Augmented Reality Smartphone Compasses: Opportunity or Oxymoron?

How to cite:

Version: Poster

Link(s) to article on publisher’s website:
http://dx.doi.org/doi:10.1145/3341162.3343777
Augmented Reality Smartphone Compasses: Opportunity or Oxymoron? David S. Bowers The Open University, UK

So, which way **IS** North?

- **The Issue**
 - Smartphone and tablet Compasses use magnetometers to sense direction
 - Like any compass, a magnetometer measures only the local magnetic field inside the device
 - Which is subject to magnetic influences (errors)
 - The error for a calibrated device varies with the local magnetic field
 - A deviation curve shows the error against heading, typically combining a linear offset with sinusoidal components

- **The Experiment**
 - 12 markers were placed around the edge of a field. At the centre of the field is a stool. Participants sit on the stool and use a smartphone compass to measure the direction to each marker in turn.
 - 17 participants, each with a different device, completed the task 4 times

- **The Results**
 - The large graph below combines the deviation curves for all 17 devices
 - “Heading” is the orientation of the device
 - The data for each device is shown beside its graph
 - “offset” - linear error
 - “amp” - amplitude of deviation curve
 - “rmse” - root mean square error after recentering to correct offset

- **The Implications**
 - Deviation errors in the compass used to sense smartphone orientation will mean that AR markers may be positioned incorrectly
 - This is usually avoided by registration of the image against (known) object maps
 - Almost by definition, people will use AR navigation apps in unfamiliar territory
 - If registration is not possible, e.g., in open country or on the sea, markers will be unreliable
 - Users need to understand the Apps’ limitations
 - Consider the following mock-up of an AR screen

- **Summary**
 - All tested devices display a significant deviation curve
 - Maximum mean error (offset + amplitude) from 6 to 10 degrees
 - Uncalibrated errors are typically much larger
 - Calibration appears not to persist
 - Different Apps on a device may suffer different deviation curves
 - This must impact on the degree to which they can be trusted

An iPad 2 and a 2018 iPad running the same AR compass app (CompassEye) in “plan” mode. They’re side by side, but the displayed orientations differ by 61 degrees. Which one is correct? And the difference isn’t caused simply by the magnets in one iPad affecting the other...!