Identification and characterisation of new genes important for p53- dependent, stress-induced apoptosis.

Thesis

How to cite:

For guidance on citations see FAQs.

© 2006 Federica Polato

https://creativecommons.org/licenses/by-nc-nd/4.0/

Version: Version of Record

Link(s) to article on publisher’s website:
http://dx.doi.org/doi:10.21954/ou.ro.0000f667

Copyright and Moral Rights for the articles on this site are retained by the individual authors and/or other copyright owners. For more information on Open Research Online’s data policy on reuse of materials please consult the policies page.
IDENTIFICATION AND CHARACTERISATION OF NEW GENES IMPORTANT FOR P53-DEPENDENT, STRESS-INDUCED APOPTOSIS

Thesis submitted for the degree of Doctor of Philosophy at the Open University

Discipline of Life Sciences

By

Federica Polato, Degree in Biotechnology

Mario Negri Institute for Pharmacological Research, Milan, Italy

September 2005
ACKNOWLEDGMENTS

I would like to thank my boss Dr. Massimo Broggini, head of the Molecular Pharmacology Laboratory, Department of Oncology at the "Mario Negri" Institute for his suggestions, scientific support and encouragements which have been fundamental for the completion of this program. I would like to thank my English supervisor Professor John Lunec (University of Newcastle) for his support, constructive criticism and help during this period. I am also grateful to Dr. Maurizio D'Incalci, head of the Oncology Department at the "Mario Negri" Institute, who supervised my work. I would like to thank the friends and colleagues of the laboratory for sharing with me their expertises, particularly to Drs. Stefano Zangrossi, Sergio Marchini, Annamaria Codegoni, Faina Vikhanskaya, Mirko Marabese, Maria Antonietta Sabatino, Giovanna Damia, Eugenio Erba. I would like to thank Stefania Filippeschi for kindly helping me with the generation of the bibliography.
CONTENTS

ACKNOWLEDGMENTS	2
CONTENTS	3
LIST OF FIGURES	8
LIST OF TABLES	10
SUMMARY	11

CHAPTER 1 INTRODUCTION

1.1 CANCER AND CANCER GENES | 14 |
1.2 DNA DAMAGE AND CANCER | 17 |
1.3 DNA DAMAGE RESPONSE | 19 |
 1.3.1 The PI3K and PIKK families | 21 |
 1.3.2 Sensors of damage | 24 |
 1.3.3 Transducer phase | 25 |
 1.3.4 Effector phase | 26 |
1.4 P53 PROTEIN | 27 |
 1.4.1 Structure of p53 | 28 |
 1.4.2 Activation and regulation of p53 | 31 |
 1.4.3 Regulation of MDM2 | 38 |
1.5 THE P53 RESPONSE: FUNCTIONS OF P53 | 39 |
 1.5.1 P53 is a transcription factor | 39 |
 1.5.2 Cell cycle arrest | 44 |
 1.5.3 Apoptosis | 45 |
 1.5.4 P53 "choice" between life and death | 49 |
 1.5.5 Senescence | 51 |
 1.5.6 Genetic stability | 54 |
 1.5.7 Inhibition of blood-vessel formation | 59 |
1.6 P53 AND ITS FAMILY MEMBERS | 60 |
 1.6.1 Structure of p53 family member gene and their products | 60 |
 1.6.2 Function of p63 and p73 and role in cancer development | 64 |
 1.6.3 Function of DN isoforms | 66 |
1.7 IDENTIFICATION OF A NEW P53-DEPENDENT GENE | 67 |
 1.7.1 DRAGO induction by anticancer agents | 70 |
 1.7.2 Mouse DRAGO expression | 74 |
1.8 AIMS | 78 |
CHAPTER 2 MATERIALS AND METHODS

2.1 CELL CULTURE
 2.1.1 Culture condition
 2.1.2 Long term storage of cultured cells

2.2 GENERATION OF CELLULAR CLONES
 2.2.1 Subcloning of the full length cDNA
 2.2.2 Subcloning of the coding sequence
 2.2.3 Subcloning of the deleted mutants
 2.2.4 TA cloning
 2.2.5 Preparation of competent bacterial cells for transformation
 2.2.6 Transformation of bacteria
 2.2.7 Identification of recombinant clones and purification of DNA from bacteria
 2.2.8 DNA-Transfection
 2.2.9 Isolation of cell clones stably expressing the gene of interest

2.3 LUCIFERASE REPORTER ASSAY

2.4 PCR

2.5 SSCP ANALYSIS
 2.5.1 Sample preparation
 2.5.2 Gel preparation and electrophoresis
 2.5.3 Gel staining

2.6 RNA ANALYSIS
 2.6.1 Isolation of total RNA
 2.6.2 Northern blotting analysis
 2.6.2.1 Sample preparation and gel analysis
 2.6.2.2 Blotting procedure
 2.6.2.3 Preparation of probes for Northern blot analysis
 2.6.2.4 Hybridisation

2.7 AGAROSE GEL
 2.7.1 Gel preparation and gel electrophoresis
 2.7.2 DNA extraction from agarose gel

2.8 SCREENING OF GENOMIC LIBRARIES

2.9 INDUCTION OF GST–FUSIONS IN BACTERIA AND PURIFICATION

2.10 WESTERN BLOTTING
 2.10.1 Calibration curve preparation
 2.10.2 SDS-PAGE
 2.10.2.1 Coomassie Blue staining
 2.10.3 Protein transfer and detection

2.11 IN VITRO SYNTHESIS OF PROTEINS
<table>
<thead>
<tr>
<th>Figure</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Figure 1.1 Schematic view of the DNA damage response</td>
<td>20</td>
</tr>
<tr>
<td>Figure 1.2 Structure and domains of the p53 protein</td>
<td>30</td>
</tr>
<tr>
<td>Figure 1.3 Schematic representation of activation of p53 network following stress</td>
<td>32</td>
</tr>
<tr>
<td>Figure 1.4 Schematic representation of some post-translational modifications of p53</td>
<td>37</td>
</tr>
<tr>
<td>Figure 1.5 Summary of p53 functions</td>
<td>40</td>
</tr>
<tr>
<td>Figure 1.6 Structure and homology between p53, p63 and p73</td>
<td>61</td>
</tr>
<tr>
<td>Figure 1.7 Structure of TA and of DN isoforms of p73 and p63</td>
<td>63</td>
</tr>
<tr>
<td>Figure 1.8 C-terminal splicing variants of p73</td>
<td>65</td>
</tr>
<tr>
<td>Figure 1.9 Representative differential display experiment</td>
<td>75</td>
</tr>
<tr>
<td>Figure 1.10 Expression of DRAGO induced after cytotoxic compounds and UV treatments</td>
<td>76</td>
</tr>
<tr>
<td>Figure 2.1 Primers for subcloning the coding sequence of DRAGO in vectors</td>
<td>88</td>
</tr>
<tr>
<td>Figure 2.2 PCR condition for the amplification of N- and C-terminus deletion mutants of DRAGO coding region</td>
<td>90</td>
</tr>
<tr>
<td>Figure 2.3 PCR conditions for amplification of 964–bp and 2.5–Kb promoter fragments</td>
<td>98</td>
</tr>
<tr>
<td>Figure 2.4 PCR conditions for amplification of human exons of DRAGO gene</td>
<td>102</td>
</tr>
<tr>
<td>Figure 3.1 DRAGO gene structure</td>
<td>131</td>
</tr>
<tr>
<td>Figure 3.2 Screening of the RPCI human genomic PAC library 1</td>
<td>133</td>
</tr>
<tr>
<td>Figure 3.3 Southern Blotting of clone obtained from the RPCI human PAC library 1</td>
<td>134</td>
</tr>
<tr>
<td>Figure 3.4 Schematic representation of the isolated HindIII fragment</td>
<td>135</td>
</tr>
<tr>
<td>Figure 4.1 Promoter activity of 3.8–Kb fragment</td>
<td>142</td>
</tr>
<tr>
<td>Figure 4.2 Promoter activity of 964–bp fragment</td>
<td>145</td>
</tr>
<tr>
<td>Figure 4.3 Promoter activity of 2.5–Kb fragment</td>
<td>146</td>
</tr>
<tr>
<td>Figure 4.4 P53 putative binding sites in the 3.8–Kb fragment</td>
<td>148</td>
</tr>
<tr>
<td>Figure 4.5 Diagram showing p53 canonical binding sites of some p53 target genes and DRAGO responsive elements</td>
<td>149</td>
</tr>
<tr>
<td>Figure 4.6 Activation of the 2.5–Kb fragment and p21 promoter by p53 and p73 isoforms</td>
<td>151</td>
</tr>
<tr>
<td>Figure 4.7 Schematic representation and gel electrophoresis of fragments generated by restriction of 2.5–Kb</td>
<td>153</td>
</tr>
<tr>
<td>Figure 4.8 Luciferase activity of the promoter fragments derived from the 2.5–Kb</td>
<td>155</td>
</tr>
<tr>
<td>Figure 4.9 Summary of the response of the promoter fragments derived to p53, p73α, p73β and p73γ</td>
<td>156</td>
</tr>
<tr>
<td>Figure 4.10 Effect of DNp73 co-transfected with different p73 isoforms on the activity of the 2.5–Kb and p21 promoter</td>
<td>158</td>
</tr>
<tr>
<td>Figure 4.11 DN-p73 cooperation with p73α, p73β, p73γ, in transactivation of 2.5–Kb fragment-luciferase construct</td>
<td>159</td>
</tr>
<tr>
<td>Figure 4.12 DN-p73 repression of transcription activity of p73α and p73γ on p21-luciferase promoter</td>
<td>160</td>
</tr>
<tr>
<td>Figure 5.1 Representative SSCP gel</td>
<td>166</td>
</tr>
<tr>
<td>Figure 5.2 Representative SSCP gel: suspect mutation</td>
<td>167</td>
</tr>
<tr>
<td>Figure 5.3 DNA sequencing of suspect mutated exon</td>
<td>168</td>
</tr>
<tr>
<td>Figure 5.4 SSCP analysis on DNA samples derived from human tumors</td>
<td>171</td>
</tr>
<tr>
<td>Figure 5.5 Representative PCR amplified exons sequences from drug resistant cell lines</td>
<td>172</td>
</tr>
<tr>
<td>Figure 6.1 Effects of the stable overexpression of DRAGO on A2780 and SKOV-3 cells</td>
<td>176</td>
</tr>
<tr>
<td>Figure 6.2 Morphological effects by contrast phase microscopy in 3T3 cells transiently expressing DRAGO</td>
<td>178</td>
</tr>
</tbody>
</table>
Figure 6.3 Schematic representation of pGEX-3X constructs .. 181
Figure 6.4 Agarose gel of PCR fragments and pGEX-3X constructs 182
Figure 6.5 N- and C- terminal deletion mutants expressed by bacteria upon induction 184
Figure 6.6 SDS–PAGE of insoluble material retaining the GST–fusion proteins 185
Figure 6.7 Coomassie Blue staining of SDS–PAGE of purified GST and GST–SB 186
Figure 6.8 Agarose gel of PCR fragments and pCDNA3-HA constructs 189
Figure 6.9 Schematic representation of pCDNA3-HA constructs 190
Figure 6.10 Northern blotting showing the stable expression of C2 and C6 deletion mutants .. 192
Figure 6.11 Northern blot to detect the expression of N–terminus deletion mutants 193
Figure 6.12 Activity of peptides on cellular growth ... 195
Figure 6.13 Activity of peptides on cellular growth (high doses) 196
Figure 7.1 SDS–PAGE of DRAGO protein product synthesised in vitro 202
Figure 7.2 Computational prediction of DRAGO protein conformation 203
Figure 7.3 Immunofluorescence experiments on N3-deleted DRAGO clone 206
Figure 7.4 Northern blotting showing the expression of the deleted DRAGO mutants GFP–C2 ... 208
Figure 7.5 Fluorescence of a SKOV-3 clone expressing the GFP–C2 fusion protein 209
Figure 8.1 Alignment between the sequence of human DRAGO protein (Homo sapiens) and those from other mammals .. 213
Figure 8.2 Alignment between the sequence of human DRAGO protein (Homo sapiens) and those from vertebrates .. 215
Figure 9.1 Screening of the RPCI mouse genomic PAC library 21 220
Figure 9.2 Southern Blot of the genomic clone from the RPCI mouse PAC library 21 222
Figure 9.3 Partial sequence of the EcoRI fragment isolated from the mouse genomic clone and subcloned in the pBS vector .. 223
Figure 9.4 Targeting vector construction ... 225
Figure 9.5 Genotyping of animals generated by HE breeding (F3)by PCR and Southern Blotting ... 228
Figure 9.6 Body weight of male and female mice generated from HO x HO and HE x HE breeding ... 229
Figure 9.7 Growth curve of DRG−/− and DRG+/+ MEFs cultures at different passages 230
Figure 9.8. Response of MEF to UV and X rays treatments 232
Figure 9.9 MEF response to drug treatments ... 234
Figure 9.10 DAPI/sulphorhodamine staining of MEF after treatment with VP–16 236
Figure 9.11 DAPI/sulphorhodamine staining of MEF after treatment with doxorubicin .. 237
LIST OF TABLES

<table>
<thead>
<tr>
<th>Table</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Table 1.1 Summary of level of DRAGO mRNA induction upon treatments at indicated doses</td>
<td>77</td>
</tr>
<tr>
<td>Table 5.1 Summary of SSCP analysis</td>
<td>169</td>
</tr>
</tbody>
</table>
SUMMARY

The present thesis is aimed at the characterisation of an unknown gene named DRAGO (DRugs Activated Gene Overexpressed), isolated in the Laboratory of Molecular Pharmacology at the Mario Negri Institute as a p53-inducible gene by differential expression analysis in cells following genotoxic insults. The structure of the human DRAGO has been molecularly characterised. The coding region contains exons 2, 3, 4, 5 and the first 26 bases of exon 6. The remaining bases of this exon (4 Kb) constitute the 3' untranslated region (3'UTR). Interestingly, the gene presents two large (45–50 Kb) introns. Both the presence of such introns, and of the large 3'UTR suggest a strong gene regulation at transcriptional and post-transcriptional levels. This observation is also supported by the presence of several AU and CU rich regions, which are known to be involved in degradation/stability of mRNA. A fragment upstream the 5' of the coding region of DRAGO was isolated and demonstrated to have promoter activity. In transfection experiments the promoter activity of the isolated region was two-fold increased by human p53. An even stronger promoter activity in response to p73 and its isoforms was observed. Moreover, DNp73 was able to induce DRAGO expression co-operating with p73 and its isoforms.

The presence of DNA mutations in the gene has been investigated by using single strand conformation polymorphism (SSCP) analysis and DNA
sequencing. For these studies, 12 human cancer cell lines of different origin and four cell sublines made resistant to anticancer drugs were analysed but no mutations were detected. The investigation was also extended to human tumor biopsies and again no mutations could be detected. The functional role of the DRAGO gene has been studied by ectopically overexpressing it in eukaryotic cells. An inhibitory effect on cell growth and the formation of a large number of vacuoles leading to the disruption of the plasmatic membrane could be observed upon its overexpression. The phenotypic changes induced by DRAGO overexpression were therefore evaluated using specific deletion mutants and it was demonstrated that cells can tolerate the expression of DRAGO mutant with deletion of a few aminoacids in the C-terminus. The computational analysis of the protein revealed that DRAGO protein is likely a transmembrane protein. The theoretical prediction was supported by immunofluorescence experiments using deletion mutants transiently expressed in cells and by the analysis of GFP (green fluorescent protein) –derived deletion mutants clones, showing that the fluorescence was localised in the membrane. DRAGO-null mice have been generated: they are viable and do not present any macroscopical alterations. Mouse embryo fibroblasts (MEF) were isolated from homozygously deleted mice. DRAGO –/- MEFs were more resistant to drug treatment than wild–type MEF due to the inability of the cells to activate apoptosis. This newly isolated gene can be therefore considered as a novel potential target for the development of new therapeutic anticancer agents.
CHAPTER 1
INTRODUCTION
1.1 Cancer and cancer genes

Cancer is a term covering a plethora of conditions characterised by uncontrolled cellular proliferation.

As the average age rises in many countries and consequently cancer-related deaths, cancer will be one of the most common causes of death in the 21st century. Cancer is a complex disease in which somatic cells evade normal restrictions to clonal expansion and autonomy. Normal somatic cells are, in fact, totally dependent for their proliferation upon extracellularly received mitogenic signals (1). The unregulated proliferation of transformed cells kills and invades normal tissues giving rise to a bewildering array of clinical outcomes. For these reasons cures for cancer must be as diverse as the diseases themselves making difficult to design effective treatments.

Although cancers are extremely diverse and heterogeneous, their development and progression are driven by a defined number of critical events whose convergence is required for cancer inception and evolution. These pivotal steps comprise aberrations in the regulations of a restricted number of key pathways that control cell proliferation and cell survival leading to the establishment of all tumors. Mutations have been generally found in genes governing growth control (2).

Those genes, defined "cancer-genes", whose alterations enhance net cell growth, could be generally grouped into three types of genes: oncogenes, tumor-suppressor genes and stability genes.
In genetic diseases, mutations in one gene can cause disease; conversely, in most human malignancies mutations in cancer genes contribute to the development of cancer since only when several genes are defective cancer invasion arises (3).

Under normal conditions, proto-oncogenes (oncogenes with regular functions) are the genes whose expression stimulates appropriate cell growth of somatic cells especially those required for the continued renewal and turnover of some tissues.

A mutation in a critical position in a proto-oncogene causes uncontrolled cell growth by activating persistent growth stimulatory signal transduction pathways even when cells are receiving no mitogenic signals. The oldest and best studied oncogene is c-Src (4). In normal cells, c-Src is a kinase involved in proliferation, maintenance of normal intercellular contacts and cell motility. Even though its role in tumor development and progression is not fully understood, it is known that whenever overactivated and overexpressed through mutations or stimulation by growth factors, c-src can induce increased proliferation, invasion and motility (5).

Tumor-suppressor genes normally keep cell numbers down, either by halting the cell cycle and thereby preventing cellular division or by promoting programmed cell death. When these genes are rendered non-functional through mutation, the cell becomes malignant. Among tumor suppressors the prototypic genes are the RB and p53 genes. At the top of the list is p53, being implicated in more than 50% of human cancers (6) and p53-related topics will be further discussed in this work.
The first tumor suppressor to be cloned was the retinoblastoma (RB) gene (7-10). It was identified as the gene carrying the mutations responsible for the onset of retinal tumors.

In familial cases of retinoblastoma, mutation in the RB gene is inherited through the germ line, and affected children develop disease early in life that frequently affect both eyes (11). RB was subsequently found to be mutated in other human cancers, such as small-cell lung carcinoma and osteosarcoma. The retinoblastoma protein has been implicated in many cellular processes, such as control of cell cycle, DNA-damage responses, DNA repair, DNA replication, apoptosis and differentiation, all of which could contribute to its function as tumor suppressor (12-16).

Defective proto-oncogenes and tumor-suppressor genes act similarly at a physiologic level: they promote the inception of cancer by increasing tumor cell number through the stimulation of cell birth or the inhibition of cell death or cell cycle arrest.

A third class of cancer genes, called stability or repair genes, do not control cell birth or death directly. They drive the neoplastic process in different way when they are mutated. They control the rate of mutation of all genes keeping genetic alterations at a minimum. When stability genes are inactivated, cells acquire mutations in other genes at an accelerated rate. All genes are potentially affected by genetic alterations. Only mutations in proto-oncogenes and tumor-suppressor genes or in general in critical genes affect net cell growth conferring a selective growth advantage to mutant cells driving thereby the initiation of tumors. The
class of stability genes includes genes associated with mismatch repair (MMR), nucleotide-excision repair (NER) and base-excision repair (BER) which are responsible for repairing subtle mistakes made during normal DNA replication or induced by exposure to mutagens. Other stability genes control processes involving large portions of chromosomes such as those responsible for mitotic recombination and mitotic chromosomal segregation.

1.2 DNA damage and cancer

As it has been underlined, cancer is a disease of our genes. DNA accumulates changes conferring either a gain of function by activating proto-oncogenes or a loss of function by inactivating tumor-suppressor genes (17). In this manner, cancer development can be viewed as an evolutionary process whenever somatic mutations in cellular genes, which are usually detrimental to the cell, produce cells that can escape the normal constraints of proliferation and death (18).

The causes of cancer are many and varied and include genetic predisposition, environmental influences, infectious agents and ageing. These events transform normal cells into cancerous ones by altering the cellular networks of molecular pathways responsible for the control of cellular proliferation.

Oxidizing and alkylating agents, ultra violet (UV) and ionizing radiations (IR) are just few representative examples of damaging agents. The
damage induced by these agents is responsible for determining biological consequences like mutations and cell death.

DNA repair activities are extremely important for the cell because unrepaired DNA damage has the potential to be mutagenic, cytotoxic and carcinogenic. Maintenance of genomic integrity is therefore the major challenge for a cell, which is continuously exposed to genotoxic stresses (19). Cells have thus evolved complex surveillance networks in order to safeguard the genome against the possible detrimental effects of mutations by detecting DNA breaks, replication arrest, or defects in mitotic spindle assembly. These networks comprise DNA repair and DNA-damage checkpoint pathways which are responsible for the recovery of the cellular damage through the mobilisation of DNA repair factor and the activation of pathways which slow down or arrest the progression through the cell cycle to provide time for the repair, thus preventing mutations from being propagated (20). The cell cycle is characterised by different phases during which the genetic information is accurately transmitted from one cell to its daughters. Such faithful transmission required an accurate replication of DNA (the "S" phase) during which chromosomes are duplicated. After DNA synthesis, DNA and cellular components are equally and precisely distributed between two identical daughter cells ("M" phase). Between the S and M phases two gap periods occur, G1 and G2 respectively, which are intermediate phases and during which cell prepares itself for DNA synthesis (G1) and mitosis (G2). The term "cell cycle checkpoints" characterises monitored points of the cell cycle at
transitions between the different phases (21), and it refers to mechanisms by which the cell actively halts progression through different phases until it can ensure that an earlier process, such as DNA replication or mitosis has been completed properly. These cell-cycle checkpoints are believed to prevent the replication of damaged DNA (G1/S and intra-S checkpoints) or segregation of damaged chromosomes (G2/M checkpoints) (22, 23).

1.3 DNA damage response

The cellular response to DNA damage can be considered as a complex network of interacting signal transduction pathways consisting of sensors, transducers, and effectors (20) (Fig. 1.1).

The "stimulus" (DNA damage) is detected by "sensor proteins" that recognise the DNA lesion itself or eventual chromatin alterations that follow DNA breakage. Then the "transducers", a system composed of upstream and downstream protein kinases together with adaptor proteins, are brought into action: they transmit the damage signal to a series of downstream "effector molecules" through a transduction cascade that amplifies the initial DNA-damage signal and triggers the mechanisms necessary for the repair.

DNA can be damaged in a variety of ways. Energy released by free oxygen radicals, generated by normal metabolic process or by exposure to IR, can break the phosphodiester bonds in the backbone of the DNA helix involving either a single strand or both strands. The latter damage, defined as double-strand breaks (DSB) is probably the most dangerous form
Figure 1.1
Schematic view of the general DNA damage response signal-transduction pathway.
among the many types of damages that exist within the cell (24). Other damages can be inflicted by alkylating chemicals that can modify bases or cause inter- or intra-strand crosslinks. Furthermore, inhibitors of DNA topoisomerases can lead to enhanced single or DSB (25).

Even though cells can adapt to low levels of unreparable damages (26), one DNA DSB is sufficient to kill a cell if it is located in an essential gene (27). DNA DSBs are considered to be particularly biologically important because their repair is more difficult than that of other types of DNA damage. Incorrect repair of chromosomal breakage may cause gross chromosomal loss, amplification or rearrangement that can lead to cancer.

Each type of DNA lesion requires specific cellular responses depending on the specific nature of the damage. Although cells use different signalling pathways, there are commonalities in the various networks that cells use to deal with DNA damage.

As mentioned above, the message (damage signal) is transmitted via a standard signalling mode of protein phosphorylation: a central role is played by two well characterised and highly conserved protein kinases, ATM (ataxia–telangectasia mutated gene) and ATR (ATM–related gene).

1.3.1 The PI3K and PIKK families

ATM and ATR belong to a conserved family of proteins most of which possess a serine/threonine kinase activity.

All the members contain a domain with motifs that are typical of the phosphatidylinositol 3–kinases (PI3Ks), which constitute a lipid kinase
family characterized by its ability to phosphorylate inositol ring 3'-OH group in inositol phospholipids, generating second messengers that regulate fundamental cellular processes such as cell growth, survival and motility. In human cancer, this pathway is frequently constitutively activated by genomic aberrations such as mutation, amplification, deletion and rearrangement (28).

The PI3K family is divided into three classes. Class 1A of PI3Ks is composed of heterodimer, the catalytic subunit p110 and its associated regulatory subunit p85. In quiescent cells, p85 binds to p110 inactivating its kinase activity. Upon growth factor stimulation, p85 binds to the phosphorylated tyrosine in receptor tyrosine kinases or in their substrate adaptor proteins. The binding relieves the inhibition of p110 which in turn can phosphorylate the phosphatidylinositol 4,5-bisphosphate (PIP_2) to produce phosphatidylinositol 3,4,5-triphosphate (PIP_3), a second messenger that binds to proteins containing a pleckstrin homology domain recruiting them to cellular membranes (29). Among these, the serine-threonine kinase AKT, once recruited by PIP_3, is the predominant and essential mediator for the regulation of both growth and proliferation by PI3K. In cancer, the deregulation of the PI3K/AKT pathway, which causes its constitutive activation is involved in tumorigenesis by inducing cell survival thus inhibiting apoptosis (30, 31). The phosphorylation of PIP_2 to generate PIP_3 is reversed by the PTEN phosphatase. PTEN is a negative regulator of the PI3K signalling and functions as a tumor suppressor.
Genetic inactivation of PTEN occurs in numerous human tumors and results in a constitutive upregulation of PI3K signals (32, 33). There are three known isoforms of Class I A p110 (p110α/β/δ) and seven known p85 subunits generated by alternative splicing. Only p110α and p85α have been found to be mutated in tumors. Class I B PI3Ks consists of only one member, p110γ, which associates with the p101 regulatory subunit and is directly activated by G-protein-coupled receptors and indirectly by other receptors. The single isoform of the class-III PI 3-kinase and the three isoforms of the class-II PI 3-kinase (PI3K-C2α, PI3K-C2β, PI3K-C2γ) are all capable of using phosphatidylinositol (PI) as a substrate to produce PIP₃.

On the basis of their structural relation to the PI3K, the kinase family to which ATM and ATR belong to is named PI3K-like protein kinases (PIKKs) that also include other three members: ATX/SMG-1, mTOR/FRAP and DNA-PK (DNA-dependent protein kinase).
mTOR/FRAP is the only kinase of the family that is not directly involved in the response to damage.

Whereas ATM and DNA-PK respond primarily to DSBs (above all those induced by IR and radiomimetic drugs), ATR and SMG1 respond to both UV light damage and DSBs. ATM and ATR are the prototype actors in the DNA-damage signalling pathways (34).
1.3.2 Sensors of damage

In undamaged cells ATM kinase activity is low or minimal but it is rapidly engaged whenever cells have to deal with stress affecting DNA or chromatin structures. In unstressed cells ATM molecules reside predominantly in the nucleus and are held together as homodimers with the kinase domain of each molecule blocked and thus inactivated by the tight binding to an internal domain of the protein surrounding ser 1981. The introduction of DNA breaks, and in particular DSB, causes specific chromatin alteration leading to the activation of ATM by conformational changes in the molecule. This stimulates the kinase to autophosphorylate the ser 1981, causing the dissociation of the homodimer (35). ATM can "sense" chromatin structure changes without binding DNA at the sites of damage. A possible role in sensing DNA breaks might be held by the MNR (Mre11, Rad50 and Nbs1) complex (36-39) which binds DNA at breaks, unwinds the ends and recruits ATM thus activating it (40).

By contrast, induction of the DNA-damage signalling pathway following UV-light irradiation seems to be triggered by blockage of either transcription or replication. The ATR kinase has been implicated as a sensor of replication blockage and might have a similar role in sensing blocked transcription complexes (41). Hence, whereas ATM seems to become engaged in signalling pathways primarily following the introduction of DNA breaks, ATR has a critical role in virtually all cellular stress responses that share inhibition of replication-fork progression as a
common mechanism. ATR has been reported to be engaged also in cellular responses to DNA breaks.

SMG1 which is a recently discovered member of the PIKK family, might respond to both DNA damage and truncated mRNA species that arise as a result of blocked transcription (42).

DNA-PK, which is activated by DSBs, is a heterodimer containing a large catalytic subunit and two smaller accessory proteins that seem to function as sensor of DSB consequently recruiting the catalytic subunit. DNA-PK-dependent phosphorylation has been reported for two proteins, the WRN (Werner syndrome protein) DNA helicase and Artemis. Phosphorylation affects WRN's helicase activity which might act in DSB repair (43, 44), whereas Artemis which normally possesses a single stranded 5'-3' exonuclease activity, after phosphorylation becomes capable of opening hairpin structures that are typically formed at the ends of DSBs (45).

1.3.3 Tranducer phase

ATM and ATR cooperate closely with two other classes of proteins. These are the checkpoints mediators, also known as adaptors, and the transducer kinases CHK1 and CHK2.

The mediators are those proteins that are initially recruited to the sites of DNA damage and/or replication blockade.

The ATM-related mediators include MDC1 (mediator of DNA damage checkpoint 1), 53BP1 (p53 binding protein 1), BRCA1 (breast cancer 1), NBS1 (Nijmegen breakage syndrome-1), H2AX (Histone-2A family,
member X) and SMC1 (structural maintenance of chromosomes 1). These proteins are phosphorylated by ATM and seem to facilitate ATM signalling and processing/repair of the lesions (38).

ATR exists in a complex with the ATR-interacting protein (ATRIP) both before and after exposure to stress such as UV irradiation. In vitro experiments showed that replication protein A (RPA) a single-strand DNA (ssDNA) binding protein involved in DNA replication would bind ATRIP (46-48). The accumulation of the RPA on the ssDNA would lead to the recruitment of ATRIP and hence of its partner ATR. ATR localisation at the site of DNA damage or the arrested replication fork are thought to be important (47). ATR also needs the recruitment of other protein complexes to the ssDNA sites to carry out its cellular functions.

Among these proteins, there are RAD17-containing complex, 9-1-1 (RAD9-RAD1-HUS1) complex, claspin, BLM (Bloom syndrome protein) and H2AX which are phosphorylated in an ATR/CHK1-dependent manner (49-51). The 9-1-1 and RAD17-containing complexes, and the RPA protein have also been implicated as possible sensors of replication stresses and other type of damages (23, 41, 52, 53). The checkpoint transducer kinases, triggered by phosphorylation of ATM and ATR, are CHK2 and CHK1 respectively (53).

1.3.4 Effector phase

Once phosphorylated, CHK1 and CHK2, in turn can phosphorylate a plethora of downstream effector proteins comprising cell cycle regulators,
such as CDC25 phosphatases, various DNA repair proteins, transcription factors such as p53 or E2F1, chromatin components and regulators such as histone H2AX and Tousled kinases (Tlk). Those effectors are responsible for cell cycle control, activation of DNA repair activities, apoptosis and senescence (20, 34, 53, 54). Among those effectors the tumor suppressor protein p53, which is phosphorylated at different, yet specific, residues by ATM, ATR, CHK1 and CHK2, has an important role in mediating part of the response of mammalian cells to DNA damage and other types of cellular stress thus determining the fate of the cells.

In the following chapters an overview over its functions and role in the cellular response to damage is presented.

1.4 P53 protein

The p53 gene product is a key player in the cellular response to stresses and DNA damage and for this reason p53 probably represents one of the major obstacles to tumor development and inception. It plays a pivotal role in regulating cell growth and death. It was one of the first tumor suppressor genes to be identified, even though it was initially considered an oncogene (55-57). Genetic and functional data collected afterwards showed it is a tumor suppressor (58, 59). Germline mutations of p53 gene result in Li-Fraumeni syndrome, which predispose individuals to a variety of cancer types (60). P53 null mice, generated by homologous targeting, are susceptible to spontaneous development of tumors at a young age (61). Additionally, the function of p53 as a tumor suppressor is further
supported by the fact that the p53 protein does not function correctly in most tumor. In approximately 50% of human cancers p53 is directly inactivated as a result of mutations in p53 gene (62, 63). In the majority of the remaining cancer cases, p53 activity is compromised by alternative mechanisms. It can be inactivated through the binding to viral proteins, such as the E6 protein of human papillomavirus (HPV) after viral infections or by amplification or overexpression of MDM2 (mouse double minute 2), the negative regulator of p53 protein or as a result of silencing of key p53 co-activators like p14ARF through deletion of the gene (64).

1.4.1 Structure of p53

The human p53 gene was shown to span about 20 Kb of DNA and to be localised to the short arm of chromosome 17 (17p13). The p53 gene comprises 11 exons with the translation start site located in exon 2 for a cDNA encoding a protein of 393 aminoacids with an apparent molecular weight of 53 kDa. P53 has several functional domains (Fig. 1.2). The N-terminal region contains the transactivation domain (TA) which is divided into 2 subdomains, named activator domains (AD). AD1 spans from residue 1 to 42 and provides the generic transactivation functions: it interacts with the basal transcription machinery by contacting TATA box-binding protein (TBP)-associated factor (TAF) components of TFIID (TFII70 and TFII37) (65, 66) whereas the activator domain 2 (AD2) which is located within residues 43 to 63, is required for p53-dependent apoptosis (67-70). The first domain also contains the binding sites for
MDM2 (19-26), the main regulator of p53 stability. These two domains are followed by a proline-rich region (PRD, 64-92) that contains five copies of the sequence PXXP and is necessary for the induction of apoptosis and contributes to growth suppression (70-75). The central core domain of the protein is required for sequence-specific DNA binding. This region, also known as the sequence-specific DNA binding domain (DBD), comprises residues 102-292 and is crucial for the key role of p53 as a transcription factor (76-78). The tetramerisation domain (TD), within residues 324-355 is necessary for formation of the p53 tetramer (79) which is the functional form of the p53 transcription factor (80-82). Upstream to the TD, within residues 316 and 325, there is the nuclear localisation signal (NLS) for p53 intracellular localisation. In addition, the C-terminus (residues 364-393) is involved in the regulation of the DNA-binding activity. Moreover, C-terminus itself possesses a nonspecific DNA-binding activity, which seems to be implicated in p53-mediated repair of damaged DNA and in DNA and RNA reannealing (83). The mechanism by which the C-terminus could regulate the specific DNA-binding of p53 is controversial. The C-terminus has been reported to exert repressive effects on DNA-binding activity through the control of p53 conformation (84). On the other hand, the C-terminus can mediate aspecific interactions with DNA and may interfere with sequence-specific DNA-binding through the central DBD (85, 86). Recent NMR analyses of p53 protein has suggested an overall conformational effect by the C-terminus (87). However the exact role of C-terminus in regulating p53 function is still poorly understood (88).
Figure 1.2
Structure and domains of the p53 protein. The N-terminal domain contains the transactivation (TA) domain, which is divided in AD1 and 2, and the proline rich domain (PRD).
1.4.2 Activation and regulation of p53

The p53 network is normally "off". It is activated following stress such as IR, UV radiation, hypoxia, heat and cold shock, growth factor withdrawal, oncogene activation, ribonucleotides depletion, telomerase erosion, inflammation (and its associated nitric oxide signalling) and the treatment with cytotoxic drugs (89) (Fig. 1.3). The induction of p53 involves the stabilisation of the protein itself for many hours at a high intracellular concentration, the transformation of the protein from a latent to an active form (through a covalent modification of the protein) and the localisation of the protein to the nucleus, allowing p53 to carry out its major function as transcription factor. It binds to a particular DNA sequence thus activating adjacent genes (90). These genes directly or indirectly lead to DNA repair or to the inhibition of the cell cycle or to cell death.

The p53 tumor suppressor protein negatively regulates cell growth through the induction of cell cycle arrest or apoptosis (6). Thus, in dividing tissue, there are mechanisms acting to downregulate the function of p53. The principal mechanisms that govern p53 activity are exerted at the protein level. These include regulation of p53 stability, control of the subcellular localisation of the p53 protein, posttranslational modifications, and conformational changes that allow activation of the binding activity of p53. One of the central component of the regulation of p53 is the p53-interacting protein MDM2 E3 ubiquitin ligase (91). MDM2 binds tightly to p53 and renders it inactive. This inactivation is achieved through at least
Figure 1.3

Schematic representation of activation of p53 network following stress.
two distinct molecular mechanisms: on the one hand, MDM2 interferes with the transcriptional activity of p53, by virtue of its binding to the N-terminal transactivation domain of p53; this blocks critical interactions with other protein necessary for p53-dependent regulation of gene expression. On the other hand, MDM2 plays a critical role in the degradation of p53. In normal proliferating cells the p53 protein is kept at a very low level due to a very short protein half-life (6-20 minutes), which is controlled in large part by the constant removal of newly synthesised p53 by mechanisms involving proteasome-mediated degradation. Through a cascade of enzymatic reactions several copies of ubiquitin are attached to the C-terminus of p53. The final ubiquitylation enables p53 to be detected by the protein degradation machinery. MDM2 is the enzyme involved in targeting p53 to this machinery. The process is regulated by a feedback loop since p53 itself binds to the regulatory region of the gene encoding MDM2 thus driving the expression of its own negative regulator (92). MDM2 binds to the N-terminus of p53 activating the addition of ubiquitin group to p53 which is then degraded. This lowers the concentration of p53 and, in turn, reduces the transcription of the MDM2 gene, so closing the feedback loop and allowing p53 levels to rise again (93). While MDM2 is the prominent E3 ligase of p53, it is important to note that other E3 ligases have been shown to promote p53 degradation, including Pirh2 and COP1 (94, 95).

The levels of p53 within the cell increase dramatically (3-20 fold) following stress or damage induction. This increase in protein level is attributed mainly to an increase in p53 stability and can be achieved through
conformational changes in the protein resulting from chemical and covalent modification, such as the addition or the removal of phosphate, acetyl, glycosyl, ribose, ubiquitin or sumo chemical groups (summarised in figure 1.4). Recently, it has been found that p53 can be also methylated (96) and neddylated (97). Phosphorylation sites in p53 are clustered within the N- and C- termini. Phosphorylation of the N-terminus does not affect its DNA-binding ability but interferes with its affinity for MDM2 and hence for its subsequent degradation. Many stress signals, including some DNA-damaging agents, are able to activate kinases responsible for the phosphorylation of numerous sites within or near the N-terminal MDM-2 – binding region of p53 (98) hence increasing p53 stability.

The p53-MDM2 loop is, in fact, the focal point of many different types of stresses that activate the p53 pathway (99).

For instance, DNA strand breaks initiate a series of phosphorylation events through several stress-response kinases such as ATM, ATR, Chk1 and Chk2 which have been shown to phosphorylate p53. Particularly, the ATM kinase has been implicated as the prime candidate for phosphorylating p53 at Ser15 in response to IR whereas ATR phosphorylates p53 on serine 15 and 37 after cellular exposure to UV light. ATM and ATR also activates Chk2 and Chk1, respectively, which phosphorylate p53 at ser20 (and possibly at other residues). Furthermore, ser15 phosphorylation triggers a series of subsequent post-translational modifications (phosphorylation or acetylation) on p53 that contribute to both its stabilisation and biochemical activation. These findings might add
complexity in the regulation of p53 stability (100). Other kinases that have been shown to phosphorylate the N-terminus of p53 are casein kinase (CK) 1 and 2, JNK (Jun N-terminal kinase) and DNA-PK, p38, CAK (CDK-activating kinase), protein casein C (PKC) (89, 101, 102). Nevertheless, DNA damage can also induce changes in MDM2 phosphorylation and this is thought to contribute to blocking the degradation of p53 (103). Stabilisation of p53 can be also achieved through the phosphorylation of residues at the C-terminus. Whereas phosphorylation of ser315 by Aurora kinase (AUR K) increases p53 stability (104), phosphorylation at Thr55 by TAF1 promotes p53 for degradation (105). The N-terminus of p53 is thought to contain a nuclear export sequence (aminoacids 11-27). DNA-damage induced phosphorylation of ser15 and ser20 may also block export of p53 mediated by nuclear exportation signal (NES) thereby maintaining p53 within the nucleus (106). Coupled with the stabilisation of p53, phosphorylation of ser15, thr18 and ser20 also stimulates recruitment of transcription factors including p300, CBP (both transcriptional co-activators and histone acetyl-transferases HATs) P/CAF (a p300/CBP-associated HAT). These factors stimulate transcription from p53-responsive promoters and also promote acetylation of a cluster of C-terminal lysine residues (320, 372, 373, 382 and 381) in p53 that are normally targets for ubiquitylation (107) thus contributing to p53 stabilisation.

Several studies have shown that negative regulation of the DNA binding activity of p53 depends on the C-terminus and this inhibitory activity can
be relieved by a number of modifications within this region of p53. The C-terminus of p53 normally folds back and thus inhibits the DNA-binding domain located in the central part of the p53 protein. The N-terminus of p53 has also been shown to play a role in regulating dissociation from DNA, and it is likely that modifications at both ends of p53 are important in controlling the DNA binding function.

Acetylation of lysine residues is not the only modification that occurs to activate p53 function. Other modifications which are involved in switching on the activity of p53 include sumoylation (108-110), phosphorylation, glycosylation, of lysine residues or phosphorylation of serine residues near to the C-terminus: these modifications can favour the DNA binding of p53, presumably by interfering with the C-terminus folding.

Lysine modifications are complicated since, beside those forehead mentioned, they could be even subject to ubiquitination, neddylation and hydroxylation (111). Lysine methylation leads to addition of up to 3 methyl groups to the ε-amino group and different methylation states have distinct functional consequences (112). For instance, methylation of p53 at Lys372 by Set9 methyltransferase stabilises p53 and retains it in the nucleus, thereby increasing its transcriptional activity (96). A forehead mentioned modification of p53, neddylation, has been recently identified. Unlike methylation, modification of lysine residues of p53 by NEDD8 inhibits its transcriptional activity (97). Further studies will increase the knowledge about how other posttranslational modifications regulate the stability and activity of p53.
Figure 1.4

Schematic representation of some post-translational modifications of p53. Phosphorylation of serine (S) and threonine (T) residues are represented as P. Acetylation (Ac) and methylation (Me) of lysines (K) are also indicated.
1.4.3 Regulation of MDM2

Besides those events that lead to the posttranslational modification and the following stabilisation of p53, other stress such as hypoxia, high doses of UV and some cytotoxic drugs efficiently reduce MDM2 mRNA and protein levels (99, 113-116). Hyper-proliferation, induced by dominant oncogenes, can operate by inducing expression of p14ARF, which binds to MDM2 and blocks its ability to mediate the degradation of p53. Nevertheless, the transcription factors YY1 (Yi Yang 1) negatively regulates p53 by enhancing the MDM2-dependent proteasomal degradation (117, 118) whereas the de-ubiquitination enzyme HAUSP (herpesvirus associated ubiquitin-specific protease), also known as USP7, has been recently discovered to bind to p53 in cells and to deubiquitinate p53 both in vitro and in vivo (119). Conversely, it has subsequently demonstrated that HAUSP deubiquitinates MDM2 rather than p53, thus leading to the stabilisation of MDM2 which then destabilises p53 (120).

Other proteins, such as Rb and L11, which is a ribosomal protein, bind to the acidic domain of MDM2 and prevent it from targeting p53 for degradation (121-124). 14-3-3 sigma increases p53 stability by binding its C-terminus and blocking MDM2-mediated ubiquitination (125). Conversely, PML (promyelocytic leukaemia) protein can bind MDM2 and sequester it to the nucleolus (126).
1.5 The p53 response: functions of p53

The p53 protein has been denoted "the guardian of genome" (127) for its role in preventing the accumulation of genetic alterations. This task is achieved through the induction of cell cycle arrest or senescence to prevent the replication of damaged DNA and playing a direct role in the repair of DNA through NER and BER. P53 is also called the "cellular gatekeeper" (6) being a critical player in the suppression of tumor development for its well-documented activity in apoptosis and contributing to the inhibition of angiogenesis (Fig. 1.5).

The best understood function of p53 is the ability to inhibit growth of aberrant or stressed cells. Inhibition of cell growth is thus associated with cell cycle arrest, differentiation, senescence or apoptosis. The ability to prevent growth of potential tumor cells is critical for its ability to function as a tumor suppressor.

1.5.1 P53 is a transcription factor

The growth and tumor suppressing activities of p53 are strictly related to its main function as a transcription factor (128-130) that binds as a tetramer to DNA in a sequence specific manner activating or repressing transcription of an increasing number of genes (131-134). Acting as a transcription factor, p53 activates vital damage-containment procedures to restrict aberrant cell growth in response to UV and IR, oncogene activation, hypoxia, heat shock, growth factor withdrawal, the loss of normal cell contact and the application of cytotoxic drugs (64, 89, 135).
Figure 1.5
Summary of p53 functions.
The criteria that influence p53 to stimulate cell cycle arrest or apoptosis are only partially understood and are under intensive study. General factors influencing the final choice between life and death of p53 include p53 expression level, the type of stress signal, the cell type and the cellular context at the time of cellular exposure to stress (136).

The idea that the function of a transcription factor is critical for the role of p53 as a tumor suppressor is supported by the observation that almost all naturally occurring mutations in the p53 gene are mostly localised in the DBD thus compromising its ability to bind cognate recognition sequences (64).

The active p53 in the tetrameric form binds to four palindromic copies of its consensus sequence which is a pentamer and has been precisely defined (5'-RRRCW-3'). The canonical consensus binding site for p53 (p53BS), also defined as responsive element (p53RE), is defined as two decamers 5'- RRRCWWGYYY-3' separated by 0-21 nucleotides (nt). In the motif, R is G or A, W is T or A, Y is C or T (90, 137). The two pentamers in each decamer are arranged head-to-head (HH). The p21Waf1/CIP1 (p21) gene promoter is the paradigm of this kind of base arrangement (90). These p53BS have been found both 5' to a gene and in the first or second introns of a gene (138, 139). Nevertheless, p53 is also able to repress the transcription from various promoters and emerging evidence indicates that transcriptional repression by p53 is important for its ability to promote apoptosis (140-142). Transcriptional repression by p53 is mediated through several mechanisms. P53 can interfere with the functions of DNA-
binding transcriptional activators such as SP1 and E2F (143, 144). P53 may interfere with transcriptional activator not by preventing the binding to DNA, but by disrupting its interactions with other components of the transcriptional machinery (145, 146). The second mechanism involves interference with the basal transcriptional machinery by p53. P53 may interact with the basal transcriptional machinery, such as TBPs and certain TAF, at the gene promoter or in solution (66, 147-150). This may disrupt transcriptional processes such as pre-initiation complex assembly. Another mechanism of transcriptional repression could be that p53 recruits chromatin-modifying factors such as histone deacetylase (HDAC). Alterations in chromatin structure may reduce promoter accessibility to the transcriptional machinery or activator proteins (151-153). It is also possible that differences within the p53-binding site itself could have pivotal effects on the action of p53. A peculiar example is given by the gene MDR1. In this case, the p53BS harboured by the MDR1 promoter presents a particular orientation, with head-to-tail (HT) pentamer arrangement (154). The authors proposed that this conformation could affect p53 protein conformation leading to an inactive p53.

Recently an intriguing promoter arrangement of a p53-dependent gene, BTG2^{TIS21/PC3} has been reported. BTG2 function may play a role in cell cycle control, cell growth, differentiation and cellular response to DNA damage (155, 156). For this gene, the pentamer organisation of p53BS is again different from those reported for the canonical p53BS (HH) or MDR1 promoter (HT). In fact, the arrangement of the pentamer has a tail-to-tail
(TT) configuration. This specific arrangement could account for the particular response of the BTG2 promoter to the DNp73α protein (see ahead chapter 1.5.3) in a p53 dependent manner in neuroblastoma cells in contrast with other p53 target genes such as p21, which was completely repressed by DNp73 (157). P73 (see ahead chapter 1.5.1) shares structural and functional homology with p53. It is a transcriptional factor and can bind the canonical p53BS in the promoter of p53 target genes and thus transactivate them. This topic will be further discussed in depth. DNp73α is a p73 isoform lacking the transactivation domain. The authors proposed two models in order to explain the particular pentamer arrangement of BTG2 p53BS. On one hand they suggest that DNp73 and p53 form heterotetramers which are transcriptionally inactive on the canonical p53BS, but, through a conformational change, active on the BTG2 promoter. This is not according to previously published data (158) which demonstrated a weak interaction between p53 and p73. On the other hand, p73α being unable to bind BTG2 non canonical p53BS could suggest that DNp73α would not be able to compete with p53 in binding to its responsive element.

Furthermore recently collected observations could suggest an additional mechanism of transcriptional regulation of p53-induced genes. It has in fact been discovered that p53 can also activate target genes through a non-canonical sequence. The first such example is the p53-induced gene 3 (PIG3), which has been implicated in the accumulation of reactive oxygen species and apoptosis induction (159). PIG3 can be induced by
p53 through a microsatellite sequence, the pentanucleotide motif TGYCC repeated 10, 13 or 15 times within its translated region (160). Another recently described example is the gene encoding the pro-apoptotic phosphatase PAC1, which is induced through binding p53 to a novel palindromic binding site (161). It is a 12-base pair (bp) palindromic consensus sequence (5'-CCCCACGTGAGG-3') mapping from -202 to -191 bp in the PAC1 promoter.

Several p53 responsive genes have been identified but intensive studies have so far established direct roles for only a small group as mediators of the p53 response.

In the following paragraphs p53 functions will be specifically discussed.

1.5.2 Cell cycle arrest

Among the target genes stimulated by p53 to halt the cell cycle, p21 is probably the most critical and well studied (162, 163). It is an inhibitor of cyclin-dependent kinases (CDKs). CDKs are key regulator of the cell cycle, working together with their partners, the cyclin proteins, to ensure the correct progression through different phases of the cell cycle. By inhibiting several CDKs, p21 can block both G1-to-S and the G2-to-mitosis transitions (164-166).

Another target of p53 that contributes to the p53-induced G2 arrest is 14-3-3 sigma. The 14-3-3 family proteins play a role in signal transduction and cell cycle control. 14-3-3 sigma binds to CDC25C and keeps it in the cell cytoplasm. CDC25C is a phosphatases that acts upon cyclin B-CDC2,
a kinase essential for the G-2 to M-phase transition. Keeping CDC25C in the cytoplasm prevents it from activating cyclin B-CDC2 in the nucleus and these cells are blocked in the G-2 phase of the cell cycle. Further potential mediators of the G2 arrest include GADD45 (167) and Reprimo (168).

1.5.3 Apoptosis

P53 is implicated in the induction of the apoptotic signalling pathways, known as the extrinsic and the intrinsic pathways, that lead to the activation of the caspases, a group of cysteine proteases which, upon activation, destroy cellular machinery and lead to eventual cell death (169). The extrinsic pathway is mediated by particular “death” receptors (DR), that belong to the tumor necrosis factor receptor (TNF-R) family which form the death-inducing-signalling-complex (DISC) (170) thus leading to the activation of caspase dependent cell death. The intrinsic pathway is triggered by the release of apoptogenic factors from depolarised mitochondrial membrane, including cytochrome c and Smac/DIABLO (Smac, second mitochondria-derived activator of caspases; DIABLO, direct IAP-binding protein with low pi), Omi/HtrA2 (Htr2A, high temperature requirement A2), apoptosis inducing factor (AIF) and endonucleases G (EndoG), which lead to the eventual cell death through caspase-dependent and caspase-independent mechanisms. Released cytochrome c allows the formation of the apoptosome complex which consists of apoptotic protease-activating factor 1 (APAF-1) and procaspase-9, which is activated after being recruited into the apoptosome.
Active caspase-9 finally promotes the activation of caspase cascade by cleaving the effector caspases, caspase-3, -6 and -7, which execute the death program (171). Smac/DIABLO and Omi/HtrA2 bind to a group of apoptosis inhibitors called inhibitors of apoptosis proteins (IAPs), such as XIAP (x-linked inhibitor of apoptosis protein) and cIAP1 (cellular inhibitor of apoptosis protein 1), thus relieving their inhibition on caspases (172-174). On the other hand, AIF and EndoG appear to promote DNA degradation through a caspase independent pathway (175, 176).

The release of mitochondrial apoptogenic factors is regulated by the pro- and anti-apoptotic Bcl-2 family proteins, which either induce or prevent the permeabilisation of the outer mitochondrial membrane. Several genes of the Bcl-2 family proteins are transcriptionally regulated by p53 thus encoding potential mediators of p53-induced apoptosis. The prototype of this class of mediators is the bax gene, a pro-apoptotic member, which governs the release of cytochrome c from the mitochondria (177-179). The Bcl-2 family members are classified on the basis of structural similarity to the Bcl-2 homology (BH) domains (BH1, BH2, BH3 and BH4) and to a transmembrane domain. The BH3 domain, which is present in all members and is essential for heterodimerisation among members, is the minimum domain required for the pro-apoptotic function (180, 181). The Bcl-2 family is subdivided into 3 classes: prosurvival proteins, structurally similar to Bcl-2 such as Bcl-Xl; pro-apoptotic proteins, Bax and Bak and the pro-apoptotic BH3-only proteins (182). Among the latter, a key subset
of the Bcl-2 family genes are p53 targets, including Noxa, (183) PUMA (p53 up-regulated modulator of apoptosis) (181, 184) BID (185) and Bad. Some of this BH3 domain-only proteins function upstream of BAX/BAK to induce apoptosis in response to a different set of conditions in a tissue and cell type-specific manner (186). For instance, PUMA and Noxa are activated in a p53-dependent apoptosis after DNA damage. PUMA can also mediate apoptosis induced by p53, hypoxia, DNA damaging agents and endoplasmatic reticulum (ER) stress in human colorectal cancer cells (187, 188). Bad has been shown to regulate apoptosis induced by growth factors and nutrient deprivation (189). Bid mediates apoptosis transmitting apoptotic signal mediated by death receptors to Bax/Bak in hepatocytes (190) whereas Bim is required for apoptosis induced by cytokines in hematopoietic cells (191). These BH3-only protein receive the death signals transmitting them to Bcl-2 family members containing multiple BH domains (192, 193). Bax and Bak can be either directly activated by BH3-only proteins or indirectly through inhibition of Bcl-2 or Bcl-XL proteins (194, 195).

These proteins, as well as another p53 induced gene product, namely p53AIP1 (196), localise to the mitochondria promoting mitochondrial membrane potential perturbation with the consequent activation of the intrinsic apoptotic pathway. The mitochondrial membrane potential could be perturbed by other p53 target genes coding for redox-controlling enzymes and named PIGs, such as PIG3, POX2/PIG6 and ferredoxin reductase (159, 197, 198). The reactive oxygen species (ROS) produced
by these PIGs cause damages to the mitochondria thus initiating the apoptotic pathway. p53 has been demonstrated to localise to the mitochondria following DNA damage or hypoxia, where p53 can interact with antiapoptotic proteins such as Bcl-2 and Bcl-Xl. The binding of p53 to Bcl-2 and Bcl-Xl liberates Bak and Bax thereby allowing them to induce changes in the mitochondrial membrane leading to activation of the caspase cascade resulting in cell death. Since in this case p53-induced apoptosis does not involve its transcriptional ability, this represents the transcription-independent way of mediating apoptosis (199).

P53 has also been implicated in the membrane death receptor-induced pathway of apoptosis also known as the extrinsic pathway.

P53, in fact, upregulates the expression of at least three of the death receptors, FAS (APO1/Cd95), DR5/KILLER, DR4, PERP (p53 apoptosis effector related to PMP–22) and PIDD (p53-induced protein with a death domain) and one of the death receptor ligands FASL.

The cell-surface receptor FAS belongs to the TNF-R receptor family and is a key component of the extrinsic death pathway (200). Fas is activated by binding of its ligand, FASL, expressed mainly by T-cell (201), which induces the oligomerisation of the receptor with subsequent activation of the caspase cascade in the apoptotic pathway. Fas transcription is induced by p53 in response to gamma irradiation and in a tissue-specific manner (202). In addition to stimulating Fas transcription, overexpressed p53 may enhance cell surface expression of Fas by promoting the trafficking of the receptor from the Golgi to the membrane (203).
Other members of this receptor family that are induced by p53 are DR5/KILLER and DR4, which are bound by the TNF-related apoptosis-inducing ligand (TRAIL). Both receptors contain a conserved death domain (DD) motif (an intracellular globular protein interaction domain) and signal apoptosis. Ligation of TRAIL to its receptors results in trimerisation of the receptors and clustering of the receptors's intracellular DD, leading to the formation of the DISC and thus inducing apoptosis. PIDD, was initially identified as a prime target gene in an erythroleukemia cell line that undergoes G1 phase arrest and subsequent apoptosis after p53 expression (204). PIDD can form a complex with caspase 2, called PIDDosome and seems to involved in caspase 2 activation, in response to genotoxic agents (205). Another pro-apoptotic gene, PERP, is a putative tetraspan transmembrane protein that represents a new member of the PMP-22/gas3 family of proteins implicated in cell growth regulation. The presence of a p53-responsive element in the promoter and of higher levels of PERP mRNA in cells undergoing apoptosis than in arresting cells support the hypothesis that PERP contributes to p53-mediated apoptosis, even though details have to be defined (206).

1.5.4 P53 “choice” between life and death

Different type of cells often show different biological responses to a given stress (207). For example, thymocytes and splenocytes undergo p53-dependent apoptosis after IR, whereas fibroblasts arrest cell cycle after DNA damage but can undergo apoptosis following different stimuli. In
most cases, cells can respond to DNA damage by activating either growth arrest or apoptosis. The ability of cells to execute a choice between life and death suggests that p53 pathway is able to sense whether or not recovery from DNA damage has been successful thus permitting the p53 response to be attenuated or promote an irreversible and fatal outcome. The currently accepted model for the explanation of cellular choice involves a complex number of factors, not yet complete, that should direct p53 to differentially transactivate promoters of growth arrest or apoptosis genes.

Originally, intracellular levels of p53 were correlated with the outcome of p53 activation, since p53 has been shown to bind with higher affinity to the promoter consensus sequence of cell cycle arrest genes (e.g. p21, GADD45, MDM2). Whereas, death would be induced when high levels of p53 are present in the cell because promoters of apoptotic genes contain low affinity p53 binding sites (208). This model could suggest that increased level or activity of p53, after strong damages, can lead to the induction of the apoptotic pathway rather than growth arrest. Stronger damage induces more p53 and the persistence of damage would keep p53 active thus determining and leading to the induction of those genes whose promoters have low affinity for p53 (209). Furthermore, p53 mutants with marginally altered conformations retain sufficient activity to induce arrest but not apoptosis (68, 210, 211).

Further studies have demonstrated exceptions to the proposed relationship between promoter binding and the induction of apoptosis.
It is now accepted that there are factors that are likely to play an essential role in determining the final cellular decision between cell cycle and apoptosis. Different post-translational modifications of p53 have been found to drive the p53 toward the activation of specific pro-apoptotic genes (AIP). In addition, there are cellular factors able to induce p53-dependent apoptosis such as JMY (214), ASPP (apoptosis stimulating protein of p53) 1 and 2 (215) and recently also p53 family members, p73 and p63 which were also shown to be required for p53-induced apoptosis (216).

1.5.5 Senescence

Cellular senescence has been defined by Hayflick (217) as the irreversible loss of replicative potential occurring in primary somatic cell culture. Normal cells grown in vitro do not divide indefinitely but cell growth is arrested after a fairly reproducible number of cell divisions and this process has been defined as replicative senescence. Among mechanisms that have been suggested as putatively responsible for blocking cellular divisions, the erosion and eventual dysfunction of telomeres is the best established and investigated (218). During successive cellular divisions the telomeres in normal cells shorten progressively (219, 220). This erosion of telomeres length has been attributed to the inability of the DNA replication machinery to completely replicate the ends of chromosomes (221). Thus, proliferating cells experience progressive telomere shortening until the telomeres become critically short and dysfunctional. Dysfunctional
telomeres signal normal cells to cease proliferation provoking a senescent phenotype (222, 223). Senescent cells remain metabolically active and undergo to characteristic changes in cell morphology, physiology and gene expression (224). They are unable to express genes required for proliferation in contrast with quiescent cells which are in a non-proliferative state promptly reversed if they are exposed to mitogens (225).

Mammalian telomeres consist of a long stretch of TTAGGG repeats followed by single-strand termini consisting of 10 to 300 bases (222) that end in a lariat-like structure called T-loop (226). Various telomere-specific proteins bind to the single- and double-strand regions. The T-loop and telomere-associated proteins form a protective cap that stabilises the ends of linear chromosomes preventing their degradation, recombination and end-joining reactions (227). When telomeric DNA sequence or structure is altered, cells undergo chromosome end associations and fusions leading to growth arrest or death.

Immortal cells which proliferate indefinitely are able to maintain telomeres at a stable length because they can express the enzyme telomerase, which can add the telomeric sequences to chromosomes ends de novo. Most human normal cells do not express the telomerase (222, 223, 228). Replicative senescence is an example of a more general process named as cellular senescence, which is a signal transduction program activated by normal cells in response to various stress and leading to irreversible growth arrest. These include telomere uncapping, DNA damage, oxidative stress, certain oncogene activity, specifically Ras and its downstream
effectors and others (229-231). These stimuli are not independent of one another or mutually exclusive. Oxidative stress can cause DNA damage and also accelerate telomere shortening rates (232-234).

P53 together with Rb, another paradigmatic tumor suppressor protein, plays a critical role in the induction of senescence. Both proteins are in fact activated during senescence and in human fibroblasts the inactivation of both p53 and Rb is required to prevent the onset of senescence, whereas the inactivation of only one protein delay the entry into senescence (235). In MEF, p53 loss is sufficient to overcome senescence, whereas Rb has to be inactivated together with the related p107 and p130 components of the Rb family to prevent senescence.

In the context of senescence, p53 seems to be controlled by two major pathways. One is the DNA damage-response pathway, mediated by the ATM/ATR and Chk1/Chk2 proteins, which cause the post-translational stabilisation of p53 through phosphorylation. The other pathway acts through the p14ARF or ARF (p19ARF in mouse). As already described, the ARF product activates p53 by sequestering MDM2 in the nucleolus thereby preventing the MDM2-mediated targeting of p53 to proteolytic degradation.

Recent evidence from cell culture models clearly demonstrates that telomere shortening provides a DNA damage signal similar to that induced by DSBs. Human fibroblasts undergoing replicative senescence display nuclear foci containing phosphorylated H2AX and 53BP1 and the activation of checkpoint kinases CHK1 and CHK2, all hallmarks of DSBs.
P53 in its stabilised state (through post-translational modifications or prevented MDM2 targeting), increases the expression of p21, an inhibitor of cyclin E/cdk2 complexes thus causing cell cycle arrest (as discussed previously in the chapter 1.4.3.1). P21 expression levels rise in both growth arrested (for example quiescent) cells and senescent cells: however, p21 increases to its highest levels in senescent cells for a relatively long interval. Several weeks after human fibroblast cultures reach senescence, p21 levels gradually fall as p16^{INK4a} (p16) levels rise. P16 is an inhibitor of cyclin D/Cdk4,6 complexes and is induced upon various situation of stress and is highly expressed in senescent cells. It is encoded by the INK4a/ARF locus, which encode as alternative transcript, the tumor suppressor p14^{ARF} which share 2 exons but has a separate promoter and the first exon is translated in a different reading frame. Both p16 and p14^{ARF} are induced in situations of stress (238, 239).

1.5.6 Genetic stability

As a tumor suppressor, p53 has also an important role in DNA repair and recombination. As recently described, during apoptosis, p53 can also have a transactivation-independent role in maintenance of genetic stability. In eukaryotic cells, the main DNA-repair processes are NER, BER, MMR, Non-Homologous End-Joining (NHEJ) and Homologous recombination (HR) (19).

NER is the process by which the cell recognises and repairs damaged bases and disrupted base pairings caused by UV light or oxidative
DNA base damage generated by IR, alkylationg and methylating agents, as well as endogenous hydrolytic and oxidative processes is corrected by the BER pathway. Thus, BER is critically important for regulating spontaneous mutations (245). A recently published work (246) reported that BER intermediates could induce p53-independent cytotoxic and genotoxic responses, hence implying that p53 might not be involved in the process. However, Zhou et. al. (247) demonstrated that BER is stimulated by recombinant wild-type p53 in an in vitro reconstituted system, where p53 might directly interact with some of the components of BER pathway. A
direct interaction of the tumor suppressor with some of the proteins belonging to the BER machinery could suggest a transactivation-independent function of p53. P53 can in turn affect BER in a transcription-dependent fashion. An example is the effect of p53 on 3-methyladenine (3-MeAde) DNA-glycosylase gene (MPG) transcription. After exposure to nitric oxide (NO), p53 can repress the expression of MPG (gene belonging to the BER pathway) thus preventing the onset of a mutator phenotype resulting from the increased accumulation of point mutation after NO-induced DNA damage (248).

MMR is the DNA-repair process that removes mispaired nucleotides and insertion or deletion loops.

P53 affects MMR activating the expression of a MMR's protein, MutS homologue-2 (MSH2), in a transcription-dependent manner by binding to the p53RE present in the MSH2 promoter. It has been reported that p53 can synergise with the transcription factor Jun in the regulation of human MSH2 in response to UV exposure (249). This is one the several examples of the cooperation of p53 and MMR in DNA damage response.

NHEJ is the mechanism by which most chromosomal DSB are repaired in somatic cells. It is error prone since it leads to the joining of the breaks without a template. As regards the regulation of NHEJ by p53 there are contradictory results. For instance, it has been reported that wild-type p53 protein is able to rejoin DNA with DSBs, indicating a transactivation-independent role of p53 in NHEJ (250, 251). Conversely, it has been also
shown, that DSB rejoining increases with loss of wild-type p53 (252) and also wild-type p53 was reported to inhibit NHEJ (253-256).

HR is a fundamental and error-free process, conserved in all organisms (257) and involved in genomic stability, chromosome segregation during meiosis and DNA repair (258). In mammalian cells, HR is strongly stimulated by DSB (259). During HR, the sequence lost in one ds-DNA molecule is replaced by exchanges with an intact homologous DNA partner (19), which can be found on the sister chromatid, leading to sister chromatid exchange (SCE) in the homologous chromosomes or on repetitive sequences that are dispersed through the genome (260). The most documented model is the DSB repair model which accounts for DSB repair after genotoxic stress, during meiotic recombination or gene targeting. RAD51 is perhaps the most essential component of the pathway because it catalyses the strand exchange reaction (261). RAD51 binds to ssDNA and after having polymerised, upon RAD52 stimulation, searches the homology on sister chromatid with the help of the helicase rad54 (262). Once the homology search is successful, the homologous duplex is captured and the ssDNA filament bound to RAD51 aligns and invades it to form heteroduplex structure allowing the exchange between the aligned chromatids (263). This step form cruciform junctions, known as Holliday junctions (HJ) which can migrate along the chromosomal branch leading to the elongation of the heteroduplex molecule. DNA polymerases use the intact copy to re-synthesise the deleted DNA sequences, DNA ligase join the newly synthesised fragments and the HJ are resolved by specific
endonucleases that are known as resolvases (264). P53 seems to physically interact with proteins involved in the HR machinery, heteroduplex structures or Holliday junctions together with helicases. Wild-type p53 alone might check the fidelity of HR events by either specific mismatch recognition in the heteroduplex intermediates correcting them exonucleolytically or by halting DNA exchange between imperfectly homologous sequences (265). The mechanism through which p53 influences the HR process seems to be transactivation-independent. It interacts with RAD51 thus likely affecting RAD51 activity. P53, in fact seems to abrogate the polymerisation of RAD51, thus limiting its activity (266). It is necessary to finely control the HR machinery to allow the process to proceed at optimum efficiency thus preventing hyper-recombination. Uncontrolled hyper-recombination, in fact, leads to genomic instability, including chromosomal deletions, translocations and gene amplifications. It is not known whether p53 loss alone can lead to hyper-recombination or whether p53 mutation lead to an increase in HR. However, it has been shown that the abrogation of wild-type p53 results in an increase of chromosomal aberration and frequency in spontaneous mutations (267-269). Furthermore, p53 can also interact with helicases, such as WRN and BLM belonging to the RecQ helicase family. This family is highly conserved in evolution and is required for genomic stability maintenance. Mutations in three of the RecQ-helicase genes in humans, BLM, WRN and RecQ4, lead to cancer predisposition disorders, Bloom syndrome (BS), Werner syndrome (WS) and Rothmund-Thomson
syndrome (RTS) respectively (270). There are several example of inter-
regulation between p53 and the RecQ helicases. (271). For instance, p53
can form a complex with Sp1 thus preventing Sp1 to bind to the promoter
of WRN helicase, which is transcriptionally regulated by Sp1. Another
eexample is given by the interaction between p53 and BLM helicase. p53
and BLM cooperate affecting HR and sister chromatid exchanges. BLM
and p53 co-localise and physically associate with each other and RAD51.
In particular, BLM is required for efficient p53 accumulation and
association with RAD51 during HR response to damage (272).
Further evidence for a role of p53 in DNA repair comes from the induction
of a new ribonucleotide reductase gene, designated p53R2, by p53 after
damage. Ribonucleotide reductase is a rate limiting step enzyme for DNA
synthesis as it catalyses the conversion of ribonucleoside diphosphates to
their corresponding deoxyribonucleotides. P53R2 gene is inducible by
DNA damage suggesting that this enzyme has a crucial role in supplying
precursors for DNA repair. P53, once activated by ATM in response to
DNA damage, directly induces p53R2, suggesting that p53 could
participate in DNA repair activity also by direct induction of p53R2
following to DNA damage (273).

1.5.7 Inhibition of blood-vessel formation

During the progression from normal to malignant phenotype, the cells
have to recruit new blood vessels to ensure sufficient nutrient-bringing
blood for tumor growth. To prevent neovascularisation, p53 can stimulate
the expression of the thrombospondin-1 (TSP-1), a potent inhibitor of angiogenesis. In cultured fibroblasts from patients with Li-fraumeni syndrome the loss of the wild-type allele for p53 can also result in the reduced expression of TSP-1 (274). In various neoplastic cell lines, the levels of TSP-1 expression show an inverse correlation with malignant progression (275-278). A p53-inducible gene, named BAI-1 (brain-specific angiogenesis inhibitor 1) encodes a product that contains 5 thrombospondin type 1 repeats and is specifically expressed in the brain (279): this gene has been shown to inhibit in vivo the neovascularisation induced by bFGF (basic fibroblast growth factor) in rat cornea, thus suggesting that this gene can play a significant role as a mediator of p53 inhibition of angiogenesis. Other genes involved in suppression of tumor metastasis have been identified. Among them KAI-1 (280), maspin (mammary serine protease inhibitor) (281) and PAI-1 (plasminogen activator inhibitor 1) (282) have been found to be up-regulated by p53 thus emphasizing the role of p53 in the negative regulation of cell invasion and metastasis.

1.6 P53 and its family members

1.6.1 Structure of p53 family member gene and their products

Even though p53 discovery has been in 1979, two novel proteins belonging to the p53 family of transcription factors were identified only 20
Figure 1.6
Structure and homology between p53, p63 and p73.
years afterwards. The first homologue to be discovered was p73 (283) and then the other homolog, p63 (also named KET, p51, p40, p73L) appeared (284-288). P53, p73 and p63 share a remarkable structural similarity. The three most conserved domains in all three genes are the NH2-terminal TA, the central DBD and the oligomerisation domain (OD) in the COOH-terminal. The highest level of homology is reached in the DBD (63% between p53 and p73 and 60% identity between p53 and p63) suggesting that the three genes can transactivate the same target promoters (Fig. 1.6). The high conservation of the OD suggests that these family members can form hetero-oligomers as well as homo-oligomers, although published data show that homo-oligomers are favoured (158, 283, 289, 290). Both p63 and p73 contain in their long C-terminus a protein-protein interaction domain known as “sterile alpha motive” (SAM). Up to now, TP53 has a single promoter encoding both the full length p53 and the alternative splice variant of 40 KDa called DNp53. This splicing occurs at the 5’ end of p53 RNA thus affecting the N-terminus of the protein. This N-terminally truncated form has been described in literature and termed p53/p47 and DNp53 (291, 292). DNp53 retains the intron 2 by alternative splicing and its translation starts at codon 40 (291). DNp53 oligomerises with full-length p53 ad interferes with its transcriptional and apoptotic functions. DNp53 does not respond to DNA damage.

For TP63 and TP73, two promoters have been identified: P1 in the 5’ untranslated region upstream to the non coding exon 1 and P2 within the 23 kb spanning intron 3. P1 and P2 promoters produce two distinct
Figure 1.7
Structure of TA and of DN isoforms of p73 and p63.
classes of proteins: those containing the TA (TAp73 and TAp63) and those lacking it (DNp73 and DNp63) (Fig. 1.7). In addition, alternative exon splicing of the P1 transcripts of TP63 and TP73 gives rise to other isoforms lacking the transactivation domain (DN'p73, Ex2Delp73, and Ex2/3Delp73 ad DNp63) (283, 293, 294). Alternative splicing generates additional complexity at the C-terminus: TP73 and TP63 undergo multiple C-terminal splicing generating nine transcripts for TP73 (α, β, γ, δ, ε, ζ, η, η1 and φ—α being the full-length) (Fig. 1.8) (283, 295, 296) and three for TP63 (α, β, γ) (284).

1.6.2 Function of p63 and p73 and role in cancer development

Only a small percentage of human tumors have been shown to harbor p63 and p73 mutations (297), in contrast to p53 whose functional loss through mutation is a pre-eminent finding in most human cancers. TA proteins resemble p53 functions transactivating many p53 target genes. Therefore, these proteins can regulate cell cycle and apoptosis after DNA damage. Despite their functional and structural similarity with p53, p63 and p73 play important and unique roles in human and mouse development and differentiation. P63 and p73 knock-out mice exhibit severe developmental abnormalities (298-300) and this is in contrast to p53-null mice, which are highly tumor prone but lack a development-defective phenotype. The literature on p63 and p73 is complex and controversial, and their role in tumor suppression has been much debated. Irwin and Kaelin (297) have been reported that only in a small percentage of human tumors p63 and
Figure 1.8
C-terminal splicing variants of p73.
p73 were mutated. However, recent studies have shown that some isoforms of p63 and p73 are overexpressed in human tumors (301, 302) whereas certain tumors exhibit loss or reduced expression of p63 and/or p73 (303-308). Recently, heterozygous knock-out mice for either p63 or p73 (p63+/− and p73+/−) showed shorter life span than wild-type mice and develop spontaneous malignant lesions. All these data seem to demonstrate that these genes could act as tumor suppressors (309).

1.6.3 Function of DN isoforms

DN isoform proteins, lacking of the transactivation domain should not induce the transcription of target genes. Several studies have demonstrated that DN isoforms (in particular those manuscripts dealing with DNp73) act as dominant negative inhibitors of the TA proteins and of the other family members in cell culture (293, 296, 310). Acting as a dominant negative inhibitor, DNp73 can interfere with the p53 binding to its downstream responsive elements and can inhibit the transcription of the TA isoforms (TAp73 and TAp63). This effect can be mediated either by competition through its DNA binding domain, as for p53-responsive elements, and/or by protein-protein interaction through its oligomerisation domain. Recent data show that upon strong DNA damage DNp73 is rapidly degraded, releasing the block exerted on p73 and p53, thus allowing cell cycle arrest and apoptosis to proceed. Therefore the relative accumulation of DNp73 in human tumors could be an important determinant of cellular response to treatment. In several manuscripts it
has been reported that the level of DNp73 is higher in those patients with a poorer prognosis. However the levels of TAp73 in those tumors were still in excess (311-313). Nevertheless, in a recent paper, using a tet inducible expression of DNp73 in cells, it has been found that although the DNp73 levels were well above those of TAp73 and wild-type p53 there was no effect on the malignant phenotype. Furthermore, DNp73α does not induce a higher resistance to drug treatment in vitro or a more aggressive tumor in vivo (314).

Recently DNp73 has been strikingly shown, despite the lack of the TA domain, to be able to transactivate gene expression (315). Other studies have reported that both DNp73α and TAp73α were able to induce the accumulation of the endogenous wild-type p53 in various cell lines (316, 317). Recently, as reported in chapter 1.4.3, DNp73α was shown to induce the p53-dependent activation of BTG2Tis21/PC3 expression at the promoter level in a neuroblastoma cell line. These findings together would strongly suggest that DN isoforms can have other functions, distinct from a simple antagonism on the TA isoforms and on p53.

1.7 Identification of a new p53-dependent gene

Despite being discovered 25 years ago, the tumour suppressor p53 continues to be highly studied, receiving most of the attention in the field of cancer research. Since its discovery in 1979, the number of publications centred on p53 are even more than 35,000 and it is considered the
common denominator in human cancer. P53 is, in fact, the most induced gene in response to cellular stress signals.

As a transcription factor, p53 can transactivate and transrepress many target genes; more than 100 have been identified through gene array analysis. Bioinformatic studies also predict more than 4,000 human gene containing putative p53 binding sites although the presence of a p53 binding site does not necessary mean that the gene containing this binding site is efficiently transactivated by p53. Moreover, p53 can repress the expression of many genes without these binding sites (318).

For this reasons and considering that p53 is highly mutated in cancers, it can serve as “nodal” point for the integration of a large number of different signals (64). This could suggest that there have to be numerous downstream genes acting as mediators of the different p53-dependent functions. Despite many of those functions of p53 have been elucidated, there are yet functions not completely explainable through the available p53 network. Either the search of other genes activated by p53, and therefore acting downstream to p53, or of genes having a complementary but p53 independent activity, is one important area of research which could help in better understanding the “behaviour” of cancer cells and possibly in future better rationalise the therapy for patients suffering from cancer.

Starting from this consideration, a program aimed at discovering new p53 dependent genes activated following damage started in the Laboratory of Molecular Pharmacology at the Mario Negri Institute. By using the
differential-display technique, a cDNA fragment expression was increased after treatment the cells with a synthetic derivative of distamycin A able to interact with the DNA minor groove. In figure 1.9 a representative differential display experiment is reported showing the cDNA fragment overexpressed 24 hours after treatment of the wild-type p53 expressing ovarian cancer cell line A2780.

This fragment has been cloned and sequenced and was found to match to a sequence (named KIAA0247) deposited in gene bank together with 80 new cDNAs (KIAA0201 to KIAA0280) deduced by analysis of cDNA clones from a cDNA library (319). The referenced publication does not contain any information regarding either the structure or the function of those genes whose cDNA sequence has been deposited. However, the authors reported the expression profiles for each cDNAs. In particular, the KIAA0247 cDNA has been found to be ubiquitously expressed at low levels in all human tissues tested. The isolated cDNA has been named DRAGO (DRug Activated Gene Overexpressed).

In order to isolate the complete cDNA containing the isolated fragment corresponding to the DRAGO gene, a cDNA library, prepared from human fibroblasts using λgt10 vector was hybridised with the isolated fragment as a probe in order to isolate the clone containing the full length cDNA of DRAGO. The positive clones were isolated and sequenced. In the meantime, during the sequencing of the isolated clones, the full-length cDNA (5,338 bp) subcloned in a pBluescript-SKII+ (pBS) vector was
kindly given by Nagase from Kazusa (Japan). The complete cDNA has 5,338 base pair and putatively codes for a protein of 303 amino acids. To verify whether the increase was mediated by p53, the effects of antitumour drugs were evaluated in isogenic model-systems differing for p53 expression. For this purpose, the HCT-116 colon carcinoma cell line with wild-type p53 (clone 40.16, p53 +/+) or disrupted by targeted homologous recombination (clone 379.2, p53 −/−) have been used. An increased transcription of the isolated cDNA could not be observed by either RT-PCR or real time PCR in cells where the p53 gene had been inactivated (clone 379.2), suggesting that the activity of the gene under investigation is regulated by p53.

1.7.1 DRAGO induction by anticancer agents

The mRNA induction of DRAGO was further investigated by real-time PCR experiments after the cellular treatments with several cytotoxic compounds differencing from distamycin A by their mechanism of action, such as cisplatin, taxol, doxorubicin and fluorouracil, obtaining in each case an increased production of the same fragment. However, after UV and topotecan treatments, no increase in the expression of DRAGO was measured (Fig. 1.10 and table 1.1).

Drugs were selected among conventional anticancer agents in order to use at least one compound from each group into which they are classified and that are known to induce the expression of p53.
Conventional chemotherapy included a number of families defined by both their chemical structure and mechanism of action: alkylating agents, antibiotics, antimetabolites, topoisomerase I and II inhibitors, mitosis inhibitors and others. These conventional treatments have basically evolved over the DNA molecule as its main molecular target (320). Alkylating agents were the first compounds identified to be useful in cancer. These drugs add methyl or other alkyl groups onto target molecules. The most common site of alkylation is the N-7 position of guanine, but it varies depending on the family of drugs. The alkylating agents can act by attaching alkyl groups to DNA bases. This alteration results in the DNA being fragmented by repair enzymes in their attempts to replace the alkylated bases. Another mechanism by which alkylating agents cause DNA damage is the formation of cross-links, bonds between atoms in the DNA. In this process, two bases are linked together by an alkylating agent that has two DNA binding sites. Cross-linking prevents DNA strands from being separated for synthesis or transcription. Finally the action of alkylating agents causes the mispairing of the nucleotides leading to mutations.

Alkylators belong to one of several families: nitrogen mustards, nitrosoureas, triazenes, platinum compounds and antibiotics. These compounds can also be classified into either minor or major groove alkylating agents (320). The platinum compounds such as Carboplatin and Cisplatin (cDDP) are alkylating agents of the DNA major groove. These related drugs covalently
bind to DNA with preferential binding to the N-7 position of guanine. They are able to bind to two different sites on DNA producing cross-links, either intrastrand or interstrand resulting in inhibition of DNA synthesis and transcription (320).

Brostallicin (PNU-166196) is a novel compound which is able to alkylate mostly N3–position of adenine on the DNA minor groove. These agents, which belong to the generally classified minor groove binders (MGB) have been shown to be highly effective in \textit{in vitro} and \textit{in vivo} preclinical tumour models unresponsive to other antineoplastic agents (321). The main representatives of this class, which reached the clinical trials, are the Brostallicin ad the antitumour agents derived from CC-1065, that is, Adozelesin, Carzelesin, and Bizelesin (322).

A number of antibiotics such as anthracyclines, dactinomycin, bleomycin, adriamycin, mithramycin, bind to DNA and inactivate it. Thus the synthesis of RNA is prevented. General properties of these drugs include: interaction with DNA in a variety of different ways including intercalation (squeezing between the base pairs), DNA strand breakage and inhibition with the enzyme topoisomerase II (320).

Most of these compounds have been isolated from natural sources and antibiotics. However, they lack the specificity of the antimicrobial antibiotics and thus produce significant toxicity.

The anthracyclines (doxorubicin and their analogs epirubicin and idarubicin) inhibit topoisomerase II and form free radicals.
The main epipodophillotoxin, etoposide (VP-16), also inhibits topoisomerase II.

Topoisomerase I transiently breaks a single strand of DNA during DNA replication, thereby reducing torsional strain. Inhibitors of this enzyme derive from camptothecin, such as topotecan and irinotecan (323).

The antimetabolites interfere with enzymes that contribute to DNA synthesis. In this group there are antifolates, fluoropyrimidines, raltitrexed, cytarabine, gemcitabine, and adenosine analogs (fludarabine, pentostatin, cladribine). 5-Fluorouracil (5-FU; Adrucil®, Fluorouracil, Efudex®, Fluoroplex®) is an effective pyrimidine antimetabolite. Fluorouracil is synthesized into the nucleotide, 5-fluoro-2-deoxyuridine. This product acts as an antimetabolite by inhibiting the synthesis of 2-deoxythymididine because the carbon-fluorine bond is extremely stable and prevents the addition of a methyl group in the 5-position. The failure to synthesize the thymidine nucleotide results in little or no production of DNA (324).

Mitotic spindles are essential when a cell starts to divide itself into two new cells. These spindles are very important because they help to split the newly copied DNA such that a copy goes to each of the two new cells during cell division. Spindles are microtubular fibers formed with the help of the protein "tubulin". The antimitotic drugs disrupt the formation of these spindles and therefore interrupt cell division. Among them, Vincristine is a mitotic disrupter since it binds to tubulin, thus preventing the formation of spindles and cell division. In contrast to other microtubule antagonists, taxol disrupts the equilibrium between free tubulin and microtubules by
shifting them in the direction of assembly, rather than disassembly. As a result, taxol treatment causes both the stabilization of microtubules and the formation of abnormal bundles of microtubules. The net effect is still the disruption of mitosis (325).

1.7.2 Mouse DRAGO expression

Analogously to human, a mouse cDNA library has been screened using the same human cDNA fragment of DRAGO gene as a probe for the isolation of the murine cDNA coding the murine homologue of human DRAGO gene product.

The full length murine cDNA analog consists of 5,338 bp coding for a putative protein of 302 aminoacids. The comparison between the human and murine sequences revealed a striking 80% similarity both at nucleotide and aminoacid level.

The mRNA induction of DRAGO was further investigated in isogenic murine systems differing for p53 status by semi-quantitative RT PCR experiments. MEF expressing a wild–type p53 or lacking it was treated with several cytotoxic compounds and total RNA was extracted from treated and untreated cells. Semi quantitative RT-PCR experiments confirmed that the murine homologue to human DRAGO gene is induced upon cytotoxic treatments in a p53-dependent manner.
Figure 1.9
Representative differential display experiment showing the induction of a cDNA fragment 24 hours after treatment in A2780 cell lines.
Figure 1.10
Expression of DRAGO induced after cytotoxic compounds and UV treatments.
<table>
<thead>
<tr>
<th>DRUGS</th>
<th>DRAGO</th>
</tr>
</thead>
<tbody>
<tr>
<td>PNU 166196 (200nM x24h)</td>
<td>++</td>
</tr>
<tr>
<td>DDP (25 mM x1h R=24) *</td>
<td>+</td>
</tr>
<tr>
<td>DDP (25 mM x1h R=6)</td>
<td>-</td>
</tr>
<tr>
<td>MNNG (25 mM x2h R=24) *</td>
<td>-</td>
</tr>
<tr>
<td>MNNG (100 mM x2h R=24)</td>
<td>+/−</td>
</tr>
<tr>
<td>TAXOL (5 nM x24h) *</td>
<td>-</td>
</tr>
<tr>
<td>TAXOL (25 nM x24h)</td>
<td>-</td>
</tr>
<tr>
<td>TAXOL (50 nM x24h)</td>
<td>+++</td>
</tr>
<tr>
<td>UV 20j *</td>
<td>-</td>
</tr>
<tr>
<td>UV 40j</td>
<td>-</td>
</tr>
<tr>
<td>UV 60j</td>
<td>-</td>
</tr>
<tr>
<td>5-FU (50 nM x24h) *</td>
<td>-</td>
</tr>
<tr>
<td>5-FU (100 nM x24h)</td>
<td>+</td>
</tr>
<tr>
<td>5-FU (200 nM x24h)</td>
<td>-</td>
</tr>
<tr>
<td>5-FU (400 nM x24h)</td>
<td>-</td>
</tr>
<tr>
<td>5-FU (50 nM x 48h)</td>
<td>++</td>
</tr>
<tr>
<td>5-FU (100 nM x 48h)</td>
<td>++</td>
</tr>
<tr>
<td>5-FU (200 nM x 48h)</td>
<td>++</td>
</tr>
<tr>
<td>5-FU (400 nM x 48h)</td>
<td>+++</td>
</tr>
<tr>
<td>DOXO 30 ng/ml (24h) *</td>
<td>+</td>
</tr>
<tr>
<td>DOXO 60 ng/ml (24h)</td>
<td>-</td>
</tr>
<tr>
<td>DOXO 100 ng/ml (24h)</td>
<td>-</td>
</tr>
<tr>
<td>DOXO 1000 ng/ml (24h)</td>
<td>+</td>
</tr>
<tr>
<td>DOXO 30 ng/ml (48 h)</td>
<td>-</td>
</tr>
<tr>
<td>DOXO 60 ng/ml (48h)</td>
<td>+</td>
</tr>
<tr>
<td>DOXO 100 ng/ml (48h)</td>
<td>+</td>
</tr>
<tr>
<td>DOXO 1000 ng/ml (48h)</td>
<td>+</td>
</tr>
<tr>
<td>CC-1065 (0.05 ng/ml x1h R=24h)</td>
<td>++</td>
</tr>
</tbody>
</table>

Table 1.1
Summary of level of DRAGO mRNA induction upon treatments at indicated doses
1.8 AIMS

Tumorigenesis can be viewed as an evolutionary process that allows somatic cells that evade normal controls of cell proliferation and cell death to promote their unlimited clonal expansion.

As outlined in chapters 1.1 and 1.2, cancer evolution can be fueled by genomic instability caused by faulty cell division or defective DNA repair. However, cells are efficiently protected from tumorigenesis by several failsafe mechanisms and checkpoints. One of the most important components of the systems that keep us relatively safe from cancer is p53 which is arguably the most well-known tumor suppressor gene (see chapter 1.4). Despite the considerable amount of knowledge that has been accumulated on p53, the p53 network is not yet fully understood. Furthermore, the available sequences of the human genome have allowed the identification of genes that are theoretically transcriptionally activated by p53. The main outcome of p53 activity in controlling tumor growth is cell cycle arrest and apoptosis. Among these functions, much less is known about the mechanisms by which p53 induces apoptosis. For this reason, an ongoing program in the Molecular Pharmacology Laboratory at the Mario Negri Institute is aimed at identifying new gene downstream of p53 with particular emphasis on those involved in apoptosis. By using the differential display technique DRAGO, a new gene, has been isolated, the expression of which is induced following cellular damage. Preliminary data suggest that DRAGO is a new gene activated following induction of DNA
damage in a p53-dependent way (see chapter 1.7.1). The present studies have been undertaken with the overall aim to provide a preliminary characterisation of the DRAGO gene. The work described here had the following specific objectives:

i. The initial aim was to characterise the structure of the gene at a molecular level. Thus, the full length cDNA has been compared with the available sequences of human genome.

ii. As DRAGO is a p53 downstream gene, a genomic fragment comprising a region upstream the first exon has been isolated with the aim to characterise the promoter region putatively containing the p53 canonical responsive elements. The promoter activity of genomic fragments isolated and the responsiveness to p53 induction have been examined using the luciferase reporter gene assay in transient transfection experiments in the absence or presence of p53. Given that p53 belongs to a family of genes including p63 and p73, the hypothesis has been tested that these functionally homologous family members might induce the expression of DRAGO in analogy to p53. The effect of DNp73α on p73 isoforms transactivation of DRAGO gene expression was also evaluated.

iii. Many human genes with tumor suppressor activity, like p53, have been found to be mutated or altered in human tumors. So another aim of the present study has been the search for any mutations of the DRAGO gene at a nucleotide level. To this end, on the basis of the molecular structure SSCP analysis, followed by DNA sequencing, have been
performed in human cell lines, cells with acquired resistance against cytotoxic drugs and human tumor sample.

iv. In order to understand the putative secondary structure of the protein, a computational analysis of the sequence of protein, derived on the basis of the cDNA, have been performed.

v. To understand the evolutionary conservation of DRAGO, the human sequence has been compared with cDNA sequences from different organisms for which the genome was available from the public gene bank.

vi. Another important objective of the study was the characterisation of the function of the gene under investigation. To that end, the effects of the overexpression of the gene were evaluated in stable and transient transfections experiments. The full length cDNA, the coding region of the gene and different deletion fragments have been subcloned in an expression plasmid under a strong promoter ensuing the constitutive expression of the gene in an in vitro model. Furthermore, the function of the DRAGO gene was explored by investigating and characterizing mice in which the gene was knocked out (KO). KO fibroblasts have been isolated from mouse embryos and used for in vitro experiments to evaluate of the response to DNA damage.
CHAPTER 2

MATERIALS AND METHODS
2.1 Cell culture

2.1.1 Culture condition

All the cell culture procedures were carried out aseptically in laminar flow hoods. Cells were maintained in a humidified incubator at 37 °C with 5% CO₂.

The human cancer cell lines used in these studies were: the human ovarian carcinoma cell lines A2780, SW626, COS-7, IGROV-1 and SKOV-3, the human colo-carcinoma cell lines HCT-116 and SW620, the human acute lymphoblastic leukaemia (ALL) cell lines ALL-PO, Reh, Tom-1, the human osteosarcoma cell lines U2OS and Saos-2, the metastatic prostate carcinoma cell line DU145, the human lymphoblastoids cell line CEM, the human promyelocytic cell line HL-60 and the murine fibroblast cell line Swiss 3T3. Drug-resistant cell lines were: A2780/cp70, an A2780 cellular clone resistant to DDP (326); 1A9PTX22 resistant to paclitaxel, were generated from 1A9 (327) and kindly given by NCI; CEM-VM1 (328), generated from their drug–sensitive parental CEM cells, were selected for their resistance to VM26; LoVo/DX were selected from LoVo cells for their resistance to doxorubicin (329) and also to other chemotherapeutic agents, such as etoposide and vincristine (330).

All the ovarian cancer cell lines (except COS–7), the ALL cell lines, SW620 and U2OS cells were grown in RPMI 1640 supplemented with 10% (v/v) fetal calf serum (FCS) and 2 mM of L-Glutamine.
DU145, CEM and HL-60 were grown in RPMI 1640 supplemented with 10% (v/v) heat-inactivated FCS and 2 mM of L-Glutamine.

Saos-2, Swiss 3T3 and COS-7 cells were maintained in DMEM supplemented with 10% of FCS and 2 mM of L-Glutamine. To the culture medium of Swiss 3T3 and COS-7 cells, 1 mM Na-pyruvate (Mascia Brunelli, Milan-Italy), 1% non-essential amino acid (Mascia Brunelli) were added. COS-7 medium also required 20 mM Hepes Buffer solution (Mascia Brunelli). LoVo/DX were grown in Ham’s F12 medium supplemented with 10% of FCS and 2 mM of L-Glutamine. The different media were purchased from Sigma (Milan-Italy) and contained all the minerals and supplements necessary for the growth of the cells except for the serum (Sigma) and the L-glutamine (Sigma), which were added when needed.

Cells were passaged routinely to maintain them in the growth logarithmic phase. The cells were renewed every four-five months of culture.

Passage procedures for leukemia cell lines provided for seeding cells at a suitable density after counting the cell at the cell culture counter (Coulter Channelyser® 256, Beckman Coulter, Milan-Italy). The other cell lines were washed twice with warm sterile phosphate buffer saline (PBS, Bio-Whittaker, Milan-Italy) and detached with a solution of 1x trypsin/EDTA (Bio-Whittaker). The trypsin activity was stopped by adding calf serum-containing medium. After centrifugation at 1,200 rpm for 10 minutes, cells were resuspended in the appropriate medium, counted and seeded at the desired concentration.
2.1.2 Long term storage of cultured cells

To cryopreserve batches of cells, exponentially growing epithelial cells were washed twice with PBS, detached and centrifuged at 1,200 rpm for 10 minutes at room temperature. Cells growing in suspension were only centrifuged as reported above. The cell pellet was resuspended in culture medium containing 50% of cryoprotective medium (Bio-Whittaker) and 20% of calf serum to a density of 5×10^6 cells/ml. Aliquots of 1 ml were cooled slowly on ice 30 minutes, pre-frozen in nitrogen liquid stream for 3 hours and then immersed in liquid nitrogen. To recover from the cell bank, each vial of cells was thawed rapidly to 37 °C in a water bath, transferred in fresh medium and centrifuged at 1,200 rpm for 10 minutes. Pellets were then resuspended in the appropriate culture medium and moved to a tissue culture flask. The day after cells were washed and new, fresh medium was added.

2.2 Generation of cellular clones

2.2.1 Subcloning of the full length cDNA

To transfer the gene of interest in the genome of host cells, the DNA was excised from the plasmid of origin by restriction endonuclease digestion and subcloned in the appropriate expression vector. The expression vector used was the pCDNA3 (Invitrogen, Milan, Italy). The principal features of this plasmid are: the presence of a strong viral promoter (cytomegalo virus, CMV) driving the transcription, a polylinker sequence
(also known as multiple cloning site – MCS) the DNA recognition sequence for many restriction enzymes to facilitate the subcloning of the gene of interest, a bacterial resistance gene (ampicillin) for selection of recombinants and an eukaryotic resistance gene (neomycin) for selection of cells containing the plasmid. To subclone the gene of interest, the general molecular biology techniques reported in Sambrook and Russel (331) were followed. Briefly, the gene of interest was excised from the plasmid of origin by digestion with the appropriate restriction enzymes for 1 hour at 37 °C in a buffer supplied with the enzyme. The entire reaction was loaded on 1% agarose gel (see section 2.7.1). The appropriate band containing the cDNA was excised from the gel and the DNA extracted from the agarose (section 2.7.2). The cDNA thus obtained was stored at –20 °C. The pCDNA3 plasmid was digested with the same restriction enzymes used to excise the cDNA from the original plasmid, loaded on agarose gel and purified from it. The linearised pCDNA3 plasmid was ligated with the excised cDNA insert in a 1:3–1:5 proportion in 10 µl of a solution containing 3 U of T4 DNA ligase (Promega, Milan–Italy) and 1x Rapid Ligation Buffer (30 mM Tris-HCl, pH 7.8, 10 mM MgCl₂, 10 mM DTT and 1 mM ATP, supplied with the ligase) for 4 hours at room temperature. Five µl of this solution were then used to transform competent bacteria.
2.2.2 Subcloning of the coding sequence

The coding region (nucleotides 269-1180) of DRAGO was obtained by PCR (see section 2.4) amplification using as a template the construct pBS-DRAGO. The coding region was subcloned in three vectors pCDNA3HA (see Results chapter 6.2), pEGFP-C1 (BD Bioscience Clontech, Milan–Italy) and pGEX-3X (Amersham Biosciences, Milan–Italy). Briefly, the pEGFP-C1 vector has the same features of the pCDNA3 vector described above except for the bacteria selection which is a kanamycin resistance. The main characteristic is the presence of the cDNA encoding the GFP with the MCS at the 3' end of the GFP cDNA. Therefore the genes cloned into the MCS are expressed as fusions to the C–terminus of the GFP protein as they are in the same frame as GFP and there are no intervening stop codons. The pGEX-3X vector is designed for inducible, high–level intracellular expression of genes or gene fragments as fusions with Schistosoma japonicum Glutathione S–transferase (GST). This vector has a tac promoter for chemically inducible (using the lactose analogue isopropyl β–D–thiogalactoside, IPTG), high level expression of exogenous protein in E. coli hosts. The MCS is located at the 3' end of the cDNA encoding the GST protein. Therefore, genes therein cloned are expressed as fusions to the C–terminus in frame with the GST protein. The factor Xa protease recognition site for cleaving the desired protein from the fusion product is between the GST coding sequence and the MCS. Bacterial cells carrying the pGEX-3X vector are selected for ampicillin resistance.
Forward and reverse primers were designed to contain the restriction enzyme specific sequence at their 5' termini in order to further allow subcloning in the vectors. The sequences of the forward and reverse primers are listed in figure 2.1 for each construct. Underlined are the recognition sites for restriction enzymes in the forward and reverse primers, which are XhoI and XbaI, BamHI and EcoRI, KpnI and HindIII for subcloning in the pCDNA3-HA, pGEX-3X and pEGFP-C1 vectors, respectively. PCR amplification conditions were as follows: 95 °C for 40 seconds; annealing for 30 seconds; 72 °C for 1 minute and 30 seconds, for a total of 30 cycles, followed by an additional step at 72 °C for 7 minutes. The annealing temperature (AT), specific for each set of primers is indicated in figure 2.1. The PCR products were analysed through 1% agarose gel. The size of the PCR amplified fragments was compared with the marker's run. The DNA band of the expected size were extracted from the gel, subcloned in the pGEM-T easy vector for TA cloning (see section 2.2.4), excised by restriction endonuclease digestion with appropriate enzymes to be subcloned in the suitable vector. The procedure with respect to the restrictions and to the vectors was followed as described in section 2.2.1.

2.2.3 Subcloning of the deleted mutants

N- and C-terminus deleted mutants of DRAGO coding region were generated by PCR and subcloned in the pCDNA3-HA, pGEX-3X and pEGFP-C1 vectors. The entire coding region subcloned in the same
Figure 2.1
Primers for subcloning the coding sequence of DRAGO in the vectors here reported. The sites specific for restriction enzymes were underlined.
vector was used as template. Primers were designed to contain the restriction enzyme specific sequence at their 5' termini in order to further allow sub-cloning in the vectors. For N-terminus deleted mutants, the reverse primer was the same (XBAI and GexA respectively for pCDNA3HA and pGEX-3X constructs, see figure 2.1) as that used for the entire PCR amplified coding region. Similarly, for the C-terminus deleted mutants, the forward primer was the same as for the entire coding region (XHOI, GexS and KIA1 for pCDNA3HA, pGEX-3X and pEGFP-C1 constructs). The sequences of the primers and the corresponding annealing temperatures are listed in figure 2.2 for each construct. PCR conditions for amplification and the subcloning procedure were the same as described in 2.2.2.

2.2.4 TA cloning

This technique provides a one step cloning strategy for a direct insertion of PCR product into a vector (T-vector), taking advantage of the Taq enzyme non-template dependent activity of adding an adenine (A) to the 3' ends of PCR products. The T-vector contains in its MCS complementary an unpaired 3' thymidine (T). PCR products were ligated at a ratio 1:5, 1:10 in the pGEM-T easy vector from the cloning kit (pGEM-T easy vector systems) purchased from Promega and following the manufacture's instructions.
pCDNA\textsubscript{3}HA–deletion mutants

Forward \textbf{XHOI} 5'–CTCGAGTGCCATGCGGAGTTCAGC–3'
Reverse HA–C1 5'–TCTAGATCATGACGTTGAGGATGTTAAGCCTTG–3' 62 °C
HA–C2 5'–TCTAGATCATGCAGTTTGTGTGC–3' 60 °C
HA–C3 5'–TCTAGATCATCCAGAGGAGGTGTTGC–3' 60 °C
HA–C4 5'–TCTAGATCATGAGAGCCAGCCTTTCATAG–3' 62 °C
HA–C5 5'–TCTAGATCATCTGACGAGGAGGA–3' 60 °C
HA–C6 5'–TCTAGATCATGCTCCTGGGCACGCTC–3' 62 °C

Forward HA–N1 5'–CTCGAGTCAGTGTGGTCGGCGCCCTCC–3'
HA–N2 5'–CTCGAGGTGTGTACCAGTGC–3' 58 °C
HA–N3 5'–CTCGAGGAGACGCGAGTTGCTCC–3' 58 °C
HA–N4 5'–CTCGAGGAATGTTGGCTACATCTGACACCC–3' 58 °C
HA–N5 5'–CTCGAGTCAGAGACCGACCCCGACACCCGC–3' 58 °C
HA–N6 5'–CTCGAGTGTGCTAGGCTAGCTTTCAG–3' 58 °C

Reverse X\textbf{BAI} 5'–TCTAGATCATGCTTCTTCCACAGTG–3'

pGEX–3X deletion mutants

Forward G\textbf{EX S} 5'–GGATCCCTGCGCATTCGAGCGATACACCA–3'
Reverse GEX–C1 5'–GAATTCTCATGACGCTGGAGATAAGGACTTTT–3' 61 °C
GEX–C2 5'–GAATTCTCATGACGCTGGAGATAAGGACTTTT–3' 59 °C
GEX–C3 5'–GAATTCTCATGACGCTGGAGATAAGGACTTTT–3' 61 °C
GEX–C4 5'–GAATTCTCATGACGCTGGAGATAAGGACTTTT–3' 62 °C
GEX–C5 5'–GAATTCTCATGACGCTGGAGATAAGGACTTTT–3' 61 °C
GEX–C6 5'–GAATTCTCATGACGCTGGAGATAAGGACTTTT–3' 62 °C

Forward GEX–N1 5'–GGATCCCTCATGACGCTGGAGATAAGGACTTTT–3' 59 °C
GEX–N2 5'–GGATCCCTCATGACGCTGGAGATAAGGACTTTT–3' 53 °C
GEX–N3 5'–GGATCCCTCATGACGCTGGAGATAAGGACTTTT–3' 59 °C
GEX–N4 5'–GGATCCCTCATGACGCTGGAGATAAGGACTTTT–3' 59 °C
GEX–N5 5'–GGATCCCTCATGACGCTGGAGATAAGGACTTTT–3' 57 °C
GEX–N6 5'–GGATCCCTCATGACGCTGGAGATAAGGACTTTT–3' 59 °C

Reverse GEX A 5'–GAATTCTGTGACGCTGGAGATAAGGACTTTT–3'

pEGFP–C1 deletion mutant

Forward K\textbf{IA1} 5'–AAGCTTGCCATGCGGAGATAGCCCAACAA–3'
Reverse HA–C2 5'–TCTAGATCATGACGCTGGAGATAAGGACTTTT–3' 61 °C

\textit{Figure 2.2}

PCR condition (primers sequences and AT) for the amplification of N– and C–terminus deletion mutants of DRAGO coding region.
2.2.5 Preparation of competent bacterial cells for transformation

Bacterial strains in the experiments reported in this thesis were XL1Blue (Stratagene) and JM110 (Stratagene). The latter, an \textit{E. coli} strain which lacks both \textit{dam} (DNA adenine methylation) and \textit{dcm} (DNA cytosine methylation) gene was used for pCDNA\textsubscript{3}HA constructs, being the \textit{Xba\textsubscript{I}} restriction enzyme site, used for cloning, methylation sensitive (see section 2.2.3). The methylation avoids the cleavage by means of the enzymes.

From a sterile bacterial cellular suspension, 10 µl of suspension were spread to an agar plate containing LB (Luria–Bertani) agar and incubated overnight at 37 °C.

Complete LB agar (Sigma) (which is constitute by LB broth and agar–1.5% w/v) and LB broth (Sigma) where purchased as lyophilised powder to be reconstituted in a suitable volume of deionised water per grams of powder as indicated by the manufacturer. The solution was then autoclaved at 120 °C for 10 minutes and poured on 90-mm dish (Corning-Costar, Milan-Italy) and allow to dry under sterile hood.

Whenever required to the medium the antibiotic of selection (for pCDNA\textsubscript{3} and pGEX–3X derived plasmids, ampicillin at the final concentration of 50 µg/ml; for pEGFP–C1 derived plasmids, kanamycin at the final concentration of 10 µg/ml was added after autoclaving once it had cooled to 55 °C).

A single colony was picked-up with a sterile disposable loop, and resuspended in a sterile 50 ml conical tube, with 10 ml of sterile LB
medium and allowed to grow in a 37 °C heated shaking incubator (Folabo, Milan–Italy) at 225 rpm overnight. One ml of such liquid bacterial culture was then transferred into 100 ml of sterile LB medium and placed into the 37 °C heated shaking incubator at 225 rpm.

To harvest bacterial cells in logarithmic growth phase, 2 hours later, 1 ml of liquid culture was transferred, under a laminar flow in a disposable cuvette and the absorbance at 600 nm wave-length was read on the spectrophotometer. *E. coli* concentration in the liquid culture was calculated by considering that 1 *A*$_{600}$ nm unit corresponds to about 109 bacterial cells/ml. When the 600 nm absorbance reached A 0.3 units (corresponding to roughly 2.4 x 108 cells/ml;) the bacterial suspension was transferred in two ice-cold sterile 50 ml conical tubes and the cell growth was stopped by placing the tubes on ice for 15 minutes. *E. coli* cells were pelleted by centrifugation at 3,000 rpm for 10 minutes at 4 °C and, after removing the LB medium, cell pellets were pooled in the same tube by gentle resuspension in 10 ml of ice-cold sterile 0.1 M CaCl$_2$ solution *(obtained by dilution of a 2 M CaCl$_2$ solution, prepared by dissolving 14.7 g of CaCl$_2$ in 100 ml H$_2$O and filtering the solution with a syringe equipped with a 0.2 μm filter)*. After addition of 40 ml of ice-cold sterile 0.1 M CaCl$_2$ solution, bacterial suspension was incubated on ice for 30 minutes and subsequently centrifuged at 3,000 rpm for 10 minutes at 4 °C. The supernatant was then removed and the cell pellet was carefully resuspended in 5 ml of an ice-cold sterile 0.1 M CaCl$_2$ containing 15% (v/v) glycerol (Sigma). This bacterial suspension was dispensed in 1.5 ml
Eppendorf tubes (Eppendorf, Milan–Italy) (400-500 µl aliquots for each tube) and kept at 4 °C for 24 hours after which the tubes were quickly frozen in liquid nitrogen and stored at -80 °C. The cells maintained their competence for transfection for 1-2 months when kept at -80 °C.

Fifty µl of freshly prepared competent cells were transformed with 50 ng of a DNA vector able to confer ampicillin resistance and 1/100,000 (dilution factor, 10^5) of the bacterial suspension was plated as described in agar plates. Transformation efficiency, calculated on the basis of the formula (NUMBER OF COLONIES) x (10^3) X (DILUTION FACTOR) / 50 ng, was expressed as the number of colony forming units (CFU) per µg of plasmid DNA. Generally, 10^6-10^8 CFU per µg of plasmid DNA were indicative of a good preparation of competent bacterial cells.

2.2.6 Transformation of bacteria

In an ice-cold 10 ml Falcon 2059 tube (Falcon, Becton Dickinson), 50 µl of competent bacterial cells were diluted to a final volume of 100 µl with 0.1 M CaCl$_2$ and either 50 ng of purified plasmid or half of the volume of the ligation reaction. The mixture was gently mixed and the tube was chilled on ice for 30-40 minutes, incubated for 2 minutes at 42 °C in a water bath and for 2 minutes again on ice. After a 5 minute incubation at room temperature, 900 µl of LB medium were added and tube was placed into a 37 °C heated shaking incubator at 225 rpm for 1 hour. The tube was then centrifuged at 3,000 rpm for 5 minutes at room temperature, most of the supernatant LB removed and the bacterial cell pellet resuspended in the
remaining fluid and spreaded into 90-mm dish, containing LB agar medium plus the antibiotic of selection and incubated overnight at 37 °C without agitation.

2.2.7 Identification of recombinant clones and purification of DNA from bacteria

Each colony, representing antibiotic-resistant/transformed growing bacterial cells, was picked-up with a sterile disposable loop and dissolved in a 15 ml falcon tube containing 3 ml of liquid LB medium supplemented with antibiotic and allowed to grow overnight at 37 °C with shaking at 225 rpm.

Plasmidic DNA was purified from bacterial suspension using the Quiagen mini-prep kit (Quiagen, Milan–Italy). The procedure, starting from 1.5 ml of bacterial suspension was exactly as described by the manufacturer. The recovered DNA, in 50 µl of water, was subjected to restriction digestion with appropriate restriction enzymes to verify that the insert was indeed present in the colony isolated. After digestion and separation on agarose gel, the fragments of DNA were visualised by using an UV transilluminator.

The positive colonies containing the right insert were stored at –80 °C after the addition of 0.5 ml of 50% sterile ultra pure glycerol (Sigma) to 0.5 ml of the bacterial suspension used for the enzyme digestion. When necessary, the remaining DNA was used for confirmation by DNA sequencing, which was performed through custom sequencing services (through a core facility available at Mario Negri Bergamo, Bergamo, Italy). Once verified that the plasmid contained the right insert and sequenced, if necessary, a
large scale preparation of DNA was performed, using the Qiagen Plasmid Midi Kit (Qiagen) following the procedures reported in the instruction manual.

The DNA recovered from the midi preparation was quantified at the spectrophotometer by reading the absorbance at 260 nm and 280 nm. The quality of the DNA prepared was determined by the ratio between 260 nm and 280 nm absorbances, which should be 1.8.

For quantification the extinction coefficient was used. The amount of DNA was calculated considering that a solution of 50 μg of DNA/ml would give a reading of 1 at 260 nm.

2.2.8 DNA-Transfection

DNA was transfected in different cell lines by using the calcium phosphate precipitate method. Sterile water–dissolved DNA was mixed with a 0.25 M CaCl₂ solution (obtained solution from a stock solution 2 M CaCl₂, see 3.2.5) in a volume of 250 μl. In a 4 ml transparent tube (Falcon), 250 μl of a 2X HEPES-Buffered Saline (HEBS 2X) were placed:

<table>
<thead>
<tr>
<th>HEBS 2x</th>
<th>final concentration</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.6g NaCl</td>
<td>280 mM</td>
</tr>
<tr>
<td>0.074g KCl</td>
<td>10 mM</td>
</tr>
<tr>
<td>0.027g Na₂HPO₄·H₂O</td>
<td>1.5 mM</td>
</tr>
<tr>
<td>0.02g Dextrose</td>
<td>12 mM</td>
</tr>
<tr>
<td>1g HEPES</td>
<td>50 mM</td>
</tr>
</tbody>
</table>
The salts are dissolved in 50-70 ml of distilled water and the pH of the solution is then adjusted to 7.2 with 0.5 N NaOH and then brought to 100 ml with sterile water.

With the use of a 1 ml sterile pipette fixed to an automatic pipettor placed in the tube containing the HEBS solution, the air was forced inside the tube. To the bubbling solution, the DNA-CaCl₂ mixture is added dropwise, then, vortexed for 20 seconds and kept in a tube holder for 30 minutes. The solution is then added dropwise to the cells seeded in a 25 cm² flask and incubated 16 hours at 37 °C. The day after, cells are visualised under the microscope to verify the presence of small precipitates of CaPO₄ on the cell surface. The cells are then extensively washed with sterile PBS at least three times and resuspended in complete culture medium.

2.2.9 Isolation of cell clones stably expressing the gene of interest

Forty-eight hours after the end of transfection, the cells were detached with trypsin/EDTA solution. After counting, the cells were seeded in 9 mm plates at a density of 5,000 cells/ml in medium containing the selection antibiotic (500 µg/ml of G418 for neomycin resistance gene containing plasmids). At these antibiotic concentrations parental cells were killed and the only cells growing were likely to be those which have integrated in their DNA the transfected plasmid. The plates were then incubated at 37 °C and the medium renewed every two-three days. Once the colonies were formed as visualised under the microscope, they were isolated from the other by using plastic rings which were stuck to the plate by using
vaseline. Twenty μl of a trypsin/EDTA solution were added to the single colony isolated to detach the cells which were then placed in a 24-wells plates containing 1 ml of medium plus selection antibiotic. The different clones picked up from the original plates were grown and passed in duplicate in 6 well plates. One plate was used to maintain the cell clone for further studies and for long term storage. The other was used to verify the overexpression of the mRNA of the gene of interest by screening the clones thus obtained by Northern blotting. The clones selected were then expanded and stored in different aliquots in liquid nitrogen.

2.3 Luciferase reporter assay

These experiments were performed to evaluate the promoter activity of DNA fragments subcloned in the promoterless plasmid pGL2–Enhancer vector (Promega), carrying a non mammalian gene luciferase followed by a viral enhancer and a multiple cloning site at its 5'. The genomic fragments to be analysed for promoter activity are subcloned in the multiple cloning sites of pGL2 vector using restriction enzymes–based ligations. In same cases fragments were excised from the DNA region in which it was contained by restriction enzymes reaction. Otherwise fragments were PCR amplified to introduce the sequence site for cleavage of suitable restriction enzymes for subsequent cloning in the pGL2–enhancer vector. Primers are listed in figure 2.3 and underlined is the restriction enzyme sequence introduced by PCR. Once verified the exact insertion and orientation of the fragment using the procedures reported in
964 bp
Forward KpnI 5'-CCCGGGAGGTACCTGGCCCGGCCGGCGGCGGCT-3'
Reverse XhoI-rev 5'-GTTTTTGAGATTAAGAGCACTCGAGGCGGCGG-3'
AT: 62 °C

2.5-Kb
Forward XhoI-fwd 5'-GAAAAGTTACCCTCGAGGAATTAGGAGC-3'
Reverse HindIII 5'-TTGAGCAGACACCCTCTAACAAGCTTT-3'
AT: 58 °C

Figure 2.3
PCR conditions (sequence primers and AT) for amplification of promoter fragments 964-bp and 2.5-Kb. The sequence for the restriction enzymes is underlined.
2.2.5, the plasmids are transfected in mammalian cells growing in culture. The luciferase activity was evaluated in transient transfection (following the procedure described in 2.2.8). The transient expression of this plasmid in mammalian cells results in a very low level of luciferase (due to the absence of a promoter), which was detected in cell lysates using a commercially available kit (Dual luciferase system, Promega). Forty–eight-72 hours following transfection, the medium was removed and the cell processed as reported in the manual of instruction of the kit. The luciferase levels were measured in a luminometer and the values corrected for the expression of a control plasmid co-transfected with the plasmid under examination, which encoded a renilla luciferase distinguishable from the fire-fly luciferase utilised in these experiments.

2.4 PCR

The polymerase chain reaction (PCR) follows the principles in which a pair of primers (forward and reverse) defines the region to be amplified. After denaturation (generally at 95 °C), primers are allowed to anneal to their complementary strand by lowering the temperature to their optimal annealing temperature which is specific for each set of primers and is linked to the oligonucleotides sequence. AT can be calculated on the basis of the following formula: \(AT = T_m - t \), where \(T_m = 4x (G+C) + 2x (A+T) \) is the melting temperature and \(3^\circ C > t > 5^\circ C \). An elongation step allows the Taq DNA polymerase to start the polymerisation reaction downstream of the 3' ends of the primers (generally at a temperature of 72 °C). These three
steps are then repeated for “n” (usually 30) cycles to allow exponential amplification of the target sequence. A final step, at 72 °C for 7–10 minutes allows the Taq polymerase to conclude the polymerisation step. Amplification is measured by resolving products through agarose gel electrophoresis. Whenever necessary, PCR products were then purified from gel.

PCR reaction mix was made using as a Taq purchased from Takara (Gennevilliers, France) with which all the components necessary for the reaction (except for the primers and DNA template) are provided. PCR reaction mix was made following manufacturer’s instructions. Generally, nucleotides (dNTPs) are used to a final concentration of 0.2 mM, MgCl₂ to a final concentration of 1.5 mM, and 0.5 U of Taq. Forward and reverse primers were added to a final concentration of 500 nM. Primers were designed on the basis of the sequence reported in the Genbank database. The “GeneFisher” software free available online (web address: http://bibiserv.techfak.uni-bielefeld.de/genefisher/) was used to design the best set of primers to be used for each gene. Synthesis of oligonucleotides used as primers was performed by Sigma.

To the reaction mix, DMSO (dimethyl sulfoxide) was also added to a final concentration of 5%. To the final reaction mixture, a quantity of DNA template was added, (20 ng of plasmidial DNA, 100 ng of genomic DNA) then quickly spun in a microfuge to recover all the fluids at the bottom of the tube and placed in PTC–200 thermal cycler (MJ research, Watertown, MA). Amplification conditions and cycle numbers were
selected each time according to the AT of the pair of primers and the length of the PCR product to be amplified.

2.5 SSCP analysis

This analytical method was developed for detecting a single point mutation in a DNA sequence.

The SSCP technique comprises amplification of DNA by PCR, denaturation and electrophoresis in a neutral polyacrylamide gel.

2.5.1 Sample preparation

Exons 1–5 of human DRAGO gene were amplified by PCR (see 2.4) using as a template, genomic DNA extracted from either human cancer cell lines or human tumors using the Wizard genomic DNA purification kit (Promega) following the instruction manual provided by the manufacturer. Tumor tissues were obtained at first laparotomy before any chemotherapy, freed of necrotic, hemorrhagic and connective tissue and immediately put in liquid nitrogen, then stored at –80 °C until processed. Ovarian tumors were kindly given by Prof. Costantino Mangioni (Ospedale San Gerardo, Monza, Italy). DNA samples from other tumor types were kindly given by Prof. Cappella (Ospedale di Circolo, Varese). PCR procedure was performed as described in section 2.4, except for the reaction mix, which was the PCR master mix purchased from Promega following the manufacturer’s instruction. The primers are listed in figure 2.4 and the AT is indicated. The final volume of each reaction was 50 µl: 10 µl of the
Forward **Exon 1** 5’–TACAGCTGGGTCAGTGACGCGG–3’
Reverse **Exon 1** 5’–ACTCACCCGGAGCCGGC–3’
AT: 60 °C

Forward **Exon 2** 5’–AGCCACTTCTGTGCTTGCTCTCT–3’
Reverse **Exon 2** 5’–CTCCAGGTGACTCATTAGAC–3’
AT: 52 °C

Forward **Exon 3** 5’–AATGGACGATACATTAGAGA–3’
Reverse **Exon 3** 5’–TTCTGTAGAGGCCCTTCAGA–3’
AT: 52 °C

Forward **Exon 4** 5’–AGTAATGCTTGCACCTGCCT–3’
Reverse **Exon 4** 5’–ATGTCTGTATTGCACCATT–3’
AT: 52 °C

Forward **Exon 5** 5’–AGCAAGGACCCTAAGCAGCTA–3’
Reverse **Exon 5** 5’–GAATCCAGCATGATAAGGT–3’
AT: 52 °C

Figure 2.4
PCR conditions (primers sequences and AT) for amplification of human exons of DRAGO gene.
amplification product were loaded on 1% agarose gel to be checked as specifically amplified. Ten µl were destined for sequencing, 20 µl were mixed with 40 µl of denaturing buffer (see receipt below) and heat denatured at 95 °C for 5 minutes and then chilled on ice for 2 minutes.

Denaturing buffer

<table>
<thead>
<tr>
<th>Denaturing buffer</th>
<th>Final concentration</th>
</tr>
</thead>
<tbody>
<tr>
<td>9.5 ml deionised formamide 100%</td>
<td>95%</td>
</tr>
<tr>
<td>20 µl NaOH 5M</td>
<td>10 mM</td>
</tr>
<tr>
<td>250 µl Xylene cyanol 10%</td>
<td>0.25% (w/v)</td>
</tr>
<tr>
<td>250 µl Bromophenol blue 10%</td>
<td>0.25% (w/v)</td>
</tr>
</tbody>
</table>

to a final volume of 10 ml.

2.5.2 Gel preparation and electrophoresis

A 16x20 cm gel electrophoresis apparatus with 0.8 cm thick spacers was used. SSCP analysis was performed loading the denatured PCR fragment on 0.7x polyacrylamide gel prepared as follows:

Final concentration

<table>
<thead>
<tr>
<th>Final concentration</th>
</tr>
</thead>
<tbody>
<tr>
<td>11.27 ml MDE gel solution 2x</td>
</tr>
<tr>
<td>3 ml TBE 10x</td>
</tr>
<tr>
<td>300 µl APS 10%</td>
</tr>
<tr>
<td>30 µl TEMED</td>
</tr>
</tbody>
</table>

to a final volume of 30 ml with deionised water.

The MDE (FMC BioProduct, Vallensbaek Strand, Denmark) gel solution is a polyacrylamide like matrix highly sensitive to DNA conformational differences.
Gel electrophoresis was carried out at 150V at room temperature for at least 12 hours.

2.5.3 Gel staining

The gels were stained with silver. Before staining, they were immersed in a fix solution and kept in horizontal rotation for 6 minutes. The gels were then washed twice in deionised water for 2 minutes.

Fix solution was prepared diluting a stock solution of Nitric acid 10% in deionised water. Nitric acid 10% was prepared as a dilution in deionised water of starting nitric acid 65% solution.

The gels were stained in a staining solution for 30 minutes in rotation and at the end of the incubation they were washed rapidly in deionised water.

<table>
<thead>
<tr>
<th>Staining solution</th>
<th>final concentration</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 g AgNO_3</td>
<td>0.2% (w/v)</td>
</tr>
<tr>
<td>$500 \mu\text{l Formaldehyde 37%}$</td>
<td>0.037% (v/v)</td>
</tr>
<tr>
<td>to a final volume of 500 ml with deionised water. This solution was prepared just prior to be used.</td>
<td></td>
</tr>
</tbody>
</table>

After staining, the gels were immersed in a developing solution for 5–10 minutes in agitation, until the electrophoresis pattern was detectable (visible).

<table>
<thead>
<tr>
<th>Developing solution</th>
<th>final concentration</th>
</tr>
</thead>
<tbody>
<tr>
<td>$12.5 \text{ g Na}_2\text{CO}_3$</td>
<td>2.5% (w/v)</td>
</tr>
<tr>
<td>$500 \mu\text{l Formaldehyde 37%}$</td>
<td>0.037% (v/v)</td>
</tr>
<tr>
<td>$4 \text{ mg Na Thiosulphate}$</td>
<td>0.002% (w/v)</td>
</tr>
</tbody>
</table>
to a final volume of 500 ml with deionised water. To this solution, formaldehyde and Na Thiosulphate were added just before use.

After developing, a Stop solution, Glacial Acetic acid 10%, was added to the developing solution, agitated for 3 minutes and then washed in deionised water for 2 minutes.

2.6 RNA analysis

2.6.1 Isolation of total RNA

To isolate total RNA, the SV total RNA isolation Systems (Promega) was used. RNA was then prepared following exactly the manufacture's instructions except for the final elution volume containing the purified RNA which is smaller (generally 50 μl) than that suggested by the manufacture's instructions. An aliquot of this solution was then used to determine the RNA concentration, as described above. Samples were stored at –80 °C until use.

2.6.2 Northern blotting analysis

Northern blotting is electrophoresis and transfer of RNA to a membrane followed by hybridisation to a specific probe. It provides the quantification of the levels of RNA species within a cell.
2.6.2.1 Sample preparation and gel analysis

During gel electrophoresis a denaturing agent, formaldehyde, completely unfolded RNA molecules by reacting with amine groups preventing the formation of G-C and A-T base pairs. A formaldehyde agarose gel was prepared in MOPS (Sigma) buffer as reported here:

Formaldehyde Agarose Gel

<table>
<thead>
<tr>
<th>Component</th>
<th>Concentration</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.8 g ultra pure agarose</td>
<td>1%</td>
</tr>
<tr>
<td>8 ml MOPS buffer 10x</td>
<td>1x</td>
</tr>
<tr>
<td>14.4 ml formaldehyde 37%</td>
<td>6.66%</td>
</tr>
<tr>
<td>57.6 ml water</td>
<td></td>
</tr>
</tbody>
</table>

The agarose is dissolved in water by boiling. The other reagents are added when the gel reached approximately 60 °C.

MOPS Buffer (10x)

<table>
<thead>
<tr>
<th>Component</th>
<th>Concentration</th>
</tr>
</thead>
<tbody>
<tr>
<td>93 g MOPS</td>
<td>0.2 M</td>
</tr>
<tr>
<td>20.51 g NaAc</td>
<td>0.5 M</td>
</tr>
<tr>
<td>1.86 g EDTA</td>
<td>10 mM</td>
</tr>
</tbody>
</table>

To 500 ml with deionised water. The pH was adjusted to 7 with NaOH and the solution autoclaved.

The gel was poured in a chemical hood and let until solidified.

Equal amounts of RNA (generally 10 μg) were mixed with 3 volumes of a RNA denaturing solution prepared just prior to use as follows:

RNA Denaturing Solution

<table>
<thead>
<tr>
<th>Component</th>
<th>Concentration</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.5 ml deionised formamide</td>
<td>50%</td>
</tr>
<tr>
<td>0.5 ml MOPS 10x</td>
<td>1x</td>
</tr>
</tbody>
</table>
806 µl formaldehyde 37% to a final volume of 5 ml with sterile water.

Formamide is deionised to remove ionic contaminants which could hydrolyse RNA. To do this commercially available Formamide was added to mixed-bed resin (BioRad) (5 g resin/100 ml formamide) and stirred for at least 1 hour in the dark. Formamide was filtered from the resin with whatmann paper, aliquoted and stored at -20 °C.

RNA samples were denatured at 65 °C for 15 minutes and quickly chilled on ice. Then 1/6th of the volume of loading buffer was added to the mixture immediately before loading.

<table>
<thead>
<tr>
<th>RNA loading buffer</th>
<th>final concentration</th>
</tr>
</thead>
<tbody>
<tr>
<td>500 µl glycerol</td>
<td>50%</td>
</tr>
<tr>
<td>25 µl bromophenol blue 10%</td>
<td>0.25%</td>
</tr>
<tr>
<td>475 µl of water</td>
<td></td>
</tr>
</tbody>
</table>

1 µl of ethidium bromide (10 mg/ml) is added to 29 µl of this solution. The solution is aliquoted and stored at -20 °C.

The gel run was carried out in MOPS buffer (1x) at constant voltage of 80 V, for 2-3 hours. At the end of the run of the gel, two distinct, abundant, ribosomal bands (18S and 28S) were visualised under UV-light as indication of a good separation and absence of degradation. The RNA was then blotted onto a membrane.
2.6.2.2 Blotting procedure

A capillary blot was set up using a solution of 20x SSC (175.3 g NaCl, 88.2 g sodium citrate in 1 l of water) as transfer buffer. The wick was made up of 2 pieces of 3MM paper with each end dipping into the transfer solution. The gel was placed on the wick with wells facing down, and air bubbles were gently removed. A nylon membrane (GeneScreen Plus, PerkinElmer, Boston, MA) of exactly the same size of the gel was soaked in 20x SSC for at least 10 minutes and carefully placed on top of the gel and gently squeezed to remove air bubbles. Three sheets of 3MM paper were then added over the membrane followed by Kleenex towels. The blot system was left for 16-24 hours after which the membrane was removed, washed by immersion in deionised water, left to dry at room temperature for approximately 30 minutes and examined under UV light to mark the position of the RNA 18S and 28S fragments. The membrane was then baked at 80 °C for 2 hours to remove any residual formaldehyde from the RNA, as this could affect the efficiency of the hybridisation. The blot was stored at 4 °C until ready for hybridisation.

2.6.2.3 Preparation of probes for Northern blot analysis

Radioactive probes suitable for determining the level of the mRNA of the gene of interest were prepared by using PCR amplified fragments and a klenow fragment of polymerase I – based method. In particular, a commercially available kit (Rediprime, Amersham Biosciences) was used to label 50 ng of DNA following all the steps described in the manual. The
radioactive nucleotide was the \(^{32}\)P-labeled dCTP (Amersham Biosciences, 3,000 Ci/m mole). Purification of the probe from unlabelled nucleotide was performed using Sephadex G50 columns (Roche Diagnostics, Milan–Italy) exactly following the manufacturer instructions. The incorporated radioactivity was detected by cherenkov counts and the probe was diluted to a final concentration of 500,000 cpm/ml in the hybridisation solution.

2.6.2.4 Hybridisation

Before hybridisation with a probe, the membrane was pre-hybridised for at least 4 hours at 42 °C in a glass bottle with 10-15 ml of hybridisation solution:

<table>
<thead>
<tr>
<th>Hybridisation solution</th>
<th>final concentration</th>
</tr>
</thead>
<tbody>
<tr>
<td>2 ml NaCl 5M</td>
<td>2 M</td>
</tr>
<tr>
<td>5 ml deionised formamide 100%</td>
<td>50%</td>
</tr>
<tr>
<td>2 ml dextran sulphate 50%</td>
<td>10% (w/v)</td>
</tr>
<tr>
<td>250 µl Salmon sperm DNA 10 mg/ml</td>
<td>100 µg/ml</td>
</tr>
</tbody>
</table>

The salmon sperm DNA was prepared by boiling the solution for 10 minutes, chilling on ice and storing in aliquots at -20 °C.

The radiolabeled probe was denatured by boiling for 5 minutes and quickly chilling on ice for 5 minutes again. The denatured probe was added directly to the hybridisation solution without touching the membrane and the mixture was gently mixed. The blot hybridisation was performed by overnight incubation at 42 °C. The membrane was washed twice at room temperature for 10 minutes with 2x SSC, followed by two 2 washes of 15
minutes each at 65 °C with 2x SSC + 1% SDS and a final wash in 2x SSC for 10 minutes. The blot was kept humid by wrapping it in Saran wrap and either exposed to film overnight at -80 °C or exposed to a phosphorimager screen (Amersham Biosciences, formerly Molecular Dynamics) for at least 5 hours at room temperature.

When necessary, the probe was stripped from the membrane by boiling the blot for 10 minutes in 0.5% (w/v) SDS solution. The blot was again kept humid, checked for radioactivity and either stored at 4 °C or hybridised with another probe.

2.7 Agarose Gel

2.7.1 Gel preparation and gel electrophoresis

Agarose gel of different percentages (w/v = grams of powdered agarose per 100 ml of TAE running buffer) was prepared by dissolving desired grams of ULTRA pure agarose (Sigma) in a suitable volume (ml) of 1x TAE buffer:

<table>
<thead>
<tr>
<th>TAE Buffer (50x)</th>
<th>final concentration</th>
</tr>
</thead>
<tbody>
<tr>
<td>242 g Tris base</td>
<td>2 M</td>
</tr>
<tr>
<td>100 ml EDTA 0.5M, pH 8</td>
<td>50 mM</td>
</tr>
<tr>
<td>57.1 ml glacial acid acetic</td>
<td></td>
</tr>
</tbody>
</table>

to 1 l with deionised water. The solution was stored at room temperature.
The solution was heated in a microwave and boiled until all the agarose was dissolved. The solution was then cooled to approximately 50 °C before pouring in a casting tray.

To be loaded on the gel, DNA/RNA were mixed with 1/6th of the volume of loading buffer 6x.

Loading Buffer 6x

<table>
<thead>
<tr>
<th>Component</th>
<th>final concentration</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 ml EDTA 0.5 M</td>
<td>0.1 M</td>
</tr>
<tr>
<td>2.5 g sucrose</td>
<td>50% (w/v)</td>
</tr>
<tr>
<td>100 µl bromophenol blue 10%</td>
<td>0.25% (w/v)</td>
</tr>
<tr>
<td>100 µl xylene cyanol 10%</td>
<td>0.25% (w/v)</td>
</tr>
</tbody>
</table>

to a final volume of 5 ml of deionised water. Ten µl of ethidium bromide (10 mg/ml) were then added and the solution was stored at 4 °C.

Samples were electrophoresed at 100 V for approximately 30 minutes in TAE 1X buffer. DNA bands were visualised under UV light with UV transilluminator. The assessment of the expected DNA fragment length was possible thanks to the available molecular weight markers solutions (Fermentas, Burlington, Ontario–Canada) which were loaded in a lane parallel to that of the samples and electrophoresed together with the samples.

2.7.2 DNA extraction from agarose gel

PCR products or bands of desired length obtained after restriction enzymes reaction were removed from the gel under the trans-illuminator.
The DNA was then extracted from the agarose slice using the “MiniElute” gel extraction kit (Qiagen) exactly following the manufacturer’s instruction.

2.8 Screening of genomic libraries

Both human and mouse genomic clones containing the genomic DRAGO sequences were isolated by screening either a human or a mouse genomic library spotted on filters obtained through the UK Human Genome Mapping Project Resource Centre (UK-HGMP-RC).

The human PAC library RPCI1 has been constructed in the vector, pCYPAC2N. The source is a normal male blood donor, and the insert size is about 110 kb. The mouse PAC library RPCI21 is subcloned in pPAC4 vector. The source is a female 129/SvevTACfBr mouse spleen genomic DNA. Both libraries consist of approximately 120,000 clones spotted on 22.2 x 22.2 cm Hybond N nylon membranes (Amersham Biosciences). Each clone has been spotted twice to give 36,864 (18,432 x 2) spots on each membrane. 7 filters cover the whole library. The 7 filters were prehybridised at 65 °C in 25 ml of a solution containing 6x SSC, 100 μg/ml of salmon sperm, 0.5% SDS and 5x Denhardt’s solution (a 50x Denhardt’s solution is prepared by dissolving 1 g of Ficoll 400, 1 g of polyvinylpyrrolidone and 1 g of BSA (bovine serum albumin) fraction V in 100 ml of water; the solution is then filtered and stored at −20 °C) with gentle, continuous agitation. To this solution, radiolabeled human DRAGO-derived cDNA probes (prepared as reported in 2.6.2.3) was added and the incubation continued for further 16 hours at 65 °C. The
filters were then washed twice at room temperature in 2x SSC, followed by two 2 washes of 15 minutes each at 65 °C with 2x SSC + 1% SDS and a final wash in 2x SSC for 10 minutes and exposed to autoradiographic films. Once developed, the films were oriented with the grid supplied with the filters and the positive clones identified. This procedure was facilitated by the double spotting of each clone. The identified, positive clones, where requested to the UK-HGMP-RC and obtained as E. coli colonies carrying the clone of interest streaked on LB agar containing kanamycin (25 µg/ml). Each clone was restreaked onto the same agar type and incubated overnight at 37 °C to obtained single colonies. One of those per each clone was then picked up and inoculated into LB broth containing kanamycin and let grow overnight at 37 °C. From the bacterial culture, the PAC clones were isolated using the Qiagen midi preparation kit. To isolate shorter genomic fragments containing the DRAGO gene, an aliquot of the genomic DNA isolated was digested with different restriction enzymes in their appropriate buffer, supplied together with the enzyme, for 16 hours at 37 °C and the entire reaction loaded on 0.8% agarose gels. After 16 hours running at 30 V, the gel was visualised under UV and a picture collected for subsequent identification for the positive bands. The restriction fragments of genomic DNA thus separated by agarose gel run were blotted as regards the Southern blotting procedure to a nylon membrane. The transfer of the DNA to a membrane was carried out as described for Northern blotting in section 2.6.2.2 and hybridised with a radiolabeled human DRAGO-derived cDNA probe (the radiolabelling conditions were...
the same as described in section 2.6.2.3). For human genomic DNA, a 160bp–PCR fragment corresponding to the 5' region of the DRAGO cDNA was used. PCR conditions were those described previously (section 2.4). The forward primer was 5’–CCGAAGCCGCGACCACGC–3’ and the reverse primer was 5’–GGCGCTACAGCTCCACGC–3’, and the AT was 60 °C. For the mouse genomic DNA human exon 1, 3 and 5 were used and obtained by PCR as described in 2.5.2. Hybridisation and washing conditions were the same used for the screening of the genomic filters. The autoradiograph was compared to the ethidium bromide picture and the bands which hybridised with the probe identified. A second digestion was performed on the remaining genomic DNA maintaining exactly the same conditions previously used. Once separated on gel, the bands corresponding to the previously selected positive bands were excised and isolated as described in section 2.7.2. The band containing the fragment from human genome was ligated in the MCS of pGL2 vector using the same restriction enzyme used for the digestion of the human genomic clone and sequenced using the primers available from the manufacturer. The positive clones were further amplified and the DNA isolated from them was used in transient transfection experiments for the determination of luciferase activity. The fragment from mouse genome isolated from gel agarose as described in 2.7.2 was subcloned in the MCS of pBS vector using the same enzymes used for digestion of the mouse genomic clone. The construct was verified by sequencing using the T7 primer.
2.9 Induction of GST–fusions in bacteria and purification

To recover GST fusion proteins produced in E. coli cells containing a recombinant pGEX–3X plasmid (see sections 2.2) the GST Gene Fusion System, purchased from Pharmacia Biotech, was used, following the procedure suggested by the manufacturer's instruction manual. From a glycerol stock stored at –80 °C, each E. coli pGEX–3X recombinant was streaked onto a LB medium agar plate in sterility and incubated overnight at 37 °C.

One colony was picked up and inoculated into 5 ml of LB medium containing the antibiotic of selection (see 2.2.5) then incubated for 12–15 hours at 37 °C with vigorous shaking. The grown culture was then diluted 1:100 into fresh pre–warmed LB medium with the antibiotic and let grow at 37 °C with shaking. Then the steps followed were exactly the same described in the instruction manual provided with the purification system previously mentioned. Briefly, the bacterial culture was grown until the A₆₀₀ reached 0.5–2, then by the addiction of 0.1 mM IPTG the culture induced to produced fusion proteins with a 2–6 hour–incubation. The bacterial culture was centrifuged to sediment the cells and the pellet resuspended in a final volume of ice–cold PBS corresponding to 1/20 of volume of the starting bacterial culture. The cells were disrupted with a sonicator on ice and fusion proteins were solubilised by addition of 1% Triton X–100 to the sonicated cells and gently rotation for 30 minutes. Then the solution was centrifuged and to the supernatant was loaded on the Glutathione Sepharose 4B. This agarose matrix carried glutathione molecules which
bound the fusion proteins through the GST–tag. After washes to remove non specifically bound proteins, the fusion proteins were eluted with 10 mM of GSH from the matrix. The eluates were monitored for GST–fusions protein by either SDS–PAGE or Western blotting (see section 2.10). Moreover, to identify the fraction in which the fusion protein was located, aliquots of supernatants after solubilisation cell debris pellet were saved after solubilisation. Aliquot of supernatant after the addition of the sepharose matrix was saved.

2.10 Western blotting

Western blot analysis involves separating proteins using sodium dodecyl sulphate polyacrylamide gel electrophoresis (SDS–PAGE), transferring them to nitro-cellulose electrophoretically and then using specific antibodies to detect the protein of interest.

2.10.1 Calibration curve preparation

Solutions of BSA (ranging between 1 and 20 μg/200 μl) were prepared from a stock solution of BSA obtained by dissolving powdered BSA (Sigma) in water. In a 1.5 ml tube, 200 μl of each BSA solution were mixed with 600 μl of distilled water and 200 μl of BioRad protein assay dye (BioRad). In the blank sample, 800 μl of distilled water was mixed with 200 μl of BioRad Protein assay dye. Samples were rapidly transferred into disposable cuvettes (PBI International, Milan-Italy) and the absorbance at
595 nm was measured in the spectrophotometer. The absorbance value corresponding to the blank sample was subtracted from the values obtained in the BSA-containing samples. Each calibration sample was run in triplicate. The calibration curve obtained in such a way, allows extrapolation of the exact absorbance value corresponding to 1 μg of proteins present in the solution.

Protein concentration in the total cellular extract was determined according to Bradford protocol.

The concentration of proteins in the samples was determined by mixing in a 1.5 ml tube 10 μl of protein samples (see section 2.9) with 200 μl of BioRad protein assay dye and distilled water in a final volume of 1 ml. Samples were processed as for the calibration curve and the amount of proteins calculated from the absorbance value corresponding to 1 μg of proteins (obtained from the calibration curve).

2.10.2 SDS-PAGE

An equal amount of protein of each sample was mixed with the same amount of 2x SDS loading buffer and was boiled for 5 minutes:

<table>
<thead>
<tr>
<th>SDS Loading Buffer (2x)</th>
<th>final concentration</th>
</tr>
</thead>
<tbody>
<tr>
<td>200 μl Tris 1 M, pH 8.8</td>
<td>100 mM</td>
</tr>
<tr>
<td>400 μl DTT 1 M</td>
<td>200 mM</td>
</tr>
<tr>
<td>800 μl SDS 10%</td>
<td>4%</td>
</tr>
<tr>
<td>400 μl glycerol</td>
<td>20%</td>
</tr>
</tbody>
</table>
40 µl bromophenol blue 10% to a final volume of 2 ml with sterile water

Samples were loaded onto 5% stacking gel and 12% separating gel:

Stacking Gel

<table>
<thead>
<tr>
<th>Component</th>
<th>final concentration</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.25 ml Tris-HCl 0.5 M, pH 6.8</td>
<td>125 mM</td>
</tr>
<tr>
<td>0.1 ml SDS 10% (w/v)</td>
<td>0.1% (w/v)</td>
</tr>
<tr>
<td>1.25 ml 40% acrylamide/bis 29.1:0.9</td>
<td>5% (w/v)</td>
</tr>
<tr>
<td>To a final volume of 10 ml with deionised water.</td>
<td></td>
</tr>
<tr>
<td>50 µl ammonium persulphate 10% (w/v)</td>
<td>0.05% (w/v)</td>
</tr>
<tr>
<td>5 µl TEMED</td>
<td></td>
</tr>
</tbody>
</table>

Separating Gel

<table>
<thead>
<tr>
<th>Component</th>
<th>final concentration</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.5 ml Tris-HCl 1.5 M, pH 8.8</td>
<td>750 mM</td>
</tr>
<tr>
<td>0.2 ml SDS 10% (w/v)</td>
<td>0.1% (w/v)</td>
</tr>
<tr>
<td>3 ml 40% acrylamide/bis 29.1:0.9</td>
<td>12% (w/v)</td>
</tr>
<tr>
<td>To a final volume of 10 ml with deionised water.</td>
<td></td>
</tr>
<tr>
<td>100 µl ammonium persulphate 10% (w/v)</td>
<td>0.05% (w/v)</td>
</tr>
<tr>
<td>7.5 µl TEMED</td>
<td></td>
</tr>
</tbody>
</table>

Stacking and separating gels were prepared shortly before pouring. Ammonium persulphate catalyses polymerisation and TEMED accelerates the reaction and so these two reagents were added last.

Proteins were resolved on a minigel apparatus (BioRad) and run for 2 hours at 50 V in 1x TGE buffer:

Running Buffer (TGE 5x)

<table>
<thead>
<tr>
<th>Component</th>
<th>final concentration</th>
</tr>
</thead>
<tbody>
<tr>
<td>15.15 g Tris base</td>
<td>25 mM</td>
</tr>
</tbody>
</table>
72 g glycine 192 mM
5 g SDS 0.1% (w/v)
to a final volume of 5 l with deionised water. The buffer was stored at room temperature.

Electrophoresis progress was followed using pre-stained molecular weight markers prepared following the manufacturer's instructions (Fermentas).

2.10.2.1 Coomassie Blue staining

Coomassie Blue R250 (0.25 g Coomassie Blue, 45 ml methanol, 45 ml glacial acetic acid, to a final volume of 100 ml with deionised water. Filter the solution through paper) was used to colour the polyacrylamide gels after SDS-PAGE by incubating the gel immersed in the coomassie solution for 60 minutes and washing it overnight in a de-staining solution (30 ml methanol, 5 ml glacial acetic acid, to a final volume of 50 ml with deionised water).

2.10.3 Protein transfer and detection

The separated proteins were transferred onto nitro-cellulose (at 60 V for 3 hours) using BioRad Mini transfer blot equipment in 1x transfer buffer:

<table>
<thead>
<tr>
<th>Transfer Buffer 1x</th>
<th>final concentration</th>
</tr>
</thead>
<tbody>
<tr>
<td>24.2 g Tris Base</td>
<td>50 mM</td>
</tr>
<tr>
<td>28.5 g glycine</td>
<td>100 mM</td>
</tr>
<tr>
<td>4 ml SDS 10%</td>
<td>0.01%</td>
</tr>
</tbody>
</table>
800 ml methanol 20% to a final volume of 4 l with deionised water. The solution was stored at room temperature.

Filters were stained with Ponceau red solution (Sigma) to check sample loading. Blots were placed in TBS-T 0.1% with 10% non-fat dried milk:

<table>
<thead>
<tr>
<th>TBS-T 0. 1%</th>
<th>final concentration</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.42 g Tris base</td>
<td>20 mM</td>
</tr>
<tr>
<td>8 g NaCl</td>
<td>137 mM</td>
</tr>
<tr>
<td>1 g Tween 20%</td>
<td>0.1% (w/v)</td>
</tr>
</tbody>
</table>

to a final volume of 1 l with deionised water. The pH was adjusted to 7.6 with concentrated HCl and stored at 4 °C.

and shaken overnight at 4 °C to block non-specific binding. All following procedures were carried out at room temperature on a shaker. Blots were exposed for 1 hour at room temperature to the desired antibodies diluted to the optimal working solution in TBS-T 0.1%. After incubation, the blots were washed twice with TBS-T 0.1% and incubated with the appropriate horseradish-peroxidase linked anti-mouse IgG secondary antibody (Amersham) for 1 hour using 1:3,000 dilution. Blots were washed as previously described, and detection was performed with enhanced chemiluminescent detection system (ECL, Amersham-Life Science). Briefly, the horseradish peroxidase acts as a catalyst for the oxidation of a luminol substrate, which subsequently emits small but sustained quantities of light. This chemiluminescence is specifically enhanced allowing an
image to be recorded on photosensitive film. Blots were exposed to film for
different time ranging from 15 seconds to 3 minutes and developed using
X-o graph compact x-2 developer with Kodak GBX developer and fixer.

2.11 In vitro synthesis of proteins

To synthesise a polypeptide in vitro, the TNT T7 Quick Coupled
Transcription/Translation system (Promega) was used following the
manufacturer's instructions. This system provides a convenient single-
tube, coupled transcription/translation reaction for in vitro translation of
eukaryotic genes subcloned downstream from the T7 RNA polymerase
promoters. One µg of circular expression vector carrying the coding
sequence of the protein of interest and a T7 primer sequence was used as
cDNA template.
The polypeptide in vitro synthesised was then analysed by SDS–PAGE.

2.12 Immunofluorescence

Cells were seeded and grown for 24 hour or to confluency on glass
coverslip. They were washed once with PBS and fixed with 4%
paraformaldehyde overnight at 4 °C. During three PBS washes at room
temperature, residual paraformaldehyde cross–linking activity was
quenched by adding a drop of 1 M glycine, pH 8.5, to the second and third
PBS washes and leaving it 5 and 10 minutes respectively. The samples
were permeabilised with 0.5% Triton X–100 in Hepes buffer (20 mM
Hepes, 300 mM sucrose, 50 mM sodium chloride, 3 mM magnesium chloride) 4 minutes at 4 °C, then washed twice with PBS and twice with PBS–0.1% BSA. Primary monoclonal antibody anti–DRAGO (dilution 1:100 from cellular surnatant) was then added in PBS–1% BSA for 30 minutes at 37 °C. Coverslips were washed in PBS and Alexa–Fluor 488 antibody anti–mouse (Invitrogen) (1:500 dilution) for 30 minutes at 37 °C. After further washes with PBS, glass coverslips were mounted in Mowiol 4–88 (Hoechst, Frankfurt/Main, Germany) and observed in a Zeiss Axiophot photomicroscopy equipped for epifluorescence (Carl Zeiss, Oberkochen, Germany).

2.13 Animal procedure

2.14 Isolation and handling of primary mouse embryonic fibroblasts (MEF)

Primary MEFs were isolated from wild–type and DRAGO –/- embryos at embryonic day 12–15. Timed pregnant female at 12 to 15 days gestation
were sacrificed and individual fetuses were removed and washed repeatedly with sterile PBS. After removing the head and red organs (liver, heart and kidney) each embryo was broken (cut) into small pieces and then incubated with trypsin/EDTA at 37 °C for 15 minutes. After removing the trypsin by centrifugation at 1,200 rpm for 10 minutes, the tissue homogenate was resuspended in MEFs culture medium, DMEM supplemented with fetal bovine serum (Hyclone, Logan, UT) and 2 mM of L–Glutamine and placed in 100 mm culture plates (one plate for each embryo sacrificed). The plates were incubated at 37 °C overnight. The day after, the fibroblasts were visualised under the microscope. The medium was removed and replaced with fresh culture medium. These cells were considered passage 0. When the cells on the passage 0 plates became confluent, they were detached as described in chapter 2.1.1 except that 1x trypsin diluted in PBS (without EDTA) was used (from a stock 10x purchased from Bio–Whittaker). The cells were then counted and seeded at a density of 6×10^4/ml (9×10^5 in a tissue culture T75 flask). Cells were passaged at the same density as standard 3T3 protocol (332). To determine the cellular growth rate of DRAGO −/− MEF culture relatively to the growth rate of wild–type (WT) MEFs, in a 6–wells plates both genotypes were seeded in triplicate at a density of 1.5×10^4/ml. One plates a day was then used to harvest the cellular growth of MEFs in order to determine the cell number in each culture every day.
2.15 MEF treatments

2.15.1 Preparation of drug solutions

The drugs used in the experiments were cisplatinum (DDP, Sigma), taxol (obtained through the NCI), doxorubicin (DX, Nerviano Medical Centre, Milan–Italy), camphotecin (CPT, Sigma) 5-Fluorouracil (5-FU, Sigma), PS341 (CTI, Milan, Italy), VP-16 (Sigma).

DDP was prepared fresh for any experiment by preparing a solution of 0.5 mg/ml in medium and allowing this solution to equilibrate with proteins present in the serum at 37 °C for 30 minutes before treatments. Taxol, CTP, 5–FU, VP–16 and PS341 were prepared in DMSO as respectively 2 mM, 20 mM, 5 mM (both 5–FU and VP–16) and 10 mM stock solutions and subsequently diluted in fresh medium the day of treatment. The stock solution was maintained at –20 °C. DX was prepared as a 5 mM solution in water and stored at –20 °C in the dark. After treatment, the medium containing the drugs and the remaining solutions were properly discarded.

2.15.2 Cell growth inhibition

To investigate the effects on cell growth of either drug or UV and X rays treatment, both MEFs WT and MEFs DRAGO –/– were seeded at a density of 1 x 10^4 cells/ml in either 24–wells plates whether treated with drugs or 6–wells plates whether exposed to UV or X rays. When treated with drugs, 48 hours after seeding a concentration range of drug was added into 2 replicate wells. Treatment was performed for 24 hours and
after 72 hours cells were washed with sterile PBS and stained with crystal violet. Control untreated cells were stained in the same manner. Otherwise, 6–wells plates of MEFs were entirely exposed to a range of UV or X rays and after 72 hours washed with PBS and stained with crystal violet. The degree of growth inhibition induced by UV and X rays was evaluated comparing the absorbance of treated cells stained with crystal violet with that of untreated ones (control cells). Basically, the stained cells were resuspended with 500 µl of a solution of 0.1 N HCl in isopropyl alcohol. The absorbance of each well was then read using a Titertek equipped with a filter for 550 nm.

2.15.3 DAPI/sulphorhodamine staining

Cells were seeded on glass coverslips and after 24 hours, they were treated with anticancer drugs. Forty–eight hours after treatment, cells were washed with PBS and fixed with 95% Ethanol for 1–2 hours. Cells were washed with PBS twice and in de–ionised water. Cells were incubated with a DAPI/sulphorhodamine solution for 15–30 minutes in the dark (3.5 mg DAPI was dissolved in 100 ml in deionised water; to 0.5 ml of DAPI solution diluted in 100 ml of 3 mg of sulphorhodamine was added. The volume was brought to 300 ml by adding the Na–Tris HCl pH8 solution:

Tris base 12 g
NaCl 6g
HCl 1 M 54 ml
H₂O to a final volume of 1 L.
After further washes with deionised water glass coverslips were mounted in Entellan (Merck, Milan–Italy) and observed in a Zeiss Axiophot photomicroscopy equipped for epifluorescence (Carl Zeiss, Oberkochen, Germany).

2.16 Genotypic screening of heterozygous mice breeding

For routine genotyping of the litters from breeding of heterozygous (HE) KO mice, two PCR reactions were built up using three primers. One set of primers (GW723 5’–TTCTCTGCTAGTCAGACACCGCTGTG–3’, GW722 5’–TACACAGGTGGCCATGGC–3’ AT: 61 °C) was designed by Genoway laboratory for screening test to detect the excision of the targeted region. The forward and the reverse primers of this set were designed at the 5’ and the 3’ end respectively of the targeted region which comprised the genomic fragment between exon 3 and 5. Therefore the PCR reaction might expect the amplification of either 10-Kb fragment for WT mice or a 3.6-Kb band for HO KO mice. For HE mice both bands of 10 Kb and 3.6 Kb were expected. However, among those bands, only the smaller one was detected, being the 3.6-Kb band more efficiently amplified. Therefore, in order to discriminate HE and KO mice, a second set of primers, formed by the same forward primer (GW723) of the previous set and a reverse primer (KO725 5’–GCCTCTGTACACAGGTACTCG–3’ AT: 63 °C) mapping a region in the exon 3 which is deleted in the HO KO mice was designed. In this manner a 1.3–Kb band was expected with HE KO and WT mice, conversely no band amplification was expected with HO KO mice.
RESULTS
CHAPTER 3

MOLECULAR CHARACTERISATION

OF DRAGO GENE
3.1 Introduction

As reported in the Introduction (Chapter 1.7), DRAGO is a new gene which has been isolated as a cDNA fragment overexpressed in cell lines after treatment with several cytotoxic agents. The cDNA fragment, once isolated and sequenced, perfectly matched to the sequence KIAA0247 already present in gene bank. Beside the nucleotide sequence referred to the cDNA of this isolated gene, no functional and structural information has been reported. To start with the characterisation of this challenging gene, the determination of molecular structure has been posed as the initial steps to undertake.

3.2 Molecular characterisation

The description of the exon-intron organisation of the gene is a necessary prerequisite for most of the subsequent investigations and characterisations carried out in the present work. Using the information available with the full-length cDNA, the structure of the human DRAGO gene was molecularly characterised. The entire cDNA sequence (5,338bp) was compared with the sequences of human genome available from the public gene bank by using the BLASTN program at the NCBI database. The comparison led to the identification of two human genomic clones (BAC R-1046B16 clone of library RPCI-11 and BAC C-2216L1 clone of library CalTech-D) from chromosome 14 which together comprise
the full length cDNA. These results allow to build the genomic structure of the gene, which is composed of 6 exons, with canonical exon-intron junctions (GT..AG). The first exon (188 bp) spans nucleotide 1-188 comprising most of the 5' untranslated region (5'UTR) which overlaps part of the second exon. The coding region starts from the base 269, located in the second exon (189-389). Exons 2, 3 (390-587), 4 (588-726) and 5 (727-1,154) (201, 198, 140 and 427 bp respectively) correspond to the coding region which contains the first 26 bases (1,155-1,180) of exon 6 (4,184 bp). Therefore the coding region results to be comprised between nucleotides 269 and 1,177 (1,180 including the stop codon “tga”), whereas the remaining 4,158 nucleotides form 3'UTR which is entirely located in the last sixth exon. Interestingly, the gene presents two large introns (45-50 kb) between exons 1-2 and 2-3, respectively (Fig. 3.1).

3.3 Isolation of DRAGO genomic sequences

To confirm the sequence of the genomic DNA regions of DRAGO and to isolate the region containing the gene, a human genomic library spotted in duplicate in seven different filters, obtained through the UK-HGMP-RC was used. These filters contain genomic DNA clones and can be hybridised with different probes derived from the human DRAGO cDNA to isolate the genomic sequence of interest. For the purpose of this study, a 160 bp-fragment obtained by PCR (see chapter 2.4) and corresponding to
Figure 3.1

DRAGO gene structure. The length of exons and introns is indicated together with the position of the start (ATG) and the stop (TGA) codons.
the 5' region of the human DRAGO cDNA was used as a probe. Figure 3.2 shows an example of an autoradiograph indicating the presence of two positive spots. On the whole set of seven filters, the use of this cDNA probe led to the identification of two positive clones which could be univocally identified through the coordinates of the filters and requested to the UK-HGMP-RC. The two positive clones (67A24 and 92D20 from the RPCI human PAC library 1) thus obtained were grown in LB media and the DNA was isolated from the overnight culture using procedures described in the materials and methods chapter (chapter 2.8). Since each of these clones contained approximately 100 Kb of DNA, it was necessary to pinpoint smaller DNA fragments containing the DRAGO gene for further characterisation. To do this, DNA was digested with different appropriate restriction enzymes and half of it loaded on 0.8% agarose gels to separate the fragments of different length. At the end of the run, the gel was stained with ethidium bromide and the bands visualised under UV light. Figure 3.3A shows fragments of the two clones digested with the restriction enzymes BamHI, EcoRI and HindIII. The gel was blotted overnight to a nylon filter and hybridised with the same probe used for the screening of the genomic PAC library and corresponding to the 5' region of the cDNA DRAGO sequence to identify the fragments inside the genomic sequence present in the clone which contains the DRAGO gene. The results of the hybridisation are shown in figure 3.3B, from which one can deduce that few digested fragments gave positive hybridisation and hence contained the sequence of DRAGO used to
Figure 3.2
Screening of the RPCI human genomic PAC library 1. The figure shows a representative autoradiography obtained from a filter containing the genomic DNA that was probed with a 32P–labelled DRAGO cDNA fragment. Each clone is spotted in double on the filter. The arrow points the DRAGO positive clone (67A24) which has been selected based on screening.
Figure 3.3
Southern Blot of digested genomic 67A24 clone obtained from the RPCI human PAC library 1.

Panel A. Ethidium bromide staining of the gel. DNA isolated from the clone was digested with HindIII (H), BamHI (B) and EcoRI (E) and resolved on agarose gel. M1 is the λ DNA/HindIII marker 2, M2 is the 1 Kb DNA molecular weight marker.

Panel B. Autoradiography of the gel transferred to a nylon membrane and hybridized with 32P–labelled DRAGO probe. Numbers on the left are derived from M1 molecular weight markers. The arrow point to the 10 Kb fragment of the DRAGO clone digested with HindIII isolated for further study.
Figure 3.4
Schematic representation of the HindIII 10,735-bp fragment isolated from agarose gel (see figure 3.3). The sequence of the fragment compared with genomic sequences present in the NCBI gene bank database resulted to match with a genomic sequence containing a large portion of about 7 Kb genome located upstream to the first exon of DRAGO gene, the first exon and about 3 Kb region mapping the first intron of the gene.
hybridise. From these experiments a DNA fragment of approximately 10 Kb (10,735 bp), obtained from the 67A24 clone after digestion with the restriction enzyme HindIII was isolated for further characterisation. This DNA fragment was subsequently subcloned in the HindIII site contained in the multiple cloning site of the pBluescript SKII plasmid. This recombinant plasmid was used to sequence the DNA inserted. The sequences were obtained using the sequences contained in the plasmid as primers. The obtained sequence was compared with the human genomic sequences present in the NCBI gene bank database which resulted to completely match with the genomic sequence from the BAC R-1046B16 clone of library RPCI-11 and to overlap the first exon. This sequence, in fact, starts about 7 kp upstream to the 5' end of DRAGO cDNA sequence (Fig. 4.4), contains the exon 1 and about 3 kb downstream the same exon, thus located in the first intron.

3.4 Discussion

One of the aims of this thesis has been to molecularly characterise the newly identified DRAGO gene. Previous experiments performed in the laboratory of Molecular Pharmacology at the Mario Negri Institute where the present thesis has been realised, showed that the sequence of full length cDNA of the newly isolated DRAGO gene corresponded to the cDNA of the deposited gene KIAA0247 (accession number D87434). The comparison between the cDNA sequence with the human genomic sequences present in the NCBI gene bank database allows the description
of the molecular organisation which reveals the presence of six exons, two long introns of respectively 46,684 and 44,681 bp, and a large 3'UTR (4,153 bp). All these large portions of non-coding regions suggest a strong gene regulation both at transcriptional and post-transcriptional level. In fact, the analysis of the 3'UTR sequence revealed the presence of AU- and CU-rich regions, which are known to be motives recognised by factors acting on the mRNA stability of genes like those coding for protooncogenes, transcription factors, cytokines, lymphokines, growth factors and their receptors (333). Nevertheless, two introns of about 50 Kb could contain the binding sites for transcriptional factors involved in the transcriptional regulation of the gene expression or cryptic ATGs as start codons for hypothetical DRAGO isoforms. Anyway, those aspects regarding the regulation of DRAGO gene will be studied in the future but it will not be the object of this thesis. The alignment of the cDNA of DRAGO with the human genomic sequences from NCBI databases led to the identification of two clones from chromosome 14 which comprise the intronic and exonic sequences of DRAGO gene. These findings have been confirmed by the isolation of the genomic clone containing the gene of interest from a genome library. The isolation of this clone allows the following investigations regarding the promoter isolation of DRAGO which will be discussed further in this chapter.
CHAPTER 4

CHARACTERISATION OF THE
PROMOTER REGION
4.1 Introduction

As outlined in the introduction chapter (1.7), the activity of DRAGO gene is regulated by p53 as suggested by either the semi-quantitative RT-PCR or the real time PCR experiments. On the basis of these observations, two questions have been addressed. The first set of experiments described in this chapter was aimed at the identification of the promoter region possibly containing the p53 consensus sequence. Secondly the focus was on the evaluation of the possible role of the different p73 isoforms in determining the transcriptional activation of DRAGO. This question is particularly pertinent considering that the p73 gene shares relatively high sequence homology with p53 in the central DNA binding domain, thus enabling it to bind and activate the same downstream genes which are activated by p53 (see introduction chapter 1.6.1-1.6.2). The investigation has been also addressed at elucidating the role of DNp73 which, lacking the transactivation domain, has been mostly considered to antagonise the TA isoforms of p73 and p53. As discussed in the Introduction chapter recent findings suggest that DNp73 can have other functions. Starting from these evidences, the effect of DNp73 has been also evaluated in the experiments reported here.
4.2 Promoter activity of the 10,735 bp-HindIII DRAGO genomic region

Once it had been verified that the HindIII-digested 10,735 bp cloned sequence was indeed a sequence corresponding to the genomic region around the exon 1, containing the initial non coding cDNA of the DRAGO gene and a genomic region immediately 5' to this non coding part, the isolated DNA region was then investigated for the putative promoter activity. The full length fragment of 10,735 bp was entirely subcloned in the HindIII site of the multiple cloning site of the promoter-less pGL2-enhancer vector. This vector contains the luciferase cDNA and a multiple cloning site at 5' to the cDNA (without promoter) and is generally used to determine the efficiency of putative genomic promoter regions to drive the transcription of the luciferase gene. Using the method reported in chapter 2.2.7, recombinant clones were selected and the DNA partially sequenced to further verify the presence of the right insert and to determine the orientation. One of the clones tested containing the sense orientation inserted fragment has been chosen.

In p53-defective cells, the 10,735 bp-genomic region did not reveal any transcriptional promoter functionality. Nevertheless, it has been tested if p53 could induce this putative promoter region by co-transfecting an expression vector containing the human p53 cDNA with the construct containing the luciferase gene under the control of the human DRAGO fragment of 10,735 bp as described in chapter 2.3. However p53 did not induce the transcriptional activation of the 10,735–bp fragment.
4.3 Isolation of p53 responsive region

Since the entire 10,735-bp region did not respond to p53 induction, a smaller DNA fragment was then isolated from the 10,735 bp genomic region by using the KpnI restriction site located 214 bp upstream to the first exon of the genomic region and in the multiple cloning site of the pGL2 vector, in which the same region is subcloned. The digestion with the KpnI restriction enzymes of the 10,735-pGL2 construct resulted in the deletion of a DNA fragment of about 7,000 bp from the 10,735-bp genomic region. The 3’-end of remaining 3,761-bp fragment (which will be referred as the 3.8-kb fragment) was still functionally linked to the reporter gene luciferase and thus the 5’-end has been re-ligated to the vector to have a new construct. The 3.8-kb fragment (Fig. 4.1A) which consists of the initial non coding part of the DRAGO gene (exon 1), a genomic intronic region 3’ to this non coding part and a sequence stretch contiguous to exon-1 5’-end, has been subjected to investigation for its transcription promoter activity. In p53-defective cells, the transcription of the reporter gene could not be detected. However, in cells where p53 functionality had been restored (as described in the previous section) the promoter activity of the 3.8-kb fragment was two-fold higher than in its absence (Fig. 4.1B) which is consistent with the results of the experiments carried out in isogenic models differing for p53 expression (see Introduction chapter 1.7). The observed p53 regulation has been compared to the transcriptional activation induced by p53 on another promoter fragment isolated from the human p21 gene and known to be
Figure 4.1
Panel A. Schematic representation of the 3.8–Kb fragment obtained by digesting the construct pGL2–10,735–bp with KpnI restriction enzyme. One of the sites of cleavage is contained in the 10,735–bp fragment and upstream the exon 1. The other was contained in the pGL–2 MCS. The symbol >< indicates the position of the restriction site.
Panel B. Levels of luciferase expression upon the 3.8-Kb fragment induction either in the presence (blue column) or in the absence (red column) of p53 in p53-defective Saos-2 cells (see chapter 2.3). Whenever p53 functionality had been restored, the promoter activity of 3.8–Kb was increased by 2 fold. As a positive control, the level of induction of the p21 promoter by p53 was considered.
activated by p53, which was obtained from Dr. Carol Prives, Columbia University, NY.

4.4 Analysis of putative p53 responsive elements

The 3.8-kb fragment revealed to putatively contain p53 responsive elements, even though the transcriptional activation induced by p53 was lower than that observed with a well known p53-responsive promoter gene like p21. Furthermore, the luciferase assay showed that in the absence of p53, the 3.8-kb fragment exhibited no promoter functionality. The fragment was then investigated for the presence of a promoter region predictable by bioinformatics. For this purpose, the PromoterInspector program from Genomatix Software GmbH was used which find a good match with a theoretical promoter region comprised between base 1 and 792 of the 3.8-kb.

On the basis of these indications, a region starting from base 1 of the 3.8-kb and base 964 bp was further isolated by PCR amplification using a set of primers designed in order to introduce a XhoI restriction enzyme site of cleavage (as reported in chapter 2.3–2.4) at the 3'-end of the fragment amplified. The 964-bp fragment, obtained by PCR amplification using the 10,735-bp region as template DNA, showed a KpnI restriction site at the 5'-end (which was the same used to isolate the 3.8-kb fragment and present in the sequence itself) and a XhoI restriction site, introduced by PCR. The fragment was then subcloned in the multiple cloning site of the pGL2 vector after digestion of both the plasmid and the PCR fragment with
KpnI and *XhoI* restriction enzymes. After checking the right insertion by sequencing, the 964–bp–pGL2 construct was analysed for the promoter activity.

In p53-defective cells, it showed by itself a promoter activity but, when p53 functionality was restored, the 964–bp fragment revealed no increase in the promoter activity (Fig 4.2).

Considering that the 3.8–kb fragment resulted to be responsive to p53, the analysis was then focussed on the remaining 2.5 kb. The fragment was isolated by PCR amplification using a set of primers designed to introduce a *XhoI* restriction site at the 5'–end whereas a *HindIII* restriction site at the 3' end was indeed present in the sequence itself. Once amplified and digested, the PCR fragment was then subcloned in the pGL2 vector for gene-reporter assays. The 2.5–kb fragment showed a promoter activity similar to that observed with the 3.8–Kb fragment in the absence of p53 (Fig 4.3).

The 3.8–kb was then analysed for the presence of the canonical consensus DNA-binding sequence, RRRCWWGYYY, recognised by p53. The search has been performed with the PROMOTION program that has been developed by Dr. Riccardo Bonomi from the Molecular Pharmacology Laboratory of Mario Negri Institute. Considering that the variability and degeneracy of the p53 binding motif complicates their identification, the search for consensus sequences has been focused on the core sequence, CWWG. The score of the alignment between the nucleotide stretch and the promoter region under investigation has been
Figure 4.2

Panel A. Schematic representation of the 964-bp fragment, obtained by PCR amplification followed by restriction with *KpnI* and *XhoI* enzymes (the *XhoI* restriction site was introduced by PCR). The primers are represented as red arrows. The *XhoI* restriction site which is carried by the downstream primers is indicated.

Panel B. Levels of induction of the 964-bp promoter by p53 was evaluated in Saos-2 cells. In the presence of p53, the promoter activity did not increase as compared to the luciferase activity of the empty vector (pGL2) in the presence of p53.
Figure 4.3

Panel A. Schematic representation of the 2.5–Kb fragment which was obtained by PCR amplification followed by restriction with XhoI and HindIII enzymes (the XhoI site was introduced by the upstream primer).

Panel B. The promoter activity of the 2.5–Kb fragment was evaluated in Saos-2 cells in the presence or in the absence of p53. The level of induction of the luciferase expression by p53 was similar to that measured with the 3.8–Kb promoter.
set equal to 100, which means that only the exact matches between the consensus motif CWWG and the promoter sequence have been taken into consideration. As discussed in the introduction chapter, the binding motif RRRCWWGYYY is commonly repeated in two pairs, with a spacer region between the two sequences that consists of a number of nucleotides that can vary from 0 to approximately 20 bp. The matches were screened on the basis of their relative distance from each other and considered only whenever they fit with the above mentioned criterion. In figure 4.4 the putative binding sites recognised by p53 are highlighted showing that, although the binding pattern can deviate from the consensus RRRCWWGYYY, the number of sites can be reiterated into clusters. In figure 4.5, a diagram showing DRAGO putative p53 BS and those of some known p53 target genes has been reported, revealing no evident similarities with DRAGO p53 BS and those present in the genes reported. In particular, p53 responsive elements of the BTG2 gene have also been reported, since this gene shares with DRAGO the feature of being inducible by DNp73α (see Chapter 1.5.1).

4.5 Role of p73 in gene transcription

Considering that p73 can bind to the motives originally identified as p53-binding site within the promoter and the first intronic sequence of its downstream genes and that the regions isolated responded to p53 less than expected, the same regions were analysed for their ability to transcriptionally activate DRAGO in the presence of p73. The experiments
Figure 4.4

Sequence of the 3.8-Kb fragment. Putative binding sites of p53 are highlighted.
<table>
<thead>
<tr>
<th>Binding site</th>
<th>RRRCW</th>
<th>WGYYY</th>
<th>RRRCW</th>
<th>WGYYY</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bax</td>
<td>tcACA</td>
<td>AGTTa</td>
<td>G</td>
<td>AGACA</td>
</tr>
<tr>
<td>p21 5' site</td>
<td>GAACA</td>
<td>TGTCc</td>
<td></td>
<td></td>
</tr>
<tr>
<td>p21 3' site</td>
<td>GAAGa</td>
<td>AGacT</td>
<td></td>
<td></td>
</tr>
<tr>
<td>mdm2</td>
<td>gGCA</td>
<td>AGTtg</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Noxa</td>
<td>AGGCT</td>
<td>TGTCc</td>
<td></td>
<td></td>
</tr>
<tr>
<td>BTG2 BS1</td>
<td>AGACA</td>
<td>TaCccC</td>
<td>AG</td>
<td>GAAgA</td>
</tr>
<tr>
<td>BTG2 BS2</td>
<td>AGcGa</td>
<td>TGTCc</td>
<td></td>
<td></td>
</tr>
<tr>
<td>BTG2 BS3</td>
<td>AGGcCg</td>
<td>AGcCC</td>
<td>G</td>
<td>GGGCC</td>
</tr>
<tr>
<td>BTG2 BS5</td>
<td>GGCcC</td>
<td>TGcCT</td>
<td></td>
<td>GGCAC</td>
</tr>
<tr>
<td>Scotlin BS1</td>
<td>tAAag</td>
<td>AGTCa</td>
<td>TCTGGGCA</td>
<td>GGCAC</td>
</tr>
<tr>
<td>Scotlin BS2</td>
<td>GGCcT</td>
<td>TGcTa</td>
<td>G</td>
<td>GAACgT</td>
</tr>
<tr>
<td>Scotlin BS3</td>
<td>cAGCc</td>
<td>TGcTg</td>
<td>TGaCCTAG</td>
<td>GACgC</td>
</tr>
<tr>
<td>Scotlin BS4</td>
<td>GAGCc</td>
<td>AGgcT</td>
<td></td>
<td>GAGCA</td>
</tr>
</tbody>
</table>
| Scotlin BS5 | GAGCa | GcTaC | CcTGCAGGAATGAGCAAGCGAGGA

Figure 4.5

Diagram showing p53 canonical binding sites (HH orientation) of some p53 target genes and DRAGO responsive elements. In the lower rows, BTG2 binding sites in the TT orientation have been reported. The alignment does not reveal any evident similarities between DRAGO putative p53 binding sites with those of other p53 target genes here reported.
were performed as those described when p53 promoter activation has been studied. The first region to be analysed has been the 3.8-kb which showed a slightly stronger promoter activity in the presence of p73 compared to the induction level driven by p53. Similarly, the evaluation of the role of p73 has been extended to the 2.5-kb region which contains more putative consensus binding sequences than the 964-bp promoter. The 2.5-kb region showed a slight increase of transcriptional activation in response to p73 compared to p53.

As mentioned in the introduction chapter (1.6.1) different isoforms of p73 are generated by alternative splicing of p73 gene. The full length protein, which has been used in the experiments carried out with the 3.8-kb fragment, is defined as alpha p73 (p73α), and, at least, 4 C-terminal isoforms (beta-p73β, gamma-p73γ, delta-p73δ and epsilon-p73ε) have been described so far. Since these isoforms can have different transcriptional activation potency (289, 334), the fragment of 2.5 Kb was used to test the specific activity of the different p73 isoforms. A typical experiment is reported in figure 4.6 showing the ability of different p73 isoforms to activate the promoter region and revealing that p73 is a stronger activator of the promoter fragment than p53. Among different p73 isoforms, beta and gamma isoforms are the strongest, being able to induce an increase of about 5–6 fold. In parallel, experiments have been performed with the p21 promoter in the same conditions as those used for the 2.5–Kb fragment. The smallest 964 bp fragment did not respond to any of the p73 isoforms as observed previously for p53.
Figure 4.6
Activity of the 2.5–Kb fragment linked to the luciferase gene evaluated in Saos-2 cells cotransfected with different isoforms of p73 and p53. The level of the activation of the 2.5–Kb fragment was compared with that of the p21 promoter fragment.
4.6 Fragments retaining promoter activity

The localisation of the putative p53 binding site has given the possibility to create a series of constructs derived from the 2.5–Kb fragment-pGL2, in order to better investigate the promoter activity of the region in presence of p53 and p73.

Five constructs have been generated by restriction with several enzymes the cleavage site of which were present in the constructs. The constructs obtained were Smal, PstI, PH3, HP4 and SP5 (Fig. 4.7A). The Smal and PstI, constructs have been obtained by digesting with either Smal or PstI restriction enzymes respectively. The cleavage of the 2.5–Kb fragment-pGL2 by Smal restriction enzymes resulted in the deletion of about 1.6 Kb from the construct. The remaining 6.8–Kb fragment has been purified from the agarose gel, on which the restriction reaction was loaded, and resiglated. Similarly, the restriction reaction of the same promoter construct with the PstI enzyme generated two fragments of 680 bp and 7.8 Kb, the last of which, purified from the agarose gel, was re-ligated. The remaining constructs, PH3, HP4 and SP5, were obtained after restriction with PstI and HindIII (PH3), HindIII and PvuII (HP4) and Smal and Pstl (SP5), respectively. The double reaction with PstI and HindIII enzymes, generated three different fragments of 7 Kb, 730 bp and 680 bp respectively. The PvuII and HindIII enzymes cleaved the promoter construct into 2 fragments of 7.5 kb and 990 bp. The digestion with Smal and Pstl restriction enzymes generated two fragments of 6.5 Kb, 3.3 Kb
Figure 4.7

Panel A. Schematic representation of the Smal, Pstl, PH3, HP4 and SP5 fragments generated by restriction of the 2.5-Kb promoter. 3.8-Kb and 964-bp promoter fragments are represented. The position of the putative p53 binding motives is also represented on 3.8-Kb fragment–bar as vertical segments.

Panel B. Agarose gel electrophoresis of the restriction reactions of the pGL2–2.5–kb construct. Lanes 1 and 5: 1 Kb DNA molecular marker; lane 4 and 6: 100–bp plus DNA molecular marker; lane 2: pGL2–2.5–kb construct digested by Smal enzyme; lane 3: restriction with Pstl enzyme; lane 6: Pstl and HindIII double digestion; lane 7: HindIII and PvuII; lane 8: Smal and Pstl.
and 1.2 Kb. In all the cases described the reactions were loaded on an agarose gel to allow the separation of the different fragments (Fig. 4.7B) and the purification of the desired ones. Particularly, the longest fragments were purified to be re-ligated. Since the extremities of each fragment were sticky and not compatible, being digested by enzymes recognising different consensus sequences, they were refilled to make them blunt to allow subsequent re-ligation of the generated fragments. Each promoter construct obtained have been verified by sequencing. Those deletions of the 2.5-Kb sequence retained a promoter activity responsive to p73, particularly to the beta and gamma isoforms, while the p53-dependent luciferase activity was almost abolished (Fig. 4.8). The SP5 fragment (577 base pairs) was particularly responsive to p73 gamma as reported in figure 4.8. In figure 4.9 a schema of the degree of responsiveness to p53 and p73 isoforms are illustrated.

4.7 Role of DNp73

To further study the role of p73 in DRAGO transactivation, the ability of the transactivation domain deficient isoform DN-p73 to block p73 promoter activation has been evaluated. The 2.5-Kb promoter-luciferase construct has been co–transfected with the p73 and DNp73 expression plasmids. The p21-luciferase construct has been used as a control. As expected, transactivation of p21 promoter by p73 tended to decrease in the presence of DNp73, whereas the transactivation of the 2.5–Kb fragment-pGL2
Figure 4.8
Luciferase activity of the 2.5-kb derived fragments in Saos–2 cells cotransfected with p53 and with different isoforms of p73.
Figure 4.9
Summary of the response of the 3.8-Kb fragment and of the deleted mutants derived from it, to p53, p73α, p73β and p73γ. On the 3.8-Kb promoter bar, p53 binding motives are represented as vertical segments.
construct, by means of the different p73 isoforms increased with the presence DNp73 as reported in figure 4.10. Nevertheless, the increase of DNp73 amounts determined a concentration-dependent increase in luciferase activity, which suggests a cooperation between p73 and DNp73 in transactivating the 2.5-Kb construct (Fig. 4.11). Conversely, the same effect was not observed with the p21 promoter which was indeed downregulated as the DNp73 amounts increased (Fig. 4.12). DNp73 per se is also able to transactivate 2.5-Kb fragment-luciferase construct when transfected in the absence of p53 or p73. This effect was not observed when the p21 promoter sequence was used.

4.8 Discussion

The results presented in this chapter confirm that there is a strict relationship between p53 and DRAGO, having isolated a region which is likely to be bound by p53 which in turn would induce the expression of the gene. Moreover, the present experiments clearly indicate that the DRAGO might be more efficiently transactivated by p73 than by p53. In general, p53 is a stronger transactivator than p73. There are examples in the literature, however, showing that certain genes respond better to p73 than to p53 (i.e p57, ADA) (335, 336).

The different TA p73 isoforms showed a different transactivation efficiency in inducing DRAGO. Particularly, the beta and gamma isoforms seem to be the strongest activators of the gene in the experiments carried out with the different fragments derived from the 3.8-Kb promoter fragment, even
Figure 4.10
Effect of DNp73 co-transfected with different p73 isoforms on the activity of the 2.5–Kb promoter and p21 promoter.
Figure 4.11
DN-p73 cooperation with p73α, p73β, p73γ, p73δ in transactivation of 2.5-Kb fragment-luciferase construct. Increasing concentrations of DN-p73 was cotransfected with a fixed amount of p73 isoforms. The first column shows induction of 2.5 Kb fragment by DN-p73 alone.
Figure 4.12
DN-p73 repression of transcription activity of p73α and p73γ on p21-luciferase promoter. Increasing concentration of DN-p73 were used in co-transfection experiments with p73α and p73γ.
when the p53 activity was completely abolished. Moreover, these experimental analyses support the hypothesis that the role of DNp73 is not merely to antagonise the p73 isoforms or p53 transcriptional activation of their target genes. As discussed in the introduction chapter, several evidences reported in the literature support the idea that DNP73 act on p53 or p73 isoforms either as a dominant negative, thus exerting an antagonising effect or as a co-operator, therefore acting in a synergistic manner with the same transcriptional factor.

These observations gain more interests when the sequence of those fragments retaining the promoter activity is considered. The 2.5–Kb fragments is in fact characterised by the presence of numerous putative p53 consensus binding sequences. Those sequences present several mismatches in respect to the canonical RRRCWYGYYY sequence, which are consistent with the degenerate nature of the p53 binding site, that are critical for regulatory control since it allows diversity and flexibility in timing and levels in response to cellular signals. However, those binding sequences are reiterated into clusters, which should stabilise binding and mediate expression likewise in the MDM2 and p21 genes.

However, these encouraging results need to be confirmed by other experimental approaches to better verify that these sequences are really functionally bound by p53 and p73 isoforms. Experiments such as either the EMSA (electrophoretic mobility shift assay) or ChIP (chromatin immunoprecipitation) have been planned to be carried out in the future. Another simple and efficient approach could be the introduction of site-
specific mutations in DNA sequences that are considered to be the consensus binding elements for p53 and p73 different isoforms. The sequences showing stronger activity in response to p53 and especially to p73 are mostly located in the first intron, similarly to what observed for several other p53/p73 target genes (i.e. MDM2, KILLER/DR5, DR4, CD95 (Fas/APO-1) receptor) (138, 139, 337-339). As previously mentioned, the molecular structure of DRAGO gene revealed the presence of two introns of considerable length implying a probable involvement of these sequences in the regulation of the gene expression. This could also suggest the presence of binding motives for other transcription factors but most likely of other binding motives for p53 and its family members. These points will be studied in the future by using bioinformatics tools together with the experimental tests on longer genomic sequences.
CHAPTER 5

MUTATIONAL ANALYSIS
5.1 Introduction

As discussed in introduction chapters, cancer development takes advantage from mutations or, in general, alterations in genes especially those responsible for cellular growth control. P53 is a paradigmatic example. As “cancer gene” it has been found to be mutated in almost half of the tumors (see chapter 1.4). On the basis of this consideration, possible mutations in DRAGO gene exons have been searched by performing the SSCP analysis and DNA sequencing.

5.2 SSCP analysis

SSCP analysis permits to evidence a point mutation occurring on a single strand of a gene of interest. Mutations in a gene are in fact responsible to a different electrophoresis profile if compared to that of a non mutated one. The presence of DNA mutations in the gene has been investigated in exons 1, 2, 3, 4 and 5 which were amplified by PCR from genomic DNA extracted from 12 human cancer cell lines of different origin and used for SSCP analysis. In figure 5.1 a representative SSCP gel of not mutated fragments has been reported. Fragments with a suspected mutation (see figure 5.2 as an example) were subjected to direct DNA sequencing. In figure 5.3 (panel A) the sequence of the exon 1 of SKOV–3 cells has been reported. The perfect alignment between the sequence of interest (indicated as query and corresponding to exon 1 from SKOV–3
cells) and the DRAGO cDNA has also been showed in panel B of figure 5.3. As reported in chapter 3.2, the first exon of DRAGO cDNA spans nucleotides 1–188. In the table 5.1, the 12 human cancer cell lines investigated have been reported. The PCR fragments with suspect mutations which have been sequenced are indicated. Nevertheless, for each exon, even if putatively not mutated on the basis of the SSCP analysis, random PCR fragments have been chosen for sequencing. In any cases, the alignment of either the suspected mutated or the putative not mutated exons with the genebank DNA sequence of DRAGO revealed no DNA mutations among the cell lines tested.

As DRAGO gene resulted to be not mutated in the panel of human cell lines which represent an in vitro model, then the search for mutations have been address to clinical samples. Genomic DNA was therefore purified from human tumor biopsies and investigated to verify if some mutations could be found. The analysed samples included ovarian cancer, colon cancer, endometrial cancer and leukemia. Among the tumor samples investigated, no mutations could be detected on the basis of the SSCP analysis (Fig. 5.4) and no more tumor samples have been studied. Since the overexpression of DRAGO upon drug treatment induces the arrest of cellular growth as it will be discussed further in the result chapter, it has been investigated if the gene is mutated in cell lines resistant to drugs acting by different mechanisms. For this purpose DRAGO has been examined for mutations by direct sequencing of the exons 1–5 obtained by PCR amplification of the genomic DNA isolated from human cancer cell
Figure 5.1

Representative SSCP gel (see 2.5) PCR fragments corresponding to the exon 5 in the 12 cell lines tested (cell lines are indicated with a letter: see table 5.1 to identify cell lines and the corresponding origin). Fragments did not show altered migration suggesting that they were not mutated.
Figure 5.2
Representative SSCP gel (see 2.5) of PCR fragments corresponding to the exon 1 in 12 cell lines tested (cell lines are indicated with a letter: see table 5.1 to identify cell lines and the corresponding origin). The fragment with suspect mutation has been highlighted.
Figure 5.3

Panel A: Sequence of PCR fragment amplified from genomic DNA extracted from SKOV–3 cells and corresponding to exon 1 of DRAGO cDNA.

Panel B: Blast result between the sequence of exon 1 (panel A) and nucleotide sequence of DRAGO cDNA (gi: 1665762) deposited in genebank has been reported. Exon 1 from SKOV–3 cells which seemed to be mutated on the basis of SSCP analysis, perfectly matched with DRAGO cDNA.
<table>
<thead>
<tr>
<th>Cell line</th>
<th>Origin</th>
<th>Exon 1</th>
<th>Exon 2</th>
<th>Exon 3</th>
<th>Exon 4</th>
<th>Exon 5</th>
</tr>
</thead>
<tbody>
<tr>
<td>A: SW620</td>
<td>Colon</td>
<td>normal</td>
<td>normal</td>
<td>sequenced</td>
<td>normal</td>
<td>normal</td>
</tr>
<tr>
<td>B: SW626</td>
<td>Ovary</td>
<td>normal</td>
<td>normal</td>
<td>normal</td>
<td>normal</td>
<td>normal</td>
</tr>
<tr>
<td>C: IGROV</td>
<td>Ovary</td>
<td>normal</td>
<td>normal</td>
<td>normal</td>
<td>normal</td>
<td>normal</td>
</tr>
<tr>
<td>D: SKOV-3</td>
<td>Ovary</td>
<td>normal</td>
<td>normal</td>
<td>normal</td>
<td>normal</td>
<td>sequenced</td>
</tr>
<tr>
<td>F: DU145</td>
<td>Prostate</td>
<td>normal</td>
<td>normal</td>
<td>normal</td>
<td>normal</td>
<td>normal</td>
</tr>
<tr>
<td>G: REH</td>
<td>ALL</td>
<td>normal</td>
<td>normal</td>
<td>normal</td>
<td>normal</td>
<td>normal</td>
</tr>
<tr>
<td>H: ALLOPO</td>
<td>ALL</td>
<td>normal</td>
<td>normal</td>
<td>normal</td>
<td>normal</td>
<td>normal</td>
</tr>
<tr>
<td>I: TOM</td>
<td>ALL</td>
<td>normal</td>
<td>normal</td>
<td>normal</td>
<td>normal</td>
<td>normal</td>
</tr>
<tr>
<td>L: U2OS</td>
<td>Osteosarcoma</td>
<td>normal</td>
<td>normal</td>
<td>normal</td>
<td>normal</td>
<td>normal</td>
</tr>
<tr>
<td>M: SAOS</td>
<td>Osteosarcoma</td>
<td>normal</td>
<td>normal</td>
<td>normal</td>
<td>normal</td>
<td>normal</td>
</tr>
<tr>
<td>N: CEM</td>
<td>T-Leukemia</td>
<td>normal</td>
<td>normal</td>
<td>normal</td>
<td>normal</td>
<td>normal</td>
</tr>
<tr>
<td>O: HL60</td>
<td>T-Leukemia</td>
<td>normal</td>
<td>normal</td>
<td>normal</td>
<td>normal</td>
<td>normal</td>
</tr>
</tbody>
</table>

Table 5.1

Summary of SSCP analysis.

The first two columns report the 12 cell lines used in this study and their origin, respectively. Exons 1–5 were PCR amplified and analysed. Fragments with suspect mutations (indicated with a question mark ?) were sequenced as reported in the table. Additional PCR fragments with normal electrophoresis pattern were selected and sequenced in order to verify they were not mutated.
lines of different origin resistant to cisplatin (A2780/cp70), taxol (1A9PTX22), etoposide (CEM-VM1) or doxorubicin (LoVo/DX). However, each of the fragments analysed perfectly matched with the genebank DNA sequence of DRAGO. Examples of some sequences of exons derived from drug resistant cell line DNA are reported in figure 5.5.

5.3 Discussion

Altogether these results strongly support the idea that DRAGO seems to be not mutated in human cancer cell lines sensitive or resistant to cytotoxic treatments. The same observations has been confirmed in clinical samples of human tumors where mutations have not been found among the limited number of the analysed samples. Considering that the human cell lines are more frequently mutated than the corresponding clinical cancers, it is unlikely that human tumors could be mutated in genes that are not altered in the nucleotide sequence in cell lines. For these reasons the analysis for searching mutations in DRAGO gene has not been extended to other clinical samples of human tumors. These data, therefore suggest that DRAGO is not frequently mutated and are in line with what observed for other p53 downstream genes, like p21 (340), which has not been found mutated in human tumor samples. On the other hand, as p53 is frequently mutated in human tumors, it is not strictly necessary that its downstream effector genes are non-functional being its inactivation enough to de-regulate cellular growth or death thus leading to cancer inception, as widely discussed in the Introduction chapter.
Figure 5.4

SSCP analysis on DNA samples derived from ovarian (3 cases, indicated as I, II, III), colon, endometrial cancers and leukaemia. Lane 1–3, exon 1 of I, II, III ovarian cancers respectively; lane 4–6, exon 2 of I, II, III ovarian cancers; lane 7–9, exon 3 of I, II, III ovarian cancers; lane 10–12, exon 4 of I, II, III ovarian cancers; lane 13–15, exon 5 of I, II, III ovarian cancers; lane 16–20, exons 1–5 of colon cancer; lane 21–25, exons 1–5 endometrial cancer; lane 26–30, exons 1–5 leukemia. Among human cancers analysed no mutations were detected.
Query exon 1 of CEM–VM1 cell lines

>gi|1665762|dbj|D87434.1| Homo sapiens mRNA for KIAA0247 gene, partial cds
Length = 5338

Query: 21 CCGAGGCGGCGGCAGCGCGCGCGCGCGGTTGCTGGCAGCACAGC 80
Sbjct: 1 CCGAGGCGGCGGCAGCGCGCGCGCGCGGTTGCTGGCAGCACAGC 60

Query: 81 GGCAGGCGGCGGCCAGCTAGGCTAGCATAGACTACGAGTCAGCTGGAGAGTTGTC 140
Sbjct: 61 GGCAGGCGGCGGCCAGCTAGGCTAGCATAGACTACGAGTCAGCTGGAGAGTTGTC 120

Query: 141 GGGCGGCGGCCAGCTAGGCTAGCATAGACTACGAGTCAGCTGGAGAGTTGTC 200
Sbjct: 121 GGGCGGCGGCCAGCTAGGCTAGCATAGACTACGAGTCAGCTGGAGAGTTGTC 180

Query: 201 GCTCCCCG 208
Sbjct: 181 GCTCCCCG 188

Query Exon 3 of A2780/cp70 cell line

gi|1665762|dbj|D87434.1| Homo sapiens mRNA for KIAA0247 gene, partial cds
Length=5338

Query 1 TGTGCCGCTCAGCGCCAGGACGGAGAAATGTTGCACTGGCAGCTGCGCGCGCGCTGCA 60
Sbjct 390 TGTGCCGCTCAGCGCCAGGACGGAGAAATGTTGCACTGGCAGCTGCGCGCGCGCTGCA 449

Query 61 GAGACCGCTCAGCGCCAGGACGTCTGGCTCTAGGAGCTACTATGTTGCA 120
Sbjct 450 GAGACCGCTCAGCGCCAGGACGTCTGGCTCTAGGAGCTACTATGTTGCA 509

Query 121 AGGGCGTTACATAATCTCGAGATGGAATGGCGAATGCCAGCCTGAGATTTA 180
Sbjct 510 AGGGCGTTACATAATCTCGAGATGGAATGGCGAATGCCAGCCTGAGATTTA 569

Query 181 GCTGCCGCTCAGCGCCAGGACGGAGAAATGTTGCACTGGCAGCTGCGCGCGCGCTGCA 198
Sbjct 570 GCTGCCGCTCAGCGCCAGGACGGAGAAATGTTGCACTGGCAGCTGCGCGCGCGCTGCA 587

Query: exon 4 of Lovo/DX cell line (reverse sequence)

gi|1665762|dbj|D87434.1| Homo sapiens mRNA for KIAA0247 gene, partial cds
Length=5338

Query 6 CTCCTATTGAGGAAGACTCTCGAGCTTGGCTCGAGCCAACAGCAACACGAGGAGG 65
Sbjct 726 CTCCTATTGAGGAAGACTCTCGAGCTTGGCTCGAGCCAACAGCAACACGAGGAGG 667

Query 66 AGARAAGCGCCACGCGCCGTGAGCTAGAGCTAGCAGCTGAGGACCAGAATTG 125
Sbjct 666 AGARAAGCGCCACGCGCCGTGAGCTAGAGCTAGCAGCTGAGGACCAGAATTG 607

Query 126 GTAAGTTGGCTCCTCTAT 146
Sbjct 606 GTAAGTTGGCTCCTCTAT 588

Figure 5.5

Representative PCR amplified exons sequences from drug resistant cell lines. The exon 4 sequence is in the reverse sense. The reported sequences show perfect match with the cDNA sequence (gi: 1665762) deposited in the genbank.
CHAPTER 6

CHARACTERISATION OF THE FUNCTION OF THE DRAGO GENE
6.1 Introduction

As outlined in the previous chapter, the analysis of either the cDNA sequence or the primary aminoacid sequence did not reveal any similarity to known domains that could help to hypothesise any functional role of the protein or its subcellular localisation. Moreover, as reported in the introduction chapter, DRAGO mRNA has been found ubiquitously expressed at very low level. The strategy that has been undertaken was to study any biochemical and morphological modifications induced by DRAGO overexpression in both eukaryotic and prokaryotic (bacterial) cells in either transient or stable transfections. Another effort here reported regarded the functional analysis of domains at either the NH2- or COOH- terminus of the protein coded by DRAGO.

6.2 Effects of gene overexpression in eukaryotic cells

The effects of gene overexpression were evaluated in cells carrying constructs in which the isolated cDNA was functionally linked to a strong viral promoter. The complete cDNA (5,338 bp) and the coding region (nucleotides 269-1,180) were used for vector assembly. The full length cDNA sequence was excised from pBS plasmid (see 1.7) by restriction with HindIII and KpnI enzymes and inserted into pCDNA3 digested with the same enzymes. The coding region was indeed inserted into the pCDNA3HA expression vectors which was prepared from pCDNA3 by
insertion of the HA tag coding sequence. The latter was excised from a
vector available in the laboratory by restriction with the *KpnI* and *XhoI*
enzymes used to digest the pCDNA3 vector as well. Whereas the coding
portion of DRAGO cDNA was amplified by PCR using a set of primers
designed to introduce the sequences for *XhoI* and *XbaI* restriction sites at
the 5' and 3', respectively. After digestion with the above mentioned
enzymes, the coding region was then sub-cloned in frame with the HA
sequence, after restriction of the pCDNA3HA with the same enzymes.
Each construct was automatically sequenced to verify its correct assembly
and transfected into A2780 ovarian cancer cell lines. Fifteen days later,
the colonies were stained with crystal violet, washed and photographed.
Figure 6.1 shows the photographs of a plate in which A2780 cells were
transfected with the full-length cDNA (B) or with vector pCDNA3 alone (A)
and flasks were the A2780 cells were transfected with the coding
sequence subcloned in the pCDNA3HA vector (D) or with the vector
alone (C). In both cases, no colonies were detected in DRAGO transfected
cells (B and D), whereas a large number of colonies was present in the
culture transfected with vectors alone (A and C). The overexpression of
the complete cDNA (5,338 bp) or its 1,180 bp fragment (coding region)
prevented therefore colony formation. This effect was observed not only in
A2780 cells (ovary carcinoma), but also in SaoS2 and U2OS lines (human
osteosarcoma) cell lines and in murine fibroblasts Swiss 3T3 cells. Failure
to isolate stable clones was probably due to the strong growth-
suppressing effect following gene-overexpression.
Figure 6.1
Effect of the overexpression of DRAGO on A2780 and SKOV-3 cells stably transfected with the full length DRAGO cDNA (B) or the coding region (D). A and C are respectively the A2780 and SKOV-3 cells transfected with the vector alone.
6.3 Morphologic modification in contrast phase microscopy

Morphologic changes following gene overexpression were evaluated in fibroblast 3T3 cells transiently transfected with the construct pCDNA3-HA-DRAGO, used for the stable transfection experiments. The morphological effects have been analysed within a short time (24 and 48 hours) from transfection by contrast phase microscopy. The overexpression of DRAGO caused a series of dramatic morphological changes in the transfected cells which were characterised by the presence of several cytoplasmic vacuoles. In some cases the cell membranes appeared disrupted and the vacuole content was extra-cellularly released (Fig. 6.2). Transfection with the vectors alone was not associated with any evident morphologic alteration.

6.4 Analysis of functional domains: deletion mutants

The results reported in the chapter 6.2 explain why it is impossible to study the gene-induced changes in phenotype in stable transfected clones because of the intrinsic growth inhibition ability of the gene itself. Therefore, the phenotypic changes induced by the cDNA overexpression were evaluated using specific deletion mutants. The aim of these studies was to identify regions of the protein encoded by the gene which could be responsible for the growth suppressive activity.
Figure 6.2
Evaluation of morphological effects by contrast phase microscopy in fibroblast 3T3 cells transiently transfected with DRAGO.
Panel A: 3T3 fibroblasts transfected with the vector (pCDNA3HA) as control.
Panel B: 3T3 fibroblasts transfected with the coding region of DRAGO (pCDNA3HA–DRAGO)
Panel C: an enlargement of the photograph in panel B showing the presence of several vacuoles inside the cell and the release of cytosolic material outside the broken plasmatic membrane.
6.4.1 Analysis of deletion mutants in prokaryotic cells

The entire coding region of the DRAGO was subcloned in the pGEX–3X vector used for the expression of the protein in bacteria, in particular in the *E. coli* strain. With this vector, the coding sequence for the protein of interest is subcloned in frame with the GST tag. The resulting GST-fused proteins can be easily isolated and purified from bacteria. At the 3' of the cDNA coding the GST enzyme there is a protease–specific recognition site which can be cleaved by appropriate protease (the factor Xa protease) to release the desired protein from the fusion product for subsequent studies (sequence identification, crystallography etc). The full length coding region has been PCR amplified using the pBS-DRAGO construct as a template and primers designed to introduce the cleavage site for *BamH*I and *EcoR*I at the 5' and 3' end of the PCR fragment respectively. The PCR fragment was subcloned in the pGEM-T plasmid for the TA cloning and verified by DNA sequencing. Then the construct has been digested with the *BamH*I and *EcoR*I restriction enzymes to get a fragment with the suitable extremities to be subcloned in the pGEX–3X vector. The first methionine used to synthetise the protein is the one present in the GST tag. The gene methionine has been removed so that all the constructs start from aminoacid 2.

Starting from the entire 303 aminoacid sequence, progressive deletions were designed either at N– or C–terminus (Fig. 6.3). similarly as the full length coding region, the deletion mutants were generated by PCR using
as a template the coding sequence subcloned in the pGEX–3X vector and primers spanning the desired region, containing sequences recognised by the same restriction enzymes used for the full length coding region subcloning in the pGEX–3X vector (BamHl and EcoRl). Different N-terminus deletion mutants produced were:

N1: 12-303 aa cDNA construct: 893 bp 11 aminoacids deleted
N2: 23-303 aa cDNA construct: 860 bp 22 aminoacids deleted
N3: 35-303 aa cDNA construct: 824 bp 34 aminoacids deleted
N4: 49-303 aa cDNA construct: 782 bp 48 aminoacids deleted
N5: 60-303 aa cDNA construct: 749 bp 59 aminoacids deleted
N6: 74-303 aa cDNA construct: 707 bp 73 aminoacids deleted

Similarly, different C-terminus deletion mutants have been generated:

C 1: 2-290 aa cDNA construct: 884 bp 13 aminoacids deleted
C 2: 2-275 aa cDNA construct: 839 bp 28 aminoacids deleted
C 3: 2-260 aa cDNA construct: 794 bp 43 aminoacids deleted
C 4: 2-245 aa cDNA construct: 749 bp 58 aminoacids deleted
C 5: 2-230 aa cDNA construct: 704 bp 73 aminoacids deleted
C 6: 2-215 aa cDNA construct: 659 bp 88 aminoacids deleted

The PCR products (Fig. 6.4) were then processed similarly as the full length coding region has been subcloned in the pGEX–3X vector (with the same procedure to subclone in the pGEX–3X vector the full length coding region. In summary they were subcloned in the pGEM-T to be digested with the BamHl and EcoRl restriction enzymes to get the deleted fragments with the suitable extremities to be subcloned in the pGEX–3X
Figure 6.3
Progressive deletions at N- and C-terminus of the coding region of DRAGO generated deletion mutants which were subcloned in frame with the GST-tag in the pGEX-3X vector to be expressed in bacteria
Figure 6.4
Panel A: PCR fragments corresponding to the N- and C-terminus deleted DRAGO cDNAs. Correspondence with the expected molecular weight was verified with the molecular weight marker (M1 and M2) ladder in each gel.
Panel B: pGEX-3X constructs were verified by restriction with EcoRI and BamHI enzymes which caused the excision of the deleted cDNA from the plasmid vector. Lane 1: pGEX-N1; lane 2: pGEX-N3; lane 3: pGEX-N4; lane 4: pGEX-N5; lane 5: pGEX-N6; lane 6: pGEX-DRAGO; lane 7: pGEX-N2; from lane 8 to 13: pGEX-C1 to pGEX-C6; M1: 1 KB DNA ladder molecular marker; M2: 100 bp DNA ladder plus molecular marker.
vector. The first methionine used to synthesise the protein is the one present in the GST tag as for the pGEX-DRAGO.

The GST constructs, after confirmation by sequencing, have been used to transform XL1-blue bacteria and their presence verified by standard molecular biology technique. The bacteria expressing the different constructs were induced with IPTG to stimulate the production of the peptides encoded by the DNA sequence inserted in the vector. After 4-6 hours following induction, the bacteria were harvested, lysed and the proteins loaded onto SDS polyacrylamide gels. These evidentiated the exogenous proteins, present in relatively higher amounts, which, starting from the first deletion for the C-terminus (Fig. 6.5A) and form the third for the N-terminus, show a progressive reduction in molecular weight. This result was also confirmed by Western blotting (Fig. 6.5B), using monoclonal antibody against DRAGO (see next section). It is interesting to underline that even bacteria did not produce the full length protein coded by DRAGO cDNA fused to the GST tag (Fig 6.5).

Taking advantage of the GST tag, the purification of the N- and C-terminal deleted proteins produced by bacteria has been carried out by using a glutathione-bound matrix to sequester the GST-fusion proteins. The structure of glutathione is in fact complementary to the Glutathione–S–Transferase–binding site. Therefore, fusion proteins binding to the matrix are retained by the matrix and then isolated from the other proteins present in the lysates. Unfortunately, no GST-fused protein has been recovered from the bacteria. The exogenous GST-fusion proteins were
Figure 6.5
N- and C- terminal deletion mutants expressed by bacteria upon induction.
Panel A: SDS-PAGE of cellular lysates obtained from bacteria expressing C-terminal deleted proteins. Exogenous proteins were present in relatively higher amounts as revealed after Coomassie blue staining of the gel (see section 2.10.1).
Panel B: N-terminal deleted proteins from bacterial extracts were detected by Western Blotting, using monoclonal antibody against DRAGO.
Figure 6.6

SDS-PAGE of different eluates and aliquots of supernatant and bacterial pellet saved during the purification of GST-fusion proteins exogenously expressed by bacteria, as reported in chapter 3.9. Lane 1: eluate corresponding to GST-N6 fusion protein purified from bacterial cells which were induced to produce it. Lane 2: aliquot of bacterial cell pellet from GST-N6 bacterial culture. Lane 3: aliquot of the eluate corresponding to purification of GST from pGEX-3X transformed bacterial cells. Lane 4: aliquot of first wash of the GSH-bound matrix after binding to GST-carrying proteins. Lane 5: aliquots of supernatant flowed through the GSH-bound matrix. Lane 6: aliquot of bacterial cell pellet from GST-C1 bacterial culture.
Figure 6.7
SDS-PAGE of purified GST and GST-SB after Coomassie Blue staining. Numbers on the left refers to the molecular weight marker (MW).
retained in the insoluble material after bacterial lysis, as observed when bacteria debris have been loaded on SDS polyacrylamide gels (Fig. 6.6). These proteins tended to accumulate in the inclusion bodies, thus making their purification and subsequent cleavage from the GST tag for sequencing difficult.

6.4.1.1 Production of monoclonal antibodies

Monoclonal antibodies against DRAGO have been generated in collaboration with ARETA INTERNATIONAL biotech (Gerenzano, Varese–Italy). Since the purification of all the deleted mutants, fused to the GST protein produced by bacteria, was not successful, as antigen a smaller peptide (SB) corresponding to the last 82 aminoacids at the C-terminus of DRAGO has been produced and purified. The nucleotide fragment coding the 82 aminoacids has been PCR amplified using the pGEX-DRAGO construct as a template. The upstream primer was designed to introduce the sequence recognised by *BamH*I restriction enzyme. The downstream primer was the primer with the *EcoR*I site designed for the PCR amplification of the full length coding sequence. The PCR fragment obtained was then loaded on an agarose gel, purified and subcloned on the pGEM-T vector. It was then digested with the appropriate enzymes and subcloned in the pGEX–3X vector. The construct has been confirmed by sequencing and transferred into bacteria. The bacteria were then induced to produce the GST-SB peptide similarly as done with the N-terminus and C-terminus deleted mutants. The purification of the peptide
has been carried out using the GSH-matrix. The elution has been checked on a SDS polyacrylamide gel, confirming the presence of the SB eluate (Fig. 6.7). The purified SB-GST peptide has been then used as antigen for the production of monoclonal antibodies.

6.4.2 Analysis of deletion mutants in eukaryotic cells

In parallel analogous PCR products have been subcloned in the pCDNA3-HA expression plasmid which was previously generated by inserting the HA tag sequence in the commercially available pCDNA3 plasmid. The HA tag is a short aminoacid sequence which can be recognised in cell by specific antibodies. The advantage of this tag is that the short sequence is unlikely to interfere with the structure and function of the protein to be studied. The deletion mutants generated by PCR had XhoI and XbaI sequences inserted at the 5' and 3' by \textit{ad hoc} designed primers and necessary for the subcloning in the pCDNA3HA vector. The PCR amplified fragments (Fig. 6.8) were processed similarly to those inserted in the pGEX-3X vector, therefore, after having been inserted in the pGEM-T easy vector, they were digested with the appropriate restriction enzymes and subcloned in the pCDNA3HA vector. The HA tags constructs (Fig. 6.9) were verified by sequencing and transfected in eukaryotic cells. Taking advantage of a neomycin resistance gene present in the same plasmid used for subcloning, clones growing in neomycin were isolated and further characterised. In particular, so far two clones have been obtained in SKOV-3 ovarian cancer cells, i.e. the C2 and the C6 deletion mutants.
Figure 6.8
Panel A. PCR fragments corresponding to N- and C- terminal deleted cDNAs fragments of DRAGO. M1: 100-bp DNA ladder plus. Lane 1–6: N1–N6 PCR fragments, lanes 7 and 13 correspond to the blank PCR reactions (reaction without template to verify that the amplification was specific). Lanes 8–12 and 14: C1–C6 PCR fragments.
Panel B. HA constructs were verified by double restriction with Xhol and Xbal enzymes. The empty vector (pCDNA3HA, 5.4 kb about) and the cDNA deleted fragments are pointed with arrows.
Figure 6.9

Progressive deletions at N- and C- terminus of the coding region of DRAGO generating deletion mutants which were subcloned in frame with the HA tag in the pCDNA3 vector to be expressed in eukaryotic systems.
The growth of these clones were followed for different *in vitro* passages. At each passage total RNA was extracted and after several passages all the RNAs collected loaded on agarose gel, blotted and hybridised with a 32P-labeled probe generated from a gene fragment (C6). The results showed that both C2 and C6 deletion mutants could be evidenced at RNA level. After 8 passages in vitro both clones retained the expression of C2 and C6 (Fig 6.10). Among the clones able to grow in neomycin, those stably transfected with the empty vector and the pCDNA3-HA-DRAGO constructs were also isolated. However, as reported in the Northern blot, clones carrying the pCDNA3-DRAGO construct did not express the gene at RNA level. This is consistent with the results previously discussed in the chapter 6.2, where the overexpression of the full length DRAGO prevented colony formation.

In parallel, three SKOV-3 clones transiently expressing the N-terminus deletion mutants N3, N4, N6, were investigated. The analysis was addressed to those deleted mutants selected on the basis of the results obtained when bacteria were induced to express the N-terminal deletion mutants. N3-construct transiently transfected cells expressed the deleted gene at RNA level after few passages following transfection, as confirmed by Northern blotting using the exon 3 as a probe (Fig 6.11A). However, stably expressing clones isolated for their resistance to the antibiotic neomycin did not retain any detectable expression at RNA level (Fig. 6.11B).
Figure 6.10
Panel A: Northern blot showing the expression of DRAGO deletion mutants in clones derived from SKOV-3 cells which were retained after 8 passages. Total RNA was extracted from C2 and C6 cellular clones and from cellular clones derived from cells transfected with pCDNA3HA-DRAGO (D) which grew in the presence of neomycin. Total RNA was then separated on agarose gel (panel B) and transferred to a nylon filter. The blot was hybridised with a DRAGO cDNA probe.
Figure 6.11

Northern blot to detect the expression of N-terminus deletion mutants (N3, N4 and N6) in either transiently (panel A) or stably (panel B) expressing SKOV-3 clones.

Panel A. Total RNA was extracted from SKOV-3 cells transiently transfected with pCDNA3HA–N3 (N3), pCDNA3HA–N4 (N4), pCDNA3HA–N6 (N6), pCDNA3HA (H) and pCDNA3HA–DRAGO (D); WT represents wild-type SKOV-3 which were not transfected. N3 and N4 cells expressed the corresponding deleted DRAGO at RNA level. Total RNA, separated on agarose gel (lower part) was transferred onto a nylon filter (upper part). Cells transfected with the vector carrying the full length coding region of DRAGO (lane D) were able to grow in the presence of the neomycin but they did not expressed the protein at the RNA level.

Panel B. Stable clones isolated from transiently expressing N3 and N4 cells did not retain the expression of the corresponding N-deleted mutants at the RNA level.
6.4.3 Activity of peptides

On the basis of the previously reported results, the removal of the last 28 aminoacids from the DRAGO protein, resulted in a truncated protein whose expression was tolerated by the cell. This suggests that the last 28 aminoacids play an important role in the DRAGO growth suppressive activity. To test whether this assumption was reasonable, a peptide corresponding to the 28 aminoacids (DSENSDIQLLLSLTSEETDPLLKEA) deleted from the C2 mutants has been synthesised. A peptide comprising the 13 aminoacids (EETDPLLKEA) deleted from the C1 mutants has been also synthesised. Eukaryotic cellular clones stably expressing the C1 mutants were not able to grow. Therefore the deletion of the last 13 aminoacids should not be able to abrogate the growth inhibitory effect that was observed when full length DRAGO is expressed. The activity of the peptides were evaluated against either p53 +/+ or p53 −/− HCT-116 cells which were treated with different concentrations of either the 13 aminoacid or the 28 aminoacid peptide. An unrelated peptide from the human endothelin has been used as a negative control. The cells were treated for 48 hours then washed and stained with crystal violet. The effect of the treatment did not reveal any particular toxic effect on cellular growth related to the tested peptide (Fig. 6.12). Increasing further the concentration of the peptide, a toxic effect was observed, which was, however, not necessarily related to the specific effect of the peptide. In fact, a similar toxic level was found when a DRAGO unrelated peptide was used at a specific concentrations (Fig.6.13).
Figure 6.12
Activity of peptides HE, 13 AA and 28 AA against HCT-116 p53 (+/+) (panel A) and HCT-116 p53 (−/−) (panel B). Peptides were added to the cells 24 hours after seeding (at 60,000/ml) at different concentrations as indicated. Cells were stained with crystal violet 72 hours after treatment.
Figure 6.13
Activity of peptides HE, 13 AA and 28 AA against HCT-116 p53 (+/+) (panel A) and HCT-116 p53 (--/--) (panel B). Cells were seeded at 60,000/ml, and treated 24 hours after seeding with the indicated concentrations of peptides and stained 72 hours after treatment with crystal violet.
6.5 Discussion

The results reported in this chapter indicate that when overexpressed, DRAGO has a strong inhibitory effect on cellular growth, preventing any colony formation of stably DRAGO expressing cellular clones. For this reason any experiment aimed at assessing the morphological and biochemical modifications induced by the overexpression of the full length gene had to be carried out in transiently transfected cells. The observation of morphological modifications in contrast phase microscopy evidentiated that the overexpression of the gene caused the formation of many vacuoles in the cytosolic compartment. This morphological effect due to the overexpression of DRAGO was not associated to the activation of any extrinsic or intrinsic apoptotic pathways (see chapter 1.5.3). Nonetheless the mechanisms of death in cells expressing high level of the protein coded by DRAGO gene is discussed in this thesis being the object of still ongoing studies.

The analysis of deletion mutants has been focused to identify possible functional domains of the protein which might be responsible for the growth suppression effects. The analysis has been also extended to bacterial cells in order to purify and isolate the proteins for subsequent studies. Otherwise, any effort of purification from bacteria of the deleted proteins failed. The collected evidences suggest that the exogenous proteins might accumulate in the inclusion body probably due to their hydrophobicity. Another important observation is that bacteria expected to
produce the full length protein retained the ability to overcome the effect of the antibiotic ampicillin used for the selection of positive clones, without producing any protein. This suggests that the full length protein is toxic on cellular growth of prokaryotes as observed in eukaryotic cells. Sometimes, clones transfected with the full length DRAGO were able to grow in the presence of neomycin, but they did not retain the corresponding cDNA expression at RNA level meaning that those clones were able to “skip” the synthesis of the protein which would inhibit their growth. Taken together all the results collected with the deletion mutants expressed in eukaryotic hosts, indicate that the last 28 aminoacids were crucial for the death/grow arrest effects of the entire gene. This evidence was supported by the fact that the SKOV-3 stably expressing the C2 deleted cDNA retained the expression for several passages without any significant morphological change suggesting that the last 28 aminoacids deleted starting from the C-terminus were necessary to the inhibitory effect of the entire gene. Nevertheless, the treatment with the peptides corresponding to the aminoacids deleted in the C2 and C1 constructs did not reveal any suppressive effect on cellular growth. This observation suggests that those peptides, particularly the one with 28 aminoacids, might not have any toxicity per se, but its deletion could interfere with the conformational structure of the protein or its stability, thus compromising its activity. Alternatively, the C-terminus could be important for the interactions with other proteins.
CHAPTER 7

THE COMPUTATIONAL ANALYSIS

OF THE PROTEIN
7.1 Introduction

The aminoacid sequence of the protein coded by DRAGO gene did not resemble any protein with known function. In the following section, the computational prediction of the conformation of the protein has been reported. The theoretical analysis of the primary aminoacid sequence has been then supported by a set of experiments aimed at the determination of the subcellular localisation of the protein itself. To determine the subcellular localisation of the protein two strategies have been undertaken. First, immunofluorescence experiments have been performed on transiently expressing N3 clones, the characterisation of which has been discussed in the chapter 6.4.2. The second strategy was addressed at the use of intrinsically fluorescent protein like the GFP protein fused in frame to one of the deleted mutants which the cell tolerates when it is overexpressed. For this purpose a pEGFPC1-C2 construct has been generated.

7.2 In vitro synthesis of DRAGO protein

As mentioned in introduction chapter (see chapter 1.7), the full length cDNA of DRAGO putatively codes for a protein of 303 aminoacids. The full-length cDNA subcloned in the pBS vector has been used as a template for the in-vitro synthesis of the putative protein coded by the cDNA. A polypeptide was produced with an apparent molecular
weight, calculated by SDS-PAGE, of 25-33 kDa (Fig. 7.1). This molecular weight is consistent with the structure of the polypeptide and with the predicted molecular weight (32 kDa) calculated on the basis of the number (303) of aminoacids and the primary sequence of the protein deducible from the cDNA sequence.

7.3 Conformational prediction of DRAGO protein and computational analysis

The aminoacid sequence has been computationally analysed using bioinformatic tools available from the web in order to identify the similarity with domains of protein with known function. The submission of the primary aminoacid sequence into the CDD database (341) from the NCBI website and into others PROSITE (from the ExPASy website), InterPro, UniProt, Smart or Pfam databases reveals high similarity (about 94%) with the protein region comprised between aminoacids 40 and 104 with the complement control protein (CCP) domain, also known as short consensus repeats (SCRs) or SUSHI repeats. The CCP modules contain approximately 60 amino acid residues and have been identified in several complement and adhesion proteins. By using the TMHMM database (Fig. 7.2A), the presence of putative transmembrane domain, particularly transmembrane helixes, have been predicted to be located between the aminoacid 13 and 35 and between the aminoacids 120 and 142.
Figure 7.1
SDS–PAGE of protein product synthesised in vitro using DRAGO coding sequence as template, as discussed in section 2.11. The apparent molecular weight (MW) around 25–33 kDa of the polypeptide, revealed by Coomassie blue staining, is consistent with the aminoacid sequence of the DRAGO protein.
Figure 7.2
Panel A. DRAGO as a membrane-associated protein by informatics modelling. Two transmembrane domains located between the aminoacid 13 and 35 and between the aminoacids 120 and 142 were predicted by TMHMM database.
Panel B. Hypothetic conformational structure of DRAGO protein was derived by computationally prediction.
On the basis of this database, the N-terminal region which comprises the aminoacids 1-12 and the C-terminus portion of the protein (aminoacids 143-303) are predicted to be located inside the cellular region that the membrane, where the protein is linked, contains. The remaining protein region (aminoacids 36-119) is predicted to stand in the outside region of the membrane. The prediction of transmembrane domains has been confirmed by other databases, such as prosite and swiss-prot/tremble. Altogether these results have led to draw a hypothetic conformational structure of the protein as shown in figure 7.2B.

7.4 Subcellular localisation of the protein

7.4.1 Immunofluorescence on the N3 clone

The experiments reported in this section were aimed at evaluating the subcellular localisation of the DRAGO protein, by using the immunofluorescence technique taking advantage of the monoclonal antibodies generated against the C-terminus peptide SB of 82 aminoacids. The expression of DRAGO full length protein resulted to be growth suppressive as widely discussed in the previous section. The experiments were performed on SKOV-3 clones transiently expressing N3–deleted DRAGO, the expression of which was characterised and verified by Northern blot (see section 6.4.2, figure 6.11). Immunofluorescence revealed an intracellular localisation of the truncated protein. The fluorescence seemed to localise in correspondence of
membrane structures, supporting the theoretical and computational prediction of the transmembrane domains of the protein. Moreover, whenever the cells were not permeabilised, the signal was absent or homogeneous: this observation suggests that at least the portion of the protein recognised by the antibody is localised intracellularly (Fig. 7.3).

7.4.2 Intracellular localisation of GFP-C2 protein

Another approach aimed at subcellularly localising the protein was to create a fusion protein intrinsically fluorescent such as the GFP. Among the deleted mutants stably expressed by the cells, the C2 is the one which has the smaller deletion, therefore the GFP-C2 fusion protein can be considered as a good tool to get information regarding the intracellular localisation of the wild-type protein with good approximation. With this purpose, the pEGFP-C1 vector which carries the GFP coding region, was used. The coding region of the C2 deletion mutant was subcloned in frame to the C-terminus of the GFP coding region. The C2 deleted was PCR amplified using the construct of pEGFP-C1-DRAGO as a template which was previously generated in the laboratory. To generate the construct, the coding sequence of DRAGO was PCR amplified using as a template the DRAGO cDNA subcloned in the pBS and primers designed to insert the sequence for the HindIII and KpnI restriction enzymes respectively at the 5' and 3' end. Once amplified, the PCR product was inserted in the pGEM-T vector, digested with the appropriate enzymes and subcloned in the pEGFP-C1 vector.
Figure 7.3
Immunofluorescence experiments on SKOV–3 clones transiently expressing the N3-deleted DRAGO. In permeabilised cells, fluorescence localised in correspondence of membrane structures; conversely, if cells were not permeabilised, the signal was absent or barely detectable.
The final construct containing the DRAGO and GFP cDNA was verified by sequencing. For PCR amplification of C2, the upstream primer was the same which had been used for the sucloning of the DRAGO coding region in the same vector. The downstream primer was the same used when the C2 deleted mutant has been generated to be subcloned in the pCDNA3HA vector and introducing a XbaI site at the 3' end of the amplified fragment. The PCR product was inserted in the pGEM–T vector, digested with the appropriate enzymes and subcloned in the pEGFP–C1 vector. The final construct containing the C2 deleted DRAGO and GFP cDNA was verified by sequencing. SKOV–3 cells were transfected with the construct and cellular clones resistant to neomycin were selected and checked for the stable expression of the GFP–C2 construct by Northern blot (Fig. 7.4). This clone was then investigated by fluorescence microscope, revealing and confirming the fluorescent localisation corresponding probably to membrane structures, whereas the cells transfected with the vector alone resulted to be uniformly fluorescent (Fig. 7.5).

7.5 Discussion

The protein coded by the cDNA has been confirmed to be of about 25-33 KDa as that predicted on the basis of the cDNA sequence. The aminoacid sequence of the DRAGO protein, predicted on the basis of the cDNA sequence, did not reveal any particular motif, indicative of possible cellular localisation and function.
Figure 7.4
Northern Blot showing the expression of the deleted DRAGO mutants C2 (lane 3) in stably transfected SKOV-3 clones. Total RNA was extracted from cells transfected with the vector pEGFP-C1 (lane 1), with pEGFP-C1–DRAGO construct (lane 2) and from pEGFPC1–C2 clone (lane 3). Total RNA was then separated on agarose gel (panel B) and transferred to a nylon filter. The blot was hybridised with the DRAGO exon 3 probe (panel A).
Figure 7.5
Analysis under fluorescence microscope of a SKOV-3 clone stable expressing the GFP–C2 fusion protein. The fluorescence localised in correspondence of membrane structures, whereas the cells transfected with the vector alone (pEGFP–C1, left panel) resulted to be uniformly fluorescent.
However, the bioinformatic analysis of the primary sequence, made it possible to predict that the protein coded by DRAGO gene presumably is a transmembrane protein. The theoretical prediction was then supported by the immunofluorescence experiment on N3 transiently expressing clones, showing that the fluorescence seemed to be mostly localised in the membrane. With the immunofluorescence experiments the stably expressing C2 clones were not used since they lacked of the C-terminal portion against which the antibodies were generated. However, the N3 clones used in those experiments expressed the cDNA relative to the deleted mutant as confirmed by Northern blot. To support the results collected so far, the GFP-C2 stably expressing clones were analysed. With this clone the fluorescence was found to be associated to the intracellular membrane. In both cases, the localisation of deleted mutants instead of the wild-type protein was observed. This fact is linked to the strong growth inhibitory effect of the full length protein whether overexpressed by the cell. It has also to be underlined that the N3 deleted mutant which lacks of one of the two theoretical transmembrane domains, seems to retain the membrane-bound localisation.
CHAPTER 8

ANALYSIS OF THE EVOLUTIONARY CONSERVATION OF DRAGO
8.1 Introduction

In the introduction chapter (1.7.2), the isolation of the mouse cDNA coding the murine analogue of DRAGO was reported. The comparison between human and mouse sequences showed a high similarity both at nucleotide and aminoacid level. The striking percentage, more than 80%, of the homology has suggested to investigate the level of conservation of the protein and the corresponding coding region sequences among different organisms. Therefore, the aminoacid sequence of the human DRAGO protein was compared with those available from the sequence databases.

8.2 Search for sequence homology

The search for homologies between the protein sequence of DRAGO and proteins deduced by the available cDNA sequences deposited in the databases was carried out by using the BLASTP program at the NCBI databases. A significant and interestingly high similarity has been found with mammals, such as chimpanzee (*Pan troglodytes*), dog (*Canis familiaris*), mouse (*Mus musculus*), bovines (*Bos taurus*). With those mammals the identity exceeds 85%. In figure 8.1 the alignment between those mammals and DRAGO protein has been reported. In the same region, the proteins aligned were almost identical.
Figure 8.1
Alignment between the sequence of human DRAGO protein (Homo sapiens) and those from other mammals which exhibited identity higher than 85%. Higher consensus sequences (>90% of identity) are in red colour. Low consensus sequences (>50% of identity) are in blue.
Figure 8.2

Alignment between the sequence of human DRAGO protein (Homo sapiens) and those from vertebrates (zebrafish, puffer and Xenopus). Identity higher than 90% (high consensus) are indicated in red colour. Low consensus (identity higher than 50%) are in blue.
Similarities has also been found with other mammals such as rats (*Rattus norvegicus*), macaque (*Macaca fascicularis*) orangutan (*Pongo pygmaeus*). Similarities currently extended to all vertebrates for which genomic data is available. Significant similarities, higher than 70% have been found with cocks (*Gallus gallus*) and more than 50% with zebrafish (*Danio rerio*) and *Xenopus leavis*. Similarities have also to be underlined with puffer (*Takifugu rubripes, Tetraodon nigroviridis*). In figure 8.2 the alignment with these vertebrates (except for the *Gallus gallus*) is reported showing some identities between the sequences.

8.3 Discussion

In this short section, the attention has been focused on the striking high similarities that DRAGO protein shares with gene products from genomes of mammals. Surprisingly, high levels of similarities have also been found with vertebrates such as cocks and fishes. The similarities found between the human DRAGO protein with proteins of phylogenetically distant organisms revealed an evolutionary conservation of the gene which could suggest an important functional role of the gene. Furthermore, due to the difficulties in generating cellular systems expressing DRAGO, the finding that simple organisms such as zebrafish share significant homologies with humans for DRAGO certainly provide an alternative for investigating the function of DRAGO protein.
CHAPTER 9

GENERATION AND CHARACTERISATION

OF DRAGO KO MICE
9.1 Introduction

As mentioned in the Introduction chapter, DRAGO expression is induced upon cytotoxic treatments. In order to investigate the role of DRAGO in determining the response to treatment, and the function of the gene product coding by DRAGO, one of the selected strategy was the development of cellular model systems lacking the gene, which could be morphologically and biologically compared with the isogenic counterparts expressing the wild-type protein. For this purposes, the development of a DRAGO-null mouse line have been conducted in collaboration with Genoway (Lyone-France) in the laboratory directed by Sandrine Millet. The generation of the KO mice lacking DRAGO gene was not carried out by eliminating the ATG site which avoids the risk of expression of truncated form of the protein. The strategy pursued for the generation of the KO mouse line was to delete most of the coding region comprised in exon 3, 4 and 5, to avoid the risk of alternative splicing. This is consistent with two previously reported observations. The first is based on the assumption that the murine gene structure is similar to the human which is supported by the high similarity of the mouse DRAGO cDNA with the human at a nucleotide and aminoacid level. Therefore, consequently to this assumption, it is highly probable the presence of two long introns between the first and second exons and between the second and third exons, containing cryptic ATG which could give rise to isoforms of the protein by alternative splicing. A mouse genomic region comprising most
of the coding region of DRAGO was therefore isolated from a mouse genomic library for the targeting vector construction. Once the KO mice have been generated the MEF cell cultures have been isolated and characterised.

9.2 Isolation of mouse DRAGO genomic sequence

Analogously to human genomic PAC clone, to isolate the genomic clones comprising DRAGO gene from mouse genome, a mouse genomic PAC library spotted in duplicate in seven different filters, obtained through the UK-HGMP-RC was used. These filters contain genomic DNA clones and can be hybridised with different probes derived from the mouse DRAGO cDNA to isolate the genomic sequence of interest.

For the purpose of this study, considering the high similarity between the human and the mouse cDNA, a fragment of the human cDNA, corresponding to the C-terminus deleted cDNA C6 (see chapter 6.4.2) has been used in order to allow the isolation of a genomic region which is likely to contain most of the entire cDNA sequence. On the whole set of seven filters (see figure 9.1 as an example), the use of this cDNA probe led to the identification of four positive clones which, once univocally identified through the coordinates of the filters have been requested to the UK-HGMP-RC. The four positive clones (458-D3, 394-M24, 577-C4, 662-F21) thus obtained were grown in LB media and the DNA was isolated from the overnight culture using the procedures described in the Materials and
Figure 9.1
Screening of the RPCI mouse genomic PAC library 21.
The figure shows a representative autoradiography obtained from a filter containing the genomic DNA that was probed with a 32P-labelled human DRAGO cDNA C6 fragment. Each clone is spotted in double on the filter. The arrow points the DRAGO positive clone (458–D3) which has been selected based on this screening.
Methods chapter (chapter 2.8). The isolated DNA was then digested with
*BamH*I, *EcoR*I and *Hind*III restriction enzymes and half of it loaded on
0.8% agarose gels to separate the fragments of different length. Figure
9.2A, shows fragments of the most representative clone (458-D3) digested
with the restriction enzymes. The gel was blotted overnight to nylon filter
and hybridised with 3 probes corresponding to the human exon 1, human
exon 3 and human exon 5 to identify the restriction fragments of the
genomic sequence which presumably contained exon 3, 4 and 5. The
results of the hybridisation are shown in figure 9.2B, from which one can
deduce that few digested fragments gave positive hybridisation and hence
contained the sequence of DRAGO used to hybridise. From these
experiments a DNA fragment of approximately 20-23 Kb obtained from
clone 458-D3 after digestion with *EcoR*I, which seemed to give positive
hybridisation with both exon 3 and 5, was isolated for further
characterisation. This DNA fragment was in fact subcloned in the *EcoR*I
site contained in the multiple cloning site of the pBS plasmid. The DNA
inserted was then sequenced using the primer T7, the sequence of which
was upstream the multiple cloning site contained in the plasmid. The
obtained sequence (of 696 bp–figure 9.3A) was aligned and matched with
the mouse genomic sequences present in the NCBI gene bank database.
A complete overlap was found with a genomic sequence located upstream
to and partially overlap the exon 3 of DRAGO cDNA sequence (Fig. 9.3B).
The mouse PAC fragment isolated presumably contained exon 3, 4 and 5.
Therefore the further 10 kb starting from the T7 primer of the 20-23 kb
Figure 9.2
Southern Blot from the genomic 458–D3 clone from the RPCI mouse PAC library 21. Panel A. Ethidium bromide staining of the gel. DNA isolated from the clone was digested with BamHI (B) EcoRI (E) and HindIII (H), resolved on agarose gel. M1 is the λ DNA/HindIII marker 2, M2 is the 1 Kb DNA molecular weight marker. Panel B. Autoradiography of the gel transferred to a nylon membrane and hybridized with 32P–labelled DRAGO probes containing exons 1, 3 and 5 probes. Numbers on the left are derived from M1 molecular weight markers. The arrow point to the 23–Kb fragment of the DRAGO clone digested with EcoRI isolated for further study.
Figure 9.3

Partial sequence of the 23–Kb EcoRI fragment isolated from the 458–D3 mouse genomic clone and subcloned in the EcoRI site of pBluescript SK II vector. The sequence, obtained using the T7 primer of the plasmid (panel A), partially overlap the exon 3 of DRAGO cDNA sequence as schematically depicted in panel B. Starting from the T7 primer the further 10 Kb of the 23–Kb EcoRI fragment were sequenced, revealing to comprise exons 3–5 and to share high level of homology with human exons sequences.
EcoRI fragment were sequenced. By sequence alignment, a high level homology to human exons 3, 4 and 5 sequences within the EcoRI fragment was found, consistently with previously observation. But the interesting thing was that even the intronic regions were very close between the two species.

9.3 Targeting vector construction

For the construction of the targeting vector for the replacement of the region comprising exon 3 to 5, the first step was the construction of the Neo cassette for selection of the further positive events of recombination. This was performed by inserting the FRT linker at the 3' of the NEO gene and consequently the loxP-FRT linker upstream the NEO-FRT. The loxP and FRT are sites for specific recombinases. The second step was the insertion of the selection cassette in the intronic region upstream the region to delete, that is the intron 2. For this purpose the DNA from mouse PAC genomic clone 458-D3 was digested by several restriction enzymes (BamHI, EcoRI, HindIII, KpnI, PstI, Scal, SpeI, XbaI and Xhol). After Southern blot analysis using the exon 3 probe (Fig. 9.4A), a smaller 2 Kb PstI fragment has been subcloned in pZErO-2 (invitrogen) vector and sequenced, revealing to contain mostly the intronic region upstream the exon 3. The selection cassette was therefore inserted in the unique MfeI site present in intron 2 of the PstI fragment (Fig. 9.4B). The second step was aimed at the insertion of the second LoxP site for specific recombinase in the long homology arm, downstream to the exon 5.
Figure 9.4
Targeting vector construction.
Panel A. Southern blot analysis of the mouse PAC genomic clone 458–D3. DNA extracted from the clone was digested with BamHI (lane 1), EcoRI (lane 2), Hind III (lane 3), Kpn I (lane 4), Pst I (lane 5), Sac I (lane 6), Spe I (lane 7), Xba I (lane 8) and Xho I (lane 9), separated on agarose gel, blotted onto a nylon filter and hybridised with human DRAGO exon 3 fragment. A 2 Kb Pst I fragment was isolated and subcloned in pZErO–2 vector. Panel B. the selection cassette was inserted in the unique MfeI site upstream of exon 3 in the Pst I fragment. Panel C. the loxP site was inserted in the Thill I site downstream the exon 5. Panel D. the selection cassette was excised from the PstI fragment by EcoRI/SspI digestion and ligated to the EcoRI/EcoRV fragment to get the targeting vector.
Two loxP sites, oriented in same sense for efficient Cre excision, were inserted in the Tth111I site, downstream the exon 5 (Fig. 9.4C). The final construct was confirmed by sequencing.

The final step was the extraction of the selection cassette from the PstI fragment in which it was subcloned by EcoRI/SspI digestion and ligated to the EcoRl/EcoRV fragment containing the other loxP site. The right orientation of the constructs were checked by DNA sequencing. The resulting targeting vector is represented in figure 9.4D.

9.4 Generation of KO mice

ES cells were then electroporated with the final construct and positive clones selected were screened for homologous recombination event by PCR and Southern blot. Positive ES cell clones were electroporated with a Cre-expressing plasmid to carry out an in vitro Cre-mediated deletion of the targeted region. Positive Cre-excision events specifically at the targeted locus were then screened by PCR and Southern blot. This in-vitro Cre-mediated deletion of the targeted region in ES cell clones transiently expressing the Cre recombinase could isolate only one clone which underwent to a complete Cre-mediated excision. This clone was then injected into 42 C57BL/6 blastocysts and reimplanted into 3 CD1 pseudo-pregnant females giving 1 male chimera at 100% and 1 male chimera at 90% chimerism among 12 pups. Those male chimeras were then crossed with 2 wild-type C57BL/6 females each, giving rise to two heterozygous female carrying the floxed allele (with the recombinase specific sites).
These females were bred with a male mouse expressing ubiquitously CRE recombinase under control of CMV promoter. Similarly the male 100% chimera was crossed with 2 female mice expressing ubiquitously CRE recombinase under control of CMV promoter. The F1 generation resulted to be partially Cre-excised DRAGO animals. Among them, the animals with 100% of Cre-mediated excision event were bred with Cre-expressing mice. The second breeding (F2) gave rise to HE DRAGO KO animals, showing a 100% of Cre-mediated deletion of DRAGO targeted region. These were crossed (F3) to generate KO mice. F3 animals were genotyped by PCR and Southern Blotting. Representative results of the screening are shown in figure 9.5.

9.5 DRAGO-null mice status

Homozygously deleted mice are viable and fertile. The male/female ratio is in the expected proportion from breeding of HE mice. Macroscopically they do not present alterations. As an indication of the healthy status of the homozygous (HO) KO mice their weight has been measured and compared to that of WT or HE KO mice and shown in figure 9.6.

9.6 Isolation of MEF and growth rate characterisation

Embryo fibroblast cultures were prepared from 12-15 day embryos derived from either DRAGO HO KO crosses or WT mice crosses. Nine hundred thousand cells were plated in T75 culture flasks and were passaged at
Figure 9.5.

Panel A. Screening by PCR of the animals generated by HE breeding (F3), using GW722/GW723 primers, to identify the allele with the Cre-mediated excision of DRAGO exon 3 to 5. The band 10–Kb corresponding to the wt allele is often absent due to the competition of the more efficient amplification of the 3.6 Kb band. Results obtained are illustrated for 14 animals (lanes 2 to 15). Lanes 1 and 16 are the negative and the positive (wt DNA) controls respectively. The HE versus HO genotyping were obtained by Southern Blotting (Panel B). The genomic DNA digested by EcoNI was hybridised with a 3' probe designed by Genoway, in order to screen the wt allele (10.4 Kb band) and the allele with the excision of DRAGO exons 3 to 5 (4.1 K band). Results obtained are illustrated for 12 only animals (lanes 17 to 18). Lane 29 is the wt DNA. MW is the molecular weight. Representative HO animals are highlighted by an asterisk.
Figure 9.6
Body weight of KO HO male and female mice, generated from HO x HO breeding, and of wild-type, KO HO and HE mice derived from HE x HE breeding.
Figure 9.7
Growth curve of DRG−/− and DRG+/+ MEFs cultures at different passages.

Panel A. Growth curve of DRG−/− (□) compared to DRG+/+ (▲) at culturing passage 3. The DRG−/− cells (doubling time 29.43 hours) divided twice and half as rapid as DRG+/+ cells.

Panel B. Growth curve of DRG−/− (□) at culturing passage 57 compared to DRG+/+ (▲) at culturing passage 65. At late passages, wild-type and KO HO cells grew similarly with a doubling time around 12 hours.
these densities every 3 days. After the first passage in vitro both DRAGO.HO KO and WT MEF were cryopreserved. For studies of early passage embryo fibroblasts, comparative growth rates was defined with cells at passage 3. The results indicated that DRAGO −/− cells grew more rapidly that DRAGO +/+ cells. The cell doubling times, calculated from early time points of this curve were 29, 43 hours for the DRAGO −/− and 79 hours for the wild-type cells meaning that at early passages, the HO KO MEF divided twice and a half as fast as the WT (Fig. 9.7A). After few passages the growth rate dramatically dropped down till around the passage 20 when both DRAGO −/− and DRAGO +/+ MEF cell lines spontaneously immortalised. At late passages (65P for the WT and 58P for HO KO embryo fibroblast) the WT MEF grew similarly to KO HO cells with a doubling time around 12 hour and 14 hour respectively for WT and HO KO cells (Fig 9.7B).

9.7 Response of MEF to UV and X rays

Both DRAGO −/− and DRAGO +/+, plated on six-well plates were treated with either UV or X rays at different doses. Seventy-two hours after treatment, plates were washed and stained with crystal violet evidencing that both WT and HO KO cells responded to treatments with no differences. The response to UV and X rays have been reported as a growth curve relative to controls (untreated cells) in figure 9.8. These results were confirmed by other experiments conducted with different doses.
Figure 9.8
UV (upper panel) and X rays (lower panel) treatments. Response of DRG+/+ MEF (○) and DRG—/— MEF (■) has been expressed as cellular growth relative to control (untreated) cells.
9.8 Response of MEF to drug treatment

MEFs were treated with several drugs, most of them were tested on different cells lines showing to induce the increase of DRAGO gene expression. Plated on 24-well plates, both DRAGO −/− and DRAGO +/+ MEFs were treated 24 hours after seeding with 5-FU, CPT, DDP, DX, PS341, taxol and VP-16. Seventy–two hours after treatment, cells were washed and stained with crystal violet. The treatment with DX, DDP, CPT, and etoposide (VP-16) induced a different response in the MEF cultured cells showing that the DRAGO −/− cells were more resistant than the WT MEF to drug treatment as represented in figure 9.9. The other drug treatment determined a similar response in both MEF cultured cell lines. As reported in the introduction chapter, in HCT-116 cell line DRAGO expression is induced by almost strong drug treatment, meaning that the concentrations and time able to induce the gene expression were often higher than the GI50 calculated for each drug used. In particular, 5-FU and taxol determined an increased in the expression of DRAGO in the HCT-116 cell line whether added to the cells at particularly high doses for long time (see table 1.1). Therefore, the observation discussed here are consistent with the real time data reported in the introduction chapter. It is possible that to detect a different response to 5-FU and taxol in WT and HO KO MEFs it is necessary to treat the cells with higher doses tested so far but possibly too toxic for the cells.
Figure 9.9

MEF response to drug treatments. DRG+/+ (first two rows of each plate) and DRG−/− (last two rows) cells were treated with the indicated concentration of drug for 72 hours. Staining with crystal violet was performed at the end of the treatment.
In order to understand how the DRAGO-null MEFs are relatively resistant to drug treatment, both DRAGO +/+ and DRAGO −/− nuclei have been stained with DAPI/sulphorhodamine in order to evaluate whether cells underwent to apoptosis following treatment. MEFs cells were then treated with etoposide (VP-16), DX and CPT. Two concentrations were chosen at which in the previously described experiments the highest differences between the two cell lines in response to the treatment were observed. At either 24 or 48 hours of treatment cells were stained and photographed at fluorescence microscope. As represented in figures 9.10–9.11, DRAGO −/− MEFs very rarely showed fragmentation of the nuclei, which is a characterising feature of the apoptotic cells as discussed in the introduction chapter 1.5.3. Conversely, 50% of the nuclei of the DRAGO +/+ cells resulted to be apoptotic. This effect is observable in WT cells after treatment with VP-16 and DX as shown in figures 9.10–9.11. This finding strengthens the hypothesis that DRAGO induced upon drug treatment could drive the cell to respond to stress by activating pathways leading to apoptosis.
Figure 9.10

DAPI/sulphorhodamine staining of MEF DRG+/+ (upper panel) and DRG−/− (lower panel) after treatment with VP−16 5 µM for 24 hours (left panel) compared to the corresponding untreated cells.
Figure 9.11
DAPI/sulphorhodamine staining of MEF DRG+/+ (upper panel) and DRG−/− (lower panel) after treatment with doxorubicin 0.5 μM for 24 hours (left panel) compared to the corresponding untreated cells.
9.10 Discussion

The determination of the cellular function of DRAGO gene protein product was certainly challenging for the difficulties encountered related to the fact that its expression was associated to a strong growth suppressive effect. With the generation of KO mice, most of the hypothesis derived from previous results could be proven. DRAGO-null mice, generated in collaboration with Genoway, are viable, fertile and do not present any macroscopically evident alteration. No experiments on mice to assess the response to genotoxic insults such as X rays or drug treatment have been conducted as yet although they have been planned to be carried out in the near future.

The experiments for the evaluation of the genotoxic insults, such as X and UV radiation or drug treatment were performed on mouse embryo fibroblast cultured cells isolated from either DRAGO +/+ or DRAGO −/− mice. Those cells show a similar response to UV and X rays treatment. While there was no indications regarding the influence of X rays on DRAGO induction, by real time PCR no increase in the expression level of DRAGO was measured in cells treated with UV radiation (see introduction chapter 1.7.1). Therefore, at least for the UV radiation, MEF response to treatment is consistent with the experimentally collected data reported in the introduction chapter.

Conversely, upon drug treatment DRAGO −/− cells were in general less sensitive than the DRAGO +/+ cells. Moreover, the WT DRAGO MEFs
showed to undergo apoptosis in contrast to the DRAGO-null cells which less frequently had nuclei fragmentation. This ultimate observation strengthens the hypothesis that DRAGO gene, when induced in cells upon stresses and DNA damage could activate a series of steps ultimately leading to cellular death by apoptosis.
CHAPTER 10

GENERAL DISCUSSION
The overall aim of the present thesis was the characterisation of a new gene named DRAGO (DRugs Activated Gene Overexpressed) identified as a p53-inducible gene by differential expression analysis in cells following genotoxic insults. The hypothesis that DRAGO is a transcriptional target for p53 apoptosis control conferred particular relevance to this work. Being DRAGO a previously uncharacterised gene, the establishment of DRAGO as a mediator of p53–dependent apoptosis could add a novel aspect to the understanding of the mechanism by which p53 physiologically controls cell death, the essential function for its tumor suppressor activity.

The newly identified gene sequenced matched with a cDNA cloned sequence (named KIAA0247) that had been submitted to Genbank databases, but the function of the gene product was unknown. From tissues expression analyses, the gene was found to be ubiquitously expressed at a very low level. From preliminary experimental results collected in my lab, the gene was overexpressed to treatment with DNA damaging agents, at doses and times of treatment were significantly higher than the drugs GI50 established for administered drugs (see table 1.1). Moreover upon stress, the expression of DRAGO was induced after 24 hours following treatment. This evidence suggested that DRAGO could be considered as a late rather than immediate p53–dependent gene activated in response to treatment.

The characterisation of this newly identified gene started with the description of the molecular organisation of the gene. The full cDNA of
5,338 bp had already been isolated and sequenced by colleagues of the Molecular Pharmacology Laboratory of the Department of Oncology at the Mario Negri institute. As reported in chapter 3.2, the 5,338-bp cDNA is the result of the junction of 6 exons. The coding region of the putative 303-aminoacid protein, deduced from the nucleotide sequence, is comprised between exon 2 and the first 26 bases of exon 6. What has to be underlined is the peculiar gene structure, which is characterised by the first two very long introns, about 45-48 kb long, and by the presence of a 4-kb 3'UTR. The unusual length of those regions could imply an involvement in the regulation of the gene at post-transcriptional/translational levels. The 3'UTR-sequence in fact contains several AU and CU-rich regions which are known to be involved in the degradation/stability of mRNA. Moreover, a recently collected observation in my lab, highlights the presence in the same region of sequences which can be specifically bound by at least two miRNAs. As reported in the literature, the miRNAs are small regulatory non–coding RNAs of 19–28 nt in length, which are derived from double–stranded RNA (dsRNA) and can induce gene silencing (post–transcriptional or transcriptional) through specific base–pairing with target molecules in a number of eukaryotes (from nematodes, plant, mammals). It would be interesting, therefore, to evaluate the expression of a reporter gene which is measurable like luciferase, fused to the DRAGO 3'UTR, after treatment with the miRNAs, the specific target regions of which were identified. This experiment, together with the discovery of putative proteins determining the stability of
the mRNA, are some of those planned to be done on the basis of the results of the studies presented here.

As already discussed, in chapter 3.4, the intronic region might contain cryptic ATGs which, by alternative splicing, could give rise to isoforms of the protein. These isoforms could be putatively expressed also in a tissue-specific fashion, therefore the above mentioned intronic region might also include cis-regulatory element together with binding site for tissue-specific transcription factors. It has to be underlined that there is a unique polyadenylation signal, ATTAAA, located at 20 bp upstream of the stop codon. Therefore, the putative isoforms which share the same stop codon, would have another promoter likely comprised in the above mentioned intronic regions. In the chapter 4.2 to 4.7, the analysis of a theoretical promoter region of the gene is reported. The data indicate that p53 transcriptionally controls DRAGO expression, consistently with the results so far collected, even though for the putative promoter regions isolated, p53 only weakly induced the gene. The interesting findings reported here regard p73 and its isoforms, particularly p73β and γ, which induce DRAGO more efficiently than p53. As already discussed, other genes are better activated by p73 than p53. Nevertheless, DRAGO could represent an additional downstream gene of both p73 and p53. The fact that DNp73 acts in a synergising manner with p53 and p73 different isoforms to induce DRAGO expression adds complexity to the numerous mechanisms so far hypothesised to control the expression of the gene. The promoter analysis is not complete and needs to be supported with experimental tests aimed
at defining the DRAGO regulatory regions bound by p53 and p73 isoforms. It is also particularly important to verify whether the sequences tested for promoter activity are really those controlling DRAGO transcription. Therefore the analysis of intronic region should define the binding motif for transcription factors implicated for instance in tissue specific expression of DRAGO, but in particular for p73 isoforms and p53. The search for putative p53, p73 and its isoforms responsive elements should also be address to the 7-Kb sequence, which is located upstream to the 3.8-kb region and is part of the isolated 10,735-bp fragment (see Fig. 4.1). The sequential portions of the 7-Kb region should also be analysed with the luciferase assay.

On the basis of the observed better induction of DRAGO gene by p73 (and its isoforms) than p53, it would be also interesting measuring by real-time PCR the induction of DRAGO at the mRNA level in p73−/− cells after treatments with drugs (i.e 5-FU and Taxol) which are able to induce DRAGO mRNA in p53+/+ and not in p53−/− (as reported in chapter 1.7.1). As reported in chapter 5.2, DRAGO was not found to be mutated in any of the experimental systems tested, including tumor cell lines sensitive or resistant to anticancer drugs, and clinical human samples. This result is not surprising considering that p53 is frequently mutated in human cancer, thus not necessarily meaning that it requires additional mutations of its downstream effectors. It is also to note that the gene might not be mutated because it can be down-regulated at the mRNA level, as widely discussed above.
In chapter 6, the functional role of the DRAGO gene has been investigated in *in vitro* systems represented by cultured cell lines of different origin (bacterial, human and murine). The data obtained on the effect of ectopic overexpression of DRAGO indicate that the gene has a strong inhibitory effect on cellular growth, preventing the formation of stably expressing cellular clones. At a morphological level, the overexpression of the gene, under the control of a strong viral promoter, induces the formation of a large number of vacuoles to cause the disruption of the membrane leading to the extracellular release of cytosolic material. It is important to stress that whenever overexpressed under the control of a strong constitutive promoter, the level of induction is probably much higher than to the induction level measured by real time PCR following a genotoxic insult. Therefore, the morphological alteration induced by overexpression of the transfected DRAGO might not be modelling the physiological situation. It is important to verify if DRAGO gene product whenever expressed after DNA damage localises in vesicles thus leading to the membrane desruption. Moreover, it has also to be formally proved that the morphological effects observed are really due to the overexpression of the gene by double staining the cells to verify that the plasmid has entered the cells, even if all the results would suggest this. The results reported in chapter 6.4, however, indicate that probably the protein conformation or stability is strictly required for the growth suppressive activity. Cells, in fact, can tolerate the expression of mutant proteins lacking a few aminoacids deleted from the C-terminus. Since the peptides corresponding to those
aminoacids, on the basis of the results reported here, seem not to affect cellular growth, it is possible that the deletion of the same aminoacids could determine a loss of the toxic effect by compromising the stability or the correct folding of the protein. However, to prove that the peptides have no suppressive effects on cells after treatment, it is necessary to show that the peptides have indeed entered the cells, by either doing a fusion peptide with the tat epitope (which is known to favour the entrance of peptides into the cells) or co-transfecting small amounts of FITC fusion peptides to monitor if peptides have entered the cells by fluorescence.

The computational analysis of the aminoacid sequence deduced from the cDNA of the protein (chapter 7) reveals that the DRAGO protein is likely a transmembrane protein. The theoretical prediction has been supported by experimental evidences reported in chapter 7.4 where it has been seen that the protein localises to membrane structures. However it is unclear in which membrane of the cell the protein positions itself. It is to note that the immunofluorescence experiments showing the localisation to membranes of the protein were performed on deleted proteins generated as reported in chapter 6. The deletion mutants were generated by progressive deletions from the N-terminus and C-terminus in order to preserve at least one of the two transmembrane domains to verify the protein can localise at the membrane. However, it is important to detect the wt protein by immunofluorescence, too, in order to support the hypothesis that DRAGO is really a membrane-bound protein.

The generation of DRAGO-null mice would help in answering most of the
unsolved questions identified so far. The fact that KO mice are viable, macroscopically normal and fertile, suggests that DRAGO is unlikely to play a crucial role in development. Embryo fibroblasts cultured cells isolated from KO and WT mice embryos would be important in vitro experimental systems. The results reported in chapter 9 finally demonstrated that the absence of the DRAGO gene, as in DRAGO−/− MEFs, renders the cells relatively resistant to several anticancer agents, with different mechanisms of action, by suppressing the ability of the cells to undergo apoptotic death. In contrast, WT MEFs were relatively sensitive to the anticancer agents used to treat KO MEFs, dying by apoptosis (chapters 9.8 and 9.9). These results lead to important conclusions. First, DRAGO is a newly identified p53/p73 target gene involved in the control of growth and apoptosis. These observations are also supported by DNA microarray analyses of p53 target genes involved in apoptosis (342, 343) revealing that KIAA0247/DRAGO was one of the apoptotic genes activated in a p53–dependent fashion. Second, DRAGO is a gene induced after high doses of anticancer drugs, suggesting that only when cells are subjected to irreparable genotoxic damage is DRAGO induced to execute the suicide of the damaged cells. It is also important to underline the necessity to confirm the direct role of DRAGO on the drug treatment induced apoptosis by knock down of the gene in DRAGO+/+ cells with the use of synthetic siRNA (small–interfering RNA) duplexes against DRAGO, to observe if cells acquire resistance to DNA damage and still undergo apoptosis. Similarly to miRNAs, siRNAs
are regulatory non-coding short RNAs derived from dsRNAs, which, through perfect basepairings with a sequence in the target mRNA, induce the cleavage of the target mRNA, thus silencing the corresponding gene expression at a post-transcriptional level. The isolated DRAGO−/− and DRAGO +/- MEFs cultured cells would be useful for immunofluorescence experiments aimed at investigating the subcellular localisation of the protein by using a specific staining to distinguished the different cellular compartments. Other experiments planned to be performed on the basis of this work includes the physiological and pathological response to drug and radiation treatments of sensitive tissues, such as thymus, spleen and small intestinal epithelium. With this work the functional role of DRAGO protein has been initiated and further studies identified to explore more fully the specific mechanisms in which DRAGO is involved in the apoptotic response. This important issue remains to be solved with future experiments taking advantage of the DRAGO-null mouse line generated. Nevertheless, DRAGO might be considered a novel potential target for the development of new therapeutic anticancer agents.
CHAPTER 11

REFERENCES

287. Osada, M., Ohba, M., Kawahara, C., Ishioka, C., Kanamaru, R., Katoh, I., Ikawa, Y., Nimura, Y., Nakagawara, A., Obinata, M., and

279

303. Ahomadegbe, J. C., Tourpin, S., Kaghad, M., Zelek, L., Vayssade, M., Mathieu, M. C., Rochard, F., Spielmann, M., Tursz, T., Caput, D., Riou, G., and Benard, J. Loss of heterozygosity, allele silencing and decreased expression of p73 gene in breast cancers:
prevalence of alterations in inflammatory breast cancers.

336. Tullo, A., Mastropasqua, G., Bourdon, J. C., Centonze, P., Gostissa, M., Costanzo, A., Levrero, M., Del Sal, G., Saccone, C., and Sbisa, E. Adenosine deaminase, a key enzyme in DNA...

CHAPTER 12

APPENDICES
12.1 List of abbreviations

<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>3-MeAde</td>
<td>3-methyladenine</td>
</tr>
<tr>
<td>53BP1</td>
<td>p53 binding protein 1</td>
</tr>
<tr>
<td>5-FU</td>
<td>5-fluorouracil</td>
</tr>
<tr>
<td>AD</td>
<td>activator domain</td>
</tr>
<tr>
<td>AIF</td>
<td>apoptosis inducing factor</td>
</tr>
<tr>
<td>ALL</td>
<td>acute lymphoblastic leukaemia</td>
</tr>
<tr>
<td>APAF-1</td>
<td>apoptotic protease-activating factor 1</td>
</tr>
<tr>
<td>AT</td>
<td>annealing temperature</td>
</tr>
<tr>
<td>ATM</td>
<td>ataxia–telangectasia mutated gene</td>
</tr>
<tr>
<td>ATR</td>
<td>ATM–related gene</td>
</tr>
<tr>
<td>ATRIP</td>
<td>ATR-interacting protein</td>
</tr>
<tr>
<td>AUR K</td>
<td>Aurora kinase</td>
</tr>
<tr>
<td>BAI–1</td>
<td>brain-specific angiogenesis inhibitor 1</td>
</tr>
<tr>
<td>BER</td>
<td>base-excision repair</td>
</tr>
<tr>
<td>bFGF</td>
<td>basic fibroblast growth factor</td>
</tr>
<tr>
<td>BH</td>
<td>Bcl-2 homology</td>
</tr>
<tr>
<td>BLM</td>
<td>Bloom syndrome protein</td>
</tr>
<tr>
<td>bp</td>
<td>base pair</td>
</tr>
<tr>
<td>BRCA1</td>
<td>breast cancer 1</td>
</tr>
<tr>
<td>CAK</td>
<td>CDK-activating kinase</td>
</tr>
<tr>
<td>CDK</td>
<td>cyclin-dependent kinases</td>
</tr>
<tr>
<td>Abbreviation</td>
<td>Full Form</td>
</tr>
<tr>
<td>--------------</td>
<td>-----------</td>
</tr>
<tr>
<td>CFU</td>
<td>colony forming unit</td>
</tr>
<tr>
<td>clAP1</td>
<td>cellular inhibitor of apoptosis protein 1</td>
</tr>
<tr>
<td>CK</td>
<td>casein kinase</td>
</tr>
<tr>
<td>CMV</td>
<td>cytomegalo virus</td>
</tr>
<tr>
<td>CPT</td>
<td>camphotecin</td>
</tr>
<tr>
<td>dam</td>
<td>DNA adenine methylation</td>
</tr>
<tr>
<td>DBD</td>
<td>DNA-binding domain</td>
</tr>
<tr>
<td>dcm</td>
<td>DNA cytosine methylation</td>
</tr>
<tr>
<td>DD</td>
<td>death domain</td>
</tr>
<tr>
<td>DDP</td>
<td>cisplatinum</td>
</tr>
<tr>
<td>DIABLO</td>
<td>direct IAP-binding protein with low pl</td>
</tr>
<tr>
<td>DISC</td>
<td>death-inducing-signalling-complex</td>
</tr>
<tr>
<td>DMSO</td>
<td>dimethyl sulfoxide I</td>
</tr>
<tr>
<td>DNA</td>
<td>Deoxyribonucleic acid</td>
</tr>
<tr>
<td>DNA-PK</td>
<td>DNA-dependent protein kinase</td>
</tr>
<tr>
<td>dNTPs</td>
<td>nucleotides</td>
</tr>
<tr>
<td>DR</td>
<td>death receptor</td>
</tr>
<tr>
<td>DRAGO</td>
<td>DRugs Activated Gene Overexpressed</td>
</tr>
<tr>
<td>DSB</td>
<td>double-strand breaks</td>
</tr>
<tr>
<td>dsRNA</td>
<td>double-stranded RNA</td>
</tr>
<tr>
<td>DX</td>
<td>doxorubicin</td>
</tr>
<tr>
<td>EndoG</td>
<td>endonucleases G</td>
</tr>
<tr>
<td>ER</td>
<td>endoplasmatic reticulum</td>
</tr>
<tr>
<td>GFP</td>
<td>green fluorescent protein</td>
</tr>
<tr>
<td>Abbreviation</td>
<td>Definition</td>
</tr>
<tr>
<td>--------------</td>
<td>------------</td>
</tr>
<tr>
<td>GI50</td>
<td>growth inhibitory concentration by 50%</td>
</tr>
<tr>
<td>GST</td>
<td>Glutathione S-transferase</td>
</tr>
<tr>
<td>H2AX</td>
<td>Histone-2A family, member X</td>
</tr>
<tr>
<td>HAT</td>
<td>histone acetyl-transferase</td>
</tr>
<tr>
<td>HAUSP</td>
<td>herpesvirus associated ubiquitin-specific protease</td>
</tr>
<tr>
<td>HDAC</td>
<td>histone deacetylase</td>
</tr>
<tr>
<td>HE</td>
<td>heterozygous</td>
</tr>
<tr>
<td>HEBS</td>
<td>HEPES-Buffered Saline</td>
</tr>
<tr>
<td>HH</td>
<td>head-to-head</td>
</tr>
<tr>
<td>HJ</td>
<td>Holliday junctions</td>
</tr>
<tr>
<td>HO</td>
<td>homozygous</td>
</tr>
<tr>
<td>HPV</td>
<td>human papillomavirus</td>
</tr>
<tr>
<td>HR</td>
<td>Homologous recombination</td>
</tr>
<tr>
<td>HT</td>
<td>head-to-tail</td>
</tr>
<tr>
<td>Htr2A</td>
<td>high temperature requirement A2</td>
</tr>
<tr>
<td>IAP</td>
<td>inhibitors of apoptosis proteins</td>
</tr>
<tr>
<td>IPTG</td>
<td>isopropyl β-D-thiogalactoside</td>
</tr>
<tr>
<td>IR</td>
<td>ionizing radiation</td>
</tr>
<tr>
<td>JNK</td>
<td>Jun N-terminal kinase</td>
</tr>
<tr>
<td>Kb</td>
<td>kilobase pair</td>
</tr>
<tr>
<td>KO</td>
<td>knock-out</td>
</tr>
<tr>
<td>LB</td>
<td>Luria–Bertani</td>
</tr>
<tr>
<td>maspin</td>
<td>mammary serine protease inhibitor</td>
</tr>
<tr>
<td>MCS</td>
<td>multiple cloning site</td>
</tr>
<tr>
<td>Acronym</td>
<td>Description</td>
</tr>
<tr>
<td>----------</td>
<td>---</td>
</tr>
<tr>
<td>MDC1</td>
<td>mediator of DNA damage chekpoint 1</td>
</tr>
<tr>
<td>MDM2</td>
<td>mouse double minute 2</td>
</tr>
<tr>
<td>MEF</td>
<td>mouse embryo fibroblasts</td>
</tr>
<tr>
<td>MMR</td>
<td>mismatch repair</td>
</tr>
<tr>
<td>MPG</td>
<td>3-MeAde DNA-glycosylase gene</td>
</tr>
<tr>
<td>mRNA</td>
<td>messenger ribonucleic acid</td>
</tr>
<tr>
<td>MSH2</td>
<td>MutS homologue-2</td>
</tr>
<tr>
<td>NBS1</td>
<td>Nijmegen breakage syndrome-1</td>
</tr>
<tr>
<td>NER</td>
<td>nucleotide-excision repair</td>
</tr>
<tr>
<td>NES</td>
<td>nuclear exportation signal</td>
</tr>
<tr>
<td>NHEJ</td>
<td>Non-Homologous End-Joining</td>
</tr>
<tr>
<td>NLS</td>
<td>nuclear localization signal</td>
</tr>
<tr>
<td>NO</td>
<td>nitric oxide</td>
</tr>
<tr>
<td>OD</td>
<td>oligomerization domain</td>
</tr>
<tr>
<td>P/CAF</td>
<td>p300/CBP-associated HAT</td>
</tr>
<tr>
<td>p53BS</td>
<td>p53 binding site</td>
</tr>
<tr>
<td>p53RE</td>
<td>p53 responsive element</td>
</tr>
<tr>
<td>PAC1</td>
<td>pro-apoptotic phosphate</td>
</tr>
<tr>
<td>PAGE</td>
<td>polyacrylamide gel electrophoresis</td>
</tr>
<tr>
<td>PAI–1</td>
<td>plasminogen activator inhibitor 1</td>
</tr>
<tr>
<td>pBS</td>
<td>pBluescript–SKII+</td>
</tr>
<tr>
<td>PBS</td>
<td>phosphatase buffer saline</td>
</tr>
<tr>
<td>PCR</td>
<td>polymerase chain reaction</td>
</tr>
<tr>
<td>PERP</td>
<td>p53 apoptosis effector related to PMP–22</td>
</tr>
<tr>
<td>Acronym</td>
<td>Full Name</td>
</tr>
<tr>
<td>---------</td>
<td>-----------</td>
</tr>
<tr>
<td>PI</td>
<td>phosphatidylinositol</td>
</tr>
<tr>
<td>PI3K</td>
<td>phosphatidylinositol 3- kinase</td>
</tr>
<tr>
<td>PIDD</td>
<td>p53-induced protein with a death domain</td>
</tr>
<tr>
<td>PIG</td>
<td>p53-induced gene</td>
</tr>
<tr>
<td>PIKK</td>
<td>PI3K-like protein kinases</td>
</tr>
<tr>
<td>PIP₂</td>
<td>phosphatidylinositol 4,5-bisphosphate</td>
</tr>
<tr>
<td>PIP₃</td>
<td>phosphatidylinositol 3,4,5-triphosphate</td>
</tr>
<tr>
<td>PKC</td>
<td>protein casein C</td>
</tr>
<tr>
<td>PML</td>
<td>promyelocytic leukaemia</td>
</tr>
<tr>
<td>PRD</td>
<td>proline-rich region</td>
</tr>
<tr>
<td>PUMA</td>
<td>p53 up-regulated modulator of apoptosis</td>
</tr>
<tr>
<td>RNA</td>
<td>ribonucleic acid</td>
</tr>
<tr>
<td>ROS</td>
<td>reactive oxygen species</td>
</tr>
<tr>
<td>RPA</td>
<td>replication protein A</td>
</tr>
<tr>
<td>RTS</td>
<td>Rothmund-Thomson syndrome</td>
</tr>
<tr>
<td>SAM</td>
<td>sterile alpha motive domain</td>
</tr>
<tr>
<td>SCE</td>
<td>sister chromatid exchange</td>
</tr>
<tr>
<td>SDS</td>
<td>sodium dodecyl sulphate</td>
</tr>
<tr>
<td>Smac</td>
<td>second mitochondria-derived activator of caspases</td>
</tr>
<tr>
<td>SMC1</td>
<td>structural maintenance of chromosomes 1</td>
</tr>
<tr>
<td>SSCP</td>
<td>single strand conformation polymorphism</td>
</tr>
<tr>
<td>ssDNA</td>
<td>single-strand DNA</td>
</tr>
<tr>
<td>TA</td>
<td>transactivation domain</td>
</tr>
<tr>
<td>TAF</td>
<td>TBP-associated factor</td>
</tr>
<tr>
<td>Abbreviation</td>
<td>Description</td>
</tr>
<tr>
<td>--------------</td>
<td>-------------</td>
</tr>
<tr>
<td>TBP</td>
<td>TATA box-binding protein</td>
</tr>
<tr>
<td>TD</td>
<td>tetramerization domain</td>
</tr>
<tr>
<td>TNF-R</td>
<td>tumor necrosis factor receptor</td>
</tr>
<tr>
<td>TRAIL</td>
<td>TNF-related apoptosis-inducing ligand</td>
</tr>
<tr>
<td>TSP-1</td>
<td>thrombospondin-1</td>
</tr>
<tr>
<td>TT</td>
<td>tail-to-tail</td>
</tr>
<tr>
<td>UK-HGMP-RC</td>
<td>UK Human Genome Mapping Project Resource Centre</td>
</tr>
<tr>
<td>USP</td>
<td>ubiquitin-specific protease</td>
</tr>
<tr>
<td>UTR</td>
<td>untranslated region</td>
</tr>
<tr>
<td>UV</td>
<td>ultra violet</td>
</tr>
<tr>
<td>UV-DDB</td>
<td>UV-damage DNA-binding proteins</td>
</tr>
<tr>
<td>WRN</td>
<td>Werner Syndrome protein</td>
</tr>
<tr>
<td>WT</td>
<td>wild-type</td>
</tr>
<tr>
<td>XIAP</td>
<td>x-linked inhibitor of apoptosis protein</td>
</tr>
<tr>
<td>XPC</td>
<td>xeroderma pigmentosum complementation group C</td>
</tr>
<tr>
<td>YY1</td>
<td>Yi Yang 1</td>
</tr>
</tbody>
</table>