C. After 30 minutes, drug-induced cell cycle perturbations were assessed by analysing the stained cellular suspension with a FACScan flow cytometer (Becton Dickinson, Sunnyvale, CA, USA). At least 30,000 events were read and the percentages of cells in G0/G1, S and G2/M phases were evaluated on DNA plots by CellFit software (Becton Dickinson) according to the SOBR model (Becton Dickinson).

2.13. Apoptosis Analysis

Each experimental sample was split into various aliquots (containing an appropriate number of cells) for the different apoptosis assays. Cells aliquots destined to be used in assays for which fresh cells were not required were collected by a 12,000 rpm-centrifugation at 4°C for 30 seconds and frozen by snap freezing in liquid nitrogen and stored at -80°C.
2.13.1. Evaluation of Apoptotic Morphology by Fluorescent Microscopy

Untreated and treated cells were stained with solution A (1 ml for $1 \times 10^6$ cells) as described in the 3.12 section. An aliquot of 30,000 stained cells was cytocentrifuged onto a glass slide for 3 minutes at 500 rpm (Cytospin 3) (Shandon Italia, Milan, Italy) at room temperature and, a cover slide was then placed on the top of cells and glass slides were observed under fluorescence microscopy (excitation wave length = 588 nm, emission wave length = 610 nm) by using a fluorescence microscope. The percentage of apoptotic cells was determined by scoring at least 500 cells in each sample.

2.13.2. The Terminal dUTP Nick-End Labeling (TUNEL) Assay

Cells ($1 \times 10^6$) were washed in cold PBS and centrifuged at 200 g for 5 minutes and then fixed in 1 ml 4% paraformaldehyde pH 7.4 for 45 minutes at room temperature. After rinsing with PBS, cells were permeabilized in a solution of 0.1% Triton X-100 in sodium 0.1% citrate for 2 minutes on ice. Cell suspension was centrifuged at 200 g for 5 minutes and washed with PBS. Cell pellet was resuspended in 50 μl of the TUNEL reaction mixture (Boehringer Mannheim) and incubated for 1 hour at 37°C in the dark. After rinsing with PBS, the pellet was suspended in PBS and analyzed by a FACScan flow cytometer (Becton Dickinson). The results were expressed as the percentage of TUNEL-positive cells in the overall cell population.
2.13.3. Evaluation of Caspase-9 and Caspase-9 Catalytic Activity

Cell pellet (2 x 10^6) was washed with cold PBS, resuspended in 100 μl of chilled lysis buffer (caspase-9/Mch6 or caspase-3/cpp32 fluorometric assay kit, MBL, Japan) and incubated on ice for 20 minutes. The pellet was centrifuged for 15 minutes at 14,000 rpm at 4°C and the clear supernatant was transferred in a 1.5 ml conical tube. One hundred μl of 2x Reaction Buffer (MBL) and 10 μl of the specific fluorogenic substrate (leu-glu-his-asp-7-amino-4-trifluoromethylcoumarin, LEHD-AFC, for caspase-9 and N-acetyl-Asp-Glu-Val-Asp-aldehyde-7-amino-4-methylcoumarin, Ac-DEVD-AMC, for caspase-3) were added and incubate at 37°C for 1 hour. At the end of incubation, samples were transferred to a 96-well plate and the hydrolysis of the specific substrates for caspase-9 and caspase-3 was monitored by spectrofluorometry using an excitation wavelength of 400 nm and an emission wavelength of 505 nm.

2.14. Detection of Telomerase Activity

2.14.1. Protein Extract Preparation

Cell pellet was resuspended by gentle pipetting in 200 μl of ice cold 1x CHAPS lysis buffer (Intergen Co., Oxford, United Kingdom) [10 mM Tris-HCl, pH 7.5, 1 mM MgCl2, 1 mM EGTA, 0.1 mM benzamidine, 0.5% CHAPS, 5 mM mercaptoethanol, and 10% glycerol], and leaved on ice for 30 minutes. The lysate was then centrifuged at 12,000 rpm for 20 minutes at 4°C and
160 μl of supernatant were collected into a clean eppendorf tube, making sure no traces of pellet were withdrawn. Protein concentration was determined as described in section 1.4, and protein extracts were stored at -80°C as 0.5 μg/μl aliquots.

2.14.2. Labeling of the TS Primer

In RNase-free 0.5 ml PCR reaction tubes, 10 μl of the TS primer oligonucleotide (5'-AATCCGTCGAGCACAGAGTT-3') were mixed with 25 μCi [γ-32P]-ATP, 5 units of T4 polynucleotide kinase, 1x kinase buffer, RNase-free water to a final volume of 20 μl. Tubes were then placed in a hot-bonnet thermal cycler for 20 minutes at 37°C followed by 5 minutes at 85°C.

2.14.3. The Telomere Repeat Amplification Protocol (TRAP) Assay

One μg (2 μl) of protein extract was used to assess telomerase activity by the polymerase chain reaction (PCR)-based telomeric repeats amplification protocol (TRAP) assay by means of the TRAPEze kit (Intergen). Specifically, the master mix was prepared by mixing 1x TRAP reaction buffer, 1x dNATs mix, 2 μl 32P-TS primer, 1 μl TRAP primer mix, 2 units Taq polymerase and RNase-free water to a final volume of 48 μl. Two μl of the protein extract (or control sample) were mixed with 48 μl of the master mix and the tubes were incubated for 30 minutes at 30°C.
Chapter 3

The enzyme activity products were amplified by PCR performing 1 cycle at 94°C for 2 minutes followed by 30 cycles each formed by the first step of 10 seconds at 94°C, the second step of 25 seconds at 50°C and the last step of 30 seconds at 72°C, followed by a final cycle of the first step of 15 seconds to 94°C, the second step of 25 seconds to 50°C and the last step of 1 minute to 72°C.

Each reaction product was amplified in the presence of a 36-bp internal TRAP assay standard. A TSR8 quantitation standard (which serves as a standard to estimate the amount of product extended by telomerase in a given extract) was included for each set of TRAP assays.

2.14.4. Polyacrylamide Gel Electrophoresis

The enzyme activity products were resolved in 10% (w/v) polyacrylamide-0.5x TBE buffered non-denaturing gel, prepared as described in the 1.7 section.

Ten µl of loading 6x gel loading buffer were then added to each 50 µl-reaction mixture and 30 µl of the samples were loaded onto the gel. Electrophoretic run was performed at a constant voltage of 180 volts for 45 minutes then at 300 volts for 1 hour and 45 minutes. When the xylene cyanol runs 75% of the gel length, electrophoresis was stopped and the polyacrylamide gel was detached from the glass plates by means of Whatman 3MM papers. After that a sheet of Saran Wrap was placed on the top, the gel was dried at 80°C for 20 minutes, placed in a Hypercassette with
Chapter 3

Material & Methods

Intensifying screens and autoradiographed by exposure to X-ray film overnight at -80°C.

2.14.5. Quantification of Telomerase Activity

Quantitative analysis was performed with the Image-QuanT software (Molecular Dynamics), which allowed densitometric evaluation of the digitized image. Telomerase activity was quantified by measuring the signal of telomerase ladder bands, and the relative telomerase activity was calculated as the ratio to the internal standard using the following formula:

\[
\frac{[(X - X_0)/C] \times [(R - R_0)/Cr]}{-1}
\]

where X is the untreated sample, X_0 is the RNase-treated sample, C is the internal control of untreated samples, Cr is the internal control of TSR8, R is the TSR8 quantitation control and R_0 is the negative control.

2.15. In Vivo Studies

All procedures requiring the use of animals were carried out according to the United Kingdom Coordinating Committee on Cancer Research Guidelines [Workman et al, 1998] and approved by the Ethics Committee for Animal Experimentation of the Istituto Nazionale per lo Studio e la Cura dei Tumori (Milan, Italy). Male and female athymic Swiss nude mice supplied from Charles River Laboratories (Calco, Italy) were randomly distributed into
treatment groups and housed in groups of four to five in polypropylene cages with stainless steel wire lids and heat treated chips (Cellu-Dri; Shepherd Specialty Papers, Kalamazoo, USA), with access to food (Lab Rodent Diet 5001; PMI Nutrition International Inc., St. Louis, USA) and water ad libitum. The animal rooms were maintained on a 12-hours light:dark cycle (6 a.m. to 6 p.m.) at 23 ± 1°C with 30–50% relative humidity.

2.15.1. Tumour Injection

Cells from in vitro cultures of JR8, JR8/mutRz or JR8/Rz were intramuscularly injected into the right hind leg of female mice (10^7 cells/mouse). For each cell line, half of the group (5-8 mice) was left untreated and half was treated with topotecan. Topotecan was dissolved in sterile, distilled water and delivered in a volume of 10 ml/kg body weight. The drug was administered orally at the dose of 10 mg/kg every seventh day for four times (q7dx4), starting the day after cell injection. In a second set of the experiments, exponentially growing DU145/CTR and DU145/Rz cells were injected subcutaneously (10^7 cells/mouse) into the right flank of the male mice (9 mice/group).

The mice were inspected daily to establish tumour take (i.e. the ratio between the number of growing tumours over the total number of tumour-injected mice), the time of tumour appearance and the tumour volume. Tumour growth was followed by measuring tumour diameters with a Varnier caliper.
Tumour volume was calculated according to the formula:

\[ TV (\text{mm}^3) = d^2 \times \frac{D}{2} \]

where \( d \) and \( D \) are the shortest and longest diameter, respectively.

2.15.2. Reverse Transcriptase-PCR Analysis of Ribozyme Expression

2.15.2.1. RNA Isolation from Tissues

Animals were sacrificed 60 days after tumour cell inoculation with carbon dioxide anesthesia followed by cervical dislocation. Tumours were removed, fixed in 10% formalin and then stored at -80°C. All extraction and manipulation steps were performed under sterile conditions using DEPC-treated chemicals and plastic disposable materials.

Frozen tissues were homogenised using Brinkman Tissuemizer (Haereus) for 30 to 60 seconds and total RNA was obtained by means of the Trizol Reagent (Invitrogen) according to the manufacturer’s instructions. The amount of extracted RNA was determined spectrophotometrically. Quality of isolated RNA was checked by gel electrophoresis analysis carried out by using a 1% (w/v) agarose mini gel prepared in 1x TAE buffer. RNA was visualised by means of the UV transilluminator and photographed. Total RNA extracted was stored at -80°C as 1 μg aliquots.
2.15.2.2. RT-PCR Reaction and Gel Electrophoresis

Total RNA extracted from tissues was reverse transcribed by using RNA PCR Core Kit (Perkin-Elmer) as described in the 2.5.3 section.

To analyze ribozyme expression, the resultant cDNAs were amplified using T7 (5'-TAA TAC GAC TCA CTA TAG GGA GA-3') and SP6 (5'-CG ATT TAG GTG ACA CTA TAG-3') primers and the PCR amplification was performed as described in the 2.5.4. section. PCR products were obtained performing 30 cycles of PCR (at 95°C for 1 minute, 47°C for 1 minute, and 72°C for 1 minute), followed by a 7-minutes extension step at 72°C. PCR products were then verified by agarose gel electrophoresis. Vectors pRc/Rz and pRc/mutRz were used during PCR amplification as control for the correct fragment size.

2.16. Statistical Analysis

Statistical evaluation of data was generally done with two-tailed Student’s t test. The Fisher exact text was used to compare tumour take between animal groups. P values <0.05 were considered statistically significant.

The type of interaction between the cytotoxic effects of siRNA2 and 17-AAG was analyzed as previously described [Silvestrini et al, 1997]. For the evaluation, the agents were assumed to provide independent effects. For a given concentration of 17-AAG, we observed a survival fraction of cells (SFa); likewise, for siRNA2 transfection, we observed SFb. For the combined
treatment (siRNA2 transfection followed by 17-AAG exposure) we observed SFab. The results obtained were expressed according to the following criteria: $SF_{ab} = SF_a \times SF_b$ indicates additive effect; $SF_{ab} < SF_a \times SF_b$ indicates supra-additive effect; $SF_{ab} > SF_a \times SF_b$ indicates subadditive effect.

The method described by Chou & Talalay [1984] was used to determine the nature of the interaction between NU6140 or purvalanol A and paclitaxel. Drugs were always combined at a constant ratio of paclitaxel and NU6140 or purvalanol A concentrations (i.e. 1:1000). The interaction of drugs was quantified by determining a combination index (CI). CI values of less than or greater than 1 indicated synergy or antagonism, respectively, whereas a CI value of 1 indicates additivity.
Chapter 4
RESULTS
Cutaneous melanoma is the most aggressive form of skin tumours and its incidence is increasing more rapidly than that of any other cancer [Grossman & Altieri, 2001]. In contrast to localized melanoma, which has a good prognosis after adequate surgery, disseminated disease is characterized by a very poor clinical outcome, which is not modified by conventional anticancer treatments [Becker et al, 2000]. Although not yet fully elucidated, the basis of melanoma resistance to chemotherapy seems to rely on dysregulation of apoptosis [Satyamoorthy et al, 2001; Soengas & Lowe, 2003]. In fact, it has been shown that cells within melanoma lesions are characterized by an inherently low level of spontaneous apoptosis [Mooney et al, 1995]. Moreover, defects at multiple levels of the two major apoptotic pathways have been found in melanoma cells, including altered death receptor signalling [Thomas & Hersey, 1998], increased levels of anti-apoptotic proteins belonging to the Bcl-2 family such as Bcl-2, Bcl-xL and Mcl-1 [Tang et al, 1998], inactivation of the apoptosis effector Apaf-1 [Soengas et al, 2001], and overexpression of members of the inhibitors of apoptosis protein (IAP) family such as ML-IAP and survivin [Vucic et al, 2000; Grossman et al, 1999]. In particular, survivin expression has been detected in almost all invasive and metastatic melanomas but not in normal skin melanocytes [Grossman et al, 1999].

Considering that apoptosis is the major mode of cell kill by many chemotherapeutic agents and radiation, it appears reasonable that the
inability to undergo programmed cell death is a major mechanism of the chemo- and radio-resistance of melanoma. As a consequence, the genes that control apoptosis provide interesting new targets for the rational development of strategies aimed at increasing the susceptibility of melanoma cells to chemical and physical treatments. In this context, it has been demonstrated that down-regulation of Bcl-2 and Mcl-1 by antisense oligonucleotides sensitised human melanoma to dacarbazine in cell culture as well as in SCID mouse xenotransplantation models [Jansen et al, 1998; Thallinger et al, 2003]. Moreover, in the clinical setting, sensitisation of malignant melanoma to dacarbazine by concomitant Bcl-2 antisense therapy was confirmed in a phase I-II study in patients with Bcl-2-expressing advanced melanoma [Jansen et al, 2000]. Again, reduction of Bcl-xL protein expression by a specific antisense oligonucleotide significantly increased the in vitro sensitivity of melanoma cells to cisplatin [Heere-Ress et al, 2002]. Using a different approach dealing with the recovery of Apaf-1 expression by treatment with the demethylating agent 5’-aza-2’-deoxycytidine, Soengas et al [2001] were able to enhance the in vitro sensitivity of Apaf-1-negative melanoma cells to doxorubicin.

The possibility to modulate the chemosensitivity of melanoma and other tumour cell types by targeting survivin has been also actively pursued in the last years. It has been previously demonstrated by Grossman et al [1999] that transfection of melanoma cells with survivin antisense was able to increase the fraction of spontaneous apoptosis. The same research group reported that the forced expression of a phosphorylation-defective survivin mutant (Thr34→Ala) in melanoma cell lines, besides triggering apoptosis,
enhanced the level of programmed cell death induced by in vitro treatment with the chemotherapeutic agent cisplatin [Grossman et al, 2001a]. A number of additional studies carried out in experimental models of other tumour types showed that targeting of survivin by antisense oligonucleotides or dominant negative mutants resulted in an increased sensitivity to anticancer agents including taxol [Mesri et al, 2001; O’Connor et al, 2002], etoposide [Olie et al, 2001], doxorubicin [Wall et al, 2003] and 5-fluorouracil [Yamamoto et al, 2002]. Moreover, a possible role of survivin as a molecular determinant of radiation response in tumour cells has been recently proposed by Asanuma et al [2000], who reported evidence suggesting that this protein acts as a constitutive and inducible radio-resistance factor in pancreatic cancer cell lines.

In the present study, we proposed to assess the effect of attenuation of survivin expression, accomplished through a ribozyme-mediated strategy, in the response of human melanoma cells to chemotherapeutic agents and ionising radiation.

1.1. In Vitro Catalytic Activity of the Anti-Survivin Ribozyme

The catalytic potential of the Rz ribozyme was assessed as the ability to cleave an internally $^{32}$P-labeled synthetic RNA substrate obtained by cloning a portion of the human survivin mRNA. The size of the substrate was 362-nucleotides, and the cleavage reaction (the cleavage site is indicated by the arrow in Figure 25) was expected to produce two fragments of 236 and
126 nucleotides, respectively. Experiments performed by incubating 10 nM of labelled RNA substrate with increasing concentrations (from 10 to 1000 nM) of the Rz ribozyme for 120 minutes at 37°C (Figure 27) resulted in a decrease of the full-length substrate and accumulation of the expected cleavage products.

The efficiency of cleavage was dependent on the substrate/ribozyme ratio, with the cleavage products being detectable at a ratio of 1:10. As expected, the mutRz ribozyme, carrying a mutation (i.e., deletion of G₁₂) in the catalytic core of the Rz ribozyme, did not induce any cleavage in the synthetic RNA (Figure 27).
1.2. Ribozyme-Mediated Attenuation of Survivin Expression in JR8 Melanoma Cells

To evaluate the effect of the ribozyme in intact cells, the JR8 human melanoma cell line inherently over-expressing survivin was transfected with pRc/Rz and pRc/mutRz vectors containing the sequence coding for the active Rz ribozyme and the catalytically inactive mutRz ribozyme, respectively. The transfectants were treated with G418 for 1 month, and the G418-resistant clones were selected and screened for survivin expression by Western blotting. To rule out the possibility that attenuation of survivin expression was simply due to clonal divergence, we used two polyclonal populations of transfectants proven to endogenously express the active (JR8/Rz cells) or the mutant (JR8/mutRz cells) ribozyme (Figure 28).

Figure 28. Ribozyme expression in JR8 melanoma cell clones.
Ribozyme expression was detected by RT-PCR in JR8 parental cells and cell clones transfected with the active ribozymes (JR8/Rz cells) or with the mutant ribozyme (JR8/mutRz cells). Lanes pRc/Rz and pRc/mutRz indicate plasmids used as controls for the size of each fragment during PCR amplification.
JR8/Rz cells were characterized by a markedly lower survivin protein level (-60 ± 8%) than JR8 parental cells, as assessed by Western blot analysis in four independent cultures. Conversely, a very modest reduction (-13 ± 7%) in survivin expression was observed in mutRz cells (Figure 29). No appreciable differences were found among the different melanoma cell lines in the expression of other proteins involved in the control of apoptosis, such as Bcl-2 and Bax (Figure 29).

Figure 29. Survivin expression in melanoma cell clones. (A) A representative Western blotting experiment illustrating the expression of survivin and other apoptosis-related proteins in JR8, RZ and mutRZ cells. β-actin was used as control for loading. (B) Densitometric quantification of band intensities for survivin. Data represent mean values ± sd of three independent experiments.

Attenuation of survivin expression did not appreciably affect the growth potential of melanoma cells. In fact, only a modest increase in the doubling time of JR8/Rz cells compared to JR8 and JR8/mutRz cells was observed (29 ± 3h vs 24 ± 3h and 25 ± 4h, respectively).
1.3. Survivin Inhibition Sensitises JR8 Melanoma Cells to Drug-Induced Apoptosis

To determine whether the level of survivin expression is associated with the chemosensitivity of melanoma cells, JR8/Rz and JR8/mutRz cell lines were analyzed for their clonogenic cell survival profiles after exposure to different concentrations of the topoisomerase-I inhibitor topotecan for 24 hours (Figure 30). Transfection with the active ribozyme sequence did not appreciably modify the plating efficiency of JR8/Rz cells compared to JR8/mutRz cells (10.2 ± 1.5% and 13.4 ± 2.1%, respectively).

A dose-dependent reduction in cell survival was observed in both cell lines following topotecan exposure. However, JR8/Rz cells showed enhanced sensitivity to the drug compared to JR8/mutRz cells. The concentration of the drug that inhibited cell proliferation by 50% (IC₅₀) was calculated by computer-assisted extrapolation. Specifically, a curve of drug concentration versus mean percent inhibition was constructed. Using the formula for the slope of the line between the two drug doses that bracketed (above and below) 50% inhibition, the IC₅₀ was calculated. A significantly (p<0.01) lower topotecan IC₅₀ was observed in JR8/Rz than JR8/mutRz (1.86 ± 0.44 ng/ml vs 6.76 ± 0.53 ng/ml) (Table III).

In parallel, we assessed the susceptibility of melanoma cells as a function of the level of survivin expression to other DNA-interacting agents currently used in the treatment of melanoma patients. Specifically, we observed an increased sensitivity of JR8/Rz cells compared to cells expressing the mutant ribozyme to a 1-hour cisplatin exposure, as indicated by the significantly
(p<0.05) lower IC\textsubscript{50} (1.36 ± 0.40 μg/ml vs 2.9 ± 0.30 μg/ml) (Table III). Conversely, JR8/Rz and JR8/mutRz cells showed a comparable sensitivity to a 24-hours exposure to temozolomide (IC\textsubscript{50}: 5.81 ± 0.39 μg/ml vs 6.29 ± 0.29 μg/ml) (Table III).

![Figure 30. Clonogenic cell survival curves obtained after exposure of melanoma cell clones to topotecan. JR8/Rz (•) and JR8/mutRz (■) cells were treated with topotecan for 24 hours and then incubated at 37°C for 10 days. Colonies consisting of at least 50 cells were stained with crystal violet and counted under the microscope. Data represent mean values ± sd of three independent experiments. (The IC\textsubscript{50} values were calculated from the dose-response curves by graphical extrapolation.)](image)

<table>
<thead>
<tr>
<th>Cell line</th>
<th>Topotecan IC\textsubscript{50} (ng/ml)</th>
<th>Cisplatin IC\textsubscript{50} (μg/ml)</th>
<th>Temozolomide IC\textsubscript{50} (μg/ml)</th>
</tr>
</thead>
<tbody>
<tr>
<td>JR8/mutRz</td>
<td>6.76 ± 0.53</td>
<td>2.9 ± 0.30</td>
<td>6.29 ± 0.29</td>
</tr>
<tr>
<td>JR8/Rz</td>
<td>1.86 ± 0.44</td>
<td>1.36 ± 0.40</td>
<td>5.81 ± 0.39</td>
</tr>
</tbody>
</table>

Drug activity is expressed in terms of concentration able to inhibit clonogenic cell survival by 50% (IC\textsubscript{50}). Values represent the mean ± sd of three independent experiments.
To investigate whether the increased cytotoxic activity of cisplatin and topotecan observed in JR8/Rz cells was mediated by an enhanced susceptibility of cells to undergo programmed cell death as a consequence of survivin inhibition, we examined the induction of apoptosis in the two cell lines. Specifically, the number of cells with apoptotic nuclei was determined by fluorescence microscopy 72 hours after a 1-hour exposure to 10 μg/ml cisplatin or 24-hours exposure to 10 ng/ml topotecan (Figures 31). Spontaneous apoptosis was observed in a small fraction of cells in both cell lines (0.5 ± 0.2% and 1.0 ± 0.2% of the overall cell population in JR8/mutRz and JR8/Rz cells, respectively). Conversely, a significantly (p<0.01) higher apoptotic response to drugs was appreciable in JR8/Rz than in JR8/mutRz cells (27.7 ±2.3% vs 4.8 ± 1.7% for cisplatin; 26.4 ± 2.6% vs 9.8 ± 1.3% for topotecan) (Figure 31).

![Figure 31. Induction of apoptosis in melanoma cell clones exposed to topotecan and cisplatin.](image)

The percentage of cells with an apoptotic morphology with respect to the overall population as assessed by fluorescence microscopy in untreated cells (empty column) and in cells exposed to topotecan (blue column) or cisplatin (red column). Data represent mean values ± sd of three independent experiments. *p<0.01, Student’s t test.
To obtain mechanistic insights into the apoptotic pathway activated by lowering survivin expression, we evaluated the \textit{in vitro} catalytic activity of caspase-9 and caspase-3 in the two melanoma cell lines. JR8/Rz and JR8/mutRz cells were characterized by a similar basal level of caspase activity as assessed by hydrolysis of specific fluorogenic substrates (Figure 32).

\begin{figure}[h]
\centering
\includegraphics[width=0.5\textwidth]{figure32.png}
\caption{Caspase activation in melanoma cell clones treated with topotecan and cisplatin. Caspase-9 (A) and caspase-3 (B) catalytic activity was determined by hydrolysis of specific fluorogenic substrates in untreated cells (empty column) and in topotecan- (blue column) and cisplatin- (red column) treated cells. Data are expressed as relative fluorescence units (r.f.u.) and represent mean values ± sd of three independent experiments. *$p<0.05$, Student's t test.}
\end{figure}
Treatment with cisplatin and topotecan increased the activation of caspase-9 and caspase-3 in both cell lines. However, the catalytic activity of both enzymes was significantly ($p<0.05$) higher (two-fold and three-fold in the case of caspase-9 and caspase-3, respectively) in the JR8/Rz than in the JR8/mutRz drug-treated cells (Figure 32).

1.4. Survivin Inhibition Enhances the Antitumour Activity of Topotecan in Vivo

The effect of survivin inhibition on the antitumour activity of topotecan was studied in athymic nude mice after injection of melanoma cells expressing the active or the mutant ribozyme. The endogenous presence of the ribozymes in tumours grown in the animal was confirmed by RT-PCR (Figure 33).

![Figure 33. Ribozyme expression in tumours grown in nude mice.](image)

Ribozyme expression was detected by RT-PCR in tissue samples obtained from tumours originating from JR8 cells transfected with the active ribozyme (JR8/Rz) or with the mutant ribozyme (JR8/mutRz). Lanes pRc/Rz and pRc/mutRz indicate plasmids used as controls for the size of each fragment during PCR amplification.
The drug (10 mg/kg) was administered orally every seventh day for 4 times (q7dx4), starting from the day after cell injection. Although JR8/Rz cells retained a reduced expression of survivin compared to JR8/mutRz cells after xenografting in mouse, survivin inhibition did not appreciably modify tumour take or growth in untreated animals. Specifically, at day 12 after cell injection, tumours were present in 5/7 and 3/8 mice receiving JR8/mutRz and JR8/Rz cells, respectively (Table IV), and tumour growth curves of the two groups of mice were similar and superimposable to that observed for JR8 parental cells (Figure 34; Table V).

Figure 34. Growth curves of JR8, JR8/mutRz and JR8/Rz melanoma cells in athymic nude mice. Cells were intramuscularly injected into the right hind leg of mice (10^7 cells/mouse) at day 0. JR8 (○), JR8/mutRz (●) and JR8/Rz (□) cells.
Table IV. Effects of oral topotecan on tumorigenicity (tumour take\(^a\)) of JR8/mutRz and JR8/Rz melanoma cells in nude mice.

<table>
<thead>
<tr>
<th>Days(^b)</th>
<th>JR8/mutRz</th>
<th>JR8/Rz</th>
</tr>
</thead>
<tbody>
<tr>
<td>12</td>
<td>49</td>
<td>12</td>
</tr>
<tr>
<td>Controls</td>
<td>5/7</td>
<td>5/7</td>
</tr>
<tr>
<td>Topotecan</td>
<td>1/5</td>
<td>4/5</td>
</tr>
</tbody>
</table>

\(^a\)Tumour take, i.e. number of growing tumours/total number of tumour-injected mice.

\(^b\)Day 0: \(10^7\) cells were i.m. injected into the right hind leg. Topotecan treatment: 10 mg/kg, q7dx4 from day 1.

\(^c\)\(p=0.0128\) vs control mice; Fisher exact test.

Table V. Effect of survivin inhibition on the growth\(^a\) of melanoma cells in nude mice.

<table>
<thead>
<tr>
<th>Days(^b)</th>
<th>12</th>
<th>15</th>
<th>19</th>
<th>22</th>
<th>26</th>
<th>30</th>
<th>35</th>
<th>43</th>
<th>49</th>
<th>56</th>
<th>63</th>
</tr>
</thead>
<tbody>
<tr>
<td>JR8</td>
<td></td>
</tr>
<tr>
<td>#1</td>
<td>25</td>
<td>50</td>
<td>50</td>
<td>294</td>
<td>648</td>
<td>729</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>#2</td>
<td>25</td>
<td>216</td>
<td>750</td>
<td>1224</td>
<td>1690</td>
<td>2475</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>#3</td>
<td>25</td>
<td>198</td>
<td>384</td>
<td>908</td>
<td>1527</td>
<td>2156</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>#4</td>
<td>28</td>
<td>245</td>
<td>384</td>
<td>700</td>
<td>1352</td>
<td>1690</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>#5</td>
<td>50</td>
<td>196</td>
<td>567</td>
<td>1368</td>
<td>2250</td>
<td>2844</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>#6</td>
<td>25</td>
<td>196</td>
<td>416</td>
<td>750</td>
<td>1521</td>
<td>1960</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>#7</td>
<td>25</td>
<td>216</td>
<td>650</td>
<td>1029</td>
<td>2156</td>
<td>2352</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>#8</td>
<td>28</td>
<td>221</td>
<td>56</td>
<td>800</td>
<td>1521</td>
<td>1960</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>JR8/mutRz</td>
<td></td>
</tr>
<tr>
<td>#1</td>
<td>60</td>
<td>198</td>
<td>500</td>
<td>527</td>
<td>698</td>
<td>752</td>
<td>853</td>
<td>988</td>
<td>1420</td>
<td>1520</td>
<td></td>
</tr>
<tr>
<td>#2</td>
<td>288</td>
<td>550</td>
<td>650</td>
<td>1268</td>
<td>1008</td>
<td>1008</td>
<td>1352</td>
<td>1568</td>
<td>1460</td>
<td>1268</td>
<td></td>
</tr>
<tr>
<td>#3</td>
<td>288</td>
<td>408</td>
<td>486</td>
<td>1372</td>
<td>1800</td>
<td>1800</td>
<td>2304</td>
<td>2890</td>
<td>3240</td>
<td>3978</td>
<td></td>
</tr>
<tr>
<td>#4</td>
<td>50</td>
<td>88</td>
<td>256</td>
<td>216</td>
<td>256</td>
<td>300</td>
<td>405</td>
<td>750</td>
<td>1352</td>
<td>1520</td>
<td></td>
</tr>
<tr>
<td>#5</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>196</td>
<td></td>
</tr>
<tr>
<td>#6</td>
<td>352</td>
<td>700</td>
<td>726</td>
<td>793</td>
<td>802</td>
<td>844</td>
<td>902</td>
<td>1002</td>
<td>1130</td>
<td>1180</td>
<td></td>
</tr>
<tr>
<td>#7</td>
<td>--</td>
<td></td>
</tr>
<tr>
<td>JR8/Rz</td>
<td></td>
</tr>
<tr>
<td>#1</td>
<td>--</td>
<td>405</td>
<td>968</td>
<td>968</td>
<td>1352</td>
<td>2025</td>
<td>1862</td>
<td>2250</td>
<td>2475</td>
<td>2816</td>
<td>2475</td>
</tr>
<tr>
<td>#2</td>
<td>50</td>
<td>221</td>
<td>486</td>
<td>847</td>
<td>1268</td>
<td>1004</td>
<td>1268</td>
<td>1568</td>
<td>2250</td>
<td>2025</td>
<td>3240</td>
</tr>
<tr>
<td>#3</td>
<td>--</td>
<td>196</td>
</tr>
<tr>
<td>#4</td>
<td>--</td>
</tr>
<tr>
<td>#5</td>
<td>50</td>
<td>196</td>
<td>787</td>
<td>787</td>
<td>787</td>
<td>908</td>
<td>869</td>
<td>1152</td>
<td>1521</td>
<td>1666</td>
<td>1764</td>
</tr>
<tr>
<td>#6</td>
<td>--</td>
</tr>
<tr>
<td>#7</td>
<td>--</td>
<td>196</td>
<td>365</td>
<td>446</td>
<td>550</td>
<td>550</td>
<td>1080</td>
<td>1852</td>
<td>2475</td>
<td>1859</td>
<td>2475</td>
</tr>
<tr>
<td>#8</td>
<td>50</td>
<td>288</td>
<td>500</td>
<td>500</td>
<td>1183</td>
<td>1183</td>
<td>1183</td>
<td>1372</td>
<td>1800</td>
<td>1800</td>
<td>2176</td>
</tr>
</tbody>
</table>

\(^a\)expressed as tumour volume (calculated according to the formula: TV (mm\(^3\)) = d\(^2\) x D/2, where d and D are the shortest and longest diameter, respectively) in individual animals.

\(^b\)Day 0: \(10^7\) cells were i.m. injected into the right hind leg.
In JR8/mutRz tumours, topotecan treatment initially retarded tumour growth (Figure 35; Table IV & VI). In fact, at day 12 the tumour was present in only 1/5 mice. However, at later intervals, tumours grew in most of the treated mice (4/5), and no difference was evident in tumour take or volume between treated and untreated mice. In contrast, topotecan was very effective in increasing the latency and reducing the take rate and growth of JR8/Rz tumours. In fact, at day 49 after cell injection, tumours had not yet appeared in topotecan-treated mice, whereas they were present in 5/8 control mice ($p=0.0128$). Again, at day 63, when control mice were sacrificed for tumour burden, tumours were present in only 3/8 treated mice. Topotecan-treated mice were kept under observation for more than 100 days, but tumour take did not increase over 50% (4/8 at day 104).

Figure 35. Effect of ribozyme-mediated survivin inhibition on the anti-tumorigenic activity of oral topotecan in melanoma xenografts.
Cells were intramuscularly injected into the right hind leg of mice ($10^7$ cells/mouse) at day 0. Treatment consisted of 10 mg/kg, q7dx4 from day 1. Control JR8/mutRz (O), topotecan-treated JR8/mutRz (●), control JR8/Rz (□) and topotecan-treated JR8/Rz cells (■).
Table VI. Effect of oral topotecan on the growth\(^a\) of melanoma cells in nude mice.

<table>
<thead>
<tr>
<th>Days(^b)</th>
<th>12</th>
<th>15</th>
<th>19</th>
<th>22</th>
<th>26</th>
<th>30</th>
<th>35</th>
<th>43</th>
<th>56</th>
<th>63</th>
<th>70</th>
<th>77</th>
<th>86</th>
<th>93</th>
<th>104</th>
</tr>
</thead>
<tbody>
<tr>
<td>JR8/mutRz</td>
<td></td>
</tr>
<tr>
<td>#1</td>
<td></td>
</tr>
<tr>
<td>#2</td>
<td></td>
</tr>
<tr>
<td>#3</td>
<td></td>
</tr>
<tr>
<td>#4</td>
<td></td>
</tr>
<tr>
<td>#5</td>
<td></td>
</tr>
<tr>
<td>JR8/Rz</td>
<td></td>
</tr>
<tr>
<td>#1</td>
<td></td>
</tr>
<tr>
<td>#2</td>
<td></td>
</tr>
<tr>
<td>#3</td>
<td></td>
</tr>
<tr>
<td>#4</td>
<td></td>
</tr>
<tr>
<td>#5</td>
<td></td>
</tr>
<tr>
<td>#6</td>
<td></td>
</tr>
<tr>
<td>#7</td>
<td></td>
</tr>
<tr>
<td>#8</td>
<td></td>
</tr>
</tbody>
</table>

\(^a\)expressed as tumour volume (calculated according to the formula: \(TV (\text{mm}^3) = d^2 \times D/2\), where \(d\) and \(D\) are the shortest and longest diameter, respectively) in individual animals.

\(^b\)Day 0: \(10^7\) cells were i.m. injected into the right hind leg. Topotecan treatment: 10 mg/kg, q7dx4 from day 1.

1.5. Ribozyme-Mediated Survivin Inhibition Sensitises JR8 Melanoma Cells to Ionising Radiation

To determine whether the level of survivin expression is associated with the radio-sensitivity of melanoma cells, the different cell lines were analyzed for their clonogenic cell survival profiles after exposure to different doses of \(\gamma\)-irradiation (Figure 36). Transfection with the active ribozyme sequence did not appreciably modify the plating efficiency of JR8/Rz cells compared to JR8 and JR8/mutRz cells (8.7 ± 0.9% vs 9.8 ± 1.0% and 9.6 ± 1.3%, respectively).
Figure 36. Clonogenic cell survival curves obtained after γ-irradiation of melanoma cell clones. JR8 (O), JR8/Rz (■) and JR8/mutRz (●) cells were irradiated and then incubated at 37°C for 10 days. Colonies consisting of at least 50 cells were stained with crystal violet and counted under the microscope. Data represent mean values ± sd of three independent experiments.

A radiation dose-dependent reduction in cell survival was observed in all cell lines (survival curve parameters are reported in Table VII). However, cells expressing the active ribozyme showed enhanced radio-sensitivity compared to parental cells. Specifically, the surviving fractions of JR8/Rz cells were significantly (p<0.01) lower than those observed for JR8 at all radiation doses starting from 2 Gy. Such radio-sensitisation seemed to be a consequence of the decreased survivin levels in cells expressing the active ribozyme rather than non-specific effects of the expression vector itself. In fact, the survival curve obtained after irradiation of JR8/mutRz cells
expressing the catalytically inactive ribozyme was superimposable to that obtained for irradiated JR8 parental cells (Figure 36).

Table VII. Survival curve parameters of melanoma cell.

<table>
<thead>
<tr>
<th>Cell lines</th>
<th>$D_0$</th>
<th>$n$</th>
<th>SF2</th>
</tr>
</thead>
<tbody>
<tr>
<td>JR8</td>
<td>1.29 ± 0.02</td>
<td>4.83 ± 0.45</td>
<td>0.68 ± 0.03</td>
</tr>
<tr>
<td>JR8/mutRz</td>
<td>1.27 ± 0.02</td>
<td>4.19 ± 0.38</td>
<td>0.70 ± 0.08</td>
</tr>
<tr>
<td>JR8/Rz</td>
<td>1.15 ± 0.01</td>
<td>2.32 ± 0.16</td>
<td>0.36 ± 0.02</td>
</tr>
</tbody>
</table>

The colony-forming efficiency was calculated from the number of colonies counted and the number of morphologically intact single cells seeded. The parameters $n$ and $D_0$ were calculated using ELMAT software. Values represent the mean ± sd of three independent experiments.

To investigate whether the increased cytotoxic activity of $\gamma$-irradiation observed in the active ribozyme transfectant cells was mediated by an enhanced susceptibility of cells to undergo programmed cell death as a consequence of survivin inhibition, we examined the extent of apoptosis induction in the different cell lines 48 and 72 hours after exposure to different radiation doses. For this purpose the percentage of cells with an apoptotic nuclear morphology was determined by fluorescence microscopy after cell staining with propidium iodide and calculated in relation to the total cell population (Figure 37). Spontaneous apoptosis was observed in a small fraction (always $<2\%$) of cells in the different cell lines, and $\gamma$-irradiation consistently induced a dose-dependent increase in the percentage of apoptotic cells in the different clones.
Figure 37. Induction of apoptosis in melanoma cell clones exposed to γ-irradiation.

The percentage of cells with an apoptotic morphology with respect to the overall population was assessed by fluorescence microscopy 48 hours (red column) and 72 hours (blue column) after exposure to different radiation doses. Data represent mean values ± sd of three independent experiments. *p<0.05, **p<0.01, Student's t test.

However, in cells expressing the active ribozyme, the extent of radiation-induced programmed cell death was higher than that observed in JR8/mutRz cells and in JR8 parental cells. (Figure 37). Specifically, such a difference was statistically significant at 48 hours (p<0.05) and 72 hours (p<0.01) after exposure to 10 Gy and at 72 hours after exposure to 6 Gy (p<0.01).

The caspase-3 catalytic activity, as assessed by hydrolysis of the fluorogenic substrate Ac-DEVD-AMC, was markedly higher in the JR8/Rz than in the JR8/mutRz cells and in JR8 parental cells after 10 Gy exposure (Figure 38).
Figure 38. Caspase activation in melanoma cell clones exposed to γ-irradiation.

Caspase-3 catalytic activity was determined by hydrolysis of the fluorogenic substrate Ac-DEVD-AMC 72 hours after exposure to 10 Gy in unirradiated control cells (empty column) and γ-irradiated cells (blue column). Data are expressed as relative fluorescence units (r.f.u.) and represent mean values ± sd of three independent experiments. *p<0.05, Student's t test.
2. **Ribozyme-mediated inhibition of survivin expression increases spontaneous and drug-induced apoptosis and decreases the tumorigenic potential of human prostate cancer cells**

Prostate cancer is the most frequently diagnosed tumour and the second leading cause of cancer-related death among men in Western countries [Dennis & Resnick, 2000]. Whereas more than 80% of tumours are initially responsive to androgen ablation, metastatic disease inevitably progresses to an androgen-independent state that is largely refractory not only to hormonal manipulation but also to chemotherapy and radiotherapy [Daskivich & Oh, 2006; Swanson, 2006; Sowery *et al, 2007]. Accordingly, androgen-independent progression is the main obstacle to survival in patients with advanced disease, and this emphasizes the need for novel therapeutic strategies targeting the molecular determinants of treatment resistance of advanced prostate cancer. Several lines of evidence suggested that one of the main events associated with the conversion to an androgen-independent phenotype is increased resistance to apoptosis [Denmeade *et al, 1996; Howell, 2000], mainly due to up-regulation of anti-apoptotic genes, including Bcl-2, Bcl-xL and Mcl-1 [Krajewska *et al, 1996]. Moreover, it has been described to be selectively expressed in the most common human neoplasms, including prostate cancer [McEleny *et al, 2002], and to be associated with clinical tumour progression [Altieri, 2001]. As a consequence, the identification of points in the apoptotic pathway at which dysregulation occurs could open new therapeutic opportunities for this malignancy.
As an alternative strategy to target the survivin pathway we developed a Moloney-based retroviral vector expressing a hammerhead ribozyme directed against the 3' end of the CUA_{110} triplet in survivin mRNA, encoded as a chimeric RNA within adenoviral VA1 RNA. Here we assessed the effects of the ribozyme-mediated inhibition of survivin expression on the spontaneous and drug-induced apoptosis and on the tumorigenic potential of androgen-independent human prostate cancer cells.

2.1. Construction of a Retroviral Vector for Targeted Intracellular Expression of an Anti-Survivin Ribozyme and Transduction of Prostate Cancer Cells

The hammerhead ribozyme coding sequence was cloned as a substitute to a portion of the central domain of the adenovirus type 2 VA1 gene, a region that does not influence transcription by RNA polymerase III or cellular localization of the RNA in the cytoplasm [Cagnon & Rossi, 2000; Mendoza-Maldonado et al, 2002]. As a control, we also inserted in the VA1 construct an irrelevant ribozyme targeting the feline immunodeficiency virus (FIV) primer binding site. To attain high-efficiency expression of the VA1-ribozyme cassettes, Moloney-based retroviral vectors were constructed, in which the VA1-ribozyme cassette was encoded in the 3' long terminal repeat (LTR). After transduction, a double copy vector was obtained, with the ribozyme-expressing cassettes at both LTRs.
Two androgen-independent human prostate cancer cell lines, DU145 and PC-3, were transduced with the viral vectors and treated in vitro with G418 for 1 month. G418-resistant clones were selected and screened for survivin expression by Western blotting. To rule out the possibility that attenuation of survivin expression was simply due to clonal divergence, we used polyclonal populations proven to endogenously express the anti-survivin (DU145/Rz and PC-3/Rz cells) or control (DU145/CTR and PC-3/CTR cells) ribozyme (Figure 39).

Specifically, DU145/Rz and PC-3/Rz cells were characterized by a markedly lower survivin protein level (-90 ± 8% and -68 ± 5%, respectively) than DU145/CTR and PC-3/CTR cells (Figure 40), as assessed in three independent western blot experiments.
Figure 40. Survivin expression in prostate cancer cells.

(A) A representative Western blotting experiment illustrating the expression of survivin in DU145, DU145/CTR, DU145/Rz, PC-3, PC-3/CTR and PC-3/Rz cells. β-actin was used as control for loading. (B) Densitometric quantification of band intensities for survivin. Data represent mean values ± sd of three independent experiments.

Attenuation of survivin protein expression markedly affected the in vitro growth potential of DU145/Rz cells, as demonstrated by the significantly (p<0.01) longer doubling time than DU145/CTR cells (48 ± 4h vs 26 ± 3h). Consistent with the role of survivin in the proper execution of mitosis [Giodini et al, 2002], we observed that the almost complete ribozyme-mediated inhibition of survivin induced aberrant mitotic progression in DU145/Rz cells with the appearance of a fraction of polyploid cells characterized by a more than 4N DNA content (Figure 41A). This finding was consistently observed in four cell samples collected at different intervals of growth in culture.
Conversely, a very modest increase in the doubling time of PC-3/Rz compared to PC-3/CTR cells (30 ± 3h vs 24 ± 3h) was observed, and the presence of polyploid cells was undetectable in the PC-3/Rz cell population (Figure 41B).

Figure 41. Effect of survivin inhibition on cell cycle progression. Cell cycle analysis of DU145/CTR and DU145/Rz (A), PC-3/CTR and PC-3/Rz (B), was carried out by flow cytometry on cells stained with propidium iodide.
2.2. Ribozyme-Mediated Survivin Inhibition Enhances Spontaneous and Drug-Induced Apoptosis in Prostate Cancer Cells

Down-regulation of survivin in ribozyme-expressing prostate cancer cells was associated with an increased rate of spontaneous apoptosis in both cell lines. Specifically, a more marked DNA fragmentation was observed in cells expressing the anti-survivin ribozyme, as indicated by the percentage of TUNEL-positive cells, which was 20% in DU145/Rz and 17% in PC-3/Rz compared to only 2% and 3% in DU145/CTR and PC-3/CTR cells, respectively (Figure 42A). At the molecular level, ribozyme-mediated inhibition of survivin expression in DU145/Rz cells resulted in proteolytic processing of caspase-9 and caspase-3, which coincided with a significantly increased catalytic activity of both enzymes. Specifically, caspase-9 and caspase-3 activity, as assessed by in vitro hydrolysis of specific fluorogenic substrates (LEMD-AFC for caspase-9 and Ac-DEVD-AMC for caspase-3) was 12-fold ($p<0.05$) and 10-fold ($p<0.01$) higher, respectively, in DU145/Rz than in DU145/CTR cells (Figure 42B). Although to a lower extent, increased caspase-9 and caspase-3 catalytic activity (10-fold; $p<0.01$ and 3-fold; $p<0.02$, respectively) was also observed in PC-3/Rz compared to PC-3/CTR cells (Figure 42B).
Figure 42. Induction of spontaneous apoptosis in prostate cell clones.

(A) TUNEL analysis of spontaneous apoptosis in DU145/CTR, DU145/Rz, PC-3/CTR and PC-3/Rz cells was carried out by flow cytometry. Red lines represent the negative control incubated in the absence of terminal transferase; blue lines represent the samples incubated with TUNEL reaction mixture. The percentage of TUNEL-positive cells in each sample is reported. (B) Caspase-9 (red column) and caspase-3 (blue column) catalytic activity was determined by hydrolysis of the specific fluorogenic substrates. Data are expressed as relative fluorescence units (r.f.u.) and represent mean values ± sd of three independent experiments. *p<0.05, **p<0.02, ***p<0.01, Student's t test.
To evaluate whether or not inhibition of survivin expression influences the susceptibility of prostate cancer cells to undergo programmed cell death after exposure to anticancer agents, we treated DU145/Rz and DU145/CTR cells with increasing concentrations of cisplatin. DU145/Rz cells showed enhanced sensitivity to the drug compared to DU145/CTR cells, as indicated by the significantly (p<0.05) lower concentration required to inhibit cell proliferation by 50% (IC₅₀: 3.17 ± 0.39 µg/ml vs 8.25 ± 0.98 µg/ml).

We then assessed the effect of cisplatin (10 µg/ml) on caspase-3 activity 72 hours after treatment. Drug exposure enhanced caspase-3 activity in both cell clones; however, in DU145/Rz cells expressing the anti-survivin ribozyme the enzyme's catalytic activity was significantly (p<0.01) higher than that in DU145/CTR cells (Figure 43).

Figure 43. Caspase activation in prostate cell clones exposed to cisplatin.
Caspase-3 catalytic activity was determined by hydrolysis of the fluorogenic substrate Ac-DEVD-AMC in untreated cells (empty column) and in cisplatin-treated cells (blue column). Data represent mean values ± sd of three independent experiments. *p<0.01, Student's t test.
2.3. Effect of Survivin Inhibition on Tumorigenic Potential of Prostate Cancer Cells

The effect of ribozyme-mediated inhibition of survivin expression on tumour growth in vivo was studied in a xenograft prostate cancer model. Subcutaneous injection of DU145/CTR cells into athymic nude mice induced tumour growth in 9 of 9 xenografted mice. Tumours were measurable after 6 days from injection (mean size: $87 \pm 25$ mm$^3$) and increased with time. Conversely, when xenografted in athymic mice DU145/Rz cells were unable to form growing tumours during the entire observation period (50 days) (Figure 44).

![Figure 44. Effect of ribozyme-mediated survivin inhibition on the tumorigenic potential of human prostate cancer cells. Exponentially growing DU145/CTR (o) and DU145/Rz (●) cells were injected subcutaneously ($10^7$ cells/mouse) into the right flank of male athymic nude mice.](image-url)
3. Silencing of survivin gene by small interfering RNAs produces supra-additive growth suppression in combination with 17-allylamino-17-demethoxy-geldanamycin in human prostate cancer cells

It has recently been demonstrated that the association of survivin with the heat shock protein 90 (Hsp90) is required for its stability and function [Fortugno et al, 2003]. Targeted antibody-mediated disruption of the survivin-Hsp90 complex in cancer cells resulted in proteasomal degradation of survivin, mitochondrial-dependent apoptosis and mitotic arrest [Fortugno et al, 2003]. Hsp90 plays a central role in the cellular stress response, which is constitutively up-regulated in cancer cells to enhance adaptation to environmental challenges [Isaacs et al, 2003]. Specifically, Hsp90 is involved in the stabilization and conformational maturation of a number of proteins belonging to signal transduction pathways, which are deregulated in cancers and contribute to all major components of the malignant phenotype [Richter & Buchner, 2001].

The identification of survivin as a new client protein for Hsp90 links the cellular stress response to the dual cell viability/mitotic checkpoint maintained by survivin. While the survivin-Hsp90 association may promote proliferation of tumour cells by elevating their anti-apoptotic threshold, it may also suggest new opportunities for the design of novel anticancer strategies. In this context, combined approaches aimed at interfering with different levels of the survivin-Hsp90 connection could be particularly useful.
Here we evaluated the effect of small interfering RNA (siRNA)-mediated silencing of survivin on the proliferative potential of human androgen-independent prostate cancer cells and their sensitivity to the first-in-class Hsp90 inhibitor 17-allylamino-17-demethoxy-geldanamycin (17-AAG).

3.1. Silencing of Survivin Gene by siRNAs in Prostate Cancer Cells

Since strong positional effects on the function of siRNAs have been demonstrated [Ryther et al, 2005], we tested the effectiveness of four 21-mer siRNAs targeting different portions within exons 1-3 of survivin mRNA (Figure 26) to silence survivin gene expression in the DU145 androgen-independent prostate cancer cell line. RT-PCR experiments carried out in DU145 cells collected at different intervals after a 8-hours transfection with 100 nM of each survivin-specific siRNA showed a reduction of survivin mRNA as compared to Lipo2000-exposed cells (Figure 45). Such inhibition ranged from 39% to 60%, depending on the different siRNAs, at 24 hours after transfection and was still appreciable to a similar extent at 48 hours (Figure 45). Survivin mRNA down-regulation was paralleled by a reduction in survivin protein abundance that ranged from 38% to 75% at 24 hours and remained almost constant at 48 hours (Figure 46).
Figure 45. Survivin mRNA expression in DU145 cells.
(A) A representative RT-PCR experiment illustrating survivin mRNA expression in DU145 cells at 24 hours after transfection with the different siRNAs (100 nM). β-actin was used as control for loading. (B) Densitometric of survivin mRNA expression levels at 24 hours (empty column) and 48 hours (blue column) after transfection. Data are expressed as percentage inhibition of survivin expression compared to Lipo2000-exposed cells and represent mean values ± sd of three independent experiments.

Transfection of DU145 cells with 100 nM of a control, unrelated siRNA caused modest inhibition (around 10% compared to Lipo2000-exposed cells) of survivin mRNA expression at both time points considered (Figure 45). A slightly stronger inhibitory effect (around 25%) on survivin protein expression was consistently observed in cells transfected with the control siRNA (Figure 46).
Figure 46. Survivin protein expression in DU145 cells.

(A) A representative Western blotting experiment illustrating survivin protein expression in DU145 cells at 24 hours after transfection with the different siRNAs (100 nM). β-actin was used as control for loading. (B) Densitometric of survivin protein expression levels at 24 hours (empty column) and 48 hours (blue column) after transfection. Data are expressed as percentage inhibition of survivin expression compared to Lipo2000-exposed cells and represent mean values ± sd of three independent experiments.

Transfection of DU145 cells with a survivin-specific siRNA, siRNA2, failed to appreciably affect the expression of other anti-apoptotic proteins including XIAP and Bcl-xL (Figure 47). As already reported [Chaudary et al, 2001], no Bcl-2 expression was observed in these cells (Figure 47).
3.2. siRNA-Mediated Silencing of Survivin Gene Causes Cell Proliferation Decline and Apoptosis Induction in Prostate Cancer Cells

Transfection with the three survivin-specific siRNAs (siRNA2, 3 and 10) able to induce the greatest inhibition of survivin expression also resulted in significant ($p<0.01$) and time-dependent decline of DU145 cell proliferation compared to Lipo2000-exposed cells, which was appreciable starting from 24 hours after transfection (ranging from 47% to 55% with respect to Lipo2000-exposed cells) and increased at 48 hours (ranging from 65% to 73%) (Figure 48). Conversely, transfection with the control, unrelated siRNA only induced a modest inhibitory effect on cell proliferation (Figure 48).
To test whether the cytotoxic effect consequent to survivin down-regulation was due to the induction of apoptosis, we assessed by flow cytometry the presence of an apoptotic sub-G_0/-1 peak 48h after transfection of DU145 with the different siRNAs. No sub-G_0/-1 peak was observed in Lipo2000-exposed cells, whereas a peak accounting for 6.5% of the overall cell population was present in DU145 cells transfected with the control siRNA (Figure 49). However, the extent of sub-G_0/-1 peaks was markedly increased in cells transfected with the survivin-specific siRNAs 2, 3 and 10, and ranged from 25% to 40% of the overall cell population (Figure 49).
Chapter 4

RESULTS

Figure 49. Effects of siRNA-mediated survivin down-regulation on the apoptotic rate of DU145 cells.
Flow cytometric analysis of DU145 cells at 48 hours after transfection with different siRNAs. The percentage of the sub-G₀/₁ population is reported in each histogram.

At the molecular level, siRNA-mediated inhibition of survivin expression in DU145 cells coincided with a significantly ($p<0.01$) increased catalytic activity of caspase-9. Specifically, the enzyme’s activity was three-four-fold higher in DU145 cells transfected with survivin-specific siRNAs than in those exposed to Lipo2000. Conversely, transfection of cells with the control, unrelated siRNA did not appreciably modify the extent of caspase-9 activity (Figure 50).
3.3. siRNA-Mediated Silencing of the Survivin Gene Increases the Sensitivity of Prostate Cancer Cells to 17-Allylamino-17-Demethoxy-Geldanamycin

To test whether the basal level of survivin in the tumour cell population plays a role in determining the in vitro response to Hsp90 inhibitors, we examined the effect of siRNA-mediated survivin down-regulation on cell sensitivity to 17-AAG in DU145 cells. A 72-hours exposure to different drug
concentrations (from 5 to 50 ng/ml) induced a dose-dependent decline of DU145 cell proliferation (Figure 51) as well as a decrease in the expression/activity of Hsp90 client proteins including Akt, cdk6 (Figure 52A) and telomerase (Figure 52B). The extent of the 17-AAG cytotoxic activity was enhanced in cells transfected with siRNA2. Specifically, at all drug concentrations tested, the sequential treatment (8-hours siRNA2 transfection followed by 72-hours 17-AAG exposure) induced an inhibitory effect on cell proliferation greater than that expected by simple additivity of the effects of the two agents, which was appreciable both at the end of treatment and at 7 days (Figure 51).

Figure 51. Dose-response survival curves of DU145 cells exposed to siRNA in combination with 17-AAG.
Dose-response survival curves of DU145 cells exposed to 17-AAG alone for 72 hours (●) or to combined treatment (8-hours transfection with 100 nM siRNA2 followed by 72-hours exposure to 17-AAG) (●) and obtained at the end of treatment (3 days; top) or at 7 days (bottom). Mean plots ± sd of three independent experiments are reported. The dashed line indicates the expected curve for an additive effect of the two agents in combination.
Exposure of cells to 17-AAG alone did not appreciably affect survivin expression up to 100 ng/ml, whereas a marked and dose-dependent inhibition of protein expression was observed at the two highest drug concentrations (500 and 1000 ng/ml) (Figure 53). Sequential treatment with siRNA2 and 17-AAG consistently caused a strong decrease of survivin expression, which was almost superimposable to that observed after transfection of cells with siRNA2 alone (Figure 53). However, it was not possible to evaluate the cytotoxic effect of the sequential treatment at 17-AAG concentrations able to down-regulate survivin, since an almost complete inhibition of cell proliferation (around 99%) was found after a 3-days exposure to 500 ng/ml of drug. The cytotoxic effect of 17-AAG in DU145 cells transfected with the control siRNA was superimposable to that observed in cells exposed to 17-AAG alone.
To gain insight into the molecular basis responsible for the increased sensitivity to 17-AAG observed in siRNA2-transfected DU145 cells, we evaluated the in vitro catalytic activity of caspase-9 following single and combined treatments (Figure 54). Exposure to 17-AAG increased the enzyme’s activation compared to that observed in control (no-drug) cells. However, the caspase-9 catalytic activity was consistently and significantly (p<0.02) higher in cells exposed to the combined treatment (8-hours siRNA2 transfection followed by 72-hours 17-AAG exposure) than in those treated with the drug alone, and such enhancement was greatest (2.8-fold) at the highest 17-AAG concentration (Figure 54).
Figure 54. Caspase activation in DU145 cells after exposure to siRNA and 17-AAG.

Caspase-9 catalytic activity was determined by hydrolysis of the fluorogenic substrate Ac-DEVD-AMC in DU145 cells exposed to 17-AAG alone (empty column) or to the combined treatment (blue column). Data represent the mean values ± sd of three independent experiments. * p<0.02; ** p<0.01; Student's t test.

To evaluate the effect of survivin down-regulation on 17-AAG sensitivity in a second prostate cancer cell line, we transfected PC-3 cells with 100 nM siRNA2. Such transfection induced a marked inhibition of survivin protein expression as compared to Lipo2000-exposed cells, which was appreciable starting from 24 hours after transfection and remained stable at 48 hours (Figure 55). Moreover, the extent of inhibition (around 70-80%) was comparable to that obtained in DU145 cells after transfection with the same survivin-specific siRNA. Transfection of PC-3 cells with siRNA2 failed to appreciably modify the expression of other anti-apoptotic proteins such as XIAP, Bcl-2 and Bcl-xL (Figure 55).
Figure 55. Survivin protein expression in PC-3 cells. Representative Western blot experiments illustrating the expression of survivin and other anti-apoptotic proteins in PC-3 cells at 24 hours after transfection with siRNA2 (100 nM).

PC-3 cells were considerably more resistant to 72-hours exposure to 17-AAG than DU145 cells (Figure 56), as indicated by the 13-fold higher IC₅₀ value (410 ± 20 ng/ml vs 31 ± 2 ng/ml, respectively). However, 17-AAG cytotoxic activity was enhanced in cells transfected with siRNA2 and, in accord with that observed in DU145 cells, the sequential treatment induced an inhibitory effect on cell proliferation (appreciable at the end of treatment and at 7 days) greater than that expected by simple additivity of the effects of the two agents when the drug was used at concentrations ranging from 100 to 500 ng/ml. Conversely, no potentiating effect was observed when the highest 17-AAG concentration (1000 ng/ml) was used in sequence with siRNA2 (Figure 56). 17-AAG alone induced an appreciable inhibition of survivin expression only when used at 1000 ng/ml, whereas a markedly decreased
survivin abundance was consistently observed in cells exposed to siRNA2-17AAG sequential treatment independently of drug concentration (Figure 57).

Figure 56. Dose-response survival curves of PC-3 cells exposed to siRNA in combination with 17-AAG.

Dose-response survival curves of PC-3 cells exposed to 17-AAG alone for 72 hours (■) or to combined treatment (8-hours transfection with 100 nM siRNA2 followed by 72-hours exposure to 17-AAG) (●) and obtained at the end of treatment (3 days; top) or at 7 days (bottom). Mean plots ± sd of three independent experiments are reported. The dashed line indicates the expected curve for an additive effect of the two agents in combination.

Figure 57. Survivin protein expression in PC-3 cells after exposure to siRNA and 17-AAG.

A representative Western blot experiment illustrating the expression of survivin in PC-3 cells after exposure to siRNA2 and 17-AAG, singly administered (left) or in sequence (right).
4. Potentiation of Paclitaxel-Induced Apoptosis by the Novel Cyclin-Dependent Kinase Inhibitor NU6140: A Possible Role for Survivin Down-Regulation

Cell progression through the cell cycle is controlled by serine/threonine cyclin-dependent kinases (cdk) that form complexes with cyclins and operate in distinct phases of the cell cycle [Sherr, 1996; Morgan, 1997]. Aberrant control of cdk's is a central feature of the molecular pathology of cancer [Kamb, 1995; Vogt & Reed, 1998; Pavletich, 1999]; hence cdk's and their related pathways represent attractive targets in the development of anticancer therapeutics. Small molecule cdk inhibitors, including flavopiridol, roscovitine, UCN-01 and purvalanol A (Figure 58), which act by competing with ATP for binding at the catalytic site of the kinases, have been generated [Senderowicz, 2003]. In addition to arresting cell-cycle progression through the inhibition of multiple cdk's [Senderowicz, 2003], some of these inhibitors exhibit a variety of activities, including induction of apoptosis [Meijer et al, 1997], promotion of cell differentiation [Lee et al, 1999], interference with transcription [Rickert et al, 1996; Chao et al, 2000] and anti-angiogenic effects [Melillo et al, 1999]. Furthermore, the possibility of enhancing the activity of conventional chemotherapeutic agents and radiation by combination with cdk inhibitors has also been shown [Schwartz et al, 1997; Motwani et al, 1999; Shah & Schwartz, 2000; Schwartz et al, 2001; Shapiro et al, 2001; Jung et al, 2003]. The purine-based cdk inhibitor NU6140 (4-(6-cyclohexylmethoxy-9H-purin-2-ylamino)-N,N-diethyl-benzamide) (Figure 58) was derived from NU6102 (6-cyclohexylmethoxy-2-(4'-
sulfamoylanilino)purine), a potent and selective CDK2 inhibitor developed using structure-based drug design [Davies et al, 2002], as a cdk inhibitor with greater cellular potency.

![Figure 58. Chemical structure of NU6140 and purvalanol A.](image)

Survivin is expressed in a cell cycle-dependent manner and during mitosis it localizes to various components of the mitotic apparatus and associates with microtubules of the mitotic spindle [Giodini et al, 2002]. Its expression is controlled at transcriptional [Li & Altieri, 1999] and post-translational [O'Connor et al, 2000] levels. In this context, it has been demonstrated that cdk1-mediated phosphorylation of survivin on Thr\(^{34}\) is essential for the cytoprotective function of the protein [O'Connor et al, 2000]. Moreover, previous evidence indicated that targeting survivin by means of Purvalanol A, resulted in an increased sensitivity to paclitaxel in HeLa cells [O'Connor et al, 2002].
In this study we investigated the cellular effects of the novel cdk inhibitor NU6140 in relation to inhibition of cell proliferation and cell cycle progression, and ability to potentiate the apoptotic response to paclitaxel, in HeLa cells, in comparison to purvalanol A.

4.1. Effect of Cdk Inhibitors, Alone or in Combination with Paclitaxel, on Tumour Cell Growth

Clonogenic survival assays were performed to assess the anti-proliferative activity of NU6140 and purvalanol A, alone or in combination with paclitaxel. In a preliminary set of experiments, HeLa cervical carcinoma cells were treated with increasing concentrations of each cdk inhibitor alone. A concentration-dependent decline in cell survival was observed after treatment with both compounds, although NU6140 was somewhat more potent than purvalanol A as indicated by the three-fold lower concentration required to kill 50% of cells (IC$_{50}$ values: 2.3 ± 0.2 μM vs 8.7 ± 0.4 μM, respectively) (Figure 59; Table VIII).

We further assessed the cytotoxic effects of the cdk inhibitors in combination with paclitaxel. HeLa cells were treated with paclitaxel for 24 hours followed by a 24 hours-exposure to NU6140 or purvalanol A, and the opposite sequence was also tested. Both cdk inhibitors cooperated with paclitaxel to inhibit clonogenic cell survival (Table VIII). Specifically, sequential treatment with paclitaxel followed by each cdk inhibitor was more effective than the reverse treatment sequence, and induced an inhibitory
effect on surviving fraction greater than that expected by simple additivity of the effects of the two drugs (Table VIII). However, the most marked effect was obtained with the paclitaxel-NU6140 combination.

A marked effect of the paclitaxel-NU6140 combination on the surviving fraction was also confirmed in OAW42/e ovarian cancer cells. Conversely, a subadditive effect of the paclitaxel-NU6140 combined treatment was found in OAW42/Surv cells ectopically expressing survivin (Table IX).
Table VIII. Cytotoxic effect of NU6140 and purvalanol A against HeLa cells as single agents and in combination with paclitaxel.

<table>
<thead>
<tr>
<th>Agent/Combination</th>
<th>Concentration</th>
<th>Surviving fraction</th>
<th>Surviving fraction</th>
<th>E/O ratio</th>
<th>C.I. (^c)</th>
<th>I(^d)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Observed (O)</td>
<td>Expected(^a) (E)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Paclitaxel (nM)</td>
<td>1</td>
<td>0.76</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>2.5</td>
<td>0.34</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>5</td>
<td>0.12</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>NU6140 (µM)</td>
<td>1</td>
<td>0.70</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>2.5</td>
<td>0.47</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>5</td>
<td>0.14</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Purvalanol A (µM)</td>
<td>1</td>
<td>0.97</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>2.5</td>
<td>0.89</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>5</td>
<td>0.75</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Paclitaxel (nM)</td>
<td>1</td>
<td>0.50</td>
<td>0.53</td>
<td>1.06</td>
<td>1.14</td>
<td>0.96</td>
</tr>
<tr>
<td>+ NU6140 (µM)</td>
<td>2.5</td>
<td>0.05</td>
<td>0.16</td>
<td>3.2</td>
<td>0.47</td>
<td>0.77</td>
</tr>
<tr>
<td></td>
<td>5</td>
<td>0.002</td>
<td>0.02</td>
<td>10</td>
<td>0.29</td>
<td>0.71</td>
</tr>
<tr>
<td>Paclitaxel (nM)</td>
<td>1</td>
<td>0.62</td>
<td>0.74</td>
<td>1.19</td>
<td>0.90</td>
<td>0.80</td>
</tr>
<tr>
<td>+ Purvalanol A (µM)</td>
<td>2.5</td>
<td>0.18</td>
<td>0.30</td>
<td>1.7</td>
<td>0.60</td>
<td>0.80</td>
</tr>
<tr>
<td></td>
<td>5</td>
<td>0.02</td>
<td>0.09</td>
<td>4.5</td>
<td>0.44</td>
<td>0.93</td>
</tr>
<tr>
<td>NU6140 (µM)</td>
<td>1</td>
<td>0.64</td>
<td>0.53</td>
<td>0.87</td>
<td>1.51</td>
<td>1.43</td>
</tr>
<tr>
<td>+ Paclitaxel (nM)</td>
<td>2.5</td>
<td>0.09</td>
<td>0.16</td>
<td>1.78</td>
<td>0.76</td>
<td>0.84</td>
</tr>
<tr>
<td></td>
<td>5</td>
<td>0.012</td>
<td>0.02</td>
<td>1.67</td>
<td>0.45</td>
<td>0.97</td>
</tr>
<tr>
<td>Purvalanol A (µM)</td>
<td>1</td>
<td>0.66</td>
<td>0.74</td>
<td>1.12</td>
<td>0.95</td>
<td>0.92</td>
</tr>
<tr>
<td>+ Paclitaxel (nM)</td>
<td>2.5</td>
<td>0.18</td>
<td>0.30</td>
<td>1.67</td>
<td>0.70</td>
<td>0.83</td>
</tr>
<tr>
<td></td>
<td>5</td>
<td>0.03</td>
<td>0.09</td>
<td>3.00</td>
<td>0.53</td>
<td>1.09</td>
</tr>
</tbody>
</table>

\(^a\) calculated as the product of the surviving fractions observed for individual drugs;  
\(^b\) (surviving fraction observed) / (surviving fraction expected)  
\(^c\) Combination index according to Chou & Talalay [1984]  
\(^d\) Isobologram analysis according to Berenbaum [Berenbaum, 1989]
Table IX. Cytotoxic effect of NU6140 against OAW42/e and OAW42/Surv cells as single agent and in combination with paclitaxel.

<table>
<thead>
<tr>
<th>Agent/Combination</th>
<th>Concentration</th>
<th>Surviving fraction Observed (O)</th>
<th>Surviving fraction Expected (E)</th>
<th>E/O ratio&lt;sup&gt;b&lt;/sup&gt;</th>
<th>C.I.&lt;sup&gt;c&lt;/sup&gt;</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>OAW42/e</strong></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Paclitaxel (nM)</td>
<td>1</td>
<td>0.81</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>2.5</td>
<td>0.56</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>5</td>
<td>0.14</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>NU6140 (µM)</td>
<td>1</td>
<td>0.83</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>2.5</td>
<td>0.29</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>5</td>
<td>0.17</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Paclitaxel (nM)</td>
<td></td>
<td></td>
<td>0.82</td>
<td>0.67</td>
<td>2.09</td>
</tr>
<tr>
<td>+ NU6140 (µM)</td>
<td>1</td>
<td></td>
<td>0.08</td>
<td>0.16</td>
<td>2.00</td>
</tr>
<tr>
<td></td>
<td>2.5</td>
<td></td>
<td>0.0023</td>
<td>0.023</td>
<td>10</td>
</tr>
<tr>
<td>NU6140 (µM)</td>
<td>1</td>
<td>0.43</td>
<td>0.67</td>
<td>1.55</td>
<td>0.95</td>
</tr>
<tr>
<td>+ Paclitaxel (nM)</td>
<td>1</td>
<td></td>
<td>0.13</td>
<td>0.16</td>
<td>1.23</td>
</tr>
<tr>
<td></td>
<td>2.5</td>
<td></td>
<td>0.014</td>
<td>0.023</td>
<td>1.64</td>
</tr>
<tr>
<td><strong>OAW42/Surv</strong></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Paclitaxel (nM)</td>
<td>1</td>
<td>0.99</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>2.5</td>
<td>0.90</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>5</td>
<td>0.75</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>NU6140 (µM)</td>
<td>1</td>
<td>0.89</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>2.5</td>
<td>0.30</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>5</td>
<td>0.18</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Paclitaxel (nM)</td>
<td></td>
<td></td>
<td>0.85</td>
<td>0.88</td>
<td>1.03</td>
</tr>
<tr>
<td>+ NU6140 (µM)</td>
<td>1</td>
<td></td>
<td>0.30</td>
<td>0.27</td>
<td>0.90</td>
</tr>
<tr>
<td></td>
<td>2.5</td>
<td></td>
<td>0.16</td>
<td>0.13</td>
<td>0.81</td>
</tr>
<tr>
<td>NU6140 (µM)</td>
<td>1</td>
<td>0.87</td>
<td>0.88</td>
<td>1.01</td>
<td>1.25</td>
</tr>
<tr>
<td>+ Paclitaxel (nM)</td>
<td>1</td>
<td></td>
<td>0.32</td>
<td>0.27</td>
<td>0.84</td>
</tr>
<tr>
<td></td>
<td>2.5</td>
<td></td>
<td>0.18</td>
<td>0.13</td>
<td>0.72</td>
</tr>
</tbody>
</table>

<sup>a</sup> calculated as the product of the surviving fractions observed for individual drugs;  
<sup>b</sup> (surviving fraction observed) / (surviving fraction expected)  
<sup>c</sup> Combination index according to Chou & Talalay [1984].
4.2. Effects of Cdk Inhibitors on Cell Cycle Progression and Apoptosis

Flow cytometric analysis of propidium iodide-stained HeLa cells showed that a 24-hours treatment with NU6140 and purvalanol A resulted in a concentration dependent decrease in the number of cells in the G1 phase, and a concomitant increase in the sub-G1 apoptotic cell population (Figure 60A). Moreover, chromatin condensation and DNA fragmentation, which are common features of apoptosis, were detected by fluorescence microscopy after staining with propidium iodide of HeLa cells treated with NU6140 and purvalanol A. The percentage of cells with an apoptotic nuclear morphology, as determined on the overall cell population, increased in a concentration-dependent fashion after treatment with both inhibitors (Figure 60B).

Figure 60. Effect of NU6140 and purvalanol A on cell cycle and apoptosis. HeLa cells were exposed to 1% (v/v) DMSO (control cells) or 1, 10, 100 µM NU6140 and purvalanol A. (A) Cell cycle distribution was assessed by flow cytometry on cells stained with propidium iodide. The percentage of cells in sub-G1 (grey column), G1 (empty column), S (hatched column) and G2/M phase (blue column) are shown. Data represents the means of the three independent experiments; sd were always within 5%. (B) The percentage of cells with an apoptotic morphology was assessed by fluorescence microscopy. Data represent mean values ± sd of three independent experiments.
At the molecular level, treatment with NU6140 and purvalanol A resulted in a concentration-dependent increase in the catalytic activity of capase-9 and capase-3, as assessed by the *in vitro* hydrolysis of specific fluorogenic substrates (Figure 61).

**Figure 61. Caspase activation in HeLa cells after exposure to NU6140 and purvalanol A.**

Caspase-9 (blue column) and caspase-3 (red column) catalytic activity was determined by hydrolysis of the fluorogenic substrate LEHD-AFC and Ac-DEVD-AMC AMC respectively, in cells exposed to 1% (v/v) DMSO (control cells) or treated with 1, 10, 100 μM of NU6140 and purvalanol A for 24 hours. Data are expressed as relative fluorescence units (r.f.u.) and represent mean values ± sd of three independent experiments.

### 4.3. Effects of Cdk Inhibitors on Survivin Expression

To investigate the mechanisms by which NU6140 and purvalanol A induced apoptosis, we evaluated the expression of the anti-apoptotic gene survivin in cancer cells after drug exposure. Treatment of HeLa cells with NU6140 or purvalanol A induced a concentration-dependent decrease in the levels of survivin protein (Figure 62). A NU6140-induced inhibition of survivin
expression was also seen in OAW42/e and OAW42/Surv cells. However, in OAW42/Surv cells, which displayed a 2.5-fold higher basal level of survivin protein compared to OAW42/e cells, the protein abundance was consistently higher than in parental cells also after exposure to different NU6140 concentrations (Figure 62). Conversely, exposure to NU6140 failed to modulate the expression of other anti-apoptotic proteins, such as Bcl-2 and Bcl-xL, in all three cell lines (Figure 62).

![Figure 62. Down-regulation of survivin protein by cdk inhibitor treatment.](image)

Tumour cells were exposed to 1% (v/v) DMSO (control cells) or treated with 1, 10, 100 µM of NU6140 and purvalanol A for 24 hours. Survivin, Bcl-2 and Bcl-xL protein expression was assessed by Western blot. β-actin was used as a control for loading.

Furthermore, RT-PCR analysis in HeLa cells demonstrated that survivin mRNA levels were reduced by both cdk inhibitors (Figure 63), suggesting that NU6140 and purvalanol A modulate survivin expression at the transcriptional level.
Figure 63. Down-regulation of survivin mRNA by cdk inhibitor treatment.
Tumour cells were exposed to 1% (v/v) DMSO (control cells) or treated with 1, 10, 100 μM of NU6140 and purvalanol A for 24 hours. Survivin mRNA expression was assessed by RT-PCR. β-actin was used as a control for amplification.

The possibility that NU6140 and purvalanol A inhibit survivin activation by interfering with cdk1, a kinase which is known to activate survivin through phosphorylation of its Thr\textsuperscript{34} residue [O'Connor et al, 2002] was also studied. Results from immunoblotting experiments using a phospho-specific antibody indicated that the levels of the active, Thr\textsuperscript{34}-phosphorylated form of survivin were reduced in a concentration-dependent fashion following treatment of HeLa cells with NU6140 and purvalanol A (Figure 64).
4.4. Effects of Combined Treatment with Paclitaxel and Cdk Inhibitors on Cell Cycle Phase Distribution and Apoptosis

Next, we examined cell cycle perturbations induced by paclitaxel alone or paclitaxel followed by the cdk inhibitors (Figure 65). HeLa cells treated with paclitaxel alone for 24 hours accumulated in the G2/M phase, and a fraction of sub-G1 apoptotic cells, corresponding to 19 ± 1.2% of the overall cell population, was observed. When cells were treated sequentially with paclitaxel and NU6140, a reduction in G2/M arrested was observed, and 86 ± 11% of cells underwent apoptosis. Such an apoptosis rate was significantly (p<0.01) higher than that observed after sequential treatment of cells with paclitaxel and purvalanol A (37 ± 8%) (Figure 65). However, it must be stressed that results of cell cycle analysis of cells undergoing apoptosis
have to be considered with some caution, since partial loss of DNA during the apoptotic process can make it difficult to distinguish between S-phase and G2/M-phase cells.

Figure 65. Effect of combined treatment with paclitaxel followed by cdk inhibitors on cell cycle progression and apoptosis. 
(A) HeLa cells were incubated with paclitaxel (50 nM), NU6140 (10 μM) or purvalanol A (10 μM) alone for 24 hours, or with paclitaxel (50 nM) for 24 hours followed by a 24 hours-exposure to cdk inhibitors (10 μM). Following treatment cells were analysed by flow cytometry. (B) Quantification of sub-G1 apoptotic cells. Data represent mean values ± sd of three independent experiments. *p<0.01, Student’s t test.
We then assessed whether the increases apoptotic response induced by combined treatments was sustained by caspase activation in HeLa cells. Immunoblotting results indicated that treatment with paclitaxel and purvalanol A, singly administered or in combination, did not induce any proteolytic processing of the enzymes. Caspase-9 cleavage was detected only after the sequential treatment of cells with paclitaxel and NU6140 (Figure 66). Moreover, in response to NU6140, the 32 kDa pro-caspase-3 was partially cleaved to a 20 kDa intermediated form, whereas a complete activation of caspase-3 was observed after sequential treatment with paclitaxel followed by NU6140, as indicated by the presence of both the 20 and 17 kDa active cleaved products (Figure 66).

![Figure 66. Proteolytic processing of caspase-9 and caspase-3 by combined treatment of tumour cells with paclitaxel followed by cdk inhibitors.](image)

Cells were incubated with paclitaxel (50 nM), NU6140 (10 μM) or purvalanol A (10 μM) alone for 24 hours, or with paclitaxel (50 nM) for 24 hours followed by a 24 hours-exposure to cdk inhibitors (10 μM). The proteolytic processing of caspase-9 and caspase-3 was assessed by Western blot. Lane 1, ctr; lane 2, paclitaxel; lane 3, NU6140; lane 4 paclitaxel + NU6140; lane 5, purvalanol A; lane 6, paclitaxel + purvalanol A.
The proteolytic processing of caspase-9 and caspase-3 coincided with an increased catalytic activity of both enzymes. Specifically, caspase-9 and caspase-3 activity, was about 3-fold ($p<0.001$) and 4-fold ($p<0.01$) higher, respectively, in HeLa cells treated with paclitaxel followed by NU6140 than in cells exposed to single agents or paclitaxel-purvalanol A combination (Figure 67).

![Figure 67. Activation of caspases by combined treatment of HeLa cells with paclitaxel followed by cdk inhibitors.](image)

Cells were incubated with paclitaxel (50 nM), NU6140 (10 μM) or purvalanol A (10 μM) alone for 24 hours, or with paclitaxel (50 nM) for 24 hours followed by a 24 hours-exposure to cdk inhibitors (10 μM). Caspase-9 (empty column) and caspase-3 (blue column) catalytic activity as determined by hydrolysis of the fluorogenic substrate LEHD-AFC and Ac-DEVD-AMC AMC, respectively. Data are expressed as relative fluorescence units (r.f.u.) and represent mean values ± sd of three independent experiments. *$p<0.01$, **$p<0.001$, Student’s t test.

Similarly, a 3-fold increase ($p<0.001$) in caspase-9 and caspase-3 catalytic activity was observed in OAW42/e cells exposed to paclitaxel followed by NU6140 compared to cells treated with individual agents (Figure 68). Conversely, a modest and non statistically significant increase in caspase
catalytic activities was found in OAW42/Surv cells treated with paclitaxel-NU6140 combination (Figure 68).

Figure 68. Activation of caspases by combined treatment of OAW42/e and OAW42/Surv cells with paclitaxel followed by cdk inhibitors.

Cells were incubated with paclitaxel (50 nM), NU6140 (10 μM) or purvalanol A (10 μM) alone for 24 hours, or with paclitaxel (50 nM) for 24 hours followed by a 24 hours-exposure to cdk inhibitors (10 μM). Caspase-9 (A) and caspase-3 (B) catalytic activity as determined by hydrolysis of the fluorogenic substrate LEHD-AFC and Ac-DEVD-AMC AMC, respectively, in OAW42/e (empty column) and OAW42/Surv (blue column) cells. Data are expressed as relative fluorescence units (r.f.u.) and represent mean values ± sd of three independent experiments. *p<0.001, Student’s t test.

4.5. Effects of Combined Treatment with Paclitaxel and Cdk Inhibitors on Survivin Activation

Finally, the effects of paclitaxel, alone or in combination with NU6140 and purvalanol A, on survivin activation, as indicated by the level of the Thr34-phosphorylated form of the protein, was assayed by immunoblotting. As expected, treatment with paclitaxel alone increased the level of phospho-survivin, whereas combined treatment with paclitaxel and cdk inhibitors
appreciably inhibited survivin phosphorylation, which was almost completely abrogated in cells exposed to the paclitaxel-NU6140 combination (Figure 69).

**Figure 69.** Effect of combined treatment of HeLa cells with paclitaxel followed by cdk inhibitors on survivin phosphorylation.

The phosphorylation of survivin on Thr\(^{34}\) residue was evaluated on HeLa cells treated with paclitaxel (50 nM), NU6140 (10 \(\mu\)M) or purvalanol A (10 \(\mu\)M) alone for 24 hours, or with paclitaxel (50 nM) for 24 hours followed by a 24 hours-exposure to cdk inhibitors (10 \(\mu\)M). Survivin was immunoprecipitated using the anti-human survivin antibody and analysed by Western blot with the antibody to phosphorylated Thr\(^{34}\).
Chapter 5
DISCUSSION
Apoptosis is an attractive and well controlled cell suicide program that is evolutionary conserved among all animals [Steller, 1995; Nagata, 1997; Hengartner, 2000]. Deregulation of the apoptotic pathway is implicated in the pathogenesis of a variety of human diseases, including cancer [Reed, 1999; Yuan et al, 2003]. Many cancer cells circumvent normal apoptotic mechanisms to prevent their self-destruction, which may be of fundamental significance in the development of malignancy [Kerr, 1994; Hale et al, 1996]. In addition to the Bcl-2 family, a second anti-apoptotic gene family IAP has been identified [Deveraux & Reed, 1999; Hay, 2000; Salvesen & Duckett, 2002]. Among the IAPs, survivin plays an important role in inhibiting apoptosis and regulating mitotic progression [Altieri & Marchisio, 1999]. Considering that apoptotic cell death is the major mode by which chemical and physical anticancer agents kill tumour cells, it appears reasonable that the inability to undergo programmed cell death is a major mechanism of the chemoresistance of tumour cells. As a consequence, the genes that control apoptosis provide interesting new targets for the rational development of strategies aimed at increasing the susceptibility of tumour cells to chemical and radiation treatment. In this context, the marked expression of survivin in cancer versus normal tissues [Altieri, 2003a] and its association with unfavourable disease outcome [Altieri, 2003a] have made survivin a promising therapeutic target for novel anticancer therapies [Altieri, 2003b].

To validate survivin as a potential therapeutic target in cancer cells, we evaluated the effects of the inhibition of survivin expression/activity on the proliferative potential, ability to undergo spontaneous apoptosis, and sensitivity to drug- and radiation-treatment of different tumour cell lines.
We first chose an approach based on the use of a hammerhead ribozyme since, due to its specific endoribonuclease activity, this small RNA molecule is able not only to specifically recognize its target RNA through complementary base pairing but also to cleave the substrate leading to its degradation and permanent inactivation [Sun et al, 2000]. These catalytic RNA motifs have received much attention in view of their potential usefulness for gene therapy due to their inherent simplicity, small size and ability to be incorporated into a variety of flanking sequence motifs without changing site-specific cleavage capacities. Moreover, the typical catalytic cycle of a ribozyme offers a considerable advantage with respect to the action mechanism of conventional antisense oligonucleotides [Sun et al, 2000]. Specifically, one molecule of hammerhead ribozyme can cleave several RNA target molecules, which implies that, theoretically, very low concentrations are required to obtain a significant biological effect. In fact, the efficacy of the ribozyme-mediated approach in inhibiting the expression of several cancer-related genes has been clearly demonstrated in a number of studies carried out on experimental human tumour models [Lewin & Hauswirth, 2001].

In the first part of the study we demonstrated the possibility to markedly attenuate the expression of the anti-apoptotic factor survivin in the JR8 human melanoma cell line, which inherently over-expresses the anti-apoptotic protein, by the use of a hammerhead ribozyme targeting a consensus sequence in exon 1 within survivin mRNA. This inhibitory effect was lost after inactivation of the catalytic core of the ribozyme (in JR8/mutRz cells), which strongly suggests specific cleavage activity of the anti-survivin ribozyme not only in the cell-free-system but also in intact cells. Active-
ribozyme transfectant cells showed enhanced sensitivity to topotecan and
cisplatin with respect to cells transfected with the mutant ribozyme, as
demonstrated by a reduced clonogenic cell survival and a lower IC_{50} value.
Such an increased susceptibility to drug treatment as a consequence of
survivin down-regulation was not observed for all DNA-interacting agents
tested. Although the molecular basis for this putative selectivity is presently
unknown, it is plausible that different signals are activated in response to
DNA damage, depending on the type of genotoxic lesion, with a variable
impact on the survivin pathway.

Ribozyme-transfectant melanoma cells also showed increased sensitivity
to γ-irradiation with respect to parental cells and cells transfected with the
mutant ribozyme, as demonstrated by a significantly reduced clonogenic cell
survival. Specifically, cells expressing the active ribozyme were characterized
by a survival curve with a reduced shoulder. Such a finding would suggest
that, in the clinical setting, survivin inhibition could improve tumour sensitivity
to fractionated therapy with multiple low radiation doses. Our results are in
accord with previous evidence obtained in pancreatic carcinoma cell lines
showing a direct relationship between the extent of survivin expression and
the degree of in vitro radioresistance [Asanuma et al, 2000]. The same
authors also showed that transduction of a dominant-negative mutant
survivin gene into the radioresistant PANC-1 pancreatic cancer cells
increased their radiation response [Asanuma et al, 2002]. Taken together
these results support the hypothesis that survivin is a molecular determinant
of radiation resistance.
In vitro sensitisation to drugs and radiation was paralleled by restoration of the susceptibility of JR8 cells expressing the active ribozyme to programmed cell death induced by the treatment. Such an enhanced apoptotic response was mediated by an increased activation of caspase-9 and caspase-3, which is consistent with the recognized function of survivin to counteract mitochondrial-death pathway [Altieri, 2003c; Beltrami et al, 2004]. However, it is still unclear whether survivin inhibits caspases through direct binding or indirectly, thereby requiring intermediate proteins [Reed, 2001]. Specifically, a possible direct interaction of survivin with caspase-9 has been reported by O'Connor et al [2000], whereas, more recently, Song et al [2003] suggested an alternative model for indirect inhibition of caspases by survivin based on its ability to physically interact with SMAC/Diablo. This mitochondrial factor, which is released into the cytosol in response to apoptotic stimuli, is known to bind to some IAPs (including XIAP, cIAP1, cIAP2 and livin), thus preventing them to inhibit caspases [Du et al, 2000; Vucic et al, 2002]. Accordingly to Song's model, the capability of survivin to sequester SMAC would allow other IAPs to block caspases without being antagonized. However, the possibility that survivin down-regulation also results in caspase-independent apoptosis was suggested by Liu et al [1998]. Specifically, they found the earliest pro-apoptotic event in melanoma cells transfected with a survivin dominant-negative mutant was nuclear translocation of mitochondrial apoptosis-inducing factor (AIF), known to trigger both apoptotic mitochondrial events and caspase-9 independent DNA fragmentation.

When tested in a human melanoma xenograft, ribozyme-mediated inhibition of survivin expression resulted in increased antitumorigenic activity
Discussion

of topotecan, as demonstrated by the significantly delayed tumour establishment. Based on our in vitro findings indicating an enhanced susceptibility to topotecan-induced apoptosis of JR8 cells expressing the active ribozyme, it is conceivable to hypothesize that such an increased apoptotic response also occurred in vivo. The delayed growth in nude mice of tumour cells containing the active ribozyme after topotecan treatment reflected the survival of a limited number of cells that escaped drug-induced apoptosis, presumably as a consequence of a heterogeneous expression of survivin. Our findings corroborate and extend previous results indicating the possibility to target survivin pathway to obtain an improved response to apoptosis-inducing anticancer drugs in in vivo tumour models [Olie et al, 2000; O'Connor et al, 2002; Wall et al, 2003]. In this context, Yamamoto et al [2002] showed that down-regulation of survivin by forced expression of its natural antisense, the effector cell protease receptor-1 [Altieri, 1995], resulted in enhanced sensitivity to cisplatin and 5-fluorouracil of the HT29 colon adenocarcinoma cell line transplanted into nude mice. O'Connor et al [2002] observed that sequential inhibition of p34^cdc2 by purvalanol A (that blocks p34^cdc2 phosphorylation on Thr^{34}, which seems to be essential for the cytoprotective function of survivin [Altieri, 2003d]) enhanced the antitumour activity of taxol in an MCF-7 breast cancer xenograft.

In contrast to that reported in the aferomentioned and other studies [Olie et al, 2000; Grossman et al, 2001; Mesri et al, 2001; Yamamoto et al, 2002], we did not observe any effect of survivin inhibition on proliferative potential, induction of spontaneous apoptosis and tumorigenicity of melanoma cells in the absence of other stimuli. It could be hypothesized that the concomitant
overexpression of other anti-apoptotic factors, such as Bcl-2 and Bcl-xL, and cell survival factors in JR8 cells might produce a cytoprotective effect and contribute to prevent programmed cell death in this tumour model. When JR8 cells previously exposed for 48 hours to 3 μM of the Bcl-2 antisense oligonucleotide G3139 (which reduced by 50% the endogenous expression of the Bcl-2 protein) were γ-irradiated, however, no significant variation in their radio-sensitivity profile was observed. Such a finding would indicate that this anti-apoptotic factor does not play a major role in determining radiation response of these cells [Folini M, unpublished data].

However, it should be stressed that in JR8/Rz cells, survivin expression was attenuated but not completely abrogated. Possibly inhibition below a certain threshold is insufficient to abrogate the anti-apoptotic effect as well as to efficiently interfere with the major survivin function of preserving the mitotic apparatus and allowing normal cell cycle progression, as indicated by the lack of spontaneous apoptosis observed in JR8/Rz, which were also characterized by an in vitro proliferative potential similar to that of parental cells. Interestingly, and in keeping with this hypothesis, when we transduced two human androgen-independent prostate cancer cell lines with a Moloney-based retroviral vector carrying the catalytic sequence of the ribozyme Rz, we were able to select polyclonal cell populations characterized by a significant reduction of survivin expression compared to control cultures expressing the catalytically inactive ribozyme.

To obtain a high level of expression of the ribozyme within tumour cells and to target it to the same cellular compartment as its target mRNA substrate, we embedded the ribozyme sequence in the context of the...
adenoviral VA1 gene and delivered it to cells through a retroviral vector. The gene is actively transcribed by RNA polymerase III in a variety of cell types, and the resulting transcript is characterized by a cytoplasmic localization [Prislei et al, 1997]. Moreover, it has been demonstrated that embedding a ribozyme in the context of this exogenous RNA molecule provides appropriate conformation for catalytic activity and stability [Cagnon & Rossi, 2000].

As expected, ribozyme-mediated down-regulation of survivin expression in polyclonal cell populations obtained from both DU145 and PC-3 cell lines resulted in a significant increase in the rate of spontaneous apoptosis, which was accompanied by the proteolytic activation of caspase-9 and caspase-3 and a significant increase in their in vitro catalytic activity. Inhibition of survivin expression also caused an increased apoptotic response of DU145/Rz cells to the anticancer drug cisplatin. Consistent with a major role of survivin in preserving the mitotic apparatus and allowing normal mitotic progression [Giodini et al, 2002], we found the appearance of a polyploid cell subpopulation in the DU145/Rz cell line as a possible consequence of the almost complete inhibition of survivin expression. The lack of evidence of polyploid cells in the PC-3/Rz cell line, in which a larger fraction of residual survivin protein was still present, further supports the hypothesis that inhibition below a certain threshold might be insufficient to abrogate survivin function in the control of mitotic progression. Moreover, a significant reduction of the in vitro proliferative potential, as indicated by a markedly increased doubling time, was only appreciable in DU145/Rz cells.
As regards the effect of survivin inhibition on the tumorigenic potential of prostate cancer cells, we found that DU145 cells were unable to grow when xenografted in athymic mice. Based on the results obtained in DU145/Rz cells as well as on previous evidence derived from in vivo studies (in which down-regulation of survivin through the use of survivin Thr$^{34}$-Ala mutant suppressed de novo tumour formation and inhibited the growth of established tumours in immunodeficient mice) [Grossman et al, 2001; Mesri et al, 2001], it could be assumed that the decreased tumorigenic potential of DU145/Rz was due an enhanced spontaneous apoptosis and reduced proliferative potential as a consequence of survivin inhibition.

The discovery that synthetic 21-23 nucleotide RNA duplexes (siRNAs) can trigger an RNAi response in mammalian cells and induce strong inhibition of specific gene expression [Elbashir et al, 2001] has opened the door to the therapeutic use of siRNAs. Specifically, several studies on experimental human tumour models have demonstrated the feasibility of this approach for the inhibition of a variety of cancer-related genes [Izquierdo, 2005]. Therefore, we used this interference approach to markedly reduce the expression of the cytoprotective factor survivin in human androgen-independent prostate cancer cells. Since it appears that target specificity can be attained depending on the position and sequence of a given siRNA [Ryther et al, 2005] in this study we used four 21-mer double-stranded siRNAs targeting different regions within survivin mRNA. A marked, though variable, extent of survivin inhibition in terms of mRNA and protein expression was observed with the different siRNAs, indicating the specificity of the inhibitory approach, which was also confirmed by the lack of an effect
on the expression of other anti-apoptotic proteins. However, the evidence of a modest but definite degree of survivin inhibition, mainly appreciable at the protein level, following transfection of cells with a control, unrelated siRNA suggests the occurrence of minor off-target effects induced by siRNAs. In this context microarray experiments aimed at evaluating whether global gene expression patterns change in the presence or absence of siRNAs already suggested that a small number of nontarget transcripts may also be affected [Semizarov et al, 2003].

As expected by our previous results indicating that interference with survivin function by the use of the hammerhead ribozyme led to increased apoptotic cell death in human androgen-independent prostate cancer cells, siRNA-mediated down-regulation of survivin expression in DU145 cells resulted in a significant decline of cell proliferation and an increase in the rate of spontaneous apoptosis, with a significant enhancement of in vitro caspase-9 catalytic activity in DU145 cells transfected with survivin-specific siRNAs. The possibility to restore the susceptibility to programmed cell death as a consequence of survivin gene silencing appears particularly relevant in human androgen-independent prostate cancer cells. In fact, one of the main events associated with the conversion to an androgen-independent phenotype and the concomitant loss of susceptibility not only to hormonal manipulation but also to chemotherapy and radiotherapy is an increased resistance to apoptosis due to dysregulation of the apoptotic pathways [Howell, 2000]. Specifically, a role for survivin in mediating resistance of prostate cancer cells to anti-androgen therapy with flutamide has been recently reported [Zhang et al, 2005].
Several *in vitro* and *in vivo* studies indicated that survivin down-regulation was able to sensitize human tumour cells of different histological origin to conventional chemotherapeutic drugs including taxol, doxorubicin, etoposide and cisplatin [Olie *et al*, 2000; Hayashi *et al*, 2005; Zhang *et al*, 2005] as well as to ionizing radiation [Lu *et al*, 2004; Kami *et al*, 2005]. However, thus far, no data are available concerning the effect of survivin down-regulation on the activity of ansamycin antibiotics, such as geldanamycin and 17-AAG, which inhibit Hsp90’s chaperone function by targeting its ATPase activity [Schulte & Neckers, 1998]. Hsp90 inhibition results in proteasomal degradation of client proteins, leading to potent antitumour activity in experimental models [Kelland *et al*, 1999; Hostein *et al*, 2001]. In fact, although Hsp90 is highly expressed in most cells, Hsp90 inhibitors selectively kill cancer cells compared to normal cells. The molecular mechanism of such tumour selectivity is the result of an activated, high-affinity conformation of Hsp90 in tumour cells [Kamal *et al*, 2003]. Hsp90 inhibitors have been used as probes to define the biological function of the chaperone at the molecular level and to validate it as a novel target for cancer therapy. One of these inhibitors, 17-AAG, has entered clinical trials, which served as proof of principle that Hsp90 function can be modulated pharmacologically without undue toxicity in humans [Workman, 2003]. The search for second-generation analogues with potential preferential pharmacological features is actively pursued. However, the best way to use Hsp90 inhibitors as anticancer agents remains to be defined, also because of the limited knowledge of the determinants of cellular sensitivity to these compounds.
We showed that the level of survivin expression influences the *in vitro* response of DU145 human prostate cancer cells to 17-AAG as suggested by the supra-additive cytotoxic effect observed after sequential treatment with a survivin-specific siRNA and the Hsp90 inhibitor, which was accompanied by a significantly increased caspase-9-dependent apoptotic response. This chemosensitising effect seems to be independent of the inherent susceptibility to 17-AAG of the tumour cell system, since it was also observed in PC-3 cell, which are considerably more resistant to the Hsp90 inhibitor than DU145 cells. Moreover, since 17-AAG itself induces an inhibition in survivin expression only when used at high concentrations (500 and 1000 ng/ml), it is unlikely that the supra-additive cytotoxic effects we observed with the survivin siRNA2-17-AAG sequential treatment at lower drug concentrations were due to a cooperative effect of the two agents in inducing survivin depletion. Our findings indicate that 17-AAG is more effective in cancer cells expressing reduced levels of survivin and suggest the opportunity to design combined treatments including survivin inhibitors and 17-AAG and test their antitumour potential against androgen-independent prostate cancer.

It has been previously reported that 17-AAG treatment reduced the expression of the androgen receptor (AR) in human prostate cancer xenografts and inhibited their growth in the animal [Solit *et al*, 2002]. Specifically, 17-AAG induced degradation of both wild-type and mutant AR, thus suggesting that this drug may be particularly effective in the treatment of androgen-independent prostate cancer. In fact, in a subset of patients treated with AR agonists, clinical progression is associated with AR gene
amplification or mutation [Cabrespine et al, 2004], which may result in sufficient AR pathway activation to allow tumour growth at low levels of testosterone or following constitutive ligand-independent activation of the receptor.

The specific inhibition of survivin levels combined with the collapse of Hsp90 function by ansamycin antibiotics would be expected to exert a strong antitumour effect by disabling multiple signalling networks required for prostate cancer cell maintenance. Moreover, we recently demonstrated that a peptidomimetic antagonist of the survivin-Hsp90 complex structurally different from 17-AAG, shepherdin, inhibited the chaperone activity and exhibited potent and selective anticancer activity in preclinical models [Plescia et al, 2005].

There is a widely diffused opinion that RNAi provides a powerful tool for targeted inhibition of gene expression, with respect to conventional antisense strategies (i.e. ribozymes), presumably because it relies on a natural process. Despite the unique assumed potential of RNAi, limitations in the use of this approach, such as the possibility that some mammalian cells may not be susceptible to RNAi, have been described. Cellular uptake and co-localization to the specific target site within cells represent the main hurdles that have to be overcome for an efficient inhibition of gene expression. Although there are still no means to improve co-localization to the target site and to increase the efficacy of siRNAs in the presence of hardly accessible target RNA, a number of specific strategies have been demonstrated to be effective in inducing a sequence-directed colocalization of ribozymes and to improve their efficacy at the target site [Lee et al, 1999].
Ribozymes as well as siRNAs can lead to nonsequence specific effects (off-target effects) that are strongly dependent on the concentration of oligomers. However, it should be stressed that the double-stranded siRNAs may result in two single stranded oligomers which yield more pronounced off-target effects than those obtained with an equal molar amount of ribozymes [Scherer & Rossi, 2003]. However, lack of a study aimed to comparatively evaluate the efficacy of ribozymes and siRNAs in inhibiting the expression of the same gene on the same experimental systems makes it difficult to predict which is the better approach to be exploited for therapeutic purposes.

Whether selective inhibition of survivin can be used as a therapeutic modality aimed to inhibit the growth and enhance the sensitivity to specific anticancer drugs of melanoma and androgen-independent prostate cancer is an interesting issue that deserves further investigation. However, since multiple molecular pathways seem to play a role in mediating treatment resistance in these malignancies [Howell et al, 2000; Satyamoorthy et al, 2001], inhibition of a single target could be insufficient to adequately control tumour growth. In this context, exploration of additive or synergistic effects of combinations of selective inhibitors targeting different cellular pathways in preclinical models of melanoma and androgen-independent prostate cancer could provide the rational basis for the design of new multi-target clinical therapies.

Finally, since most human malignancies show aberrations in cell cycle control, the pharmacological modulation of cdks may be an important approach for the therapy of cancer. In this context, we evaluated the cellular effects of the purine derivative NU6140, a novel cdk inhibitor, in comparison
to purvalanol A, in HeLa cervical carcinoma, and OAW42/e and OAW42/Surv ovarian cancer cell lines. Both cdk inhibitors induced an impairment of cell cycle progression with a concentration-dependent accumulation of cells in the G1 compartment, which was accompanied by a decline of cell growth and the induction of an apoptotic response. Treatment with NU6140 and purvalanol A also inhibited the expression of survivin by negatively interfering with the transcription of the gene. Moreover, NU6140- and purvalanol A-treated cells exhibited a lower abundance of the Thr34-phosphorylated form of survivin, possibly as a consequence of drug-induced inhibition of cdk1 catalytic activity. It has been shown that during mitosis survivin physically associates with cdk1, and that phosphorylation on its Thr34 residue by cdk1 is a requirement for survivin-mediated cytoprotection [O’Connor et al, 2000]. Moreover, one of the mechanisms by which cdk1-mediated phosphorylation regulates survivin seems to be by increasing its stability at mitosis [O’Connor et al, 2002]. No appreciable interference with the expression of other anti-apoptotic proteins, such as Bcl-2 and Bcl-xL, was observed after exposure of tumour cells to NU6140.

Taking into account the ability of NU6140 and purvalanol A to downregulate survivin, we tested the ability of the inhibitors to increase paclitaxel cytotoxicity. Results from preclinical studies as well as clinical data suggest a direct link between survivin expression and tumour cell susceptibility to paclitaxel. Initial reports showed that the forced expression of survivin was able to counteract apoptosis induced by paclitaxel in NIH3T3 fibroblasts [Liu et al, 2004]. We previously demonstrated that stable transfection of human ovarian carcinoma cells with survivin cDNA caused a
four- to six-fold increase in resistance to paclitaxel with a concomitant reduction in the apoptotic response of the cells to the drug [Zaffaroni et al, 2002]. The increased resistance of ovarian cancer cells ectopically expressing survivin to paclitaxel was also confirmed in the present study. These findings were indirectly supported by similar observations obtained analysing clinical tumour material where high levels of survivin protein expression, as detected by immunohistochemistry in advanced ovarian carcinomas, were significantly associated with clinical resistance to a paclitaxel/platinum-based regimen. Specifically, in these patients survivin overexpression correlated with a lower clinical or pathologic complete remission rate than absent/low protein expression [Zaffaroni et al, 2002].

The current results demonstrates that combination treatment of HeLa cells with paclitaxel and cdk inhibitors produced a sequence-dependent synergistic effect. Specifically, exposure of paclitaxel treated cells to NU6140 or purvalanol A strongly decreased clonogenic cell survival and increased caspase-9-mediated apoptotic response. However, such an enhancement was significantly greater for NU6140 than for purvalanol A. A synergistic effect of the paclitaxel-NU6140 combination, which was accompanied by a significantly enhanced caspase-9 and caspase-3 mediated apoptotic response was also observed in OAW42/e ovarian cancer cells. Conversely, a subadditive effect of the paclitaxel-NU6140 combined treatment and a lack of significant caspase activation was found in OAW42/Surv cells, which ectopically expressed survivin and showed a considerably higher level of survivin protein expression compared to OAW42 parental cells. Sequential treatment of HeLa cells with cdk inhibitors greatly reduced (or almost
completely abrogated, in the case of NU6140) the expression of the Thr$^{34}$-phosphorylated form of survivin, which, conversely, was significantly increased after treatment with paclitaxel alone. These data are consistent with a recently proposed model according to which microtubule stabilization by poisons such as paclitaxel engages a survival pathway that depends on elevated activity of cdk1 kinase activity and increased phosphorylation and expression of survivin [O'Connor et al, 2002]. These authors demonstrated that sequence-specific inhibition of cdk1 kinase with purvalanol A after paclitaxel treatment in HeLa cells removed this survival checkpoint and promoted strong antitumour activity in vitro and in vivo. As shown in the studies described here, NU6140 induces greater potentiation of paclitaxel cytotoxicity than purvalanol A, despite the generally lower potency of NU6140 as an inhibitor of cdks in purified enzyme inhibition assays. Studies with NU6140 in the SKUT1B uterine tumour cell line have shown that following exposure to an extracellular concentration of 10 µM NU6140 for 4 hours, cellular levels can exceed 200 pmole/10$^6$ cells, i.e. approximately 200 µM [Thomas H & Newell DR, unpublished results]. Hence the greater potentiation of paclitaxel cytotoxicity induced by NU6140 could in part be due to the preferential cellular accumulation of the compound by, as yet, undefined mechanisms. Moreover, although it has not been formally investigated in this study, the possibility that NU6140 inhibits the phosphorylation of the carboxyl-terminal domain of RNA polymerase II and interferes with DNA transcription and RNA processing, as already demonstrated for the cdk inhibitor flavopiridol [Li et al, 1998], cannot be excluded.
Results from our study indicate that NU6140 can potentiate the apoptotic effect of paclitaxel in cancer cells, and supports the hypothesis that inhibition of survivin phosphorylation, with the consequent disruption of the cdk1-mediated survival checkpoint, is a major mechanism. This may provide a rational approach to enhance the therapeutic efficacy of paclitaxel in the clinical setting. In fact, based on the evidence derived from preclinical studies, which demonstrate the concept of cell cycle-mediated drug resistance, the combination of cdk inhibitors with standard cytotoxic agents is now emerging as a promising approach to cancer therapy.

Overall, our results obtained from different studies aimed at targeting survivin expression/activity by means of different approaches demonstrated that inhibition of this cytoprotective factor was able to promote spontaneous apoptosis in tumour cells and to enhance the efficacy of several types of conventional treatments including chemotherapy and radiotherapy. Understanding how chemotherapeutic agents induces apoptosis is critical to design better anticancer treatments. To this purpose, results from our studies could have pharmacological implications for the improvement of antitumour therapy and are expected to provide a rational basis for the design of new therapeutic interventions based on the integration of different approaches.
Chapter 6

FUTURE PERSPECTIVES
As previously assessed, the genes that control apoptosis provide interesting new targets for the rational development of strategies aimed at increasing the susceptibility of tumour cells to chemical treatment. Considering the multitude of events involved in the response to drug-induced damage, it is reasonable to presume that approaches based on the simultaneous targeting of different genes would have a greater impact on the final outcome of the drug exposure in tumour cells than the modulation of a single factor. In this context, in order to enhance the susceptibility of cancer cells to apoptosis-inducing chemotherapeutic agents, we propose to develop strategies for the simultaneous inhibition of different anti-apoptotic factors in tumour cells.

Specifically, we propose to assess the effects of the down-regulation of survivin with the contemporary inhibition of the:

- expression of Apollon/BRUCE, through the use of chemically synthesised siRNAs;
- activity of XIAP, through the use of synthetic peptides.

*Development of siRNAs targeting Apollon/BRUCE*

Apollon/BRUCE is a recently identified member of the IAP family with unusual properties [Hauser *et al*, 1998]. It is a very large membrane-associated protein that contains the BIR and the ubiquitin-conjugating enzyme domains at amino- and carboxy-terminals, respectively [Hauser *et al*, 1998; Chen *et al*, 1999]. This protein is overexpressed in some drug-resistant cancer cells [Chen *et al*, 1999; Hao *et al*, 2004]. Unlike other mammalian
IAPs Apollon/BRUCE is essential for viability of various cell lines [Qiu et al, 2004] and the knockout of Apollon/BRUCE in mice causes embryonic or neonatal lethality [Hao et al, 2004]. It has been shown that Apollon/BRUCE is essential to inhibit apoptosis by promoting ubiquitination and proteasomal degradation of precursor and mature forms of Smac/DIABLO and caspase-9, but not the effector caspase-3 [Hao et al, 2004; Qiu & Goldberg, 2005]. Because it is important in inhibiting apoptosis under normal conditions, degradation of Apollon/BRUCE must be an important step in the initiation of the apoptotic process. We propose to use chemically synthesised siRNAs directed against Apollon/BRUCE, alone or in association with siRNA targeting survivin, to improve the chemosensitivity profiles of human tumour cells overexpressing this factor.

**Development of Smac peptides able to interact with XIAP**

It has been demonstrated that during the process of apoptosis, the inhibitory function of XIAP (a ubiquitous IAP-family member) can be antagonized by Smac/DIABLO, which is also released from mitochondria as cytochrome c [Thomadaki & Scorilas, 2006]. Smac/DIABLO is a dimeric protein and is post-translationally processed in mitochondria [Du et al, 2000; Verhagen et al, 2000]. The amino terminus of processed Smac/DIABLO, starting with the residues AVPI, has been shown to be necessary and sufficient for removal of inhibition of caspase-9 by XIAP [Chai et al, 2000]. Structural studies demonstrated that the four hydrophobic amino acids, Ala-Val-Pro-Ile (AVPI) residues at the amino terminus of mature Smac/DIABLO
interact specifically and tightly with a conserved groove within the XIAP BIR3 domain, and neutralise XIAP inhibition of caspase-9 by competing for the same specific binding site of XIAP with caspase-9 [Chai et al, 2000; Wu et al, 2000]. We propose to use peptides derived from the amino terminus of Smac/DIABLO to inhibit the anti-apoptotic function of XIAP in human cancer cell lines. To favour cellular uptake, Smac/DIABLO peptides will be conjugated with internalization peptides such as Antennapedia or HIV-Tat. The chemosensitivity effect of these peptides, single administered or in combination with siRNA targeting survivin, will be evaluated in different human tumour cell lines.
Chapter 7

BIBLIOGRAPHY
Chapter 7

Bibliography


Baidya N, Ammons GE, Matulic-Adamic J, Karpeisky AM, Beigelman L & Uhlenbeck OC. Functional groups on the cleavage site pyrimidine nucleotide are required for stabilization of the hammerhead transition state. RNA 1997; 3:1135-1142.


Bilim V, Kasahara T, Hara N, Takahashi K & Tomita Y. Role of XIAP in the malignant phenotype of transitional cell cancer (TCC) and therapeutic


Chapter 7

BIBLIOGRAPHY

Chen Y, Li X & Gegenheimer P. Ribonuclease P catalysis requires Mg$^{2+}$ coordinated to the pro-RP oxygen of the scissile bond. Biochemistry 1997; 36:2425-2438.


Clem RJ & Miller LK. Control of programmed cell death by the baculovirus genes p35 and IAP. Mol Cell Biol 1994; 14:5212-5222.


Crooke ST. Molecular mechanisms of action of antisense drugs. Biochim Biophys Acta 1999; 1489: 31-44.


Foster AC & Sympson RH. Self cleavage of virusoid RNA is performed by the proposed 55-nucleotide active site. Cell 1987; 50:9-16.


Lee NS, Bertrand E & Rossi J. mRNA localization signals can enhance the intracellular effectiveness of hammerhead ribozymes. RNA 1999; 5:1200-1209.


Noton EA, Colnaghi R, Tate S, Starck C, Carvalho A, Ko Ferrigno P & Wheatley SP. Molecular analysis of survivin isoforms: evidence that


Peter ME. The flip side of FLIP. Biochem J 2004; 382:e1-3.


Qiu XB, Markant SL, Yuan J & Goldberg AL. Nrdp1-mediated degradation of the gigantic IAP, BRUCE, is a novel pathway for triggering apoptosis. EMBO J 2004; 23:800-810.


Shimizu S & Tsujimoto Y. Proapoptotic BH3-only Bcl-2 family members induce cytochrome c release, but not mitochondrial membrane potential loss, and do not directly modulate voltage-dependent anion channel activity. Proc Natl Acad Sci USA 2000; 97:577-582.


Suyama E, Kawasaki H, Nakajima M & Taira K. Identification of genes involved in cell invasion by using a library of randomized ribozymes. Proc Natl Acad Sci USA 2003; 100:5616-5621


Tu SP, Cui JT, Liston P, Huajiang X, Xu R, Lin MC, Zhu YB, Zou B, Ng SS, Jiang SH, Xia HH, Wong WM, Chan AO, Yuen MF, Lam SK, Kung HF & Wong BC. Gene therapy for colon cancer by adeno-associated viral vector-


Appendix

ABBREVIATIONS
This appendix contains a key of the most common acronyms and abbreviations used in this thesis.

17-AAG = 17-allylamino-17-demethoxy-geldanamycin
Ac-DEVD-AMC = N-acetyl-Asp-Glu-Val-Asp-aldehyde-7-amino-4-methylcoumarin
Apaf-1 = Apoptotic protease activating factor-1
APS = Ammonium persulfate
ATCC = American Type Culture Collection
BIR = Baculoviral IAP Repeat
BSA = Bovine Serum Albumin
CARD = Caspase Recruitment Domain
cdk = Cyclin-Dependent Kinase
DD = Death Domain
DED = Death Effector Domain
DEPC = Diethylpirocarbonate
DISC = Death-Inducing Signalling Complex
DMSO = Dimethyl Sulfoxide
DOTAP = N-(1-(2,3 dioleoyloxy) propyl)-N,N,N-trimethylammoniummethyl sulphate
EDTA = Ethylenediaminetetraacetic Acid
FADD = Fas-Associated protein with Death Domain
Fas = Fibroblast-Associated protein
FBS = Fetal Bovine Serum
Flip = FADD-like interleukin-1-converting enzyme-inhibitory protein
Hsp90 = Heat Shock Protein 90
IAP = Inhibitor of Apoptosis Proteins
LB = Loading Buffer
LB medium = Luria-Bertani medium
LEHD-AFC = leu-glu-his-asp-7-amino-4-trifluoromethylcoumarin
PBS = Phosphate-Buffered Saline
RIP = Receptor-Interacting Protein
SDS = Sodium Dodecyl Sulfate  
TAE = TRIS-Acetate-EDTA  
TBE = Tris-Borate-EDTA  
TGS buffer = Tris-Glycine-SDS buffer  
TNF = Tumour Necrosis Factor  
TNF-R = Tumour Necrosis Factor Receptor  
TRADD = TNF Receptor-Associated protein with Death Domain  
TRAIL-R = TNF-Related Apoptosis-Inducing Ligand Receptor  
TRAP = Telomere Repeat Amplification Protocol  
TUNEL = Terminal dUTP Nick-End Labeling