Chalcophile element processing beneath a continental arc stratovolcano

How to cite:

For guidance on citations see FAQs.

© 2019 Elsevier B.V.

Version: Accepted Manuscript

Link(s) to article on publisher’s website:
http://dx.doi.org/doi:10.1016/j.epsl.2019.06.017

Copyright and Moral Rights for the articles on this site are retained by the individual authors and/or other copyright owners. For more information on Open Research Online’s data policy on reuse of materials please consult the policies page.

oro.open.ac.uk
Chalcophile Element Processing Beneath a Continental Arc Stratovolcano

Daniel Cox*1, Sebastian F. L. Watt1, Frances E. Jenner2, Alan R. Hastie1, Samantha J. Hammond3

1School of Geography, Earth and Environmental Sciences, University of Birmingham, Edgbaston, Birmingham, B15 2TT, U.K.

2School of Environment, Earth and Ecosystem Sciences, Open University, Walton Hall, Milton Keynes, MK7 6AA, U.K.

*Corresponding author: DXC506@student.bham.ac.uk. School of Geography, Earth and Environmental Sciences, University of Birmingham, Edgbaston, Birmingham, B15 2TT, U.K.

Abstract

The chalcophile elements are important both in terms of their economic value and as potential tracers of magmatic processes at convergent margins. However, because of analytical difficulties, comprehensive datasets of chalcophile element concentrations for volcanic rocks are rare. Here, we present analyses of a near complete suite of chalcophile elements (S, Cu, Ag, Se, As, Sb, Sn, W, Mo, Pb, Bi, Tl, Zn, Ga, Co) for volcanic rock samples collected from a typical continental arc stratovolcano in southern Chile (Antuco). Enrichment in Pb, Bi, W, Tl, Sb and As relative to Parental-MORB indicates that these elements have been mobilised from the subducting slab into the sub-arc mantle wedge, in contrast to Cu and Ag. Very low Se concentrations suggest that Se, like S, was lost during co-eruptive degassing of the Antuco
magnas. Previous studies on oceanic arcs have demonstrated that as higher f^{O_2} subduction-related magnas ascend through the overlying lithosphere, magnetite fractionation may trigger sulfide fractionation during crystallisation. If such a process is extensive and has a sharp onset, this would result in a plummet in the Cu, Se and Ag contents of the residual melt. At Antuco, although a decrease in the Fe$_2$O$_3$(T) and TiO$_2$ concentrations at ~55 wt.% SiO$_2$ (~3 wt.% MgO) indicates magnetite fractionation, this is not associated with a corresponding drop in Cu contents. Instead, we observe a general decrease in Cu and a decrease in Cu/Ag with increasing SiO$_2$ and decreasing MgO. Furthermore, Cu/Ag in the most primitive Antuco rocks are lower than the global MORB array, indicating that the melts were sulfide saturated at an early stage in their crustal evolution. Through modelling fractional crystallisation, we show that only a minor volume (0.5 – 0.6 vol.%) of fractionating sulfide is needed to produce divergent trends in Cu and Ag, as observed in the Antuco samples. Our results show that sulfide fractionation occurred from an early stage during the crustal evolution of Antuco’s magnas. We infer that this was promoted by stalling in the lower crust, which for oxidised magnas at depths >20 km is within the sulfide stability field. However, elevated Dy$_N$/Yb$_N$ of the Antuco magnas compared to oceanic island arc magnas provides an additional, or alternate mechanism to inducing sulfide fractionation in the lower crust prior to ascent, through initial garnet fractionation. Fractional crystallisation within this depth range meant that later magnetite fractionation had only a minor impact on the partitioning behaviour of the chalcophile elements. In contrast, arc magnas transiting thinner crust may not experience sulfide saturation until a later stage in their evolution, induced by magnetite fractionation. Our results imply that convergent margin crustal thickness, and therefore the depth range of magmatic differentiation, determines the dominant control on initial magmatic sulfide saturation and therefore the primary distribution of chalcophile elements. This implies that
secondary processes are required to explain the transport and concentration of sulfides and chalcophile elements at shallower crustal levels.

Keywords: chalcophile elements, sulfide, saturation, fractionation, continental arc, Antuco

1. Introduction

The chalcophiles (e.g., Cu, Ag, Se, Pb, Bi) are an important suite of elements both in terms of their economic value and their potential to investigate magmatic processes active at convergent margins (Jenner, 2017; Jenner et al., 2010; Noll Jr et al., 1996; Richards, 2009; Sillitoe, 2010; Wilkinson, 2013). Compared to the bulk continental crust, many of the economically important chalcophile elements are extremely enriched in porphyry Cu-Au deposits that are globally associated with convergent margins (Sillitoe, 2010; Wilkinson, 2013). Because primitive subduction-related magmas are not enriched in Cu, Ag, Se or Au relative to mid-ocean ridge basalt (MORB) magmas, there has been considerable debate regarding the crustal processes that contribute to the formation of magmatic-hydrothermal ore deposits (Chiaradia, 2014; Jenner, 2017; Jenner et al., 2010; Lee et al., 2012; Matjuschkin et al., 2016; Richards, 2009; Wilkinson, 2013). For example, although there is a global association between porphyry deposits and convergent margins (Sillitoe, 2010), the spatial distribution of these deposits is sporadic (Sillitoe, 1997) and the remainder of the bulk continental crust is notably depleted in Cu, Se and Au compared to primitive arc magmas (Jenner, 2017; Lee et al., 2012). Given that the bulk continental crust has been generated at convergent margins, these observations suggest that most arc magmas are not predisposed to fuel the formation of economically viable ore deposits (Jenner, 2017).
The way in which many chalcophile elements are processed and distributed within a magmatic system and throughout the continental crust is controlled by the stability of sulfides (Chiaradia, 2014; Lee et al., 2012; Richards, 2015). The point at which a magma becomes saturated in a sulfide phase is a function of the temperature, pressure, oxygen fugacity and composition of the magma (Matjuschkin et al., 2016; Mavrogenes and O’Neill, 1999; O’Neill and Mavrogenes, 2002; Wallace and Edmonds, 2011). Geochemical studies of volcanic glasses have demonstrated that the Cu/Ag of MORB magmas remains constant following sulfide saturation, in contrast to a decreasing post-saturation Cu/Ag in arc-related magmas (Jenner et al., 2015, 2010). These varying trends have been attributed to differences in the nature of the fractionating sulfide phase during differentiation of MORB (molten sulfide) and subduction-related (crystalline sulfide) magmas (Jenner, 2017; Jenner et al., 2010). This interpretation is supported by experimental studies indicating that Cu and Ag have similar partition coefficients with respect to molten sulfide, but that Cu is more compatible in crystalline sulfide than Ag (Li and Audétat, 2015, 2012). During differentiation of oceanic convergent margin magmas, the decrease in Cu/Ag (marking sulfide saturation and fractionation of crystalline sulfide) coincides with a sharp decrease in Fe, V, Cu, Ag, S and Au (reversing the preceding trend of increasing concentrations with increasing SiO₂ and decreasing MgO), suggesting that magnetite fractionation ‘triggers’ reduction-related sulfide saturation (the ‘Magnetite Crisis’; Jenner et al., 2010) during the evolution of oceanic arc magmas (Chiaradia, 2014; Jenner, 2017). Although the ‘Magnetite Crisis’ potentially controls sulfide processing and the fate of chalcophile elements during island arc-magmatic evolution, such a mechanism has not been fully explored within a continental arc.

Despite the importance of the chalcophile elements for understanding both mantle and crustal processes, they are still a relatively under-studied suite of elements. This is partly because elements such as Se and Ag, which can be used in conjunction with Cu to place constraints.
on the timing of sulfide saturation (see Jenner, 2017, and references therein), are difficult to
analyse in both natural and experimental materials (Jenner and Arevalo, 2016). Thus, studies
of chalcophile element processing at continental arcs have focussed mainly on whole rock Cu
systematics, arguing that most arc magmas reach sulfide saturation during crustal
differentiation (Chiaradia, 2014; Jenner, 2017; Lee et al., 2012; Richards, 2015). This is
supported by observations of magmatic sulfide inclusions across a broad range of bulk
compositions in Ecuadorian arc volcanic rocks, hosted predominantly in magnetite but also in
silicate phases (Georgatou et al., 2018).

Chiaradia (2014) used Cu systematics to argue that magmas erupting through thicker crust
(>30 km) are of calc-alkaline affinity and require smaller proportions of crystallisation to
reach sulfide saturation compared to tholeiitic magmas erupting through thinner crust (<20
km), as a consequence of their higher H$_2$O and fO$_2$. This would thus influence the timing of
magnetite-triggered sulfide fractionation and the resulting drop in total Fe content and fO$_2$ of
the evolving magma. However, experimental constraints suggest an alternative explanation
(Matjuschkin et al., 2016), showing that with increased pressure, and therefore depth, the
sulfide stability field shifts to higher fO$_2$. In conjunction with this widening of the sulfide
stability field with depth, Jenner (2017) used the Cu deficit and the significantly lower Cu/Ag
of the bulk continental crust compared to mantle-derived melts to argue that continental crust
formation is dominated by the addition of magmas that fractionate high Cu/Ag sulfides at the
base of the continental crust (i.e. in a deep crustal hot zone; cf. Annen et al., 2006), prior to
magma ascent to higher crustal levels.

Alternatively, Tang et al. (2018) argue that the Fe-depleting trend (i.e., calc-alkaline series)
observed in magmas erupting through thick crust is attributable to garnet fractionation, from
magmas that have initial fO$_2$ comparable to MORB. Furthermore, Tang et al. (2018) suggest
that magmas erupting through thick continental crust inherit their high fO$_2$ (>MORB) as a
consequence of this garnet fractionation. However, the limited overlap between the garnet
stability field and the crustal depth range of magmatic differentiation (Alonso-Perez et al.,
2009) suggests that garnet fractionation is unlikely to explain the higher fO_2 of all arc
magmas, particularly those erupted on thinner crust, and high fO_2 compared to MORB
(Matjuschkin et al., 2016) appears to be a ubiquitous characteristic of arc magmas prior to the
earliest stages of their differentiation (Richards, 2015; Kelley and Cottrell, 2012). As the
solubility of S decreases with decreasing total Fe content of a magma, garnet fractionation
would promote sulfide fractionation during magmatic differentiation at high pressures.
Regardless of whether the ‘Magnetite Crisis’, a shift in the sulfide stability field with pressure
(depth), garnet fractionation, or potentially a combination of the above processes are the
‘trigger’ for sulfide saturation, there is an emerging consensus that most continental arc
volcanic rocks should fractionate sulfide in the lower crust prior to ascent. As a result,
continental arc volcanic rocks should have lower Cu/Ag than primitive arc magmas and the
entire oceanic crust, but there is a lack of reliable Cu/Ag in the literature to test this
hypothesis.

Here, we present major and trace element volcanic rock compositions from Antuco Volcano,
Chile, a typical continental arc stratovolcano, in order to characterise chalcophile behaviour
during the generation and subsequent processing of magmas through a continental arc. Bulk
compositions at Antuco span basaltic to andesitic compositions (Lopez-Escobar et al., 1981;
Martínez et al., 2018), and are interpreted to initially stall and crystallise at the base of the
continental crust (~40 km) prior to ascent and shallower crystallisation (~0.9 – 1.5 kbar [~2 –
5 km]; Martínez et al., 2018). This represents an ideal setting to test current models of
chalcophile element processing within a continental arc, which are based on inferences drawn
from oceanic arcs or datasets limited principally to Cu analyses. By generating a novel
dataset that includes a near complete suite of chalcophile elements (S, Cu, Ag, Se, As, Sb, Sn,
W, Mo, Pb, Bi, Tl, Zn, Ga, Co), we seek to refine the understanding of the controls of chalcophile element distribution in continental arcs.

2. Tectonic setting and geology of Antuco Volcano

Volcanism in the South American Andes has been divided into four zones, the Northern, Central, Southern and Austral Volcanic zones, each of which is further divided into several segments (Stern, 2004). Antuco marks the northernmost point of the central part of the Southern Volcanic Zone (SVZ, Fig. 1) (Hickey-Vargas et al., 2016; Lopez-Escobar et al., 1995). Antuco is the younger (Pleistocene – Holocene age) of a pair of stratovolcanoes (the other being the Pleistocene Sierra Velluda Volcano) that form a volcanic complex at 37.2°S (Lopez-Escobar et al., 1981; Martínez et al., 2018). The Antuco – Sierra Velluda volcanic complex forms an oblique alignment (50 - 70° E of N) to the main arc (Lopez-Escobar et al., 1995). Antuco is the smaller of the two stratovolcanoes, with a basal diameter of ~11 km, rising to 2979 metres above sea level, and an estimated volume of 62 km³ (Martínez et al., 2018).

Volcanism at Antuco has been divided into two phases – Phase 1 and Phase 2 Antuco (Fig. 1a) – separated by a westward directed, mid-Holocene sector collapse (Lopez-Escobar et al., 1981; Thiele et al., 1998) dated at 6.2 ka by Lohmar et al. (2005) and 4 ka by Clavero and Godoy (2010). Recently, Martínez et al. (2018) used a comprehensive dataset of ⁴⁰Ar / ³⁹Ar dates to further define Early (commencing at 150.4 ka) and Late (~16.3 to 6.2 ka) periods of volcanism during Phase 1. Phase 1 lavas show a slightly broader compositional range (basalt to andesite) than Phase 2 lavas (basalt to basaltic andesite) (Lohmar et al., 2005, 1999; Martínez et al., 2018).

Antuco is typical of stratovolcanoes in the SVZ, both in terms of its dimensions (Volker et al., 2011) and range of erupted compositions, but is also amongst the most isotopically
primitive volcanoes in the SVZ (Hickey-Vargas et al., 2016; Hildreth and Moorbath, 1988; Lohmar et al., 1999). Primitive rock compositions at Antuco indicate a predominantly fluid enriched, depleted-MORB mantle source, typical of the central SVZ, which has been used as an endmember to explore additional crustal-derived source enrichment further north in the SVZ (Holm et al., 2016, 2014). In a global context, the parameters defining this segment of the SVZ (Syarce et al., 2010), including a crustal thickness of 40 km (Hickey-Vargas et al., 2016), suggest that it is a representative continental arc setting. The broad range in lava compositions and previous interpretations that the Antuco magmas stalled at the base of the continental crust prior to crystallisation at lower pressures (Martínez et al., 2018), make volcanic rocks from Antuco ideal for investigating the processing and distribution of the chalcophile elements during ascent of magmas through the continental crust.

2.1. Sample descriptions

The current study made use of twenty-six volcanic rock samples (fifteen Phase 1 and eleven Phase 2 samples), each from separate lava flows or pyroclastic units, which are thus considered to represent separate eruptive events and discrete batches of magma. The location of each sample is highlighted on the map of Antuco in Fig. 1a. Petrographically, all samples have a porphyritic texture. The groundmass is generally cryptocrystalline (crystals too small to identify) and varies from light grey to dark in colour. Phenocryst phases are dominated by plagioclase (most common) and olivine, usually comprising c. 10 – 20 vol.% (all phenocrysts) of thin sections (minus vesicles; can be as great as c. 40 vol.% and as low as <<5 vol.%). Opaques and clinopyroxene phenocrysts are rare. Plagioclase phenocrysts are mostly subhedral to euhedral laths, and commonly display simple and albite twinning and oscillatory zoning. Coarse and fine sieve textured plagioclases are common across the samples. Olivine phenocrysts are usually anhedral (mostly rounded) and fractured. Glomerocrysts are observed in all sections and comprise plagioclase and/or olivine. Sample
A28-6 shows extensive Fe-oxyhydroxide alteration in both phenocryst phases and
groundmass. Brief sample descriptions are provided as Supplementary Data (Appendix A).

3. Analytical Methods

The major and trace element compositions of the Antuco samples were determined using
whole rock analysis. Weathered material was removed from the samples via hammering. To
avoid metal contamination, samples were crushed using a fly press and powdered in an agate
planetary ball mill. Samples were analysed for major elements using either X-ray
Fluorescence (XRF) at The School of Ocean and Earth Science, National Oceanography
Centre, University of Southampton, U.K., or inductively coupled plasma optical emission
spectrometry (ICP-OES) at The School of Earth and Ocean Sciences, Cardiff University,
Wales, U.K. Replicate XRF analyses were undertaken at The School of Geosciences,
University of Edinburgh, Scotland, U.K. to test analytical precision. The loss on ignition
(LOI) of each sample was measured using ~1.5 ± 0.0001 g of sample powder, baked at
900°C. Acid digestion of sample powders was undertaken at The Open University. 100 mg of
each sample powder was digested in a multi-stage HF-HNO₃ digestion process, with dry
down temperatures set at 65°C to minimise volatile element loss. Solutions were made up to
1000-fold dilutions of the original powder weight in a 2% HNO₃ solution, prior to analysis.
Blanks and International Standard Reference Materials were prepared in the same manner.
Trace elements (except Tm) were analysed using an Agilent 8800 Triple Quadrupole
inductively coupled plasma mass spectrometer (ICP-MS/MS; also referred to as ICP-QQQ) at
The School of Environment, Earth and Ecosystem Sciences, The Open University, U.K.
Lithium, Sc, Co, Ni, Rb, Sr, Y, Zr, Nb, Mo, Sn, Sb, Cs, Ta, W, TI, Th and U were analysed in
a no gas mode, the REE, S, As, Ba, Hf and Se were analysed in reactive O₂ gas mode, and V,
Cr, Cu, Zn, Ga, Ge, Pb and Bi were analysed in collisional He gas mode. Ag was analysed in
reactive NH₃ gas mode, and an offline correction to remove ZrO interferences was
subsequently employed. An online standard (containing Be, Rh, In and Tm) was run at the same time as samples and unknowns and used to monitor and correct for drift. Thulium was obtained through ICP-MS analysis at Cardiff University. Data accuracy was assessed using the International Standard Reference Materials JB1a, JA2, JG1a, BHVO-2 and DNC-1. Analyses of International Standard Reference Materials fall mostly within 5 % of published values for all major and trace elements. Exceptions include Se (10 %), Pb (11 %), As (50 %), W (30%) and Ge (7 %); however, the relative standard deviations of repeat analyses for these elements are mostly ≤7 %. We still report values for all these elements, given that International Standard Reference Material values for the chalcophile elements as a whole are not as well constrained as other trace elements (Jenner and Arevalo, 2016), with some chalcophile elements undetermined in some standards [for example, those for As in BHVO-2 are only constrained using a single analytical technique (Jochum et al., 2016)]. No suitable published values for Ag for the reference materials we used were available, and therefore we defined values used in our calibration line using standard addition methods. Complete analyses, including International Standard Reference Materials are provided as Supplementary Data (Appendix B, Tables B1 and B2).

4. Geochemical Results

In terms of classification, both Phase 1 and Phase 2 samples span a similar range on a total alkali against silica (TAS) plot (Fig. 2a). Phase 1 samples range from basalt to andesite, with Phase 2 samples ranging from basaltic-andesite to andesite; however, two samples, one from each phase, classify as trachy-andesite. The majority of samples plot in the calc-alkaline field on an AFM (alkali – FeO – MgO) ternary plot (Fig. 2b) following the boundaries of Kuno (1968) and Irvine and Baragar (1971).
Antuco samples range from 51.6 to 62.3 wt.% SiO$_2$ and 1.5 to 6.7 wt.% MgO (anhydrous values) ([Fig. 3 and Appendix C, Figs. C1 and C2]). Titanium dioxide, Fe$_2$O$_3$ (as total Fe) and V display broadly similar trends, all increasing with increasing SiO$_2$, reaching a maximum of 1.6 wt.%, 10.9 wt.% and ~290 ppm, respectively at ~54-55 wt.% SiO$_2$, before decreasing with further increasing SiO$_2$ ([Fig. 3]). The trends in V, TiO$_2$ and Fe$_2$O$_3$ are also seen when plotted against MgO, reaching a maximum at ~3 wt.% MgO ([Fig. C1]). Many of the Phase 2 samples have higher TiO$_2$ and Fe$_2$O$_3$ at a given SiO$_2$ (and MgO) compared to Phase 1 samples. Calcium oxide shows a positive correlation with MgO; Al$_2$O$_3$ shows a peak in contents between 3 – 4 wt.% MgO; and K$_2$O, Na$_2$O and P$_2$O$_5$ show negative correlations ([Fig. C2]). Manganese oxide shows no correlation with MgO ([Fig. C2]). Our data are consistent with the major element data discussed in detail by Martínez et al. (2018), in the most recent study of Antuco ([Figs. 2, 3, C1 and C2]).

Most of the chalcophile elements (excluding Cu and Se) show negative correlations with MgO across the Antuco sample set ([Fig. C3 and C4]). Phase 1 samples show a broad overall decrease in Cu with increasing SiO$_2$ (and decreasing MgO), which follows the trend defined by sulfide saturated lava samples from Ecuador (Georgatou et al., 2018) ([Figs. 4a and C3a]). Additionally, Phase 1 samples show a decrease in Cu/Ag with increasing SiO$_2$ and decreasing MgO ([Figs. 4e and C3e]). Three of the ~59 – 62 wt.% SiO$_2$ (~1.5 – 2.5 wt.% MgO) Phase 1 samples have considerably lower Cu contents (5.4 – 25.0 ppm) and Cu/Ag (124 – 691) compared to other samples with a comparable SiO$_2$ and MgO (48.6 – 58.9 ppm Cu and 771 – 1497 Cu/Ag). The Cu contents of Phase 2 samples remain approximately constant with increasing SiO$_2$ and decreasing MgO ([Figs. 4a and C3a]).

At a given MgO, the most primitive (highest MgO) Antuco samples have higher Pb, Tl, Sb, As and similar Bi and W compared to the MORB array ([Fig. C4]). The contents of Mo, Sn, Cu and Ag of the most primitive Antuco samples are comparable to MORB ([Figs. C3 and...
Chalcophile Element Processing Beneath a Continental Arc Stratovolcano

C4. The S and Se contents of the Antuco samples are considerably lower than the MORB array (Fig. 4b and d). On a Parental-MORB normalised plot (Fig. 5a), the Antuco samples display negative Nb-Ta anomalies (barring one showing only a negative Nb anomaly) compared to neighbouring elements. Samples also show substantial peaks (15 – 100 times Parental-MORB) in W, Tl, As, Pb, Sb and Bi relative to the REE.

5. **Discussion**

5.1. **Subduction mobile chalcophile elements**

In order to distinguish which of the chalcophile elements are mobile during subduction, Jenner (2017) normalised samples to Parental-MORB (calculated), which represents an undifferentiated melt composition, approximating that of the bulk oceanic crust, and can therefore be used to constrain the relative differences in elemental fluxes at convergent margins compared to at MOR. On a Parental-MORB normalised plot (Fig. 5a), the Antuco samples display geochemical signatures typical of a volcano situated above a subduction zone (e.g., Pearce et al., 2005); enrichments in mobile large ion lithophile elements (LILE) compared to the moderately mobile REE, and enrichments of the moderately mobile REE compared to the high field strength elements (HFSE). All Antuco samples display enrichments in chalcophile elements W, Tl, As, Pb, Sb and Bi (Fig. 5a) compared to the REE and the HFSE, demonstrating that W, Tl, As, Pb, Sb and Bi are mobile during subduction. By comparison, other chalcophile elements (Mo, Sn, Zn, Ga, Co) appear to be immobile during subduction. These findings are in general agreement with previous geochemical studies regarding the relative mobility of chalcophile elements during the petrogenesis of convergent margin magmas (Jenner, 2017; Noll Jr et al., 1996). Parental-MORB-like Cu and Ag contents of the most primitive Antuco samples indicate that neither Cu nor Ag were mobilised in a slab flux to the mantle wedge during subduction, and were thus sourced from the mantle.
wedge. The minor difference in enrichment of Ag relative to Cu (Fig. 5a) is likely a result of early sulfide fractionation from the Antuco magmas, preferentially removing Cu (over Ag).

When plotted in isolation, the mobile (i.e., Rb, Th, Ba, U, W, Tl, As, Pb, Sb and Bi, Fig. 5b), moderately mobile (i.e., REE, Fig. 5c) and immobile (i.e., HFSE, Mo, Sn Zn, Ga, Sc and Co, Fig. 5d) elements show relatively smooth patterns. Additionally, each group of elements shows a slight increase in Parental-MORB normalised values with increasing incompatibility of the element during differentiation of the oceanic crust. Detailed work on the partitioning of chalcophile and siderophile elements during the differentiation of mantle-derived melts (MORB and subduction-related volcanic rocks) conducted by Jenner (2017) has shown that the majority of chalcophile and siderophile elements are incompatible during differentiation (e.g., As, Sb, Tl, Pb, W, Bi). As such, these elements are preferentially enriched in the upper oceanic crust (e.g., Evolved-MORB [at ~7 wt.% MgO]) compared to the bulk (Parental-MORB) and lower oceanic crust, and are therefore more likely to be fluxed into the sub-arc mantle wedge during arc magma genesis, relative to Cu and Ag, which are compatible and reside in the lower oceanic crust (Jenner, 2017). Hence, the slight increase in the magnitude of the enrichments of the mobile elements in the Antuco samples, which mimics the upper oceanic crustal distributions of elements, suggests that the mobile elements have been added from the subducting slab to the mantle wedge source of the Antuco magmas in roughly the same proportions as their distributions in the upper oceanic crust.

5.2. Degassing of S and Se

Sulfur is commonly degassed from magmatic systems during magma ascent and/or during subaerial eruption, and consequently, determining the pre-degassing S content of magmas is challenging (Jenner et al., 2010; Wallace and Edmonds, 2011). Previous studies have demonstrated the use of Se, Cu and Ag for reconstructing the pre-eruptive S contents (i.e.,
melt inclusion contents of S) of magmatic systems (Jenner et al., 2015, 2010). For example, during differentiation of backarc basin magmas from the Eastern Manus Basin, the initial increase in FeO, Cu, Ag and Se, but constant Cu/Ag with increasing SiO$_2$ (and decreasing MgO), followed by a sudden drop in Cu, Ag, Se and Cu/Ag at ~60 wt.% SiO$_2$ (Fig. 4), has been attributed to magnetite-triggered sulfide fractionation rather than Cu, Se and Ag degassing (Jenner et al., 2015, 2012, 2010). As S is an essential ingredient required for fractionation of sulfides, and also because melt inclusions from the same suite have sufficient S for the melts to be considered sulfide saturated, S degassing of the Eastern Manus Basin and other backarc basin magmas is considered to take place during eruption rather than differentiation (Jenner et al., 2015, 2010). Evidence for sulfide fractionation prior to S degassing has also been demonstrated by the presence of magmatic sulfides in convergent margin magmas (Georgatou et al., 2018; Zelenski et al., 2018), such as those from Ecuador, which show a similar range in Cu versus SiO$_2$ systematics to the Antuco samples (Fig. 4a). However, the behaviour of Cu, Ag and Se in the Manus Basin was investigated using glass samples erupted beneath a significant (>1600 m) water column. Thus, it is important to reassess the behaviour of the chalcophile elements during subaerial eruptions.

Unlike Cu, Ag, Pb, Tl, Sb, Bi, W, Sn and As, which have contents that are comparable to or higher than MORB at Antuco, the behaviour of Se appears to be decoupled from the rest of the chalcophile elements, except S. The very low S and Se concentrations – considerably lower than Parental-MORB (Fig. 5a), the MORB array (Fig. 4) and Eastern Manus Backarc Basin samples (Fig. 4b, d and C3d) – suggests that both S and Se were degassed from the melts, during either differentiation and/or eruption. Observations of Se enrichment in volcanic plumes at Mt Etna (Floor and Román-Ross, 2012) support this interpretation. The S/Se of the Antuco samples are similar to those observed in the Eastern Manus Backarc basin suite, but are considerably lower than MORB (Fig. 4f), indicating that S was more volatile
than Se during degassing. Interestingly, the three samples that have the highest S/Se (i.e., the least degassed samples, approaching MORB values) have the lowest Cu contents and Cu/Ag, suggesting that sulfur degassing cannot explain the trend to low Cu with increasing evolution of the Antuco samples. Given that sulfide fractionation requires the presence of S in the melt, we consider that the degassing of S (and Se) must have predominantly taken place during eruption rather than during differentiation.

5.3. Crustal processing of the chalcophile elements

Many of the chalcophile elements either have such low sulfide-silicate melt partition coefficients ($D_{\text{sulf-sil}}$) that they cannot be used to assess whether a melt has fractionated sulfide (e.g., As, Tl, Sb, Mo, Pb, Bi), and/or they show ‘mixed affinities’ (e.g., In, Ga, Sn, Zn, Cd), because their bulk partitioning is controlled by a combination of silicate, oxide and sulfide minerals (Jenner, 2017). Only a few of the chalcophile elements (e.g., Cu, Ag, Se, Au) are sufficiently compatible in sulfide phases to be of use for demonstrating sulfide fractionation from an evolving melt. For example, unlike the incompatible elements (e.g., As, Pb, Sb and Tl) which show a steep increase in contents with decreasing MgO (Fig. C4), the contents of Cu and Ag of the Antuco samples remain approximately constant and/or show a subtle decrease with increasing SiO$_2$ and decreasing MgO (Figs. 4 and C3). Thus, like lava samples from Ecuador (Georgatou et al., 2018), the full compositional range of Antuco’s magmas have been affected by sulfide fractionation. Given the potentially limited depth range of sulfide stability in the lower crust (Matjuschkin et al., 2016), this suggests that much of the compositional diversity of these magmas was acquired at lower crustal levels (consistent with “hot zone” models; e.g., Annen et al., 2006).

Unlike samples from the Eastern Manus Backarc Basin, neither the Antuco nor the Ecuador samples show an initial increase in Cu with increasing SiO$_2$ (or decreasing MgO) prior to
magnetite fractionation. Broad inflections at Antuco in the trends between TiO$_2$, Fe$_2$O$_3$ and V with SiO$_2$ and MgO indicate the onset of magnetite fractionation in these magmas at ~55 wt.% SiO$_2$ (~3 wt.% MgO) (Figs. 3 and C1). However, this does not correspond with a drop in Cu contents for any Phase 2 samples or for the majority of Phase 1 samples (Figs. 4a and C3a). A similar pattern is observed in Cu data presented by Martínez et al. (2018); some, but not all Early/Late Antuco samples (Phase 1 Antuco) display a drop in Cu contents post-55 wt.% SiO$_2$ (or post-3 wt.% MgO), but this drop is not observed in the post-collapse samples (Phase 2 Antuco). These systematics suggest that magnetite fractionation did not play a strong control on Cu partitioning in the Antuco magmas, because the melts were already sulfide saturated before magnetite saturation. A minor impact of magnetite fractionation on the proportion of sulfide fractionation is, however, suggested by the scatter to lower Cu/Ag of some of the Phase 1 samples at ~55 wt.% SiO$_2$ and ~3 wt.% MgO (Figs. 4e and C3c).

The indistinguishable Cu/Ag of MORB, oceanic island basalts, oceanic plateau basalts, primitive convergent margin magmas and mantle xenoliths has been attributed to the presence of sulfide melt in the mantle source region at each tectonic setting (Jenner, 2017; Jenner et al., 2015, 2012, 2010; Wang et al., 2018). With the exception of one sample with a Cu/Ag of 5416, the Cu/Ag of the Antuco samples are all lower than the global MORB array (Figs. 4e and C3c), even in the most primitive Antuco magmas. This may indicate that minor amounts of Cu were removed from the parental Antuco melts at an early stage in their evolution. Cu/Ag patterns across the full Antuco sample set suggest fractionation of Cu from Ag throughout the crustal differentiation of these magmas, which is consistent with crystalline, rather than a sulfide melt, fractionation (Jenner et al., 2010; Li and Audétat, 2012). Some of the most evolved Antuco samples (lowest MgO) have Cu/Ag approaching that of the bulk-continental crust (Figs. 4e and C3c). It is unlikely that an early fractionating phase, such as olivine, could cause such a drop in Cu/Ag from mantle values, given the
incompatibility of Cu and Ag in potential fractionating silicate phases (Jenner, 2017; Lee et al., 2012). We therefore suggest that sulfide fractionation began in the lower crust and at a very early stage in the evolution of Antuco’s parental magmas, prior to ascent and low-pressure fractional crystallisation (Fig. 6). This is consistent with initial stalling and crystallisation at the base of the continental crust prior to ascent to higher crustal levels (e.g., Annen et al., 2006). Lower crustal sulfide saturation is likely a result of the increased stability of crystalline sulfides at depth (Matjuschkin et al., 2016) (Fig. 6b). Fractionation of crystalline sulfide at the base of the continental crust (cf. Jenner, 2017) contrasts with observations in thinner, oceanic island arc/backarc settings, where Cu and Ag systematics suggest that mantle-derived melts are sulfide undersaturated until the point of magnetite fractionation, and only fractionate sulfide after this point in their evolution (e.g., Eastern Manus Basin; Chiaradia, 2014; Jenner et al., 2012, 2010) (Fig. 6).

Consequently, for oxidised parental arc magmas (e.g., \(f_O^2\) of \(~NNO +2\); Matjuschkin et al., 2016; cf. Kelley and Cottrell, 2012; Richards, 2015), sulfides would likely be stable during stalling and subsequent differentiation in ‘deep crustal hot zones’ (Annen et al., 2006) where the crust is \(\geq \sim 20\) km (i.e., mid- to lower continental crust) (Fig. 6b). In contrast, on stalling at shallower crustal levels (i.e., \(<20\) km), approximating that of the lower crust of oceanic island arcs, oxidised magmas would not be within the field of sulfide stability (Matjuschkin et al., 2016) (Fig. 6b), and would thus retain their chalcophiles until their first point of sulfide fractionation was initiated by magnetite fractionation and a \(f_O^2\)-related drop in S solubility. Through this mechanism, the ‘Magnetite Crisis’ plays a more dominant control on the fate of the chalcophile elements in thinner, oceanic arcs than it does in arcs built on thicker crust. Crustal thickness thus exerts a fundamental control on chalcophile element distribution via its influence on initial depths of magmatic differentiation, and the stability of sulfide at these depths.
Recently, Tang et al. (2018) used an inverse correlation between $[\text{Dy/Yb}]_N$ and FeO_T/MgO of global arc magmas to argue that garnet fractionation results in the simultaneous Fe depletion and increase in fO_2 of magmas, from initial fO_2 values comparable to MORB, during early differentiation of continental arc magmas. As a consequence, because the solubility of sulfur decreases with decreasing FeO_T, if primitive magmas intruding the lower continental crust were fractionating garnet, this would be expected to induce sulfide fractionation (and would also be a mechanism to increase fO_2 of the residual magma). As such, this provides an additional mechanism for deep-crustal sulfide fractionation, distinct from pressure-related effects on the sulfide stability field (e.g., Matjuschkin et al., 2016).

A direct comparison cannot be made between our data from Antuco and the trend observed between $[\text{Dy/Yb}]_N$ and FeO_T/MgO presented by Tang et al. (2018), as the FeO_T values presented for global arc magmas are for intermediate compositions (i.e., 4 ± 1 wt.% MgO) only, highlighting garnet fractionation-induced Fe depletion. However, REE systematics presented by Davidson et al. (2013, 2007) demonstrate the difference between amphibole and garnet fractionation; amphibole fractionation will result in a decrease in Dy/Yb with increasing SiO$_2$, whereas garnet fractionation will result in an increase in Dy/Yb with increasing SiO$_2$. Thus, the decrease in Dy_N/Yb_N with increasing SiO$_2$, and positive correlation between Dy/Dy* and Dy_N/Yb_N of the Antuco suite is consistent with amphibole, not garnet fractionation (Fig. 7). The absence of amphibole phenocrysts in the Antuco samples further supports Davidson et al.’s (2007) interpretation that these REE ratios imply “cryptic amphibole fractionation”.

Despite arguing that at Antuco the magmas have been affected by amphibole, rather than garnet fractionation, we do not discount Tang et al.’s (2018) suggestion that the crystallising assemblage from arc magmas is likely to transition from magnetite to garnet fractionation if the crust becomes sufficiently thick. Indeed, the noticeably higher Dy_N/Yb_N of the most
primitive Antuco samples compared to the Eastern Manus Backarc Basin suite is consistent
with the fractionation of garnet (Fig. 7). Thus, the high Dy\textsubscript{N}/Yb\textsubscript{N} and low Cu/Ag of the
Antuco suite could indicate that garnet and sulfide were fractionated from the most primitive
Antuco magmas (during the earliest or deepest stages of magmatic differentiation), prior to
ascent. Additionally, a minor initial decrease in Fe\textsubscript{2}O\textsubscript{3} with increasing SiO\textsubscript{2} (Fig. 3b) supports
an initial stage of garnet fractionation.

However, the degree of garnet fractionation from the Antuco magmas appears minimal
(based on the Dy\textsubscript{N}/Yb\textsubscript{N} trends supporting a predominance of amphibole fractionation). As
such, we still call upon the effect of pressure on the sulfide stability field (Matjuschkin et al.,
2016) to achieve sulfide saturation in the lower continental crust and explain the overall
Cu/Ag trends at Antuco, which is a satisfactory explanation especially if convergent margin
magmas have a higher initial f\textsubscript{O\textsubscript{2}} compared to MORB or are driven to a higher f\textsubscript{O\textsubscript{2}} as a
consequence of garnet fractionation.

To place constraints on the proportion of sulfide fractionation required to explain the Cu and
Ag systematics of the Antuco magmas, we have used the following fractional crystallisation
equation:

\[
C_1 = C_0^* \left(F^{D_0^{-1}} \right)
\]

where, \(C_1\) is the concentration of an element in the resultant melt, \(C_0\) is the concentration of
an element in the source prior to fractional crystallisation, \(F\) is the fraction of melt remaining,
and \(D_0\) is the bulk-partition coefficient of an element prior to fractional crystallisation.

Starting compositions used for Cu (68.9 ppm) and Ag (0.04 ppm) are those of the most
primitive (highest MgO wt.%) Antuco sample (An27-7). Partition coefficients used for Cu
and Ag in crystalline (monosulfide solid solution) sulfides (K\textsubscript{d\textsubscript{Cu}}\textsubscript{Sul}: 215, K\textsubscript{d\textsubscript{Ag}}\textsubscript{Sul}: 24) were
those derived experimentally by Li and Audétat (2012) (average of experiments LY15 and
Chalcophile Element Processing Beneath a Continental Arc Stratovolcano

LY17) and are chosen as they are determined under conditions that best replicated a subduction zone setting (i.e., oxidised). Available partition coefficients for Cu and Ag in plagioclase and olivine show them both to be very low at \(<0.1\) (Adam and Green, 2006; Ewart et al., 1973; Lee et al., 2012). As such, both plagioclase and olivine were grouped as one in the modelling calculations. For full details on the modelling parameters, see Table 1.

With only a minor volume (0.5 to 0.6 vol.%) of sulfide fractionation, broadly flat to slightly decreasing Cu and increasing Ag trends can be produced (Figs. 8a and C5). Consequently, as a result of the divergent trends in Cu and Ag, a continual decrease in Cu/Ag is also produced (Fig. 8b). These trends match those seen in Cu and Ag at Antuco and supports our conclusion that the Antuco magmas have been affected by a small degree (~0.5 vol.%) of sulfide fractionation throughout their petrogenesis.

6. Conclusion

The near complete suite of chalcophile elements were analysed in twenty-six volcanic rock samples from Antuco Volcano, Chile, which were used to investigate their processing and distribution within the magmatic system of a typical continental arc stratovolcano. Enrichments in W, Tl, As, Pb, Sb and Bi in the Antuco volcanic rocks suggest these chalcophile elements were mobilised during subduction. Additionally, the relative enrichments of these chalcophile elements indicate that the flux of elements from the oceanic crust to the mantle wedge is determined by their prior concentration in the subducting upper oceanic crust. Cu and Ag concentrations similar to the global MORB array suggest that neither Cu nor Ag were mobilised during subduction, and that Mo, Sn, Zn, Ga and Co were also immobile. Very low Se and S concentrations relative to the global MORB array reflect low-pressure degassing of these elements during eruption, preventing the reconstruction of Se systematics from subaerial volcanic rocks.
Inflections in the TiO\textsubscript{2}, Fe\textsubscript{2}O\textsubscript{3} and V concentrations, and a corresponding (minor) drop in Cu contents and Cu/Ag of some Phase 1 Antuco samples at ~55 wt.% SiO\textsubscript{2} and ~3 wt.% MgO, suggests that magnetite fractionation occurred during the crustal evolution of these magmas. However, in contrast to oceanic arc magmas, there is no strong correspondence between magnetite and sulfide fractionation. Mostly flat Cu and Ag trends indicate that the Antuco melts were already sulfide saturated from a very early stage in their crustal history, and well before magnetite fractionation. Fractionation of Cu from Ag (i.e., a decreasing Cu/Ag ratio throughout the evolutionary trend) suggests that the fractionating sulfide phase was crystalline and can be explained by 0.5 to 0.6% of fractionating sulfide during crustal differentiation. The low Cu/Ag of the most primitive Antuco samples compared to the global MORB array suggest an early, high-pressure stage of sulfide fractionation from the Antuco magmas. This implies that sulfide fractionation began at the base of the continental crust, in primitive magmas, and that sulfide is stable at lower crustal pressures in continental arcs, which is the predominant depth range of magmatic differentiation. As such, sulfide fractionation was not strongly influenced by magnetite fractionation, as is more likely the case in thinner, oceanic arcs. In oceanic arcs, the initial depth range of magmatic differentiation may be outside the field of sulfide stability, and magnetite thus acts as a dominant control on sulfide fractionation. We have shown that crustal thickness plays an important role in controlling the differentiation of continental arc magmas and the resulting distribution of the chalcophile elements in the arc crust. Beneath continental arcs, these processes would lead to the formation of a theoretical chalcophile-rich reservoir at or near the base of the continental crust that could be tapped to fuel ore deposit formation.

Acknowledgements
DC, SW and FJ acknowledge funding for this work, completed as part of the first author’s Ph. D., from the Natural Environment Research Council (NERC) project NE/M000427/1 (Mantle volatiles: processes, reservoirs and fluxes). Frances Jenner also acknowledges funding from the NERC ‘SoS Tellurium and Selenium Cycling and Supply (TeASe)’ consortium grant (NE/M010848/1) and the NERC ‘From Arc Magmas to Ore Systems’ (FAMOS) consortium grant (NE/P017045/1). We thank Iain McDonald for support with major element analyses. Alastair Hodgetts and David Cavell are thanked for comments on earlier versions of the manuscript. Frederic Moynier (Editor), Massimo Chiaradia and an anonymous reviewer are thanked for their constructive and insightful comments during review, improving the manuscript greatly.

References

Clavero, J., Godoy, E., 2010. The Late Holocene Collapse of Antuco Volcano: a Valley
Chalcophile Element Processing Beneath a Continental Arc Stratovolcano

Holm, P.M., Søager, N., Alfastsen, M., Bertotto, G.W., 2016. Subduction zone mantle enrichment by fluids and Zr–Hf-depleted crustal melts as indicated by backarc basalts of the Southern Volcanic Zone, Argentina. Lithos 262, 135–152.

Chalcophile Element Processing Beneath a Continental Arc Stratovolcano

Geotherm. Res. 11, 329–352.

22, 697–699.

349, 392–408.

https://doi.org/10.1007/s00410-016-1274-4

Richards, J.P., 2015. The oxidation state, and sulfur and Cu contents of arc magmas:
Chalcophile Element Processing Beneath a Continental Arc Stratovolcano

implications for metallogeny. Lithos 233, 27–45.

Chalcophile Element Processing Beneath a Continental Arc Stratovolcano

Geotherm. Res. 205, 114–129.

Figure Captions

Figure 1: (a) Simplified geological map of Antuco Volcano, Chile. Sample locations highlighted with filled circles. Geological map adapted after Martínez et al. (2018). Base image from Google Earth (2018). (b) Location map of Antuco Volcano, highlighting its location at the northern end of the Central Southern Volcanic Zone. The reader is referred to the online version of this article for interpretation of the figure(s) in colour.

Figure 2: (a) Total-alkali-silica (TAS) plot of the Antuco samples. Antuco Phase 1 samples of the current study range in composition from basalt to andesite, with one classifying as a trachy-andesite. Antuco Phase 2 samples of the current study have a slightly narrower
compositional range from basaltic andesite to andesite, again with one classifying as a trachyandesite. Also plotted are samples analysed by Martínez et al. (2018) from Antuco (M18),
which display very similar compositional ranges to the current study. Classification fields as
of Le Bas et al. (1986). (b) Alkali-iron-magnesium (AFM) ternary plot of the Antuco
samples. The majority of both Phase 1 and 2 samples plot in the calc-alkaline field. Ternary
plot constructed in TernPlot (Marshall, 1996), using the boundary lines of Kuno (1968) and
Irvine and Baragar (1971).

Figure 3: Select major element (TiO$_2$, Fe$_2$O$_3$) and Vanadium bivariate plots (vs. SiO$_2$) of the
Antuco samples. Inflections in TiO$_2$, Fe$_2$O$_3$ and V at ~55 wt.% SiO$_2$ highlight the onset of
magnetite fractionation in the Antuco magmas. Also plotted are samples from Antuco
analysed by Martínez et al. (2018) (M18). Samples from M18 display similar concentration
ranges and show inflections in TiO$_2$, Fe$_2$O$_3$ and V.

Figure 4: Select trace element (Cu, Ag, Se, and S) bivariate plots (vs. SiO$_2$, FeO) of the
Antuco samples. (a) The continual decrease in Cu contents with increasing SiO$_2$ shown by
Phase 1 samples (and Early Antuco samples of M18) is similar to that seen in Cu data from
sulfide saturated Ecuadorian volcanoes [data from Georgatou et al., 2018 (G18)]. (a, c, d, e)
The trends seen in Cu at Antuco and in Ecuadorian volcanoes are different to that seen in data
from the Eastern Manus Backarc Basin (EMBB), where Cu (and Ag, Se) contents increase
with increasing SiO$_2$, before rapidly decreasing after the onset of magnetite fractionation at
~58 wt.% SiO$_2$ [data from Jenner et al., 2012 (J12)]. (b, d, f) The S and Se contents of the
Antuco samples are considerably lower than the Global (Pacific and Atlantic) MORB array
[data from Jenner and O’Neill, 2012], suggesting they were both degassed from the Antuco
magmas. This is unlike that seen in Se data from the Eastern Manus Backarc Basin (EMBB),
where Se contents increase then decrease with increasing SiO$_2$, attributed to magnetite
induced sulfide fractionation [data from Jenner et al., 2012 (J12)]. Bulk continental crust composition from Rudnick and Gao (2003) (RG03).

Figure 5: Parental-MORB normalised (values from Jenner, 2017) multi-element plots. (a) Complete multi-element plot of Antuco samples compared to the bulk-continental crust [data from Rudnick and Gao, 2003]. Element ordering reflects increasing incompatibility (from right to left) of the elements during low-pressure differentiation of MORB (see Jenner, 2017). Isolated mobile (b), moderately mobile (c) and immobile (d) Parental-MORB normalised multi-element plots show that the mobile chalcophile elements are considerably more enriched in the Antuco magmas compared to the REE and HFSE. Additionally, the relatively unfractionated patterns displayed by the Parental-MORB normalised mobile chalcophile elements, together with the slight increase in values with increasing incompatibility during MORB differentiation, indicates that these elements were added into the mantle wedge in roughly similar proportions as they are found in the upper oceanic crust [i.e., pattern comparable to Evolved-MORB, as presented by Jenner (2017) (J17)].

Figure 6: (a) Schematic illustration comparing the processing of Cu beneath thick (≥30 km) and thin (≤20 km) overriding crust at convergent margins. Fluid mobile chalcophile elements (W, Tl, Sb, Pb, As, Bi) are added to the mantle wedge via a slab flux, whereas the immobile chalcophile elements (Cu, Ag) are retained in the lower oceanic crust. Thicker overriding (continental) crust promotes early sulfide fractionation from the Antuco magmas (and removal of Cu from the ascending magma) due to the increased stability of sulfides at higher f_{O_2} with increased pressure (and therefore depth) (inset b; adapted after Matjuschkin et al., 2016). The thinner nature of the overriding crust at island arcs (IA) and backarc basins (BAB) means sulfides are less likely to be stable at the base of the crust and therefore do not fractionate, allowing Cu contents to increase as magmas ascends prior to magnetite induced sulfide fractionation.
Figure 7: Rare Earth Element systematics of the Antuco magmas. Decreasing Dy$_N$/Yb$_N$ with increasing SiO$_2$ (a), and a positive correlation between Dy/Dy* and Dy$_N$/Yb$_N$ (b) suggest “cryptic amphibole fractionation” from the Antuco magmas (e.g., Davidson et al., 2013, 2007). EMBB (J12): Eastern Manus Backarc Basin (data from Jenner et al., 2012). Normalising values from Sun and McDonough (1989). Grt: garnet; Amph: amphibole.

Figure 8: Trace element modelling of fractional crystallisation. Minimal sulfide fractionation (0.5 – 0.6 vol.%) is required to produce divergent trends in Cu (a) and Ag (Appendix C, Fig. C5) and Cu/Ag approaching that of the bulk continental crust (b), as observed in the Antuco samples. Starting Cu and Ag compositions used were those of the most primitive (highest MgO wt.%) Antuco sample (An27-7). The composition of the bulk continental crust is plotted for comparison [data from Rudnick and Gao, 2003].