Functional characterization of allelic variants of pulmonary adenoma susceptibility 1 (Pas1) genes for their cancer modifier activity

Thesis

How to cite:

For guidance on citations see FAQs.

© 2006 Federica Galbiati

Version: Version of Record

Copyright and Moral Rights for the articles on this site are retained by the individual authors and/or other copyright owners. For more information on Open Research Online’s data policy on reuse of materials please consult the policies page.

oro.open.ac.uk
FUNCTIONAL CHARACTERIZATION OF ALLELIC VARIANTS OF PULMONARY ADENOMA SUSCEPTIBILITY 1 (Pas1) GENES FOR THEIR CANCER MODIFIER ACTIVITY

Thesis Presented To
The Open University of London for the Degree of Doctor of Philosophy

Discipline: Life Sciences

February 23rd 2007

Sponsoring establishment:
Istituto Nazionale Tumori, Milan (Italy)
INDEX

LIST OF FIGURES .. 5

LIST OF TABLES ... 7

ABSTRACT ... 8

CHAPTER 1 INTRODUCTION ... 9

1.1 CANCER GENETICS: BASIC KNOWLEDGE 10
 1.1.1 Inherited and sporadic cancer ... 12
 1.1.2 Polygenic inheritance of predisposition to cancer 15
 1.1.3 Cancer modifier genes .. 16
1.2 GENETIC DETERMINANTS OF POLYGENIC TRAIT 18
 1.2.1 Linkage disequilibrium (LD) ... 22
1.3 LUNG CANCER .. 24
 1.3.1 Histological Types ... 26
1.4 MOUSE MODEL ... 30
 1.4.1 Mice for cancer studies ... 31
 1.4.2 Mouse inbred strains .. 32
 1.4.3 Mice for the study of Lung cancer .. 33
1.5 BACKGROUND AND AIM OF THE PROJECT 36

CHAPTER 2 MATERIAL AND METHODS .. 38

2.1 ANIMAL AND TREATMENT ... 39
 2.1.1 Mouse strains and DNAs .. 39
 2.1.2 Lung tumor induction .. 39
2.2 IDENTIFICATION AND ANALYSIS OF GENETIC VARIATIONS ... 39
 2.2.1 SNPs analysis ... 40
2.2.2 SSLPs analysis .. 42
2.2.3 Fine-mapping recombination breakpoint in CxB RI line. 42
2.3 PAS1 CANDIDATE GENE IDENTIFICATION 43
 2.3.1 Allele-specific expression of candidate genes in mouse lung tumors .. 44
2.4 STATISTICAL ANALYSIS .. 45
2.5 CANDIDATE GENES ANALYSIS ... 46
 2.5.1 Cell lines ... 46
 2.5.2 Cloning of allelic variants in a mammalian expression vector .. 46
 2.5.3 RNA expression .. 47
 2.5.4 Colony formation assays .. 49
 2.5.5 Protein and apoptosis analysis .. 49
 2.5.6 Immunofluorescence microscopy 50

CHAPTER 3 RESULTS ... 52
3.1 PAS1 CONTAINING REGION ... 53
 3.1.1 Physical delimitation of the Pas1 locus 53
 3.1.2 Pas1 haplotype .. 66
 3.1.3 Coding region nucleotide polymorphism analysis 68
3.2 CANDIDATE GENES FUNCTIONAL ANALYSIS 71
 3.2.1 Allele-specific expression of candidate genes in mouse lung tumors .. 71
 3.2.2 Apoptosis analysis in candidate genes 81
 3.2.3 Immunofluorescence analysis .. 83

CHAPTER 4 DISCUSSION AND CONCLUSION 86
 4.1 PAS1 HAPLOTYPE ... 92
 4.2 CANDIDATE GENES FUNCTIONAL ANALYSIS 94
 4.3 INFLAMMATORY RESPONSE .. 96
 4.4 CONCLUSION ... 97
 4.5 FUTURE AIMS .. 98
CHAPTER 5 BIBLIOGRAPHY
LIST OF FIGURES

FIGURE 1 Acquired capabilities of cancer. From Hanahan and Weinberg, 2000. ... 11

FIGURE 2 Nicotine addiction, tobacco smoke carcinogenesis, and the pathogenesis of lung carcinomas. From Minna et al., 2002. ... 25

FIGURE 3 The stem cell theory of lung cancer pathogenesis as proposed by Auerbach ... 26

FIGURE 4 Progressive morphological and molecular changes during the multistage development of squamous cell lung carcinomas. From Minna et al., 2002. ... 27

FIGURE 5 Physical map of distal Chromosome 6 and delimitation of the Pas1 core haplotype. ... 56

FIGURE 6 Example of detection of a SNP polymorphism (D6Int10) by allele-specific oligonucleotide (ASO) hybridization in 86 inbred strains ... 63

FIGURE 7 Amino-acid changed polymorphisms in Lrmp. 69

FIGURE 8 Amino-acid changing polymorphisms in Casc1 69

FIGURE 9 Amino-acid changing polymorphism in Ghiso1 70

FIGURE 10 Polymorphism in Kras2 ... 70

FIGURE 11 Amino-acid polymorphism in Lmna-rs1 71

FIGURE 12 mRNA expression of the Lmna-rs1, Ghiso and Gapdh genes in mouse normal lung and lung tumors by RT-PCR 72

FIGURE 13 Representative nucleotide sequence pherograms of the Casc1 gene by direct sequencing of RT-PCR products from normal lung and lung tumors of AB6F1 mice. 73

FIGURE 14 Representative nucleotide sequence pherograms of the Kras2 gene by direct sequencing of RT-PCR products from urethane-induced lung tumor of AB6F1 mice. 74

FIGURE 15 mRNA expression of Lmna-rs1, Ghiso, Lrmp and Casc1 gene in HEK-293T cells ... 76
FIGURE 16 Qualitative analysis of colony formation in human lung cancer cell transfectants.. 78

FIGURE 17 Quantitative analysis of allele-specific colony formation in human lung carcinoma A549 or NCI-H520 cells................. 80

FIGURE 18 Apoptosis analysis in Lrmp, Lmna-rs1 and Casc1 by Western blotting in HEK-293T cell line for Lrmp and in A549 cell line for Lmna-rs1 and for Casc1... 82

FIGURE 19 Immunofluorescence staining of protein encoded by Lrmp candidate gene in HEK-293T cell line. 83

FIGURE 20 Immunofluorescence staining of protein encoded by Ghiso candidate gene in HEK-293T cell line.............................. 84

FIGURE 21 Immunofluorescence staining of protein encoded by Casc1 gene in HEK-293T cell line.. 85

FIGURE 22 Immunofluorescence staining of protein encoded by Lmna-rs1 candidate gene in HEK-293T cell line. 85
LIST OF TABLES

TABLE 1 Inherited predisposition to cancer. *From Ponder, 2001.* 13

TABLE 2 Main stages and strategies in QTL mapping *From Darvasi and Pisanté-Shalom, 2002.* ... 22

TABLE 3 Single nucleotide polymorphism used for the analysis of RI line.. 55

TABLE 4 159 SNPs/SSLPs identified in the nucleotide sequence analysis of genomic fragments for a total of 20000 bp in the *Pas1* region... 61

TABLE 5 Inherited predisposition to lung tumorigenesis in 24 mouse inbred strains.. 62

TABLE 6 Simple sequence length polymorphism with PCR primers used for the analysis of the *Pas1* locus.. 64

TABLE 7 Single nucleotide polymorphisms used for the analysis of the *Pas1* locus.. 65

TABLE 8 Haplotype map of distal Chromosome 6 region including the *Pas1* locus... 67

TABLE 9 Nucleotide polymorphism between A/J and C57BL/6J mice in *Lrmp, Casc1, Ghiso, Kras2* and *Lmna-rs* gene......................... 68
ABSTRACT

The pulmonary adenoma susceptibility 1 (Pas1) locus affects inherited predisposition and resistance to chemically induced lung tumorogenesis in mice. A/J and C57BL6/J mouse strains carry the susceptibility and resistance allele, respectively. In the present study we identified and genotyped 64 polymorphisms in the Pas1 locus in 29 mouse inbred strains in order to reduce the region containing the Pas1 locus, and we succeeded in delimiting the Pas1 locus to a minimal region of 468kb containing six genes (Bcat1, Lrmp, Casc1, Ghiso, Kras2 and Lmna-rs1). That region defined a core Pas1 haplotype (A/J- and C57BL/6J-type) with 42 tightly linked markers, including intragenic polymorphisms in five genes (Bcat1, Lrmp, Casc1, Ghiso and Kras2) and amino-acid changes in three genes (Lrmp, Casc1 and Lmna-rs1). mRNA expression study of these candidate genes revealed that, in (A/JxC57BL/6J)F1 mouse lung tumors, the Lmna-rs1 gene was completely downregulated, whereas allele-specific downregulation of the C57BL/6J-derived allele was observed at the Casc1 gene, suggesting the potential role of these genes in tumor suppression. These first results indicate a complex multigenic nature of the Pas1 locus, and point to a functional role for both intronic and exonic polymorphisms of the six genes of the Pas1 haplotype in lung tumor susceptibility.

Then we continued by testing functional activity of candidate genes in vitro. In vitro colony formation assay of human lung cancer cell lines A549 and NCI-H520 transfected with the allelic variants of the four genes revealed allele-specific modulations of colony numbers by Lmna-rs1 and Casc1, but not by Lrmp and Ghiso. We found that inhibition of clonogenicity by allelic forms of Pas1 candidate genes was not mediated by induction of apoptosis.

These findings provide evidence that allelic variants of mouse Pas1 candidate genes differentially modulate growth of human cancer cells.
Chapter 1 INTRODUCTION
1.1 CANCER GENETICS: BASIC KNOWLEDGE

Cancers are derived from single somatic cells and their progeny in which regulatory mechanisms for proliferation have been disrupted (Ponder, 2001). Malignant cells have several qualities that distinguish them from their normal counterparts. They are immortal, often grow more rapidly than normal cells of the same origin, and fail to exhibit normal cell-cell interactions (Bale and Li, 1997). Tumorigenesis in humans is a multi step process. Steps or "hits" are mutations or other alterations of genes involved in regulation of cell growth and cell interactions. Mutations and alterations may occur by random chance during DNA synthesis and cell replication, after an exposure to environmental carcinogens, or they may be inherited as germline mutations.

Hanahan and Weinberg in 2000 suggested that, in perhaps all types of human tumors, cancer cell genotype is a manifestation of six essential alterations in cell physiology that collectively dictate malignant growth (Fig. 1):

1. **Self-Sufficiency in growth signals.** Normal cells require mitogenic growth signals (GS) before they can move from a quiescent state into an active proliferative state. Many of the oncogenes act by mimicking normal growth signaling.

2. **Insensitivity to antigrowth signals.** Multiple antiproliferative signals operate to maintain cellular quiescence and tissue homeostasis in a normal tissue. Cancer cells must evade these antiproliferative signals if they are to prosper.

3. **Evading apoptosis.** Programmed cell death - apoptosis-together with the rate of cell proliferation determines the ability of tumor cell population to expand in number. Cancer cells can acquire resistance to apoptosis.

4. **Limitless replicative potential.** Perhaps all types of mammalian cells carry an intrinsic, cell-autonomous program that limits their multiplication. This program must be disrupted in order
for a clone of cells to expand to a size that constitutes a macroscopic life-threatening tumor.

5. Sustained angiogenesis. The oxygen and nutrients supplied by the vasculature are crucial for cell function and survival, obligating virtually all cells in a tissue to reside within 100 \(\mu \text{m} \) of a capillary blood vessel. The ability to induce and sustain angiogenesis seems to be acquired in a discrete step (or steps) during tumor development, via an “angiogenic switch” from vascular quiescence.

6. Tissue invasion and metastasis. Primary tumor masses spawn pioneer cells that move out, invade adjacent tissues, and thence travel to distant sites where they may succeed in founding new colonies.

Figure 1 Acquired capabilities of cancer. From Hanahan and Weinberg, 2000.
The order in which these capabilities are acquired seems likely to be quite variable in all cancer types and subtypes. A particular genetic lesion may confer several capabilities simultaneously, decreasing the number of distinct mutational steps required to complete tumorigenesis. Otherwise, when a capability is acquired through the collaboration of two or more distinct genetic changes, the total number necessary for completion of tumor progression is increased.

Several factors can influence the evolution of a cancer. These factors reflect genetic or epigenetic alterations, each conferring one or another type of growth advantage, that drive the progressive transformation of normal cells into highly malignant derivatives. These events are somatic events but in many of the inherited cancer syndromes one of the events is inherited.

1.1.1 Inherited and sporadic cancer

Some individuals are genetically predisposed to a particular type of cancer (Ponder, 1990). Most common hereditary cancers are sporadic and the genetic alterations responsible for their genesis take place over several cell generations; nevertheless, 5 to 10% of human tumors are hereditary, with a rapid development (Russo et al., 2000). Family history is important to recognize clinically inherited predisposition. A family history of cancer, early age of onset and absence of known carcinogen exposure, suggest an underlying genetic disorder. In terms of family history, it is possible to distinguish three categories of inherited predisposition to cancer. (Table 1 in Ponder, 2001)
In the last few years a number of genes, whose germ-line mutations cause a highly penetrant familial predisposition to cancer have been mapped on the human genome, and some have been cloned and

<table>
<thead>
<tr>
<th>Inherited predisposition to cancer</th>
<th>Contribution to overall cancer incidence</th>
<th>Clinical features</th>
<th>Frequency of predisposing alleles</th>
<th>Effect on individual risk</th>
</tr>
</thead>
<tbody>
<tr>
<td>Inherited cancer syndromes</td>
<td>1-2% at most</td>
<td>Syndromes result in rare or unusual cancers or combinations of cancers. Sometimes with associated developmental defects or non-neoplastic phenotypes. Manifestation usually begins in infancy.</td>
<td>Rare (<1 in 1,000 or less)</td>
<td>Strong increase in lifetime risk of cancer up to 50-100%</td>
</tr>
<tr>
<td>Familial cancers</td>
<td>Up to 10% depending on definition</td>
<td>Families with several cases of common cancers that tend to cluster in families, but because of lack of markers for the predisposed phenotype, there may be doubt about the presence of inherited predisposition in any given family.</td>
<td>Uncommon to common</td>
<td>Moderate to weak</td>
</tr>
<tr>
<td>Inherited predisposition without evident family clustering</td>
<td>No precise figure possible. Distribution of risk within population may result in substantial fraction of cancer incidence within predisposed minority.</td>
<td>Single cases of cancer at any site, some with one or more affected relatives. Distribution of these cases in the population is probably determined by the combined effects of multiple genetic and non-genetic risk factors.</td>
<td>Multiple common alleles</td>
<td>Weak</td>
</tr>
</tbody>
</table>

Table 1 Inherited predisposition to cancer. From Ponder, 2001.

- Inherited cancer syndromes: the incidence is 1-2% at most. These syndromes consist in rare or unusual cancers or combinations of cancer. Sometimes these syndromes are associated with specific phenotypes that are attributable to the predisposition gene. A predisposing mutation is present in all somatic cells and in the germline, which enables the transmission of risk to the next generation.

- Familial cancers: the incidence is up to 10%. This category includes cancers that tend to cluster in families but, because of the lack of markers for the predisposed phenotype, there may be doubt about the presence of inherited predisposition in any given family.

- Inherited predisposition without evident family clustering: in this case, there is an inherited disposition with low penetrance so that familial clusters are rare. The distribution of these cases in the population is probably determined by the combined effects of multiple genetic and non-genetic risk factors.
identified. In humans the frequency of alleles that confer an inherited predisposition to cancer is variable, being about 1:100,000 in the case of retinoblastoma (RBI), 1-2:10,000 in neurofibromatosis (NFI), 1:1,000 in familial breast cancer (BRCA1), and 1:1,000 in hereditary nonpolyposis colorectal cancer (HNPCC).

The greatest discoveries to date in the genetics of common inherited cancers relate to breast, ovarian, and colorectal cancer. In particular there have been studies of mutations in two genes for breast and ovarian cancer (BRCA1 and BRCA2), the APC gene for familial adenomatous polyposis, and several mismatch repair genes, which correct errors in DNA that arise after replication, for hereditary non-polyposis colon cancer (Emery et al., 2001).

All cancers are genetic in origin because they arise from mutations in a single somatic cell, but the genetic changes in sporadic cancer are confined to a particular tissue. In inherited cancers, a predisposing mutation is present in all somatic cells and in the germline, which enables the transmission of risk to the next generation. Mutations in BRCA1, BRCA2, APC and the genes related to hereditary non-polyposis colon cancer are inherited in an autosomal dominant fashion. However, BRCA and the genes associated with hereditary non-polyposis colon cancer (and a few APC mutations) show incomplete penetrance, and they predispose a carrier to develop specific cancers. Additional genetic, environmental, and hormonal factors determine the ultimate development of cancer in mutation carriers (Emery et al., 2001).

The pattern of genetic alterations differs between cancer of different types, and of the same type. This genetic pattern is not random and it is influenced not only by genetic background, but also by environmental exposures.

Genetic variation that acts either within or outside the cancer cell may determine the outcome of interaction with exogenous carcinogens. An example is provided by the risk of cutaneous
melanoma which is increased by exposure to the sun in individuals with a fair skin or who have many naevi.

1.1.2 Polygenic inheritance of predisposition to cancer

Polygenic inheritance of predisposition to cancer is demonstrated in experimental animals for different tumor types. Genetic susceptibility to different types of cancer is determined by inheritance of multiple cancer predisposition and resistance alleles, whose chromosomal locations have been found by genetic linkage analysis.

Epidemiological evidence indicates that in many cases of sporadic cancers, first degree relatives of cancer patients show an excess risk of cancer when compared with the general population. This evidence may suggest the existence of a polygenic inheritance of predisposition to particular types of cancer (Dragani et al., 1996).

Several types of genes are involved in carcinogenesis. Normal cell regulation results from balance between the function of growth-promoting genes and growth-suppressing genes. When the former type of gene is "activated" through amplification or mutation to a hyperfunctioning form, it exerts a dominant positive effect of cell growth. Such genes are known as "oncogenes". The latter type of gene is known as a "tumour suppressor". Loss of function of both homologous copies of a tumour suppressor gene has a powerful growth-promoting effect. Loss of just one copy typically has very little effect. Other genes that may be altered in cancer cells include those involved in DNA repair and in programmed cell death.

Tumour suppressor genes were identified through their role in familial predisposition to cancer. These genes are known to be critically important in growth control of both sporadic and hereditary
tumours. The majority of hereditary cancer predisposition is attributable to germline mutations in tumor suppressor genes. Expression of protooncogenes in normal cells appears to be carefully regulated. Different oncogenes are turned on/off at different steps of the cell cycle, at different stages of embryologic development, and in different cell types. Protooncogenes function as messengers in the pathway by which external stimuli received at the surface lead to DNA synthesis, cell growth, and division (Bale and Li, 1997).

1.1.3 Cancer modifier genes

Variation in phenotypic expression is a feature of many dominantly inherited single-gene disorders. An example of this kind of disorder is Neurofibromatosis type 1 (NF1) that is notable for its variable expressions. Although the major diagnostic features of café-au-lait patches, cutaneous neurofibromas, and Lisch nodules are each present in more than 90% of cases of puberty, the number of lesions varies greatly. Furthermore, there are a number of characteristic features which only occur in a minority of cases such as severe learning difficulties, scoliosis, optic gliomas, epileptic seizures, and pseudoarthrosis. Some of this variation in phenotypic expression could reflect different mutations in the NF1 gene. Almost half of all NF1 cases are the results of new mutations and a number of different mutations have been reported. Variation in the NF1 mutation is not the only source of variation, because there are also considerable differences in expression between members of the same family. In 1979, Carey et al. demonstrated that three-quarters of families showed marked differences in severity of NF1 between individuals. The remainder of the phenotypic variation could be due to other modifying genes, environmental factors, or some combination of these. The term “modifying gene” is used to denote
any gene unlinked to the NF1 locus whose genotype correlates with the NF1 phenotype (Easton et al., 1993).

Nathanson et al. in 2002 observed that the substantial variability in penetrance of breast cancer due to germline mutations in BRCA1 has led to speculation that inheritance of BRCA1 mutation alone may not completely describe the observed cancer phenotype. Considerable variation in the degree of breast cancer risk associated with a BRCA1 mutation has been observed and this suggests that modifiers of BRCA1 penetrance may exist.

Cancer modifier loci are defined as genetic loci involved in fine-tuning the tumor phenotype through allele specific effects on cancer development, e.g., stimulation or inhibition of tumor development and/or tumour progression. Cancer modifier loci may comprise a "null" allele, with no effects on tumour phenotypes, and a "susceptibility" or "resistance" allele, which affect tumour phenotype in a dominant, codominant or recessive way.

The study of mouse cancer modifier loci might serve as the basis for understanding the genetic and biochemical mechanisms of polygenic inheritance of cancer predisposition/resistance. Identification of homologous cancer modifier loci in humans might provide a step toward the development of diagnostic, preventive, and therapeutic strategies that target these loci (Dragani, 2003). Cancer modifier loci affecting specific stages of the tumorigenesis process have been mapped in the experimental models where the tumor-initiation and tumour-promotion/progression phenotypes are clearly defined. For example, in lung tumorigenesis, the Pas1 and Par1 loci affect both tumour multiplicity and size, whereas Par2 and Par4 act specifically on tumor multiplicity, and Papg1 and Sluc affect only tumor size. (Gariboldi et al. 1993, Manenti et al., 1996 and Tripodis et al., 2001 in Dragani, 2003) Cancer modifier loci may affect either single or multiple stages of carcinogenesis.
1.2 GENETIC DETERMINANTS OF POLYGENIC TRAIT

The major challenge for medical genetics for the next decade is to systematically identify genes responsible for the hereditary contributions to a range of disorders that are not inherited in a simple Mendelian fashion but that have a definite or probable genetic component. Complex diseases are thought to involve susceptibility genes at multiple loci, known or unknown environmental factors and, commonly, incomplete penetrance of susceptibility genes. This "complex" trait includes a large fraction of the common causes of disability and death in Western society such as atherosclerosis, hypertension, psychiatric disorders, Alzheimer disease, type I and type II diabetes, asthma, rheumatoid arthritis, and probably significant components of the general aging process. These disorders may be oligo- or polygenic, and environmental and stochastic developmental and immunologic processes may play a major role in the development of these diseases (Weissman, 1995).

The term "complex trait" refers to any phenotype that does not exhibit classic Mendelian recessive or dominant inheritance attributable to a single gene locus. In general, complexities arise when the simple correspondence between genotype and phenotype breaks down, either because the same genotype can result in a different phenotype or different genotypes can result in the same phenotype (Lander and Schork, 1994).

There are some problems in the study of complex traits:

- **Incomplete penetrance and phenocopy.** Some individuals who inherit a predisposing allele may not manifest the disease (incomplete penetrance), whereas others who inherit no predisposing allele may nonetheless get the disease as a result of environmental or random causes (phenocopy).
- **Genetic (or locus) heterogeneity.** Mutations in any one of several genes may result in identical phenotypes, such as when the genes are required for a common biochemical
pathway or cellular structure. For these reasons medical geneticists typically have no way of knowing whether two patients suffer from the same disease for different genetic reasons, at least until the genes are mapped. Genetic heterogeneity hampers genetic mapping, because a chromosomal region may cosegregate with a disease in some families but not in others. Genetic heterogeneity should be distinguished from allelic heterogeneity, in which there are multiple disease-causing mutations at a single gene. Allelic heterogeneity tends not to interfere with gene mapping.

- **Polygenic inheritance.** Some traits may require the simultaneous presence of mutations in multiple genes. Polygenic traits may be classified as discrete traits, measured by a specific outcome, or quantitative traits, measured by a continuous variable whose level may be set by the combined action of individual quantitative trait loci.

The methods available for genetic dissection of complex traits fall neatly into four categories: linkage analysis, allele-sharing methods, association studies in human populations, and genetic analysis of large crosses in model organisms such as the mouse and rat.

Linkage analysis involves proposing a model to explain the inheritance pattern of phenotypes and genotypes observed in a pedigree. It is the method of choice for Mendelian diseases, such as Huntington disease and cystic fibrosis, for which the diagnosis is less ambiguous and there is a near one-to-one correspondence between genotype and phenotype, however applications to complex traits can be more problematic.

Linkage analysis is the starting point for positional cloning. Families in which a disease phenotype segregates are analyzed using a group of DNA polymorphisms. The earliest and still most fully documented success in which linkage mapping alone led to the gene was cystic
fibrosis in 1989. At that time, the polymorphic markers were restriction fragment length polymorphisms; today hundreds of thousands of single nucleotide polymorphisms are available through the sequencing of the human genome.

The nature of linkage mapping limits resolution to the order of 1-10 cM. In favourable cases (such as cystic fibrosis), the pattern of crossovers in the region of the gene among the cohorts studied leaves only a few predicted genes, all within about 1 cM (~ 1 Mb), as likely candidates (Botstein and Risch, 2003).

Allele-Sharing methods involve studying affected relatives in a pedigree to see how often a particular copy of chromosomal region is shared identical-by-descent that is inherited from a common ancestor within the pedigree.

Association studies do not concern familial inheritance patterns at all, but they are case-control studies based on a comparison of unrelated affected and unaffected individuals from a population. Association studies are not well suited to whole-genome searches in large, mixed populations. Because linkage disequilibrium extends over very short distance in an old population, one would need tens of thousands of genetic markers to cover the genome.

There are some differences between linkage analysis studies and association studies. Associations studies test whether a disease and an allele show correlated occurrence in a population, whereas linkage studies test whether they show correlated transmission within a pedigree. Associations studies focus on population frequencies, whereas linkage studies focus on concordant inheritance.

Experimental crosses of mice and rat offer an ideal setting for genetic dissection of mammalian physiology. The power of experimental crosses is most dramatically seen in the ability to dissect quantitative traits into discrete genetic factors. Systematic quantitative trait locus (QTL) mapping has only recently become
possible with the construction of dense genetic linkage maps for mouse and rat.

In the past decade, quantitative trait locus (QTL) mapping has identified hundreds of chromosomal regions containing genes affecting asthma, atherosclerosis, diabetes, hypertension, obesity and other complex phenotypes. An important goal of QTL mapping is to identify the genes underlying these polygenic traits and to gain a better understanding of their physiology and biochemistry. Korstanje and Paigen in 2002 suggested that QTL mapping of complex traits is a promising technique and that the harvest of QTL genes is just beginning.

The analysis of QTL has also been made easier by recently developed statistical tools for detecting gene-gene interactions. Identifying QTL genes in animal models has more often relied on positional cloning followed by the use of transgenic or knockouts. QTL found in animal models may predict their location in the human genome.

The primary difficulty in identifying QTLs is that any single QTL explains only a small fraction of the phenotypic variation and thus the phenotype-genotype correlation is low. QTL analysis can be separated into two stages: (1) from phenotype and genotype to QTL, and (2) from QTL to gene. (Tab 2)

Stage 1 consists of correlating genetic markers (i.e. detectable DNA polymorphism, such as microsatellites and single nucleotide polymorphisms [SNPs]), with a phenotype in a segregating population. Therefore, stage 2 is required to assign the phenotype to a single gene (and not a locus) preferably by means of functional assay. (Darvasi and Pisanté-Shalom, 2002)
Mendelian diseases (e.g. cystic fibrosis) result from defects in one gene. However, it is suspected that most common diseases (e.g. hypertension) are 'polygenic', meaning that variation in the presence/absence of the disease is attributable, at least in part, to polymorphism of multiple interacting genes. An allele of one of these 'susceptibility genes' may contribute to disease in certain genetic and environmental contexts, but not in others (Kirk et al., 2002).

Polymorphism represents the transient state between the origin of genetic variation by mutation and the loss of variation by fixation of either the ancestral or derived state. Today, the expression 'single nucleotide polymorphism' (SNP) is often applied to variable sites for which the rarer base is present within the population at >1%
frequency, whereas germline polymorphism with a frequency <1% are typically referred to as 'mutations'.

Traditional linkage analysis, based on allele sharing between relatives, identifies broad chromosomal regions that are likely to contain disease genes. However, the resolution of these methods is limited by the number of recombination events in typical pedigrees and is impractical for positional cloning efforts in complex disease. Fine mapping within the broad regions identified by allele-sharing methods is a major challenge. Gene mapping strategies based on linkage disequilibrium (LD) are expected to have much greater resolution, and should be able to capitalize on dense SNP maps as they become available. (Risch and Merikangas, 1996)

LD mapping can precisely locate genes of small effect and could be used to identify common disease genes in genomewide scans or to reduce the number of candidate genes in a region in which linkage has been established. (Lander 1996; Risch and Merikangas 1996; Collins et al. 1997; Lai et al. 1998). In the presence of common disease alleles, or when the frequency of rare alleles is increased through selection, the sample sizes required for LD studies are much smaller than those for equivalently powered linkage studies (Risch and Merikangas, 1996). Unlike traditional linkage studies, the power of LD mapping depends strongly on disease-allele frequencies and on the extent of disequilibrium between marker and disease alleles (Muller-Myhsok and Abel, 1997; Tu and Whittemore, 1999).

LD is the correlation of character states among polymorphic sites. (Lynch and Walsh, 1997 in Kirk et al., 2002). The simplest explanation for LD is linkage coupled with insufficient passage of time to randomize the character states by meiotic recombination. As ancestral haplotypes propagate through a population, their physical length is reduced by recombination events. Recombination events between markers separated by very short distances are very rare. Individuals inheriting a disease mutation from a common, but possibly distant, ancestor are expected to share a region of the
ancestral haplotype in which the mutation originated. Markers within this shared haplotype are non-randomly associated with the disease and each other, and are said to be in linkage disequilibrium. Association studies using family based controls can distinguish between linkage disequilibrium and other sources of association, such as population admixture (Abecasis and Cookson, 2000).

Association studies using LD to identify susceptibility genes have achieved some recent success. Proof of principle experiments using a high-density SNP map in genomic regions already known to contain susceptibility genes for complex diseases have confirmed known genes or identified new ones (Rioux et al., 2001; Hewett et al., 2002; Horikawa et al., 2000 in Kirk et al., 2002). These successful association studies are 'candidate gene' approaches, where the location of the susceptibility gene is either already known or suspected. This experimental design is based on a two-step LD methodology (Roses, 2000 in Kirk et al., 2002). In the first step, a low-density SNP map (i.e. 'picket fence') of the whole genome is used to identify a region(s) containing the potential susceptibility gene(s). Once the region is identified, a high-density SNP map is used to home in on the susceptibility gene within the region.

1.3 LUNG CANCER

Lung cancer is the leading cause of cancer death in the world (12.3% of all cancer), causing more than one million deaths each year. The incidence and mortality rates are highest in the United States and Europe and continue to increase in industrialized countries (Rivera, 2004). Its leading cause is tobacco smoke, a complex mixture containing many carcinogens that play a role in the genetic and epigenetic changes occurring in the respiratory epithelium during the multistage process of lung carcinogenesis. The
many lung cancer-specific carcinogens (including polycyclic aromatic hydrocarbons and nitrosamines) in the particular matter of tobacco smoke have to be metabolized before they are either secreted or can bind to DNA with the formation of adducts. DNA adducts may be repaired or lead to apoptosis. If they persist, miscoding mutations in key genes, such as p53 or RAS may cause genetic instability, leading to further mutational damage and eventually to cancer. (Fig. 2 in Minna et al., 2002)

About 40% of all new lung cancers occur in former smokers, who remain at high risk of developing lung cancer for many years after they stop smoking.

Apart from HIV/AIDS, tobacco is the only major cause of death that is increasing rapidly. Worldwide, smoking caused about three million deaths in 1990, out of a total of 30 million adult deaths from all causes, and it will cause about 10 million in 2030, out of a total of about 60 million (Peto et al., 1999).

Figure 2 Nicotine addiction, tobacco smoke carcinogenesis, and the pathogenesis of lung carcinomas. From Minna et al., 2002.

Non-small cell lung cancer (NSCLC) accounts for 80 to 85% of all new cases of lung cancer. Less than 15% of patients with lung cancer survive their disease.
1.3.1 Histological Types

The term lung cancer is used to denote carcinomas arising from the epithelium of the respiratory tract.

Histopathogenesis

The histopathogenesis of lung cancer is incompletely understood and the true site of origin of lung cancer is unclear. Two theories exist: (1) a pleuripotential cell (stem cell) theory, advocated by Auerbach, of one pleuripotentential cell from which all cell types evolve, and (2) a small-cell theory, advocated by Yesner, of a type of small-cell neoplasm that undergoes transformation and evolves into the other cell types. (Fig. 3)

Figure 3 The stem cell theory of lung cancer pathogenesis as proposed by Auerbach.

The true site of origin of small-cell lung cancer is difficult to identify. It is also difficult to know the origin of adenocarcinomas or large-cell carcinomas because they may come from the bronchial epithelial surface or the underlying mucous glands. There is, however, increasing evidence that tumors arise from a common mucosal, pleuripotential stem cell. The heterogeneity found in various cell
types of lung cancer, particularly large-cell anaplastic carcinoma and various small-cell lung cancer tumors, may explain the variations in response to therapy and may be explained by the common stem cell theory.

Lung cancers arise after a series of molecular and morphological events. The molecular events commence in histologically normal epithelium and show a specific sequence (Hirsch et al. 2001 in Minna et al., 2002). A microscopie based microdissection of epithelial tissue followed by allelotyping of smoking damage to lungs in lung cancer patients or current or former smokers without lung cancer revealed hundreds of thousands of lesions (~ 90,000 cells in size) containing clonal abnormalities of allele loss, occurring in both histologically normal as well as abnormal (e.g. hyperplasia, dysplasia or carcinoma in situ) respiratory epithelium (Park et al., 1999 in Minna et al., 2002). (Fig. 4)

Figure 4 Progressive morphological and molecular changes during the multistage development of squamous cell lung carcinomas. From Minna et al., 2002.

In 1982, the World Health Organization classified bronchial carcinoma into four major histologic types (squamous cell carcinomas, adenocarcinoma, small cell carcinoma and large cell carcinoma), rare tumor types, and tumors consisting of more than
one histologic pattern. However, for clinical, therapeutic and biological reasons, lung cancers are classified into small cell (SCLC) and non-small cell (NSCLC) subdivisions.

Squamous cell carcinomas account for approximately one-third of all lung cancers. They usually originate within a central bronchus, and a central cavitation from necrosis is common. This kind of cancer generally grows slowly with little likelihood of distant spread.

Adenocarcinomas account for approximately 30% to 45% of lung cancers. These tumours originate within the periphery of the lung, in particular they arise from the progenitor cells of bronchioles (Clara cells) or alveoli (Type II pneumocytes) or from mucin producing cells, and tend to metastasize early to regional lymph nodes and to distant sites, particularly the brain. Adenocarcinoma is the most common lung cancer in the world, and its frequency is increasing rapidly especially in women, people who have never smoked, and in young people.

The term bronchioalveolar carcinoma is applied to those adenocarcinomas believed to arise from the terminal bronchioles and alveoli and represents approximately 2% to 4% of all lung cancers. Usually, the presence of these tumors is not correlated with smoking.

Large-cell carcinoma represents a less differentiated form of the other NSCLC (non-small cell lung cancer). This tumor accounts for approximately 9% of all lung cancers. The name derives from the large cells with large nuclei and prominent nucleoli that characterize the tumor. Large-cell carcinomas often have poor differentiation and no evidence of maturation. Giant- and spindle-cell carcinomas, that have been classified as a variant of large-cell carcinoma, carry poor prognoses and account for less than 1% of lung cancers.
Small-cell lung cancer (SCLC) accounts for 10% to 15% of all lung cancers. This kind of tumor has a very aggressive clinical course, with frequent widespread metastases. SCLC is not amenable to surgical treatment in its early stages. Small-cell lung cancers typically are situated in a peribronchial location, and they infiltrate the bronchial submucosa and peribronchial parenchyma tissues. SCLCs have neuroendocrine features and arise from cells programmed to differentiate along these lines. Without treatment, small cell carcinoma of the lung has the most aggressive clinical course of any type of pulmonary tumor, with median survival from diagnosis of only 2 to 4 months.

Since the 1930s, cytologic examination of sputum has been used for the diagnosis of advanced and early lung cancer. Squamous and SCLC arise mainly from the central airways, while adenocarcinomas (including bronchioloalveolar cancer) are peripherally located. Sputum samples contain exfoliated cells shed from the oropharynx and larger respiratory passages, so the cytologic analysis of sputum is helpful for the detection of central tumors arising from the larger exfoliated bronchi such as squamous cell and small-cell carcinomas. Cells from peripheral tumors arising from the smaller airways, such as adenocarcinomas, can be detected only occasionally in sputum sample (Gazdar and Minna, 1999). There is no squamous epithelium in the normal lung, and tumors arise from metaplastic changes resulting from smoking.

Genetic predisposition to developing lung cancer
Approximately 11% of tobacco smokers develop lung cancer. This suggests that some genetic factors may influence the risk for lung cancer among those who are exposed to carcinogens. (Fong et al., 2005).
Tokuhata and Lilienfeld in 1963 and Ooi et al. in 1986 found increased risk for lung cancer in both smoking and non-smoking
relatives of lung cancer patients. It was found that smoking interacts with a family history of lung cancer. Familial aggregation studies of lung cancer provide indirect evidence for the role of genetic predisposition. More common genetic polymorphisms at genes, coding for enzymes involved with metabolism of exogenous compounds, including carcinogens, are more likely to have a large quantitative effect on the risk of lung cancer. The combination of two lung tumor associated polymorphisms results in an additive risk of lung cancer and this suggests genetic heterogeneity and polygenic inheritance of lung cancer risk.

Using candidate gene and genome wide approaches it has been hypothesised that lung cancers have accumulated 20 or more clonal genetic and epigenetic alterations as a multistep process. These genetic changes include activation of proto-oncogenes such as myc, Kras, EGFR, Her-2/neu, and BCL-2 as well as the inactivation of TSGs (Tumor suppressor genes) like p53, Rb, FHIT, and p16. Genetic alterations affecting TSGs usually involve two events: the loss of large chromosomal DNA regions of one parental Dna, and a smaller mutational event affecting the second allele. The early clonal genetic lesions that occur in smoking damaged preneoplastic bronchial epithelium are being identified, as are the molecular differences between small cell lung cancer (SCLC) and non-small cell lung cancer (NSCLS), and between tumors with different clinical outcome.

1.4 MOUSE MODEL

Over the past century, the mouse has developed into the premier mammalian model system for genetic research. Scientists from a wide range of biomedical fields have gravitated to the mouse because of its close genetic and physiological similarities to humans,
as well as the ease with which its genome can be manipulated and analyzed.

Although yeasts, worms and flies are excellent models for studying the cell cycle and many developmental processes, mice are far better tools for probing the immune, endocrine, nervous, cardiovascular, skeletal and other complex physiological systems that mammals share. Like humans and many other mammals, mice naturally develop diseases that affect these systems, including cancer, atherosclerosis, hypertension, diabetes, osteoporosis and glaucoma. In addition, certain diseases that afflict humans but normally do not strike mice, such as cystic fibrosis and Alzheimer's, can be induced by manipulating the mouse genome and environment.

1.4.1 Mice for cancer studies

The inherited genetic determinants of cancer risk remain largely unknown and the identifications of cancer predisposing genes directly in humans is very difficult. Moreover, individual variation in the development of cancer in humans, even given identical exposures or identical germline changes in specific predisposing genes, offers the possibility of profound insight into host factors that modify the development of cancer. Determining those factors in humans is a daunting task (Klausner, 1999). The fact that mice can and do get cancer has fostered the important role of the mouse in cancer research. These models are helping us to understand this disease as a complex genetic trait and thus to identify the multiple genetic variant alleles involved in pathways that affect individual cancer susceptibility. The mouse offers significant advantages for
identification of tumor susceptible genes and is useful for the study of complex influences of genetic background on tumor susceptibility. A large portion of the mouse genome shows regions of homology and conserved syntenies with the human genome, and comparative genetic maps between mice and humans have been used to predict the location of human and murine disease genes on the basis of their mapping in other species. (Dragani et al., 1995)

Compared to the total span of evolution, the lineage that gave rise to mouse and man diverged relatively recently. It was found that the essential functions of most genes, in general, and most, if not all, genes identified as important in human cancer, are likely to be very similar between mouse and man.

Furthermore, the use of mice as a model offers significant advantages:

- the size of the “families” for the analysis is restricted only by the dimensions of the animal house;
- the ability to control environmental exposure;
- the relatively low cost;
- the availability of dozens of inbred strains, outbred mice, recombinant inbreds, recombinant congenics, transgenic, knockouts, knockins, and even clones.

1.4.2 Mouse inbred strains

A useful mouse model for the study of cancer is mouse inbred strains. They are obtained by crossing brothers and sisters for at least 20 generations. They are homozygous at almost every genetic locus thus representing fixed, unique genotypes that can be repeatedly accessed as homogeneous populations, with defined allelic composition and predictable phenotypes.
Although some intermixing between strains has occurred, the inbred rodent strains differ genetically from each other and represent good animal models of human diseases. The distribution and frequency of different alleles, including those related to cancer predisposition, may be sufficiently represented in laboratory strains compared with the wild groups from which they were derived.

Many inbred strains of mice are available, they have a predominance of resistance or susceptibility alleles, and exhibit extreme sensitivity or resistance to tumor development in certain tissues. Opportune crosses between susceptible and resistant inbred strains can give valuable information about the dominant or recessive nature of resistance, as well as providing indications about the number of the genes involved or their locations in the genome. (Balmain and Nagase, 1998)

1.4.3 Mice for the study of Lung cancer

Different mouse strains exhibit different propensities to cancers, whether they are spontaneous or induced. Spontaneous lung cancer develops in approximately 3% of wild mice. The *Mus musculus* strains most sensitive to the spontaneous development of lung tumors include A/J and SWR; strains with intermediate sensitivity include Balb/c and O20; relatively resistant strains include CBA and C3H; and the most resistant strains include DBA and C57BL/6. (Lynch, 1926; Shimkin, 1955 in Tuveson and Jacks, 1999)

Some studies have revealed that tumor predisposition in different strains is controlled by multiple loci which control fundamental processes such as the tumor growth rate, ability to stimulate angiogenesis, or the risk of malignant progression (Hirst and Balmain, 2004). These different loci have been identified through
the evaluation of crosses between different inbred strains or species of mice (Tuveson and Jacks, 1999).

Mice susceptible to spontaneous lung tumors are also often sensitive to chemically-induced lung cancer. Induction of lung tumors with chemical carcinogens is very reproducible and almost invariably results in pulmonary adenomas and adenocarcinomas (Shimkin and Stoner 1975; Malkinson 1989). Furthermore, mice exposed to environmental carcinogens, develop tumours by a multistage process very similar to that seen in humans. Genetic alterations detected in mouse tumours involve genes (such as RAS, cyclin D1, RB1 (pRb), TP53 (p53) and CDKN2A (p16), that are the most commonly altered genes in human tumours.

Spontaneous lung tumors in mice are similar in morphology, histopathology, and molecular characteristics to human adenocarcinomas, but in contrast to human lung cancer, the majority of murine lung tumors are histologically early lesions such as hyperplasias and adenomas, which may originate from either Clara cells or alveolar type 2 cells that line alveoli (Thaete and Malkinson, 1991 in Tuveson and Jacks, 1999). These similarities underline the importance of the use of mice as a model for the study of human cancer.

In most cases murine lung tumors develop relative benign adenomas and rarely more aggressive adenocarcinomas and exhibit limited vascularisation and very few, if any, metastasize. There is no relationship between the susceptibility of any given mouse strain to lung tumors and its susceptibility to tumors of other organs.

Mouse models for lung cancer can serve as a valuable tool not only for understanding basic lung tumor biology but also for the development and validation of new tumor intervention strategies as well as for identification of markers for early diagnosis. Individual cancer risk is determined by combinations of resistance or susceptibility alleles inherited through the germline. The polygenic
nature of this inheritance pattern and the variable penetrance of the genes will, of course, mask any clear-cut familial clustering and complicate studies designed to find the loci involved by classical linkage analysis.

Genetic loci, which modify lung tumorigenesis, have been identified by crossing different inbred strain of known susceptibility and resistance to lung tumorigenesis.

The mouse inbred model is useful for statistical methods that take account of the fact that multiple genes make different quantitative contributions to the phenotype. Quantitative trait locus (QTL) mapping is an important method and during the last few years has accelerated the analysis of polygenic susceptibility to various diseases. Using QTL mapping, a large number of mouse tumor modifier loci have now been mapped that control the size, growth rate or number of lesions that develop, or can influence different stages of tumorigenesis (Balmain and Nagase, 1998).

Rare mutations or polymorphisms, which have major effects on tumour growth or survival, contribute to only a small fraction of tumours in the human population.

Highly penetrant mutations in genes such as BRCA1/2 are responsible for a proportion of cancers that show familial aggregation, and mouse models of such genes have provided many fundamental and unexpected insights into tumorigenic processes. (Hirst and Balmain, 2004).
1.5 BACKGROUND AND AIM OF THE PROJECT

The present project aims to clone candidate genes for the Pulmonary adenoma susceptibility 1 (Pas1) locus, that represents the major quantitative trait locus (QTL) affecting inherited predisposition to lung tumorigenesis in mouse.

In our laboratory, by using (LD) analysis in 21 strains of known susceptibility to lung cancer and by assembling a YAC contig, we mapped the Pas1 locus to a ~1.5-Mb region on distal mouse chromosome 6. Our results, based on haplotype and phenetic analysis, suggest that the Pas1⁸ susceptibility allele is shared by several mouse-inbred strains of independent origin, which show either high or intermediate predisposition to lung tumorigenesis. We have previously mapped in the A/J mouse (a strain that is highly susceptible to lung tumorigenesis) the Pas1 locus to the distal region of chromosome 6. (Gariboldi et al. 1993). Independent studies with the A/J strain have confirmed the major role of Pas1 in mouse lung tumorigenesis and have also supported the fact that the quantitative trait locus (QTL) peak for Pas1 is localized around Kras2. (Devereux et al. 1994; Festing et al. 1994; Manenti et al. 1995) As in many QTL studies, the linked region is too wide (> 10 cM) to undertake positional cloning of the causative gene. We hypothesize that the Pas1⁸ allele originated from a single founder and we designed a linkage disequilibrium (LD) study in mouse strains to test this hypothesis and to eventually narrow the candidate region for Pas1.

Herein, it was reported that several markers located in the telomeric region of chromosome 6 exhibit significant LD with the genetic predisposition to lung cancer development. (Manenti et al., 1999).

According to the Ensemble database, five known genes map in this region: the branched-chain aminotransferase cytolic 1 (Bcat1), the lymphoid-restricted membrane protein (Lrmp), the unnamed 493046P12Rik transcript, the transforming protein p21 (Kras2) and
the unnamed 4933403M22Rik transcript. Protein sequence comparison by BLAST showed that the 4933403M22Rik gene encodes a protein containing an intermediate filament tail domain related to lamin A, therefore, it was provisionally named \textit{Lmna-rs1} (lamin A-related sequence 1). The 493046P12Rik gene encodes a growth hormone-inducible soluble protein with no known protein domains; the gene was provisionally named \textit{Ghiso}.

Using a different program to identify coding regions in the genome (NIX analysis package), we identified and then cloned a new gene mapping between \textit{Lrmp} and \textit{Ghiso}. This gene resulted the mouse homologues to the human AK001783 transcript and corresponds to the recently identified \textit{Casc1} gene (Zhang et al., 2003), except for an additional 70bp in the 5'-UTR. (Manenti et al., 2004).

The present project aims to identify and characterize allelic variants of candidate mouse genes mapping in the restricted pulmonary adenoma susceptibility 1 (\textit{Pas1}) locus region.

The milestones of this project were:

1. To narrow the \textit{Pas1} containing region by: (a) discovering new simple sequences length polymorphism (SSLPs) and single nucleotide polymorphism (SNPs) in the region around \textit{Kras2} gene; (b) LD analysis in 29 strains susceptible or resistant to lung tumorigenesis; (c) analysis of recombination of \textit{Pas1} region in (CxB)RI mice.

2. To analyse genetic polymorphism of the candidate genes mapping in the minimal region in mouse inbred strains of known susceptibility (A/J) and resistance (C57BL/6J) to lung tumorigenesis.

3. To test functional activity of candidate genes in vitro, by subcloning them in to a mammalian expression vectors and transfecting them into human cancer cell lines in vivo for: (a) clonogenic assay experiment; (b) cell count experiment; (c) gene level expression.
Chapter 2 MATERIAL AND METHODS
2.1 ANIMAL AND TREATMENT

2.1.1 Mouse strains and DNAs

A panel of 29 genomic DNAs from mouse inbred strains, plus DNAs of 13 CxB RI lines were purchased from The Jackson Laboratory (Bar Harbor, ME, USA). C57BL/6J and A/J mice were also from The Jackson Laboratory.

2.1.2 Lung tumor induction

F1 hybrids (ABF1) of male C57BL/6J and female A/J crosses were treated intraperitoneally with urethane (BDH, Poole, UK) dissolved in water (1000 mg/kg body weight) at 4 weeks of age and observed until 50-60 weeks of age, when the mice were killed. Normal lungs from untreated A/J and C57Bl/6J male mice of about 6 months of age were used for RNA preparation. Lung tumors and normal tissue were excised, immersed in RNAlater (Qiagen, Valencia, CA, USA) and maintained at -20°C.

2.2 IDENTIFICATION AND ANALYSIS OF GENETIC VARIATIONS

In A/J and C57BL/6J mice, I carried out a nucleotide sequence analysis of genomic fragments for a total length of about 20000 bp in the region of mouse Chromosome 6 spanning D6Int20 to D6Int45, corresponding to the region from 145.027489 to
146.035280 Mb according to Ensembl Mouse release 13.30.1 (http://www.ensembl.org/).

Genotype analyses were performed using the polymerase chain reaction (PCR) technique and two different kind of genetic markers were used:
SNP (Single Nucleotide Polymorphism)
SSLP (Single Sequence Length Polymorphism)

In all, 65 genetic markers were used in genotyping 29 inbred strains.

In the 29 strains, SNPs were analysed either by allele-specific oligonucleotide hybridization (ASO) or by direct sequencing, whereas SSLPs were analysed by polyacrilamide gel electrophoresis or by agarose gel electrophoresis.

2.2.1 SNP analysis

We identified SNPs in genes and in genomic DNA fragments.

All PCR primers used in this study were designed using the Primer 3 software (http://www.genome.wi.mit.edu) and purchased from MWG Biotech, Ltd (Ebersberg, Germany). To generate new SNPs, the nucleotide sequence of the chromosomal region was analysed by the NIX program to identify putative exons. PCR primers were designed in the genomic regions surrounding the putative exons and amplified in A/J and C57BL/6J parental strains.

SNP identification by sequence analysis

Sequencing was performing using an ABI PRISM automatic DNA sequencer (Applied Biosystem), and compared using the fragment Assembly System contained in the Genetics Computer Group (GCG)
software package (Wisconsin Package Version 10.2, Madison, WI, USA). When a polymorphism was found between the two sequences (SNP), two oligonucleotides were designed covering the region where the polymorphism was present, and these oligonucleotides were used to analysed the 29 DNAs by ASO hybridization.

ASO hybridization

Oligonucleotide hybridization has the potential to provide a method of detecting single-base changes within genomic DNA. (Corner et al., 1982). Originally carried out on total genomic DNA, ASO is now used exclusively to establish the presence or absence of a specific mutation in PCR-amplified fragments of genomic DNA. Probes are constructed from sequence spanning the variant nucleotide site. ASO probes are typically 15-20 nucleotides long and are normally employed under hybridization condition at which the DNA duplex between probe and target is stable only if there is a complementary perfect base between them. Typically, this involves designing the oligonucleotides so that the single nucleotide difference between alleles occurs in a central segment of the oligonucleotide sequence, thereby maximizing the thermodynamic instability of a mismatched duplex. For this work allele-specific 15-mer oligonucleotides empassing the SNP were 5’-end-labeled with $[\gamma-^{32} P]dATP$ (3000 Ci/mM) (Amersham, Branchburg, NY) and T4 polynucleotide kinase (New England Biolabs, Beverly, MA).

The ASO procedure consists in spotting the denatured PCR-amplified fragment on to a nitrocellulose membrane and hybridised, in presence of tetramethylammonium chloride (TMAC), with the probes labelled with a radioactive isotope. After allowing sufficient time for probe-target heteroduplex formation, the probe solution is decanted, and the membrane is washed to remove excess probe that may have become non-specifically bound to the filter. It is then dried and exposed to an autoradiographic film.
2.2.2 SSLPs analysis

Simple sequence length polymorphisms consist of short tandem repeats whose units are generally 2-6 bp in length. They are known to distribute somewhat uniformly throughout the genome and to allow for a greater information content per locus than SNPs. (Dietrich et al., 1992)

SSLPs are used to be the method of choice for genetic mapping in humans, mice and rats, due to their exceptionally high rate of polymorphism and their relative ease of use. In mouse and rat, the markers make it feasible to map the entire genome in any cross between laboratory strains. (Dietrich et al., 1992)

In this work, SSLP markers were typed with PCR primers and 25 radioactive PCR cycles (55°C annealing temperature); results were scored on 6% denaturing polyacrilamide gels.

2.2.3 Fine-mapping recombination breakpoint in CxB RI line

(CxB) RI lines were derived from inbred Balb/c and C57BL/6J strains by intercrossing individuals from the F2 generation and then inbreeding for at least 20 generations of brother-sister mating. All mice of a particular RI line are genetically identical and homozygous at all loci, with approximately half the loci derived from C57BL/6J and half from Balb/c.

The genotypes of the distal region of Chromosome 6 of CxB RI strains (http://www.informatics.jax.org) were retyped for confirmation and compared with the lung tumor susceptibility data of the lines (Malkinson and Beer, 1984).

The CxB5 RI line was genotyped using 45 markers flanking the \textit{Pas1} region, in order to precisely define the extension of the C57BL/6J-inherited genome around the \textit{Kras2} gene.
2.3 *Pas1* CANDIDATE GENE IDENTIFICATION

The genomic region between markers *D6Int24* and *D6Int15* (*Pas1* core haplotype) was extensively analyzed to identify all putative coding regions based on both homology search and gene prediction program present in the NIX analysis package. The mRNA sequences of *Bcat1* (AK013888), *Lrpm* (NM_008511), *Ghiso* (AF412300), *Kras2* (NM_021284) and *Lmna-rsl* (AK016641) were retrieved from the Genebank. Computational sequence analysis techniques, BLAST and NIX, were used to assemble the *Casc1* gene (Acc. #AY485607, AY485608). The accuracy of this prediction was evaluated by PCR analysis of cDNA with primers located in the middle of putative exons. The 5' end of the *Casc1* gene was determined by 5' RACE using the Sure-RACE™ panels (OriGene Technologies, Rockville, MD, USA).

The sequences of the six genes were PCR-amplified from normal lung cDNA of A/J and C57BL/6J mice with the following primer sets: *Bcat1*, 5'-ATTCCAACGATGGAGAATGG-3', 5'-TCTTCTGTGGCACCCTCAC-3', *Lrpm*, 5'-CTGACACCCATCTCATGTC-3', 5'-GAAGGAAACGTATAACTCAAGG-3', *Casc1*, 5'-CTCACCGGAAGACTACAGTGC-3', 5'-GAACGCCTGGTGCTCTTAAA-3, *Ghiso*, 5'-TCTGAGCAAGCTGCTGTCTG-3', 5'-TGGTGCAATGATTGGTCAG-3, *Kras2*, 5'-GGAGAGAGGCCTGCTGAAA-3', 5'-AAGTGTGCCTTAAGAAAGTACAAA-3, *Lmna-rsl*, 5'-CTCTGCCAGGCTGATGAA-3', 5'-TTTCATGGCTTTCCATTTTCT-3. PCR products from the two mouse strains were sequenced and compared for polymorphism.
2.3.1 Allele-specific expression of candidate genes in mouse lung tumors

Normal and lung tumor samples were lysed in 700 µl of lysing solution using the MM 300 mixer mill (Retsch GmbH & Co., Haan, Germany). Total RNA was extracted according to the RNeasy Midi kit (Qiagen, Valencia, CA) protocol, including a DNase I treatment performed directly on the column (see below). PolyA⁺ mRNA was prepared by mixing total RNA with Oligotex suspension (Qiagen, Valencia, CA). Aliquots of polyA⁺ mRNA were reverse-transcribed using oligo(dT) primers and Superscript™ for RT-PCR (Invitrogen, Carlsbad, CA). The first strand cDNAs were used for expression analysis of candidate genes by a semi-quantitative PCR, adjusting the number of PCR cycles to avoid saturation of PCR amplification. All reactions were performed in a final reaction volume of 12 µl containing 1X GeneAmp buffer, 1.5 mM MgCl₂, 5 pmoles of each primer, 200 µM of dNTPs and 0.6 U of AmpliTaq Gold (Applied Biosystems, Foster City, CA). Thermocycling was performed on the Gene Amp PCR System 9700 (Applied Biosystems). Primer sets were designed to obtain a PCR product 170-400 bp in size. The Gapdh gene was amplified with primers 5'-TGGTCCTACCCCCAATGTGT-3' and 5'-GTGGAAGAGTGGGAGTTGCT-3', producing a 179–bp fragment, and used to normalize the amount of cDNA in each sample. Candidate Pas1 genes were RT-PCR-amplified with the following primers: Bcat1, 5'-ATTCCAACGATGGAGAATGG-3', 5'-TTCTTCGAGGACCCGCCTTCAC-3', Lrmp, 5'-ACGCTGAGGACGAGAGAAGT-3', 5'-TGCTCTGGCCTTTCTGA-3', Cascl, 5'-TGCTCTGGCCTTTCTGA-3', Ghiso, 5'-TCATGTATAAAAGTGGATCAATTCC-3', 5'-TGTTGAAGGTGAAGGTG-3', Lmna-rs1, 5'-CCTATCCACTGGAAAGCAAGC-3', 5'-TTCATGAGCTTTCCATTTTCT-3'.
PCR products were loaded on 2.5% agarose gels, stained with ethidium bromide, and photographed with a CCD camera for image analysis and quantitation.

For allele-specific gene expression, RT-PCR products containing SNPs were sequenced with both the forward and reverse primers. The following primer sets were used: \textit{Lrmp}, 5'-CATCGCTTCATCAGCACCTA-3', 5'-CTCAGAAAGGCTGGCTTC-3', \textit{Cascl}, 5'-GCAGGAGGAGGAGGAGGAGAC-3', 5'-TGTTCAAGGGCCTGTTCTT-3', \textit{Ghiso} 5'-TCATGTATAAAAGTGATGATCTTC-3', 5'-TGTTGAATTGATTGCTGACCCAGGACCAGG-3', \textit{Kras2} 5'-GGAGAGAGGCCTGCTGAAA-3', 5'-ACCATAGGCACATCTTCAG-3'. The same \textit{Kras2} primers also allowed detection of \textit{Kras2} mutations at codon 61 by nucleotide sequence analysis of the PCR product.

Sequence pherograms were analyzed and the heights of peaks at the SNP position were evaluated.

\textbf{2.4 STATISTICAL ANALYSIS}

According to their susceptibility to lung tumorigenesis, mouse strains were placed into two phenotype groups: the first group contained resistant strains and the second group contained susceptible and intermediate strains. Linkage disequilibrium between strain segregation of marker alleles and lung tumor susceptibility was evaluated by Fisher's exact test provided by the SAS software (SAS, 1998). \(P \) values were transformed to their negative logarithms, and a significant LD was considered if the \(-\log P > 2 \) (\(P < 0.01 \)).

Statistical analysis of cell counts in our transfection, were performed
by univariate analysis of variance using SPSS 10.1 software (SPSS Inc., Chicago, IL).

2.5 CANDIDATE GENES ANALYSIS

2.5.1 Cell lines

Human non-small cell lung carcinoma-derived cell line A549 and NCI-H520 were purchased from American Type Culture Collection (Rockwill, MD). Cells were grown in RPMI-1640 medium (Cambrex) supplemented with 5% FCS, at 37°C in a 5% CO₂ humidified atmosphere.

Human embryonic kidney cells (HEK-293T) were maintained in Dulbecco's modified Eagle medium (Cambrex), supplemented with 10% FCS, at 37°C in a 5% CO₂ humidified atmosphere.

2.5.2 Cloning of allelic variants in a mammalian expression vector

Cascl, Ghiso, Lrmp, and Lmna-rs1 full-length transcripts derived from normal lung tissue of A/J or C57BL/6 mice were PCR-amplified for subcloning in the eukaryotic pEF6/V5-His-TOPO cloning vector (Invitrogen). The following primers located 5' and 3' of the respective coding regions to include the natural ATG start codon and end just ahead of the TGA stop codon to produce a chimeric recombinant protein containing the V5His epitope at the C-terminus were used: Cascl, 5'-GTGAGCGTTCCTGCTCTGC-3', 5'-GGAAATAGCTGAGGACGCGGATA-3'; Ghiso, 5'-GTGAAAAATGGCCAATTTCGT-3', 5'-GACTTTGATATCTGAATAGTAACG-3'; Lrmp, 5'-CTCAGCCCATGCTCTGTA-3', 5'-CACTGGCGGTGTTCCATCA-3'; Lmna-rs1, 5'-
CTCTGCCAGCCATGATGAA-3’, 5’-TGACTTTGCTTTCI I I I ICTTGGTC-3’.

All reactions were performed in a final volume of 50 µl containing 1X GeneAmp buffer, 1.5 mM MgCl₂, 5 pmol of each primer, 100 µM of dNTPs and 1.2 U of AmpliTaq Gold (Applied Biosystems). Thermocycling was performed on the Gene Amp PCR System 9700 (Applied Biosystems).

Recombinant expression vectors were sequenced, and clones containing full-length inserts in the correct orientation and without PCR-induced mutations were used for cell transfections. DNAs of the selected recombinant plasmids were prepared and purified using the Plasmid Midi Kit (Qiagen).

2.5.3 RNA expression

A549 and NCI-H520 cells seeded in 60-mm dishes at 5x10⁵ cells/well were transiently transfected with 3 µg recombinant plasmid DNA and 6 µl SuperFect (Qiagen) according to the manufacturer's protocol.

Superfect Transfection Reagent is a specifically designed activated dendrimer possessing a defined spherical architecture, with branches radiating from a central core and terminated at charged amino groups. Superfect Reagent assembles DNA into compact structures, optimizing the entry of DNA into the cell. Superfect-DNA complexes possess a net positive charge, which allows them to bind to negatively charged receptors (e.g. sialylated glycoproteins) on the surface of eukaryotic cells. Once inside, Superfect Reagent buffers the lysosome after it has fused with the endosome, leading to pH inhibition of lysosomal nucleases. This ensure a stability of Superfect-DNA complexes and transport of intact DNA to the nucleus.
Cells transfected with the empty vector were used as control. The transfections were stopped after 24h, 48h and 72h, cells were pelleted and stored at -80°C. The pellets were used for RNA extraction by RNeasy Midi Kit (Qiagen, Valencia, CA). This technology combines the selective binding properties of a silica-gel-based membrane with the speed of spin technology. A specialized high-salt buffer system allows up to 1 mg of RNA longer than 200 bases to adsorb to the RNeasy silica-gel membrane. Samples were disrupted in buffer containing guanidine isothiocyanate and homogenized. Ethanol is added to the lysate, creating conditions that promote selective binding of RNA to the RNeasy silica-gel membrane. The sample is then applied to the RNeasy column. Residual DNA is removed using the RNase-Free DNase Set. Total RNA binds the membrane, contaminants are efficiently washed away, and high-quality RNA is eluted in RNase-free water. The RNA concentration and purity were determined by measuring the absorbance at 260 nm (A_{260}) in a spectrophotometer. A same quantity of RNA was used to isolate PolyA+ mRNA by Oligotex mRNA Mini Kit (Qiagen). cDNA was synthesized from polyA+ mRNA using SuperScript-III reverse transcriptase (Invitrogen, Carlsbad, CA).

First-strand cDNAs were used for expression analysis of candidate genes by semiquantitative PCR. All reactions were performed in a final reaction volume of 12 μl containing 1X GeneAmp buffer, 1.5 mM MgCl₂, 5 pmol of each primer, 100 μM of dNTPs, and 0.6 U of AmpliTaq Gold (Applied Biosystems, Foster City, CA). Thermocycling was performed using the Gene Amp PCR System 9700 (Applied Biosystems). Primer sets were designed to obtain PCR products of 140-400 bp in size: Gapdh: 5'-GAAGGTGAAGGTCGGAGTC-3', 5'-GAAGATGGTGATGGGATTTC-3'; LRMP': 5'-GAGTGAACACCGTCCCTCAT-3', 5'-AAAGACTTGGCTTCCTTGTCC-3'; Casc1: 5'-TATTCTGAGATTCAATACAAATTAAGG-3', 5'-AGGGCCATCTGTCGATAAGC-3'; GHISO: 5'-GCGTGCCGAAAGTAGTATGTA-3', 5'-AGTAGGGCAGCTCAGGGATT-3';
and LMNA-RS1: 5'-AGAAGGAAATCCCACCAACC-3', 5'-TTGAGTTGACTGCTTATTGCTTTT-3'. PCR products were loaded on 2.5% agarose gels, stained with ethidium bromide, and photographed with a CCD camera for image analysis and quantitation.

2.5.4 Colony formation assays

We performed a kill curve to determine the appropriate concentration of Blasticidin to use for the selection of resistant cells. A549 and NCI-H520 cells were seeded in 12-multi-well plates at 1.2x10^4 cells/well and different concentrations of antibiotic were added to the medium. The kill curve revealed that the concentration of Blasticidin is different for the two cell lines in particular it is 5μg/ml for A549 cells and 2 μg/ml for NCI-H520 cells. A549 and NCI-H520 cells seeded in 6-multi-well plates at 3x10^5 cells/well were transfected with 2μg recombinant plasmid DNA and 4 μl SuperFect (Qiagen) according to the manufacturer's protocol. Cells transfected with the empty vector were used as a control. Two days after transfection, the appropriate concentration of antibody was added and transfectant clones were selected after 17 days for A549 and 26 days for NCI-H520 cells. Blasticidin-resistant clones were either fixed with methanol (100%) and stained with 10% Giemsa, or treated with trypsin, pelleted by centrifugation, resuspended in RPMI-1640 medium and counted using a Burker chamber. We repeated at least three independent experiments.

2.5.5 Protein and apoptosis analysis

HEK-293T cells in 100-mm dishes were transiently transfected with 5μg recombinant plasmid DNA using the calcium phosphate
precipitation method. After 24, 48 and 72 h, cells were lysed in RIPA buffer supplemented with 1/100 protease inhibitor cocktail (Sigma) for 20 min at 4°C. Lysates were centrifuged at 13000 rpm for 10 min at 4°C and protein content in the supernatant was measured using the Bradford method (BioRad). Proteins were separated by SDS-PAGE and transferred to nitrocellulose membranes (Hybond-C Super; Amersham Pharmacia, UK). Membranes were blocked in Tris-buffered saline containing 1% Tween-20 (TBS-T)/2% BSA for 1 h, washed 3 times for 10 min each with TBS-T at room temperature and incubated overnight at room temperature with anti-V5 mouse monoclonal antibody (Invitrogen) diluted 1:2500 in TBS-T/2% BSA. Apoptosis was analyzed in HEK-293T, A549, and NCI-H520 cells transiently transfected as described above, hybridized in Western blots overnight at room temperature with anti-human poly(ADP-ribose) polymerase (PARP) purified mouse monoclonal antibody (BD Biosciences) diluted 0.5 mg/ml in TBS-T/2% BSA. Blots were washed with TBS-T and incubated for 1 h with secondary antibody (sheep ECL anti-mouse IgG, peroxidase-linked species-specific whole antibody; Amersham Biosciences) diluted 1:4000 in TBS-T/2% BSA. After washing, blots were developed using ECL Plus (Amersham Biosciences).

2.5.6 Immunofluorescence microscopy

HEK-293T cells grown on 13-mm coverslips were transiently transfected with calcium phosphate, washed in PBS, and fixed in 4% paraformaldehyde for 5-10 min. After several washes in PBS, cells were permeabilized by incubation in 1% BSA, 0.2% Triton X-100 in PBS for 30 min, and incubated in 10% anti-goat serum for 30 min followed by anti-V5 mouse monoclonal antibody (Invitrogen) diluted 1:150. Cells were washed several times with PBS-0.2% Triton X-100, incubated with secondary antibody (Alexa Fluor 488 conjugate;
Cambrex) diluted 1:250, washed again in PBS-0.2% Triton X-100, and coverlips were mounted with Vectashield mounting medium including DAPI (DBA Italia). Fluorescent cells were detected using a Nikon Eclipse E1000 fluorescence microscope and photographed with a DXm1200F digital camera.
Chapter 3 RESULTS
The first aim of this project was to discover and to test new polymorphisms (both SSLPs and SNPs) in the Pas1 locus region, around Kras2 gene, in a population of 29 laboratory mouse inbred strains with known susceptibility to lung carcinogenesis. We detected a shared A/J- and C57BL/6J-type haplotype containing genomic as well as coding polymorphisms in six genes, supporting the hypothesis that Pas1 is a multigene locus.

3.1 Pas1 CONTAINING REGION

3.1.1 Physical delimitation of the Pas1 locus

Identification of Pas1 candidate genes by positional cloning requires the reduction of the mapping region to a manageable size. After the first mapping studies that placed the Pas1 locus in a 10-20 cM interval (Gariboldi et al., 1993), linkage disequilibrium (LD) analysis in mouse inbred strains of known susceptibility/resistance to urethane-induced lung tumorigenesis placed the Pas1 locus in a ~1.5-Mb region (Manenti et al., 1999).

In order to further shorten the region containing the Pas1 locus we analyzed the (CxB)RI 5 mouse line. We decided to include this line for our analysis because, although this line has inherited a large segment of the telomeric portion of chromosome 6 from the susceptible BALB/c parental strain, it is however highly resistant to lung tumorigenesis developing 0.07 tumors per mouse after urethane treatment (Malkinson and Beer, 1984). This discrepancy was explained by the finding that the (CxB)RI 5 mouse carries the Kras2 allele from the resistant C57BL/6J parent line indicating the presence of small recombination that replaced the Pas1 susceptible
allele (from BALB/c) with the \textit{Pas1} resistant allele (from C57BL/6J). Therefore, in this mouse line the extension of C57BL/6J inherited region around the \textit{Kras2} gene would be compatible with the physical map of \textit{Pas1}.

We carried out an extensive genotype analysis of this RI line genotyping 45 markers on chromosome 6 (Tab.3) and we localized the centromeric point of recombination between markers \textit{D6Mit198} and \textit{D6Int152} (a SSLP mapping at 142.931580 Mb). The telomeric end of recombination was localized in a 9.9-kb fragment between markers \textit{D6Int47} (145.814802 Mb) and \textit{D6Int56} (145.824723). \textit{D6Int47} is located in the middle of exon 4 of the \textit{Lmna-rs1} gene, whereas \textit{D6Int56} is located in the intronic region between exons 2 and 3 of the same gene.

This finding enabled us to further narrow the \textit{Pas1} region to 468 kb. (Fig. 5)

Five known genes map in this 468-kb region: the branched-chain aminotransferase cytosolic 1 (\textit{Bcat1}), the lymphoid-restricted membrane protein (\textit{Lrmp}), the unnamed 4930469P12Rik gene that encodes a growth hormone-inducible soluble protein (AF412299) with no known protein domains, (the gene was provisionally named \textit{Ghiso}: growth hormone-inducible soluble protein), the transforming protein p21 (\textit{Kras2}) and the unnamed 4933403M22Rik gene that encodes a protein containing an intermediate filament tail domain related to lamin A. Therefore, the 4933403M22Rik gene was provisionally named \textit{Lmna-rs1} (lamin A-related sequence 1). (Fig. 5).
Table 3 Single nucleotide polymorphism used for the analysis of (CxB)RI line (the lines are indicated on the top of the figure). On the left are listed the markers used in this study. The centromeric point of recombination is located between markers D6Mit198 (in green) and D6Int152 (an SSLP not shown), while the telomeric end of recombination is located in a 9.9kb fragment between markers D6Int147 and D6Int56 (in yellow). B is for Balb/c, C is for C57/BL6J

Using different programs to identify coding regions in the genome (NIX analysis package), we identified and then cloned a previously
uncharacterized gene mapping between *Lrmp* and *Ghiso*. This gene is the mouse homolog of the human AK001783 transcript and corresponds to the recently identified *Las1* gene (Zhang *et al.*, 2003) except for an additional 70 bp in the 5′-UTR. This new gene has 16 exons, spans a 36-kb region, and is flanked at its 3′-end by the 3′-end of *Lrmp* and at its 5′-end by the 5′-end of *Ghiso*. Subsequent LD analysis of outbred mouse lines susceptible and resistant to both inflammatory response and lung tumorigenesis delineated a 0.45-Mb region around the *Kras2* gene, included in the previous 1.5-Mb region (Maria *et al.*, 2003).

![Physical map of distal Chromosome 6 and delimitation of the *Pas1* core haplotype.](image)

Figure 5 Physical map of distal Chromosome 6 and delimitation of the *Pas1* core haplotype. The upper line shows the genomic region from 145.027489 to 146.035280 Mb, and the point of genetic recombination in the mouse CXB5 RI line (black and hatched boxes indicate the C57BL/6J- and BALB/c- derived chromosomes, respectively). The genotyping of 65 genetic markers in this 1 Mb region identified a core *Pas1* haplotype, between D6Int24 and D6Int47, which contained 54 of these markers and the six genes shown. The approximate locations of the genes are depicted above (sense) and below (reverse) the segment representing the DNA sequence of that region. Introns are depicted by lines, the exons are depicted by solid vertical bars. Positions of the alignments are based on the Ensembl database. (*Las1* is for *Cascl*)

We performed a nucleotide sequence analysis of genomic fragments for a total of 20000 bp in the *Pas1* region and this allowed us to
identify 159 SNPs/SSLPs (Tab.4). Among these markers, we analyzed 27 SSLP and 37 SNP (see Tab.6 and Tab.7 for more details) between A/J and C57BL/6J mice selected according to their position and the distance between each other. We started our analysis genotyping these selected markers in 24 mouse inbred strains with known susceptibility to lung carcinogenesis (Tab.5). Some SNP markers were analyzed in 89 inbred strains with known susceptibility to lung carcinogenesis for a more complete analysis (see Fig.6 for ASO hybridization example).

<table>
<thead>
<tr>
<th>Marker</th>
<th>Gene</th>
<th>Type</th>
<th>PCR Primers Name</th>
<th>Detection method</th>
<th>SNP Polymorphism</th>
<th>Amino-acid change</th>
</tr>
</thead>
<tbody>
<tr>
<td>D6lnt15</td>
<td>SSLP</td>
<td>CTTCTAGCCTCCTGAGGAC</td>
<td>32P</td>
<td>GTCGACCTTGCCTGAGG</td>
<td>G -> A</td>
<td></td>
</tr>
<tr>
<td>D6lnt14</td>
<td>SSLP</td>
<td>GAACGATGCACCTGCACG</td>
<td>32P</td>
<td>GTGACCTTGCCTGAGG</td>
<td>G -> A</td>
<td></td>
</tr>
<tr>
<td>D6lnt7</td>
<td>SSLP</td>
<td>TGGAGTGCTCTGAGCTGTTG</td>
<td>32P</td>
<td>CCTATCTGTCAGTTTTATCCCTTGT</td>
<td>G -> A</td>
<td></td>
</tr>
<tr>
<td>D6lnt8</td>
<td>SSLP</td>
<td>GGAAGTAACTTGTGCCAGGAT</td>
<td>32P</td>
<td>GTGCCCTAGGGAGTGTCTTATG</td>
<td>G -> A</td>
<td></td>
</tr>
<tr>
<td>D6lnt17</td>
<td>SSLP</td>
<td>CAATGCGGGTTTATCTGTCA</td>
<td>32P</td>
<td>TACATGCACGACCCTCACAT</td>
<td>G -> A</td>
<td></td>
</tr>
<tr>
<td>D6lnt24</td>
<td>SSLP</td>
<td>GGGAAATTGGTGGGAAGAAG</td>
<td>32P</td>
<td>CCTTGACTTTTGTTTCCTACCC</td>
<td>G -> A</td>
<td></td>
</tr>
<tr>
<td>D6lnt25</td>
<td>SSLP</td>
<td>TGTCTAACTTCCCAGACCAACA</td>
<td>32P</td>
<td>AAGTGGCAGTGTCCTCAA</td>
<td>G -> A</td>
<td></td>
</tr>
<tr>
<td>D6lnt26</td>
<td>SSLP</td>
<td>GGCATCTCATTCCTTCTTTCA</td>
<td>32P</td>
<td>CTGCTTGAATGCTTGGGTTT</td>
<td>G -> A</td>
<td></td>
</tr>
<tr>
<td>D6lnt27</td>
<td>SSLP</td>
<td>TGCATTCGTGTGCACATTC</td>
<td>32P</td>
<td>GTGCCCTTACCCACTGTCAT</td>
<td>G -> A</td>
<td></td>
</tr>
<tr>
<td>D6lnt18</td>
<td>SSLP</td>
<td>ATCCCACAACCTCATTCCAA</td>
<td>32P</td>
<td>CCTCCATTCTGTATGGCAAGA</td>
<td>G -> A</td>
<td></td>
</tr>
<tr>
<td>D6lnt28</td>
<td>SSLP</td>
<td>TGCTCACTGGCAACATGAAC</td>
<td>32P</td>
<td>GAGGCTCTCTCATGGCCTTT</td>
<td>G -> A</td>
<td></td>
</tr>
<tr>
<td>D6lnt19</td>
<td>SSLP</td>
<td>GGCCCATCCAGTCTTAGGTT</td>
<td>32P</td>
<td>CAGGTTGGCTTGGCTTATCT</td>
<td>G -> A</td>
<td></td>
</tr>
<tr>
<td>D6lnt29</td>
<td>SSLP</td>
<td>CCCTGATACCACACATGCAC</td>
<td>32P</td>
<td>CTAGCTGGGCCAAGAAAGC</td>
<td>G -> A</td>
<td></td>
</tr>
<tr>
<td>D6lnt30</td>
<td>SNP</td>
<td>GGGAGACAAACACACCTGCT</td>
<td>32P</td>
<td>GCAAGTGGATGCTAGGAAC TTTTACA[C/T]TGAAACC</td>
<td>G -> A</td>
<td></td>
</tr>
<tr>
<td>D6lnt3</td>
<td>SSLP</td>
<td>GCCATCTCAGTGGAGGCTTT</td>
<td>32P</td>
<td>CAT GT CAGAGAT GAGC T GT GC</td>
<td>G -> A</td>
<td></td>
</tr>
<tr>
<td>D6lnt31</td>
<td>SSLP</td>
<td>AAACACGATATAGGCCCATTTAATA</td>
<td>32P</td>
<td>GTTGCTTTTCTTGGGCTGGT</td>
<td>G -> A</td>
<td></td>
</tr>
<tr>
<td>D6lnt32</td>
<td>Long_Sel</td>
<td>SNP</td>
<td>YTTCACATGGCACTCTACG</td>
<td>32P</td>
<td>GCAAGAATGACACACAGG</td>
<td>G -> A</td>
</tr>
<tr>
<td>D6lnt33</td>
<td>Long_Sel</td>
<td>SNP</td>
<td>YTTTCCAAACATCTCTCTCC</td>
<td>32P</td>
<td>GGAGAATGACACACAGG</td>
<td>G -> A</td>
</tr>
<tr>
<td>D6lnt34</td>
<td>Long_Sel</td>
<td>SNP</td>
<td>YTTTCCAAACATCTCTCTCC</td>
<td>32P</td>
<td>GGAGAATGACACACAGG</td>
<td>G -> A</td>
</tr>
<tr>
<td>D6lnt35</td>
<td>Long_Sel</td>
<td>SNP</td>
<td>YTTTCCAAACATCTCTCTCT</td>
<td>32P</td>
<td>GGAGAATGACACACAGG</td>
<td>G -> A</td>
</tr>
<tr>
<td>D6lnt36</td>
<td>SNP</td>
<td>YACCACTCTCAGGAGGACCTT</td>
<td>32P</td>
<td>TTACACCTCAGGAGGACCTT</td>
<td>G -> A</td>
<td></td>
</tr>
<tr>
<td>D6lnt37</td>
<td>SNP</td>
<td>YACCACTCTCAGGAGGACCTT</td>
<td>32P</td>
<td>TTACACCTCAGGAGGACCTT</td>
<td>G -> A</td>
<td></td>
</tr>
<tr>
<td>SNP</td>
<td>Exon</td>
<td>Type</td>
<td>Description</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>-----</td>
<td>------</td>
<td>------</td>
<td>-------------</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>D6lnt32b</td>
<td>SNP</td>
<td>Exon3</td>
<td>SNP TACGTGCCTAAAGCGACCTT TTTGTTCCCACTGGCTTTTC GGTGCTG (A/G) CC ACTT (O/C) TATTC (C/T) TGTACCA</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>D6lnt33c</td>
<td>SNP</td>
<td>Exon3</td>
<td>SNP TACGTGCCTAAAGCGACCTT TTTGTTCCCACTGGCTTTTC GGTGCTG (A/G) CC ACTT (O/C) TATTC (C/T) TGTACCA</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>D6lnt59</td>
<td>SNP</td>
<td>Exon6</td>
<td>SNP AAATTCAGAGGGACAGATCCTACA GCTGCTTCTTCCTTTTGATTG agar T(A,B6/C(CBA)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>D6lnt60</td>
<td>SNP</td>
<td>Exon6</td>
<td>SNP AAATTCAGAGGGACAGATCCTACA GCTGCTTCTTCCTTTTGATTG agar T(A,B6/C(CBA)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>D6lnt61</td>
<td>SNP</td>
<td>Exon6</td>
<td>SNP AAATTCAGAGGGACAGATCCTACA GCTGCTTCTTCCTTTTGATTG agar T(A,B6/C(CBA)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>D6lnt62</td>
<td>SNP</td>
<td>Exon8</td>
<td>SNP GC (A/B) A -> A</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>D6lnt63</td>
<td>SNP</td>
<td>Exon8</td>
<td>SNP GC (A/B) A -> A</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>D6lnt64</td>
<td>SNP</td>
<td>Exon8</td>
<td>SNP GC (A/B) A -> A</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>D6lnt65</td>
<td>SNP</td>
<td>Exon8</td>
<td>SNP GC (A/B) A -> A</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>D6lnt66</td>
<td>SNP</td>
<td>Exon8</td>
<td>SNP GC (A/B) A -> A</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>D6lnt67</td>
<td>SNP</td>
<td>Exon8</td>
<td>SNP GC (A/B) A -> A</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>D6lnt68</td>
<td>SNP</td>
<td>Exon8</td>
<td>SNP GC (A/B) A -> A</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>D6lnt69</td>
<td>SNP</td>
<td>Exon8</td>
<td>SNP GC (A/B) A -> A</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>D6lnt70</td>
<td>SNP</td>
<td>Exon8</td>
<td>SNP GC (A/B) A -> A</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>D6lnt71</td>
<td>SNP</td>
<td>Exon8</td>
<td>SNP GC (A/B) A -> A</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>D6lnt72</td>
<td>SNP</td>
<td>Exon8</td>
<td>SNP GC (A/B) A -> A</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>D6lnt73</td>
<td>SNP</td>
<td>Exon8</td>
<td>SNP GC (A/B) A -> A</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>D6lnt74</td>
<td>SNP</td>
<td>Exon8</td>
<td>SNP GC (A/B) A -> A</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>D6lnt75</td>
<td>SNP</td>
<td>Exon8</td>
<td>SNP GC (A/B) A -> A</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>D6lnt76</td>
<td>SNP</td>
<td>Exon8</td>
<td>SNP GC (A/B) A -> A</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>D6lnt77</td>
<td>SNP</td>
<td>Exon8</td>
<td>SNP GC (A/B) A -> A</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>D6lnt78</td>
<td>SNP</td>
<td>Exon8</td>
<td>SNP GC (A/B) A -> A</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>D6lnt79</td>
<td>SNP</td>
<td>Exon8</td>
<td>SNP GC (A/B) A -> A</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>D6lnt80</td>
<td>SNP</td>
<td>Exon8</td>
<td>SNP GC (A/B) A -> A</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>D6lnt81</td>
<td>SNP</td>
<td>Exon9</td>
<td>SNP GC (A/B) A -> A</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Exemplary Intronic SSLPs:

<table>
<thead>
<tr>
<th>Exon</th>
<th>Type</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>D6lnt38</td>
<td>SSLP</td>
<td>Exon1</td>
</tr>
<tr>
<td>D6lnt39</td>
<td>SSLP</td>
<td>Exon1</td>
</tr>
<tr>
<td>D6lnt40</td>
<td>SSLP</td>
<td>Exon1</td>
</tr>
</tbody>
</table>

Intronic SSLPs:

<table>
<thead>
<tr>
<th>Exon</th>
<th>Type</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>D6lnt37a</td>
<td>SSLP</td>
<td>Exon14g</td>
</tr>
<tr>
<td>D6lnt37b</td>
<td>SSLP</td>
<td>Exon14g</td>
</tr>
<tr>
<td>D6lnt38a</td>
<td>SSLP</td>
<td>Exon13q</td>
</tr>
<tr>
<td>D6lnt39a</td>
<td>SSLP</td>
<td>Exon13</td>
</tr>
<tr>
<td>D6lnt40a</td>
<td>SSLP</td>
<td>Exon13</td>
</tr>
<tr>
<td>D6lnt41a</td>
<td>SSLP</td>
<td>Exon16</td>
</tr>
<tr>
<td>D6lnt42a</td>
<td>SSLP</td>
<td>Exon16</td>
</tr>
<tr>
<td>D6lnt43a</td>
<td>SSLP</td>
<td>Exon16</td>
</tr>
<tr>
<td>D6lnt44a</td>
<td>SSLP</td>
<td>Exon16</td>
</tr>
<tr>
<td>D6lnt45a</td>
<td>SSLP</td>
<td>Exon16</td>
</tr>
<tr>
<td>D6lnt46a</td>
<td>SSLP</td>
<td>Exon16</td>
</tr>
<tr>
<td>D6lnt47a</td>
<td>SSLP</td>
<td>Exon16</td>
</tr>
<tr>
<td>D6lnt48a</td>
<td>SSLP</td>
<td>Exon16</td>
</tr>
<tr>
<td>D6lnt49a</td>
<td>SSLP</td>
<td>Exon16</td>
</tr>
<tr>
<td>D6lnt50a</td>
<td>SSLP</td>
<td>Exon16</td>
</tr>
<tr>
<td>D6lnt51a</td>
<td>SSLP</td>
<td>Exon16</td>
</tr>
<tr>
<td>D6lnt52a</td>
<td>SSLP</td>
<td>Exon16</td>
</tr>
<tr>
<td>D6lnt53a</td>
<td>SSLP</td>
<td>Exon16</td>
</tr>
<tr>
<td>D6lnt54a</td>
<td>SSLP</td>
<td>Exon16</td>
</tr>
<tr>
<td>D6lnt55a</td>
<td>SSLP</td>
<td>Exon16</td>
</tr>
<tr>
<td>D6lnt56a</td>
<td>SSLP</td>
<td>Exon16</td>
</tr>
<tr>
<td>D6lnt38</td>
<td>Cascl_Ex9</td>
<td>SNP</td>
</tr>
<tr>
<td>--------</td>
<td>-----------</td>
<td>-----</td>
</tr>
<tr>
<td>D6lnt39</td>
<td>Cascl_Ex9</td>
<td>SNP</td>
</tr>
<tr>
<td>D6lnt82</td>
<td>Cascl_Ex9</td>
<td>SNP</td>
</tr>
<tr>
<td>D6lnt83</td>
<td>Cascl_Ex9</td>
<td>SNP</td>
</tr>
<tr>
<td>D6lnt84</td>
<td>Cascl_Ex9</td>
<td>SNP</td>
</tr>
<tr>
<td>D6lnt85</td>
<td>Cascl_Ex9</td>
<td>SNP</td>
</tr>
<tr>
<td>D6lnt86</td>
<td>Cascl_Ex9</td>
<td>SNP</td>
</tr>
<tr>
<td>D6lnt87</td>
<td>Cascl_Ex9</td>
<td>SNP</td>
</tr>
<tr>
<td>D6lnt88</td>
<td>Cascl_Ex9</td>
<td>SNP</td>
</tr>
<tr>
<td>D6lnt89</td>
<td>Cascl_Ex9</td>
<td>SNP</td>
</tr>
<tr>
<td>D6lnt90</td>
<td>Cascl_Ex9</td>
<td>SNP</td>
</tr>
<tr>
<td>D6lnt91</td>
<td>Cascl_Ex9</td>
<td>SNP</td>
</tr>
<tr>
<td>D6lnt92</td>
<td>Cascl_Ex9</td>
<td>SNP</td>
</tr>
<tr>
<td>D6lnt93</td>
<td>Cascl_Ex9</td>
<td>SNP</td>
</tr>
<tr>
<td>D6lnt94</td>
<td>Cascl_Ex9</td>
<td>SNP</td>
</tr>
<tr>
<td>D6lnt95</td>
<td>Cascl_Ex9</td>
<td>SNP</td>
</tr>
<tr>
<td>D6lnt96</td>
<td>Cascl_Ex9</td>
<td>SNP</td>
</tr>
<tr>
<td>D6lnt97</td>
<td>Cascl_Ex9</td>
<td>SNP</td>
</tr>
<tr>
<td>D6lnt98</td>
<td>Cascl_Ex9</td>
<td>SNP</td>
</tr>
<tr>
<td>D6lnt99</td>
<td>Cascl_Ex9</td>
<td>SNP</td>
</tr>
<tr>
<td>D6lnt100</td>
<td>Cascl_Ex9</td>
<td>SNP</td>
</tr>
<tr>
<td>D6lnt101</td>
<td>Cascl_Ex9</td>
<td>SNP</td>
</tr>
<tr>
<td>D6lnt102</td>
<td>Cascl_Ex9</td>
<td>SNP</td>
</tr>
<tr>
<td>D6lnt103</td>
<td>Cascl_Ex9</td>
<td>SNP</td>
</tr>
<tr>
<td>D6lnt104</td>
<td>Cascl_Ex9</td>
<td>SNP</td>
</tr>
<tr>
<td>D6lnt105</td>
<td>Cascl_Ex9</td>
<td>SNP</td>
</tr>
<tr>
<td>D6lnt106</td>
<td>Cascl_Ex9</td>
<td>SNP</td>
</tr>
<tr>
<td>D6lnt107</td>
<td>Cascl_Ex9</td>
<td>SNP</td>
</tr>
<tr>
<td>D6lnt108</td>
<td>Cascl_Ex9</td>
<td>SNP</td>
</tr>
<tr>
<td>D6lnt109</td>
<td>Cascl_Ex9</td>
<td>SNP</td>
</tr>
<tr>
<td>D6lnt110</td>
<td>Cascl_Ex9</td>
<td>SNP</td>
</tr>
<tr>
<td>D6lnt111</td>
<td>Cascl_Ex9</td>
<td>SNP</td>
</tr>
<tr>
<td>D6lnt112</td>
<td>Cascl_Ex9</td>
<td>SNP</td>
</tr>
<tr>
<td>D6lnt113</td>
<td>Cascl_Ex9</td>
<td>SNP</td>
</tr>
<tr>
<td>D6lnt114</td>
<td>Cascl_Ex9</td>
<td>SNP</td>
</tr>
</tbody>
</table>
Table 4 159 SNPs/SSLPs identified in the nucleotide sequence analysis of genomic fragments for a total of 20000 bp in the *Pas1* region.
<table>
<thead>
<tr>
<th>Susceptibility</th>
<th>Strain</th>
<th>Haplotype type</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>Susceptible</td>
<td>A/J</td>
<td>A/J</td>
<td>Manenti G., 2002</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Malkinson A.M., 1983</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Manenti G., 1997</td>
</tr>
<tr>
<td></td>
<td>FVB/NJ</td>
<td>A/J</td>
<td>Malkinson A.M., 1983</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Shafarenko M., 1997</td>
</tr>
<tr>
<td></td>
<td>STS/A</td>
<td>A/J</td>
<td>Mahler J.F., 1996</td>
</tr>
<tr>
<td></td>
<td>ST/Bj</td>
<td>A/J</td>
<td>Smith G.S., 1973</td>
</tr>
<tr>
<td></td>
<td>MA/MyJ</td>
<td>A/J</td>
<td>Hoag W.G., 1989</td>
</tr>
<tr>
<td>Resistant</td>
<td>P/J</td>
<td>C57BL/6</td>
<td>Hoag W.G., 1963</td>
</tr>
<tr>
<td></td>
<td>SM/J</td>
<td>C57BL/6</td>
<td>Malkinson A.M., 1989</td>
</tr>
<tr>
<td></td>
<td>AKR/J</td>
<td>C57BL/6</td>
<td>Malkinson A.M., 1983</td>
</tr>
<tr>
<td></td>
<td>C58/J</td>
<td>C57BL/6</td>
<td>Malkinson A.M., 1989</td>
</tr>
<tr>
<td></td>
<td>DBA/1J</td>
<td>C57BL/6</td>
<td>Malkinson A.M., 1983</td>
</tr>
<tr>
<td></td>
<td>DBA/2J</td>
<td>C57BL/6</td>
<td>Malkinson A.M., 1983</td>
</tr>
<tr>
<td></td>
<td>C57L/J</td>
<td>C57BL/6</td>
<td>Malkinson A.M., 1989</td>
</tr>
<tr>
<td></td>
<td>C3H/HeJ</td>
<td>C57BL/6</td>
<td>Malkinson A.M., 1983</td>
</tr>
<tr>
<td></td>
<td>C57BL/6J</td>
<td>C57BL/6</td>
<td>Malkinson A.M., 1989</td>
</tr>
<tr>
<td></td>
<td>C57BL/10J</td>
<td>C57BL/6</td>
<td>Malkinson A.M., 1989</td>
</tr>
<tr>
<td></td>
<td>SJL/J</td>
<td>C57BL/6</td>
<td>Malkinson A.M., 1983</td>
</tr>
<tr>
<td></td>
<td>C57BR/cdJ</td>
<td>C57BL/6</td>
<td>Malkinson A.M., 1983</td>
</tr>
</tbody>
</table>

Table 5 Inherited predisposition to lung tumorigenesis in 24 mouse inbred strains.
Figure 6 Example of detection of a SNP polymorphism (D6Int10) by allele-specific oligonucleotide (ASO) hybridization in 86 inbred strains. DNA samples were amplified by PCR, blotted on nylon membranes, and hybridized with either a radiolabeled A-type oligonucleotide (on left) or a radiolabeled G-type oligonucleotide (on right). The mouse strains studied in my thesis are in red. C1: 129/SvJ; E1: A/J; F1: AKR/J; A2: Balb/CJ; D2: C3H/HeJ; F2: C57BL/10J; H2 C57BL/6J; A3: C57L/J; B3: C57BR/cdJ; D3: C58/J; A4: CBA; B4: CE/J; D4: DBA1/J; E4: DBA2/J; G4: FVB/NJ; E5: LP7J; F5: MA/MjJ; H6: NZB/B1NJ; C7: P/J; G7: PL/J; B8: RF/J; C8: RIII/S/J; B9: SJL/J; E9: SM/J; H9: ST/JB; B10: SWR/J; A11: NGP/N; B11: STS/A; D11: O20/A.

Subsequently, a Medline search was conducted to increase the number of strains. We decided to include five new strains of known susceptibility to lung cancer. In particular, NGP/N (Malkinson, 1989) and O20/A (Bentvelzen, 1966) are susceptible to lung tumorigenesis, RIII/S/J express intermediate susceptibility (Malkinson and Beer, 1983; Falconer and Bloom, 1962) while NZB/B1NJ (Malkinson and Beer, 1983) and CE/J (Festing and Blackmore, 1971) are resistant.
<table>
<thead>
<tr>
<th>Position (kb)</th>
<th>Marker</th>
<th>Gene</th>
<th>PCR primers</th>
</tr>
</thead>
<tbody>
<tr>
<td>142931483</td>
<td>D6Int152</td>
<td></td>
<td>CTCGAGCGTGTGTTGTAAGAC</td>
</tr>
<tr>
<td>145027489</td>
<td>D6Int20</td>
<td></td>
<td>TCTCTTGGGAGGAGAGG</td>
</tr>
<tr>
<td>145175879</td>
<td>D6Int16</td>
<td></td>
<td>TGCAGAGAATTTCTATGGTTT</td>
</tr>
<tr>
<td>145230814</td>
<td>D6Int21</td>
<td></td>
<td>TCTGAGCCGACATTCAATCA</td>
</tr>
<tr>
<td>145337579</td>
<td>D6Int17</td>
<td></td>
<td>CTTCTCTGAGCCAATGGT</td>
</tr>
<tr>
<td>145346401</td>
<td>D6Int24</td>
<td></td>
<td>CACTGACGAGGAAAGGAG</td>
</tr>
<tr>
<td>145363293</td>
<td>D6Int25</td>
<td></td>
<td>TCTGCTGACTGCTGACGTC</td>
</tr>
<tr>
<td>145389499</td>
<td>D6Int26</td>
<td></td>
<td>TCTGAGGAGAATTTCTATGGTTT</td>
</tr>
<tr>
<td>145398672</td>
<td>D6Int27</td>
<td></td>
<td>TCTGAGGAGAATTTCTATGGTTT</td>
</tr>
<tr>
<td>145403158</td>
<td>D6Int18</td>
<td></td>
<td>TCTGAGGAGAATTTCTATGGTTT</td>
</tr>
<tr>
<td>145434169</td>
<td>D6Int29</td>
<td></td>
<td>TCTGAGGAGAATTTCTATGGTTT</td>
</tr>
<tr>
<td>145506667</td>
<td>D6Int3</td>
<td>Lmp</td>
<td>TCTGAGGAGAATTTCTATGGTTT</td>
</tr>
<tr>
<td>145520113</td>
<td>D6Int31</td>
<td>Lmp</td>
<td>TCTGAGGAGAATTTCTATGGTTT</td>
</tr>
<tr>
<td>145532679</td>
<td>D6Int5</td>
<td>Lmp</td>
<td>TCTGAGGAGAATTTCTATGGTTT</td>
</tr>
<tr>
<td>145556716</td>
<td>D6Int6</td>
<td>Lmp</td>
<td>TCTGAGGAGAATTTCTATGGTTT</td>
</tr>
<tr>
<td>145559317</td>
<td>D6Int26</td>
<td>Lmp</td>
<td>TCTGAGGAGAATTTCTATGGTTT</td>
</tr>
<tr>
<td>145595636</td>
<td>D6Int9</td>
<td>Las1</td>
<td>TCTGAGGAGAATTTCTATGGTTT</td>
</tr>
<tr>
<td>145599886</td>
<td>D6Int129</td>
<td>Ghiso</td>
<td>TCTGAGGAGAATTTCTATGGTTT</td>
</tr>
<tr>
<td>145599956</td>
<td>D6Int132</td>
<td>Ghiso</td>
<td>TCTGAGGAGAATTTCTATGGTTT</td>
</tr>
<tr>
<td>145603994</td>
<td>D6Int11</td>
<td></td>
<td>TCTGAGGAGAATTTCTATGGTTT</td>
</tr>
<tr>
<td>145634766</td>
<td>Kras2_37</td>
<td>Kras2</td>
<td>TCTGAGGAGAATTTCTATGGTTT</td>
</tr>
<tr>
<td>145644184</td>
<td>D6Int12</td>
<td></td>
<td>TCTGAGGAGAATTTCTATGGTTT</td>
</tr>
<tr>
<td>145788908</td>
<td>D6Int14</td>
<td></td>
<td>TCTGAGGAGAATTTCTATGGTTT</td>
</tr>
<tr>
<td>145833516</td>
<td>D6Int48</td>
<td></td>
<td>TCTGAGGAGAATTTCTATGGTTT</td>
</tr>
<tr>
<td>145836112</td>
<td>D6Int15</td>
<td></td>
<td>TCTGAGGAGAATTTCTATGGTTT</td>
</tr>
<tr>
<td>145931230</td>
<td>D6Int52</td>
<td></td>
<td>TCTGAGGAGAATTTCTATGGTTT</td>
</tr>
<tr>
<td>146035280</td>
<td>D6Int45</td>
<td></td>
<td>TCTGAGGAGAATTTCTATGGTTT</td>
</tr>
</tbody>
</table>

Table 6 Simple sequence length polymorphism with PCR primers used for the analysis of the Pas1 locus
Position (kb) | Marker | Gene | Exon | GenBank Acc. | SNP polymorphism | Amino-acid variation |
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>145501932</td>
<td>D6Int30</td>
<td>Lmp</td>
<td>2</td>
<td>AY490381</td>
<td>C145501932T</td>
<td>Genomic</td>
</tr>
<tr>
<td>145536150</td>
<td>D6Int32a</td>
<td>Lmp</td>
<td>3</td>
<td>AY490382</td>
<td>A145536150G</td>
<td>G31D</td>
</tr>
<tr>
<td>145536157</td>
<td>D6Int32b</td>
<td>Lmp</td>
<td>3</td>
<td>AY490382</td>
<td>A145536157C</td>
<td>G31D</td>
</tr>
<tr>
<td>145536163</td>
<td>D6Int32c</td>
<td>Lmp</td>
<td>3</td>
<td>AY490382</td>
<td>A145536163T</td>
<td>G31D</td>
</tr>
<tr>
<td>145562248</td>
<td>D6Int54</td>
<td>Lmp</td>
<td>17</td>
<td>AY490382</td>
<td>A145562248A</td>
<td>G43R</td>
</tr>
<tr>
<td>145563172</td>
<td>D6Int8</td>
<td>Lmp</td>
<td>18</td>
<td>AY490382</td>
<td>A145563172C</td>
<td>G43R</td>
</tr>
<tr>
<td>145566018</td>
<td>D6Int7a</td>
<td>Lax1</td>
<td>4</td>
<td>AY490382</td>
<td>A145566018T</td>
<td>Intronic</td>
</tr>
<tr>
<td>145568048</td>
<td>D6Int8b</td>
<td>Lax1</td>
<td>4</td>
<td>AY490382</td>
<td>A145568048T</td>
<td>Intronic</td>
</tr>
<tr>
<td>145589112</td>
<td>D6Int40</td>
<td>Lax1</td>
<td>5</td>
<td>AY490382</td>
<td>A145589112T</td>
<td>Intronic</td>
</tr>
<tr>
<td>145589248</td>
<td>D6Int95</td>
<td>Lax1</td>
<td>5</td>
<td>AY490382</td>
<td>A145589248A</td>
<td>Intronic</td>
</tr>
<tr>
<td>145589273</td>
<td>D6Int96</td>
<td>Lax1</td>
<td>5</td>
<td>AY490382</td>
<td>A145589273C</td>
<td>Intronic</td>
</tr>
<tr>
<td>145591455</td>
<td>D6Int41</td>
<td>Lax1</td>
<td>4</td>
<td>AY490382</td>
<td>A145591455T</td>
<td>Intronic</td>
</tr>
<tr>
<td>145591604</td>
<td>D6Int101</td>
<td>Lax1</td>
<td>4</td>
<td>AY490382</td>
<td>A145591604T</td>
<td>Intronic</td>
</tr>
<tr>
<td>145591661</td>
<td>D6Int102</td>
<td>Lax1</td>
<td>4</td>
<td>AY490382</td>
<td>A145591661G</td>
<td>Intronic</td>
</tr>
<tr>
<td>145599704</td>
<td>D6Int44</td>
<td>Ghiso</td>
<td>1</td>
<td>AY490382</td>
<td>A145599704T</td>
<td>5'-UTR</td>
</tr>
<tr>
<td>145599728</td>
<td>D6Int126</td>
<td>Ghiso</td>
<td>1</td>
<td>AY490382</td>
<td>A145599728C</td>
<td>5'-UTR</td>
</tr>
<tr>
<td>145599744</td>
<td>D6Int127</td>
<td>Ghiso</td>
<td>1</td>
<td>AY490382</td>
<td>A145599744A</td>
<td>5'-UTR</td>
</tr>
<tr>
<td>145599847</td>
<td>D6Int128</td>
<td>Ghiso</td>
<td>1</td>
<td>AY490382</td>
<td>A145599847G</td>
<td>Intronic</td>
</tr>
<tr>
<td>145599922</td>
<td>D6Int130</td>
<td>Ghiso</td>
<td>1</td>
<td>AY490382</td>
<td>A145599922A</td>
<td>Intronic</td>
</tr>
<tr>
<td>145599947</td>
<td>D6Int131</td>
<td>Ghiso</td>
<td>1</td>
<td>AY490382</td>
<td>A145599947A</td>
<td>Intronic</td>
</tr>
<tr>
<td>145600006</td>
<td>D6Int134</td>
<td>Ghiso</td>
<td>1</td>
<td>AY490382</td>
<td>A145599956T</td>
<td>Intronic</td>
</tr>
<tr>
<td>145600020</td>
<td>D6Int135</td>
<td>Ghiso</td>
<td>1</td>
<td>AY490382</td>
<td>A145599956T</td>
<td>Intronic</td>
</tr>
<tr>
<td>145600058</td>
<td>D6Int137</td>
<td>Ghiso</td>
<td>1</td>
<td>AY490382</td>
<td>A145599958G</td>
<td>Intronic</td>
</tr>
<tr>
<td>145603833</td>
<td>D6Int47</td>
<td>Ghiso</td>
<td>1</td>
<td>AY490382</td>
<td>A145599958G</td>
<td>Intronic</td>
</tr>
<tr>
<td>145603839</td>
<td>D6Int10</td>
<td>Ghiso</td>
<td>3</td>
<td>AY490382</td>
<td>A145599958G</td>
<td>Intronic</td>
</tr>
<tr>
<td>145635211</td>
<td>D6Int142</td>
<td>Kras2</td>
<td>1</td>
<td>AY490382</td>
<td>A145635211G</td>
<td>Y32Y</td>
</tr>
<tr>
<td>145635417</td>
<td>D6Int143</td>
<td>Kras2</td>
<td>1</td>
<td>AY490382</td>
<td>A145635417G</td>
<td>Y32Y</td>
</tr>
<tr>
<td>145635480</td>
<td>D6Int145</td>
<td>Kras2</td>
<td>1</td>
<td>AY490382</td>
<td>A145635480G</td>
<td>Y32Y</td>
</tr>
<tr>
<td>145656172</td>
<td>D6Int43</td>
<td>Kras2</td>
<td>1</td>
<td>AY490382</td>
<td>A145656172T</td>
<td>Intronic</td>
</tr>
<tr>
<td>145656218</td>
<td>D6Int46</td>
<td>Kras2</td>
<td>1</td>
<td>AY490382</td>
<td>A145656218C</td>
<td>Genomic</td>
</tr>
<tr>
<td>145812513</td>
<td>D6Int46</td>
<td>Lmnr-rs1</td>
<td>5</td>
<td>AY490391</td>
<td>A145812513C</td>
<td>E285G</td>
</tr>
<tr>
<td>145814801</td>
<td>D6Int47</td>
<td>Lmnr-rs1</td>
<td>4</td>
<td>AY490392</td>
<td>A145814801C</td>
<td>H218S</td>
</tr>
<tr>
<td>145824723</td>
<td>D6Int56</td>
<td>Lmnr-rs1</td>
<td>4</td>
<td>AY490393</td>
<td>A145824723T</td>
<td>Intronic</td>
</tr>
<tr>
<td>145826538</td>
<td>D6Int153</td>
<td>Lmnr-rs1</td>
<td>4</td>
<td>AY490394</td>
<td>A145826538T</td>
<td>Intronic</td>
</tr>
</tbody>
</table>

*Polymorphic markers are labelled such that the C57BL/6J allele is followed by the position in the Ensembl alignment and then the A/J allele.

Genomic and intronic polymorphisms occur in intergenic and intragenic regions, respectively.

Table 7 Single nucleotide polymorphisms used for the analysis of the Pas1 locus
3.1.2 Pas1 haplotype

The 468-kb region defined a core Pas1 haplotype characterized by two main types: an A/J and a C57BL/6J type. The boundaries of the core were physically defined by the decay of its association to alleles at <145.346 Mb (D6Int24) and at >145.815 Mb (D6Int47) from the chromosome 6 centromere.

In this region we analysed 54 markers, 42 (78%) of which showed perfect segregation with the haplotype, that is, no strain of the A/J type carried a C57Bl/6J-type polymorphism and vice versa. The perfect segregant markers included both coding and non-coding polymorphisms; the latter were located either in the intragenic or intergenic regions of six genes mapping in the haplotype. (Tab. 8)
Table 8: Haplotype map of distal Chromosome 6 region including the *Pas1* locus. The mouse strains screened are indicated at the top of the figure, while the 54 genetic markers from the core *Pas1* haplotype region are listed on the left in colors to indicate molecular variations in non-coding regions (blue) or in coding regions (magenta, no amino acid change; red, amino acid change). Polymorphisms observed are shown in each cell and those present in A/J and in C57BL/6J are indicated in green and yellow, respectively. SNPs are shown as nucleotides according to the Ensembl database. SSLP-based polymorphisms are shown as allele numbers, whose values are inversely correlated with DNA fragment size. The location column indicates the physical position (in megabases) from the centromere according to the Ensembl database. The haplotype blocks and the markers that segregate appropriately according to the A/J- and C57BL/6J-type are boxed.
3.1.3 Coding region nucleotide polymorphism analyses

SNPs analyses revealed that all these genes, except Bcat1, showed nucleotides polymorphisms between A/J and C57BL/6J mice that produced amino acid changes (Tab.9).

<table>
<thead>
<tr>
<th>Gene</th>
<th>Marker</th>
<th>Position</th>
<th>A/J allele</th>
<th>C57BL6/J allele</th>
<th>Amino-acid change</th>
<th>Exon</th>
<th>SNP type</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lrmp</td>
<td>D6Int4</td>
<td>145526703</td>
<td>A</td>
<td>G</td>
<td>G31D</td>
<td>2</td>
<td>Non-synonymous</td>
</tr>
<tr>
<td>Lrmp</td>
<td>D6Int32a</td>
<td>145536150</td>
<td>G</td>
<td>A</td>
<td>D56G</td>
<td>3</td>
<td>Non-synonymous</td>
</tr>
<tr>
<td>Lrmp</td>
<td>D6Int32b</td>
<td>145536157</td>
<td>C</td>
<td>G</td>
<td>L58F</td>
<td>3</td>
<td>Non-synonymous</td>
</tr>
<tr>
<td>Lrmp</td>
<td>D6Int32c</td>
<td>145536163</td>
<td>T</td>
<td>C</td>
<td>S60S</td>
<td>3</td>
<td>Synonymous</td>
</tr>
<tr>
<td>Lrmp</td>
<td>D6Int54</td>
<td>145562248</td>
<td>A</td>
<td>G</td>
<td>G438R</td>
<td>17</td>
<td>Synonymous</td>
</tr>
<tr>
<td>Lrmp</td>
<td>D6Int8</td>
<td>145563172</td>
<td>C</td>
<td>T</td>
<td>L537P</td>
<td>18</td>
<td>Non-synonymous</td>
</tr>
<tr>
<td>Cascl</td>
<td>D6Int41</td>
<td>145591455</td>
<td>A</td>
<td>G</td>
<td>S60N</td>
<td>4</td>
<td>Non-synonymous</td>
</tr>
<tr>
<td>Cascl</td>
<td>D6Int38</td>
<td>145580048</td>
<td>A</td>
<td>G</td>
<td>Q278Q</td>
<td>9</td>
<td>Synonymous</td>
</tr>
<tr>
<td>Ghiso</td>
<td>D6Int10</td>
<td>145603889</td>
<td>G</td>
<td>A</td>
<td>D28G</td>
<td>3</td>
<td>Non-synonymous</td>
</tr>
<tr>
<td>Kras2</td>
<td>D6Int142</td>
<td>145635211</td>
<td>G</td>
<td>A</td>
<td>No</td>
<td>1</td>
<td>Synonymous</td>
</tr>
<tr>
<td>Lmna-rs1</td>
<td>D6Int47</td>
<td>145814801</td>
<td>A</td>
<td>G</td>
<td>H218S</td>
<td>6</td>
<td>Non-synonymous</td>
</tr>
<tr>
<td>Lmna-rs1</td>
<td>D6Int46</td>
<td>145812513</td>
<td>A</td>
<td>G</td>
<td>E258G</td>
<td>7</td>
<td>Non-synonymous</td>
</tr>
</tbody>
</table>

Table 9 Nucleotide polymorphism between A/J and C57BL/6J mice in Lrmp, Cascl, Ghiso, Kras2 and Lmna-rs1 gene. Coding polymorphism linked with the Pas1 haplotype are shown in red.

Lrmp gene carries two amino acid-changing polymorphism tingly linked with the Pas1 haplotype: a D56G polymorphism (D6Int32a) in exon 3 and a L537P polymorphism (D6Int8) in exon 18. In particular the D6Int8 polymorphism segregates with both the Pas1 haplotype and the susceptibility inflammatory response in mouse lines phenotypically selected for high and low acute inflammatory response (Maria et al., 2003). Additional amino acid changes (D6Int4 and D6Int32b) were found, but they are not linked with the
Pas1 haplotype while the D6Int32c polymorphism in exon 3 is a silent polymorphism. (Fig. 7)

Figure 7 Amino-acid changed polymorphisms in Lrmp. The boxes indicate the A/J (down) and C57BL6/J (on the top) sequence.

Analysis of Casc1 showed a S60N polymorphism (D6Int41) in exon 4 and silent Q278Q polymorphism (D6Int38) in exon 9. (Fig. 8)

Figure 8 Amino-acid changing polymorphisms in Casc1. The boxes indicate the A/J (down) and C57BL6/J (on the top) sequence.
We found a polymorphism non-linked with the haplotype causing an amino acid change on exon 3 of *Ghiso* gene (*D6Int10*) (Fig. 9) and a silent polymorphism (*D6Int142*) on exon 1 in *Kras2* gene (Fig. 10).

![Diagram](image)

Figure 9 Amino-acid changing polymorphism in *Ghiso1*. The boxes indicate the A/J (down) and C57BL6/J (on the top) sequence.

![Diagram](image)

Figure 10 Polymorphism in *Kras2*. The boxes indicate the A/J (down) and C57BL6/J (on the top) sequence.

Lmna-rs1 carries a E258G polymorphism (*D6Int46*) in exon 5 and a H218S polymorphism (*D6Int47*) in exon 4. (Fig. 11)
3.2 CANDIDATE GENES FUNCTIONAL ANALYSIS

I continued my project by testing functional activity of candidate genes in vitro in order to study possible effects of mouse genes in human cells as a step toward the application of findings in mice to humans.

3.2.1 Allele-specific expression of candidate genes in mouse lung tumors

We carried out the expression analysis of the six candidate genes in four normal lungs of A/J and C57BL/6J mice, in five non-affected surrounding lung parenchyma of AB6F1 mice, and in nine urethane-induced lung tumors (3-5 mm in diameter) of AB6F1 hybrids.
We performed semiquantitative RT-PCR and we found that all the six genes are expressed at a similar level in the normal mouse lung of A/J, C57BL/6J, and AB6F1 mice while we found some differences in the analysis of tumor samples. This analysis revealed that transcript levels were similar for Bcat1, Casc1, Kras2, and Ghiso genes, while Lrmp showed a slightly reduced expression (about twofold) in six out of nine tumors. A difference in the expression was found in lung tumors where all genes but Lmna-rs1 were expressed (Fig.12) This result suggests that Lmna-rs1 may represent a putative new tumor suppressor gene or a cell-type differentiation marker, whose expression is restricted to specific lung cell types that do not give rise to lung tumors.

![Figure 12 mRNA expression of the Lmna-rs1 (A) Ghiso (B) and Gapdh (C) genes in mouse normal lung and lung tumors by RT-PCR. Normal lungs derived from A/J (lanes 1, 2) and C57BL/6J (lanes 3, 4) mice. Lung tumors derived from AB6F1 mice (lanes 5-13).](image)

Allele-specific expression patterns of Lrmp, Ghiso, Casc1, and Kras2 genes were analyzed in normal lungs and tumors from AB6F1
hybrids. *Lrmp* and *Ghiso* revealed no allelic differences in expression in normal lungs or tumors of these mice. Expression of both *Casc1* alleles was detected in the normal lungs, but mono-allelic expression of the 60N allele deriving from the A/J lung tumor-susceptible parent was found in all tumor samples analyzed for the S60N polymorphism in exon 4 (*D6Int41*) (Fig.13), suggesting allele-specific silencing/activation of the *Casc1* gene in lung tumors.

Figure 13 Representative nucleotide sequence pherograms of the *Casc1* gene by direct sequencing of RT-PCR products from normal lung and lung tumors of AB6F1 mice. Arrows indicate the mRNA expression of both A/J (green, A nt, 60N) and C57BL/6J (black, G nt, 60S) alleles in normal lung, whereas only the A/J allele is expressed in the lung tumors.

Analysis of *Kras2* allele expression using the herein identified *D6Int142* SNP (A145635211G, Tyr32Tyr) (Acc. # AY490389) polymorphism located in exon 1 of this gene revealed a slightly preferential expression of the A/J as compared to the C57BL/6J allele (2- to 3-fold ratio) in the 9 tumor samples (not shown). All tumors carried a codon 61 *Kras2* mutation (CAA→CTA in 5/9 tumors and CAA→CGA in the remaining 4 tumors), but the mutated allele
was expressed at heterozygosity in all tumors, with about 1:1 ratio of the wild-type to the mutated allele (Fig.14).

![Sequence Phorograms](image)

Figure 14 Representative nucleotide sequence pherograms of the Kras2 gene by direct sequencing of RT-PCR products from urethane-induced lung tumor of AB6F1 mice, showing the mRNA expression of both the wild-type codon 61 (CAA), codon 61 CTA mutation (panels B and D), and codon 61 CGA mutation (panels A and C). Arrows indicate the position of the mutated nucleotide. Similar levels of wild-type and mutated codon 61 mRNA expression were detected in tumors C and D, whereas the wild-type allele was more highly expressed in sample A, and sample B showed slightly higher levels of the mutated allele.

3.2.1.1 Functional activity of candidate genes in vitro: clonogenic assay

To evaluate the effects of Pas1 candidates on cell proliferation, we carried out a series of transfection experiments to determine whether these genes could promote or inhibit growth of two different human lung cell lines.

We initially tested the ability of the pEF6V5-His-TOPO vector to express recombinant candidate Pas1 genes in human cells. We
transfected the two alleles of the candidate genes in HEK-293T cells, that is a human epithelial cell line, which expressed high levels of transfected proteins. (Thomas and Smart, 2005 in Galbiati et al., 2005). HEK-293T cells were transiently transfected with 5µg recombinant plasmid DNA. After 24, 48 and 72h we pelleted the cells and then we extracted RNA. Candidate Pas1 genes were RT-PCR-amplified with the primers used for subcloning. Analysis of mRNA expression revealed that all genes are well expressed and each allele is expressed at the same level at 24h, 48h and 72h after transfection. (Fig.15)

Then we performed a Western blot analysis by transiently transfecting HEK-293T cells to confirm these data and to look for the corresponding protein expression. Western blot analysis confirmed that Lmna-rs1, Ghiso, Lrmp and Casc1 gene are well expressed 24, 48 and 72h after transfection and allowed us to find the corresponding protein expression of all genes.
Figure 15 mRNA expression of *Lmna-rs1* (A), *Ghiso* (B), *Lrmp* (C) and *Casc1* (D) gene in HEK-293T cells. All genes are well expressed and each allele (A/J and C57BL/6J) is expressed at the same level 24-48 and 72h after transfection.

Once we demonstrated the capability of recombinant pEF6/V5-His-TOPO expression vector to express *Pas1* candidate proteins in human cells, we set up a stable transfection of two human lung
cancer cell lines (A549 and NCI-H520 cells) with the same recombinant vectors for the clonogenicity assay analysis. A549 and NCI-H520 cells seeded in 6-multi-well plates at 3x10^5 cells/well were transfected with 2µg recombinant plasmid DNA and 4 µl SuperFect (Qiagen) according to the manufacturer's protocol. Cells transfected with the empty vector were used as a control. Two days after transfection, the appropriate concentration of antibody was added and transfectant clones were selected after 17 days for A549 and 26 days for NCI-H520 cells. Blasticidin-resistant clones were either fixed with methanol (100%) and stained with 10% Giemsa. We repeated at least three independent experiments.

The results obtained after the transfection of the two different cell lines were the same but the NCI-H520 cell line produces fewer and smaller clones than A549. The results were confirmed in all the experiments that we performed. The discrepancy in the size of clones is probably due to the different cells size and to the different cell grow rate.

In both A549 and NCI-H520 transfected cell lines, A/J and C57BL6/J alleles of candidate genes produced a variable number of clones. The number of clones of A/J and C57BL6/J alleles observed in Lrmp and Ghiso was the same and was similar to the vector alone (used as a control). While the A/J allele of Lmna-rs1 produced more colonies than the C57BL6/J allele and the control (A and B in Fig.16), the A/J allele of Casc1 and the empty vector produced much fewer colonies than the C57BL6/J allele did (C and D in Fig.16).
Figure 16 Qualitative analysis of colony formation in human lung cancer cell transfectants. Giemsa-stained plates reveal in vitro allele-specific colony formation activities of mouse Lmna-rs1 (A and B) or Casc1 (C and D) in human lung carcinoma A549 (A and C) or NCI-H520 (B and D) cells transfected with these genes. Colony formation in both cell types was inhibited for the C57BL/6J allele of Lmna-rs1 and for the A/J allele of Casc1.
During the count, we decided to exclude colonies smaller than 0.5 mm in diameter. The evaluation of the number of stained colonies was affected by this decision. Therefore, for a more quantitative evaluation, we decided to perform an analysis based on the count of the total number of blasticidin-resistant cells in each well.

A549 cells stably transfected with the A/J allele of *Lmna-rs1* produced 34.6±2.8 (mean±SE) x10^4 cells/well versus 9.0±0.4 x10^4 cells/well produced by the C57BL/6 allele (*P*<0.0001). The same pattern was confirmed in NCI-H520 cells, with transfection of the A/J and the C57BL/6J allele producing 32.9±6.1 and 14.9±3.2 x10^4 cells/well, respectively (*P*=0.020). A549 cells transfected with the *Cascl* A/J allele produced 4.2±0.7 versus 25.9±4.2 x10^4 cells/well with the *Cascl* C57BL/6 allele, i.e., a 6-fold difference (*P*<0.0001). In NCI-H520 cells, transfection of the *Cascl* A/J allele produced 5.3±1.1 versus 26.6±3.0 x10^4 cells/well produced by the C57BL/6 allele, i.e., a 5-fold difference (*P*<0.0001).

No allele-specific effects were detected for *Ghiso* and *Lrmp* by cell count, in agreement with the qualitative observations of Giemsa-stained colonies. We found no differences between the two alleles when we transfected A549 and NCI-H520 cells. In particular, A549 cells transfected with *Lrmp* alleles produced somewhat fewer (~1.4-fold) numbers of cells/well (*P*<0.05), whereas *Ghiso* transfection showed no significant effects; in NCI-H520 cells, transfection with *Lrmp* led to a 4-fold reduction in the number of cells/well as compared to the empty vector transfection (*P*<0.0001). *Ghiso* transfection led to a 3-fold reduction in the number of cells/well as compared to the empty vector (*P*>0.0001). (Fig.17)
Figure 17 Quantitative analysis of allele-specific colony formation in human lung carcinoma A549 (left) or NCI-H520 (right) cells. A/J and C57BL/6J alleles showed statistically significant differences. Transfection with the empty vector produced 66×10^4 and 128×10^4 A549 and NCI-H520 cells, respectively.
3.2.2 Apoptosis analysis in candidate genes

We hypothesized that inhibition of clonogenicity by allelic forms of Casc1 and Lmna-rs1 genes was mediated by induction of apoptosis. Therefore, we tested whether PARP [Poly (ADP-ribose) polymerase] cleavage might underlie the allele-specific modulation of clonogenicity by candidate genes. PARP is a 116 kDa nuclear chromatin-associated enzyme and is a target of the caspase protease activity associated with apoptosis. During apoptosis PARP is cleaved from its 116 kDa intact form into 85 kDa and 25 kDa fragments. Apoptosis was analyzed in HEK-293T, A549, and NCI-H520 cells transiently transfected with A/J and C57BL/6J alleles of Casc1, Lrmp, Ghiso and Lmna-rs1 genes. After 24, 48 and 72 h, cells were lysed and a western blot experiment was performed. We used as a positive control anti-Fas (CD95)-treated ovarian cancer cells (OAW42)), and as a negative control OAW42 not treated as well as non transfected HEK-293T, A549, and NCI-H520 cell lines. We expected the presence of the two fragments in A/J allele of Casc1 and in C57BL6/J allele in Lmna-rs1.

Western blot analysis revealed no evidence that PARP was cleaved into the 85 kDa fragment at 48 or 72h after transfection of any of the candidate genes allelic variants. (Fig.18)
Figure 18 Apoptosis analysis in Lrmp (A), Lmna-rs1 (B) and Casc1 (C) by Western blotting in HEK-293T cell line for Lrmp and in A549 cell line for Lmna-rs1 and for Casc1. Wild type cells were used as a negative control while anti-Fas (CD95)-treated ovarium cancer cells (OAW42) and not treated were used as a positive control. Our results revealed no evidence that PARP was cleaved at 48 and 72h after transfection of any of the candidate genes allelic variants.
3.2.3 Immunofluorescence analysis

The immunofluorescence analysis was performed in HEK-293T cells transiently transfected with calcium phosphate 24h after transfection. The immunofluorescence analysis revealed all recombinant *Pas1* candidate proteins localized mainly in the cytoplasm.

![Immunofluorescence staining](image)

Figure 19 Immunofluorescence staining of protein encoded by *Lrmp* candidate gene in HEK-293T cell line. Cells were transfected with A/J (A and C) and C57BL6/J (B and D) full length cDNAs, grown for 48h (A and B) and 72h (C and D) after transfection, fixed and treated with anti-V5 monoclonal antibody followed by secondary antibody-Alexa Flour 488 conjugate. (Nikon Eclipse E1000 fluorescence microscope. Magnification: x40).

Lrmp (Fig.19) and *Ghiso* (Fig.20) proteins were expressed at a very low level and in particular, *Ghiso* proteins were localized in small vacuoli around the nucleus.
Figure 20 Immunofluorescence staining of protein encoded by *Ghiso* candidate gene in HEK-293T cell line. Cells were transfected with A/J (A and C) and C57BL6/J (B and D) full length cDNAs, grown for 48h (A and B) and 72h (C and D) after transfection, fixed and treated with anti-V5 monoclonal antibody followed by secondary antibody-Alexa Flour 488 conjugate. (Nikon Eclipse E1000 fluorescence microscope. Magnification: x40).

Casc1 and *Lmna-rs1* proteins were expressed at a relatively high level. The *Casc1* (Fig.21) staining in the cytoplasm suggests that the protein is probably associated with the cytoskeleton fibers. While *Lmna-rs1* staining was uniformly diffuse (Fig.22)
Figure 21 Immunofluorescence staining of protein encoded by *Casc1* gene in HEK-293T cell line. Cells were transfected with A/J (A) and C57BL6/J (B) full length cDNAs, grown for 48h (A and B) and 72h (not shown) after transfection, fixed and treated with anti-V5 monoclonal antibody followed by secondary antibody-Alexa Flour 488 conjugate. (Nikon Eclipse E1000 fluorescence microscope. Magnification: x40).

Figure 22 Immunofluorescence staining of protein encoded by *Lmna-rs1* candidate gene in HEK-293T cell line. Cells were transfected with A/J (A and C) and C57BL6/J (B and D) full length cDNAs, grown for 48h (A and B) and 72h (C and D) after transfection, fixed and treated with anti-V5 monoclonal antibody followed by secondary antibody-Alexa Flour 488 conjugate. (Nikon Eclipse E1000 fluorescence microscope. Magnification: x40 for A, B and C. Magnification: x20 for D.)
Chapter 4 DISCUSSION AND CONCLUSION
In the present study, we identified and genotyped 65 genetic markers in the *Pasl* locus region around *Kras2* gene in a population of 29 laboratory mouse inbred strains with known susceptibility to lung carcinogenesis. This allowed us to construct a high-density *Pasl* haplotype map. The boundaries of the *Pasl* core haplotype were physically defined by the decay of its association to alleles at <145.346 Mb (*D6In24*) and at >145.815 Mb (*D6Int47*) from the Chromosome 6 centromere. The distal boundary of the *Pasl* locus was also defined by a genetic recombination, which was nearly coincident with the haplotype boundary, in the CXB5 mouse line. A/J- and C57BL/6J-type genetic variations segregated almost perfectly over the 468-kb haplotype region in the 29 laboratory strains. A recent study used A/J x C57BL/6 advanced intercross lines (AIL) to shorten the *Pasl* locus interval, but it provided no advantage over LD analysis, since it suggested placement of the *Pasl* locus in a 1.3-Mb interval that includes the previous 0.45-Mb LD region and ~27 known or predicted genes (Wang et al., 2003). Analysis of A/J x C57BL/6 congenic strains narrowed the *Pasl* locus interval to a 0.5-Mb region containing 12 putative genes (Zhang et al., 2003). Six of these 12 genes, chosen on the basis of mRNA expression in lungs, have been analyzed for coding polymorphisms and in vitro allelic effects; five of the six genes showed no allelic-specific effects in vitro and their candidacy was excluded. However, that study cannot be considered conclusive since these five expressed genes might also modulate lung tumorigenesis by mechanisms other than those affecting tumor growth (Hanahan & Weinberg, 2000).

We directed our attention to six putative *Pasl* candidate genes that map in this 468-kb region. The biological or biochemical functions of most of these genes are unknown:
Bcat1: maps to location 145.845604-145.895256. It has 11 exons and the transcript length is 2,508 bps. This gene encodes the cytosolic form of the enzyme branched-chain amino acid transaminase and catalyzes the first step of branched-chain amino acid catabolism. This enzyme catalyzes the reversible transamination of branched-chain alpha-keto acids to branched-chain L-amino acids essential for cell growth. Two different clinical disorders have been attributed to a defect of branched-chain amino acid transamination: hypervalinemia and hyperleucine-isoleucinemia. As there is also a gene encoding a mitochondrial form of this enzyme, mutations in either gene may contribute to these disorders. Furthermore, Bcat1 appears to be involved in apoptosis (Eden and Benvenisty, 1999).

Lrmp: maps to location 145.968258-146.021372. It has 19 exons and the transcript length is 2,238 bps. The lymphoid-restricted membrane protein encoded by this gene has 539 residues and it is expressed in a developmentally regulated manner in lymphoid cell lines and tissues. The protein is localized to the cytoplasmic face of the endoplasmic reticulum and has a coiled-coil domain in the middle-third of the protein and a carboxyl-terminal membrane anchor (Behrens et al 1994). Lrmp expression was originally described as lymphoid cell-specific, with highest expression levels in pre-T, pre-B, and mature B cells (Behrens et al., 1994). However, we detected significant Lrmp expression levels in lung tumors (not shown); clarification of whether Lrmp expression occurs in normal epithelial lung cells or is instead restricted to lung-associated lymphoid cells awaits immunohistochemical analysis of normal lung. The Jaw1-homologous protein Mrvil,
mapping to Chromosome 7, causes leukemia in mice upon activation by retroviral integration (Shaughnessy, Jr. et al., 1999), suggesting an important role for this class of integral membrane proteins in cancer and, possibly, for \(Lrmp \) polymorphisms in lung cancer susceptibility. The role of lymphoid cells and, more widely, of the immune system in lung tumorigenesis is suggested by enhancement of lung adenoma formation in neonatally thymectomized mice treated with 7,12-dimethylbenz(a)anthracene or urethane (Trainin et al., 1967). Moreover, splenectomy inhibited DMBA-induced lung tumor incidence in mice (Akamatsu, 1975), and inflammation is a known modulator of tumor development, both in mice and humans (Brownson & Alavanja, 2000; Mayne et al., 1999; Askling et al., 1999; Bauer et al., 2001).

The role of the \(Lrmp \) gene in lung tumorigenesis is not known; this gene is involved in antigen processing (Snyder et al., 1997).

\(\text{Casc1} \): this gene corresponds to the recently identified gene (Acc. # AY423542) (Zhang et al., 2003). Our \(\text{Casc1} \) transcript (Acc. # AY485607, AY485608), compared to the AY423542 transcript, is 70 bp longer in the 5'-UTR, most likely represents the full-length transcript of the gene. We identified and then cloned \(\text{Casc1} \) using a different program to identify coding regions in the genome (NIX analysis package). \(\text{Casc1} \) has 16 exons, spans a 36-kb region, and is flanked at its 3'-end by the 3'-end of \(Lrmp \) and at its 5'-end by the 5'-end of \(\text{Ghiso} \).

A study at multiple-organ expression panels (Zhang 2003) found that \(\text{Casc1} \) was expressed at higher levels in lung, testis and kidney in both A/J and C57BL/6J strains. They studied the cellular localization of \(\text{Casc1} \) product in three
different cell lines and found a cytoplasmic distribution. In the same study, Casc1 showed allelic-specific effects in vitro and in a tumor growth assay in nude mice, and was proposed as the candidate Pas1 gene. Casc1 protein is 67% identical and 81% similar to the derived human CASC1 protein (similar to human hypothetical protein FLJ10921, 30.41 Mb). Analysis of the putative secondary structure of the Casc1 encoded protein predicted a coiled-coil domain in its N-terminal region (amino acids 9-59) (http://www.ch.embnet.org/software/COILS_form.html). The coiled-coil structure is one of the principal oligomerization motifs in proteins (Burkhard et al., 2001). This similarity, with the Lrmp encoded protein, suggests that the two proteins may either interact with each other or with a common substrate.

Ghiso: (also named 4930469P12Rik) maps to location 146.057600-146.063383, has 3 exons and its transcript length is 2,436 bps. This gene encodes a growth hormone-inducible soluble protein (AF412299) (of 86 residues) with no known protein domain therefore it was previously named Ghiso. Ghiso's intragenic polymorphisms play a functional role in lung tumor susceptibility. The upstream intragenic regions of both Casc1 and Ghiso genes consist of a common 176-bp genomic fragment that, in light of its short length and the flanking of the 5'-ends of two genes, might share a bidirectional promoter activity.

KRAS: v-Ki-ras2 Kirsten rat sarcoma viral oncogene homolog maps at location 145.307569-145.341093, has 5 exons and its transcript length is 752 bps. This gene, a Kirsten ras oncogene homolog from the mammalian ras gene family, encodes a protein that is a member of the small GTPase
superfamily. A single amino acid substitution results in a transforming protein implicated in various malignancies, including lung adenocarcinoma, mucinous adenoma, ductal carcinoma of the pancreas and colorectal carcinoma. Alternative splicing leads to variants encoding two isoforms that differ in the C-terminal region. Somatic mutations of the \textit{Kras2} gene play a causal role in lung tumorigenesis (Johnson et al., 2001) and have also been found in chronic inflammation conditions, such as chronic pancreatitis and ulcerative colitis (Yanagisawa et al., 1993; Lang et al., 1999). A transgenic mouse expressing the human c-H-ras gene showed enhanced susceptibility to autoimmune hepatitis (Tsunematsu et al., 1997). Thus, the \textit{Kras2} gene may be a candidate for both lung tumor susceptibility and inflammatory response.

Genomic \textit{Kras2} polymorphisms might modulate gene mutability and, in turn, numbers of tumors after chemical carcinogen treatment. The functional involvement of \textit{Kras2} in lung tumorigenesis has been demonstrated for its wild-type (Zhang et al., 2001) and mutated alleles, which we found expressed at an almost perfect 1:1 ratio in lung tumors, in contrast with the reported loss of heterozygosity of the wild-type \textit{Kras2} allele in mouse lung tumors (Zhang et al., 2001).

\textit{Lmna-rs1}: (also named 4933403M22Rik) maps to location 146.244904-146.286944, it has 9 exons and the transcript length is 1,514 bps.

Protein sequence comparison by BLAST showed that this gene encodes a protein (of 413 residues) containing an intermediate filament tail domain related to lamin A. For this reason the gene was previously named \textit{Lmna-rs1} (lamin A-related sequence 1). It may be a tumor suppressor. Amino-
acid changes and down regulation are associated with lung adenoma susceptibility.

4.1 *Pas1* haplotype

The haplotype of the *Pas1* region defined strain relatedness in which the laboratory strains resolved as two groups according to the A/J- and the C57BL/6J-type haplotype, respectively. This finding indicates that the *Pas1* QTL is due to an ancestral difference common to many laboratory strains rather than to a rare mutation specific to a single strain (Manenti et al., 1999).

Recent studies indicate that regions of low SNP density (~0.5 SNPs per 10 kb) are separated by regions of high density (~40 SNPs per 10 kb), creating a mosaic structure of genetic variations in mice and defining haplotype blocks of an average size of 1 Mb (Wade et al., 2002; Wiltshire et al., 2003). Laboratory strain haplotypes recapitulate population history of these strains and identify strain relatedness (Wiltshire et al., 2003). The *Pas1* core haplotype showed a high frequencies of polymorphisms (~100 SNPs/SSLPs per 10 kb) but resulted in only two haplotype-types. The *Pas1*-derived strain grouping was very different from that defined by whole-genome analysis of SNPs in mouse strains, which reflects strain genealogy (Wiltshire et al., 2003). Indeed, unlike the strain relatedness of the *Pas1* locus, whole-genome SNP analysis placed strains carrying the A/J- and C57BL/6J-type haplotype at the *Pas1* locus close together (see Fig. 4D of Wiltshire et al., 2003), where RF/J and AKR/J, CBA/J and C3H, SWR/J and SJL/J strains are placed in the same sub-branches. Therefore, the *Pas1* haplotype is not the product of strain genealogy.

In addition, 12/54 (22%) markers located within the haplotype did not cosegregate with the haplotype, suggesting that recombination had taken place during the creation of the haplotype block and that
linkage disequilibrium between the haplotype and non-essential polymorphisms has been lost, respectively, and two silent polymorphisms in the coding region of the \textit{Lrmp} (D6Int32c) and \textit{Kras2} gene (D6Int142).

Within the haplotype block, five amino-acid changes in three genes showed tight linkage with the haplotype (Tab. 8) and produced nonconservative changes.

The effect of any polymorphism on protein function relies not only on the type of change, but also on where the change occurs. For example, a change in a substrate binding site domain seems more likely to affect protein biochemical activity than a change in a non-critical domain. In any case, the prediction of a functional effect of any amino acid change awaits experimental evidence to distinguish the functional variations from the thousands of non functional genetic variations identified so far.

As the amino acid polymorphisms of three genes (\textit{Lrmp}, \textit{Casc1}, and \textit{Lmna-rs1}), as well as intragenic polymorphisms of the \textit{Bcat1}, \textit{Ghiso}, and \textit{Kras2} genes, are tightly linked in a single haplotype type, we cannot exclude any of these six genes as putative \textit{Pas1} candidate genes. Moreover, 7 intergenic and 29 intragenic polymorphisms showed a tight linkage with the \textit{Pas1} haplotype (Tab. 8).

We found that A/J and C57BL/6J alleles of recombinant \textit{Lrmp} protein are distinguished by three amino acid variations, including L537P (D6Int8), which shows tight linkage not only with the \textit{Pas1} locus haplotype, but also with susceptibility to an inflammatory response in a phenotypically selected mouse line. Because \textit{Lrmp} encodes the Jaw protein, which is overexpressed in pre-T, pre-B, and mature B cells (Behrens \textit{et al.}, 1994), this gene might have a role in the inflammatory response.

The G28D (D6Int10) polymorphism that we studied in \textit{Ghiso} showed no significant linkage with \textit{Pas1} locus activity or with inflammatory response.
These two genes showed no allelic differences in expression in normal mouse lungs or lung tumors, whereas Cascl showed preferential expression in lung tumors of the A/J-derived allele.

4.2 Candidate genes functional analysis

We decided to verify the hypothesis that the Pas1 locus is comprised of a cluster of six cancer modifier genes in the in vitro study of these candidate genes. Ghiso carries an amino-acid polymorphism that does not cosegregate with mouse lung tumor susceptibility, nevertheless we decided to include Ghiso in the in vitro study because the genomic structure of the 5' UTR region of Cascl and Ghiso are separated by 169 bp suggesting that they might share a unique bidirectional promoter and/or other regulatory elements.

By assaying the putative cancer modifier function of Pas1 candidate genes in human lung cancer cell lines of different histotype origin and with different morphological and growth characteristics, we sought to provide clues into the possible effects of mouse genes in human cells as a step toward the application of findings in mice to humans. Colony formation assay of cancer cell lines expressing allelic variants of candidate cancer modifier genes by transfection represents a convenient method of assessing functional in vitro activity of allelic variants, since the number of resulting colonies provides an estimate of the growth or survival of transfected cancer cells. Results obtained by semi-quantitative Giemsa-stained colony formation were consistent with those obtained by cell count assay in both human lung cancer cell lines. The amino acid variants of Lrmp and Ghiso genes showed no significant differences in the number of
transfected colonies and cells, whereas *Casc1* and *Lmna-rs1* showed significant differences in allelic effects. The observed lack of differential effects between the A/J and C57BL/6J alleles of the *Lrmp* and *Ghiso* genes on colony formation of transfected human cancer cell lines is consistent with previous observations in mouse cell lines obtained by Zhang *et al.* in 2003. Our findings of a growth inhibitory effect of *Casc1* for A/J versus the C57BL/6J allele contrasts with findings by Zhang *et al.* in 2003, who instead found a stimulatory effect of the A/J Casc1 in mouse cell lines. Since the recombinant transcripts used in both studies contain the same full-length coding regions of *Casc1*, there are no obvious explanations for the discrepant findings other than different somatic changes or difference species in the cell lines used. We obtained concordant results in two human lung cancer cell lines with a different KRAS mutation status: A549 cells carries a Gly→Ser mutation at the codon 12 of the KRAS gene (Valenzuela and Groffen, 1986), whereas NCI-H520 cells carries no KRAS mutation at codon 12 or 13 (data not shown). We found allelic effects for the *Lmna-rs1* with a growth stimulatory effect of the A/J allele, whereas Zhang *et al.* in 2003 reported no allelic differences for the same full-length transcript that we assayed. However, the same authors recently reported the stimulatory effect of an A/J-specific mRNA isoform of *Lmna-rs1* in NIH mouse fibroblast cell lines (Whang *et al.*, 2005). *Lmna-rs1* may be a cell-type differentiation marker, whose expression is restricted to specific lung cell types that do not give rise to lung tumors. We found that *Lmna-rs1* gene expression is not detectable in primary mouse lung tumors. These results suggest that *Lmna-rs1* is expressed in the early stages of lung tumorigenesis and becomes down regulated during tumor growth, so that the A/J allele may stimulate growth of initiated neoplastic cells, thus contributing to the effects of the *Pas1* locus.
In vitro assays cannot detect all the possible gene effects on tumorigenesis, which is a complex phenomenon involving tumor-host interactions modulated by numerous factors. After transfection of either the *Lmna-rs1* or *Casc1* allele we can exclude that inhibition of clonogenicity in vitro by allelic forms of *Pas1* candidate genes is mediated by apoptosis. Further studies are needed to clarify the precise mechanisms of allele-specific in vitro effects of these two genes.

4.3 Inflammatory response

Lrmp, Bcat1, and *Kras2* have been associated with apoptosis, tumor development and inflammatory response (Eden & Benvenisty, 1999; Johnson et al., 2001; Maria et al., 2003). In Maria 2003 it was shown that mouse outbred lines phenotypically selected for high (AIR$_{\text{max}}$) and low (AIR$_{\text{min}}$) response to s.c. nonspecific acute inflammation showed dramatic differences in their susceptibility to lung tumorigenesis. In particular AIR$_{\text{min}}$ mice were \sim40-fold more susceptible than AIR$_{\text{max}}$ mice. It was found that in AIR lines there is a correlation between persistent subacute lung inflammation and susceptibility to lung tumorigenesis. LD analysis in AIR lines was performed using genetic markers located within the *Pas1* locus to assess the possible involvement of the *Pas1* locus in the inflammatory response. Markers located within a 452-kb *Pas1* region showed a highly significant LD pattern (-log $P >$ 8.0). Markers outside this region showed either nonsignificant or borderline LD values, indicating that the location of the gene(s) responsible for the AIR phenotype lies within this 452-kb region. The results of this work indicate that a genetic polymorphism(s) of at least one of the five genes is functionally responsible for the *Pas1* and AIR phenotypes.
4.4 Conclusion

The demonstration of allele-specific in vitro effects in human lung cancer cell lines of two of the four genes that carry amino acid variants and are included in the Pas1 haplotype provides evidence that alleles of mouse candidate cancer modifier genes can modulate growth of human cancer cells. Overall, the in vitro effects of the A/J allele of the Casc1 gene, unlike the in vivo effects of the Pas1 haplotype in stimulating lung tumor development, and the absence of in vitro modulation activity of the Lrmp gene whose polymorphisms are tightly linked with the Pas1 haplotype, support the possibility of a functional role for the whole Pas1 haplotype, and not just of the individual genes comprising it, in determining genetic predisposition to lung cancer.

The results obtained in this work suggest that Pas1 locus is comprised of a cluster of six cancer modifier genes, whose amino-acid and genomic polymorphisms operate to confer susceptibility or resistance to lung tumorigenesis.

Zhang et al. in 2003 proposed the Casc1 gene as the Pas1 gene. Moreover, in their study, genetic recombination did not separate the Casc1 gene from the other five genes of the herein identified Pas1 haplotype, confirming our hypothesis that none of the six genes can yet be formally excluded from Pas1 candidacy.
4.5 Future aims

In conclusion, we achieved the aims of the project and now we continue to study the candidate genes.

First, we will study the putative bidirectional promoter that maps in the 169 bp region between Casc1 and Ghiso by subcloning this region in pGL3 Luciferase Reporter Vector. pGL3 Vectors provide a basis for the quantitative analysis of factors that potentially regulate mammalian gene expression and contain a modified coding region for firefly (Photinus pyralis) luciferase that has been optimized for monitoring transcriptional activity in transfected eukaryotic cells.

Preliminary data, obtained in our laboratory, shown that Casc1, Kras2 and Lmna-rs1 genes give rise to a series of isoforms. Probably qualitative and quantitative variations of these isoforms might modulate the different susceptibility to lung carcinogenesis in mice. We will carried out an expression analysis of the different isoforms and then we will test their functional activity in vitro.

Our in vitro assays cannot detect all possible gene effects on tumorigenesis, which is a complex phenomenon involving tumor-host interactions modulated by numerous factors (Hanahan and Weinberg, 2000). Therefore, we will test tumor growth in vivo and then clone the human homologous genes, caring out an analysis of association between genetic polymorphism and lung adenocarcinoma risk and prognosis in a human population. Then we will perform a detailed genetic analysis of the homologous human region in lung adenocarcinoma patients and healthy population controls. This might determine whether specific haplotypes also occur in humans and whether they control lung cancer risk.
Chapter 5 BIBLIOGRAPHY

BEHRENS TW, JAGADEESH J, SCHERLE P, KEARNS G, YEWDELL J,

DARVASI A, PISANTE-SHALOM A. (2002). Complexities in the

JOHNSON L, MERCER K, GREENBAUM D, BRONSON RT, CROWLEY D, TUVESON DA, JACKS T. (2001). Somatic activation of the K-

RIOUX JD, DALY MJ, SILVERBERG MS, LINDBLAD K, STEINHART H, COHEN Z, DELMONTE T, KOCHER K, MILLER K, GUSCHWAN

TU IP, WHITTEMORE AS. (1999). Power of association and linkage tests when the disease alleles are unobserved. Am J Hum

WILTSHIRE T, PLETCHER MT, BATALOV S, BARNES SW, TARANTINO

NOTE: MATERIAL PUBLISHED FROM THIS THESIS

Published from Chapter 3, Section 3.1: *Pas1* CONTAINING REGION and Section 3.2: CANDIDATE GENES FUNCTIONAL ANALYSIS:

