Effective elastic properties of 3D stochastic bicontinuous composites

How to cite:

© 2019 The Authors

https://creativecommons.org/licenses/by-nc-nd/4.0/

Version: Accepted Manuscript

Link(s) to article on publisher’s website:
http://dx.doi.org/doi:10.1016/j.mechmat.2019.103098

oro.open.ac.uk
Highlights

- Compliant phase impregnation in metal-polymer bicontinuous nanocomposites compensates for the stiffness loss due to topological changes in the stiffer phase with reduction in its phase volume fraction.

- This results in a distinct scaling law for bicontinuous gold-epoxy nanocomposite.

- Analytical bounds fall short to accurately predict the effective response of high contrast bicontinuous composites with volume fraction bias towards the weaker phase.

- Finite element-based asymptotic homogenization with periodic boundary conditions is an efficient and accurate tool to this end.
Effective elastic properties of 3D stochastic bicontinuous composites

Celal Soyarslan\textsuperscript{a}, Marc Pradas\textsuperscript{b}, Swantje Bargmann\textsuperscript{a}

\textsuperscript{a}Chair of Solid Mechanics, School of Mechanical Engineering and Safety Engineering, University of Wuppertal, Germany
\textsuperscript{b}School of Mathematics and Statistics, The Open University, Milton Keynes MK7 6AA, United Kingdom

Abstract

We study effective elastic properties of 3D bicontinuous random composites (such as, e.g., nanoporous gold filled with polymer) considering linear and infinitesimal elasticity and using asymptotic homogenization along with the finite element method. For the generation of the microstructures, a leveled-wave model based on the works of J. W. Cahn \cite{Cahn1965} and Soyarslan et al. \cite{Soyarslan2018} is used. The influences of volume element size, phase contrast, relative volume fraction of phases and applied boundary conditions on computed apparent elastic moduli are investigated. The nanocomposite behaves distinctly different than its nanoporous counterpart without any filling as determined by scrutinized macroscopic responses of gold-epoxy nanocomposites of various phase volume fractions. This is due to the fact that, in the space-filling nanocomposite the force transmission is possible in all directions whereas in the nanoporous gold the load is transmitted along ligaments, which hinges upon the phase topology through network connectivity. As a consequence, we observe a distinct elastic scaling law for bicontinuous metal-polymer composites. A comparison of our findings with the Hashin-Shtrikman, the three-point Beran-Molyneux and the Milton-Phan-Tien analytical bounds for the same composites show that computational homogenization using periodic boundary conditions is justified to be the only tool in accurate and efficient determination of the effective properties of 3D bicontinuous random composites with high contrast and volume fraction bias towards the weaker phase.

Keywords: stochastic bicontinuous composites, computational homogenization, representative volume element, periodic boundary conditions, phase contrast, analytical bounds

1. Introduction

Heterogeneous materials composed of domains of different phases with highly contrasting mechanical properties abound in synthetic products and nature. Nanoporous bicontinuous metal-polymer composites manufactured based on dealloying are heterogeneous materials with high nonmetallic phase volume content (usually $>0.70$). The main load carrying metallic phase reveals an open-cell morphology formed of interconnected ligaments. Due to strong size effects emerging at this scale length (e.g., excess surface elasticity and surface tension), these ligaments behave as ultra high-strength nanowires \cite{1,2}. Their unique properties such as high yield strength despite high porosity, large specific surface area and electrocatalytic performance make these highly functional materials popular in applications of optical-active materials, catalysts, sensors, mechanical actuators, fuel cells and microbalance electrodes, and as a coating for medical devices \cite{3-5}. Even though considerable work has been done towards understanding the kinetics of phase separation during dealloying, a full comprehension of the mechanical properties of nanoporous metals and their composites still elude us \cite{1,6-16,16-29}. Computer simulation proves to be powerful for this aim \cite{30}, but still one grand difficulty in this context is making the highly complicated microstructure of the material accessible \cite{31}.

In this work, we study the effective elastic properties of 3D bicontinuous random composites considering linear and infinitesimal elasticity making use of asymptotic homogenization along with a finite element
method. For the generation of the 3D bicontinuous random microstructures, a leveled-wave model is devised. Leveled-wave models for random morphologies, as was conceived by Cahn [37] as a modeling tool for material systems involving phase separation (and hence bicontinuous morphologies) have the following advantages: (i) it warrants an efficient, yet sufficiently representative, generation of spinodal-like microstructures in relatively short times [17], especially as compared to phase field methodologies that model spinodal decomposition [38]; and (ii) it allows analytical computation of certain topological and morphological properties for the generated microstructures, e.g., average Gaussian curvature and mean curvature, surface-to-bulk volume ratio and genus [17, 39, 40]. Especially the Gaussian random field property of the truncated Fourier series allows an a priori determination of the level of a desired solid volume fraction which is one of the most important morphological descriptors of heterogeneous materials [41].

We investigate the influence of the volume element size, phase contrast, relative volume fraction of phases and applied boundary conditions on apparent elastic moduli and anisotropy index. As anticipated, with increasing volume element size, the apparent properties converge to effective ones and the bicontinuous composite tends to exhibit elastic isotropy. Our results conform excellently with the elastic scaling law proposed for spinodal decomposition-based bicontinuous microstructures [11]. Only under periodic boundary conditions, effective properties can be determined at a reasonably small volume element size, hereby referred to as the representative volume element (RVE) size. At this size, the overestimating property of kinematically uniform boundary conditions is shown where the prediction gap is observed to increase with increasing phase contrast and volume fraction bias towards the weaker phase. Nevertheless, the estimations by analytical bounds of Hashin-Shtrikman, three-point Beran-Molyneux and Milton-Phan-Tien on elastic moduli are observed to be much less accurate as compared to the results of both boundary conditions. Thus, computational homogenization using periodic boundary conditions is observed to be a seamlessly accurate and efficient tool in determination of the effective properties of 3D bicontinuous random composites with high contrast and volume fraction bias towards the weaker phase and even for nonperiodic structures lacking translational symmetry by homogenization convergence since the random media at hand is statistically homogeneous and ergodic [42, 43].

2. Elastostatics of bicontinuous random composites

2.1. Continuum with microstructure and its numerical generation

We start by introducing the notions of a continuum with microstructure and the computational micro-to-macro transition [44, 45] as shown in Figure 1. Let \( B \subset \mathbb{R}^3 \) denote the homogenized macrocontinuum, a typical point \( Mx \in B \) of which encapsulates a microstructure, represented by the unit cell domain \( V \subset \mathbb{R}^3 \) consisting of two constituent material domains \( V_1 \subset V \) and \( V_2 \subset V \). More precisely, the coordinate \( Mx \) represents the macroscale position vector which is also referred to as the global or slow variable. Then, we denote the microscale position vector which is also referred to as the local or fast variable by \( x \). Both variables are related through \( x = Mx/\epsilon \) where \( 0 < \epsilon \ll 1 \) controls the fineness (scale separation) of the volume element structure. Thus, if \( \epsilon \) is small, then the microstructure is fine and the property functions show rapid oscillations.

We consider random microstructural morphologies formed through spinodal decomposition a process where a solution of \( n \geq 2 \) components rapidly decomposes into distinct coexisting phases. In the Cahn-Hilliard formulation [46], the Helmholtz free energy of a small volume of a two-component inhomogeneous solution is given by \( \Psi = \int_V [g(c) + (\kappa^2/2) |\nabla c|^2] \, dV \), where \( g(c) \) denotes the free energy density of a homogeneous
material of composition $c$, and the square gradient term represents the additional free energy density due to the inhomogeneous composition. Hence this ensures the existence of a well-defined interface between both phases whose spatial extension is governed by the parameter $\kappa$. Here, $\nabla_x$ and $\text{div}_x$ respectively denote the gradient and the divergence with respect to the microscopic coordinate $x$. The dynamics of the concentration is then given by a generalized diffusion equation

$$\frac{\partial c}{\partial t} = \text{div}_x (M \nabla_x \mu_c) = M \text{div}_x \nabla_x \left[ f'(c) - \kappa^2 \text{div}_x \nabla_x c \right], \quad (1)$$

where $M > 0$ denotes mobility and $\mu_c = \frac{\delta \Psi}{\delta c}$ is the chemical potential. The solution of the above equation in the early stages of spinodal decomposition can be described in terms of a superposition of standing sinusoidal waves of fixed wavelength but random in amplitude, direction and phase [37], see also Soyarslan et al. [17], represented by a truncated Fourier series:

$$f(x) = \frac{1}{\sqrt{N}} \sum_{i=1}^{N} a_i \cos (q_i \cdot x + \varphi_i). \quad (2)$$

Here, $f(x) = [c(x) - c_0]/c_s$ with $x$ denoting the position vector, $c_0$ is the average composition and $c_s$ is the scaling parameter. $N$ represents the number of waves considered in the truncated series. Moreover, $a_i$, $q_i$ and $\varphi_i$ denote the wave amplitude, wave direction and wave phase of the $i$th wave, respectively. We consider a constant value for the amplitude, namely $a_i = \sqrt{2}$, and a fixed wave number with $q_i = |q_i| = q_0$. The wave phases are uniformly distributed on $[0, 2\pi)$ and the wave directions are uniformly distributed over the solid angle $4\pi$.

Under these conditions $f(x)$ is a Gaussian random function with $\langle f \rangle = 0$, $\langle f^2 \rangle = 1$, where brackets denote ensemble averages over realizations. For $N$ sufficiently large, the value of the random function $f(x)$ follows a Gaussian distribution with $P(f) = e^{-f^2/2}/\sqrt{2\pi}$. Given the random function (2) the different phases of the system are then defined via a selected level cut $\xi$:

$$x \in \mathcal{V}_1 \text{ if } f(x) < \xi,$$
$$x \in \iota \text{ if } f(x) = \xi,$$
$$x \in \mathcal{V}_2 \text{ if } f(x) > \xi, \quad (3)$$

where $\iota$ denotes the interface of phases $\mathcal{V}_1$ and $\mathcal{V}_2$. A priori determination of $\xi$ for a desired phase volume fraction for phase 1, denoted by $\phi_1$, can be realized exploiting the Gaussian property of the random field and using

$$\xi(\phi_1) = \sqrt{2} \text{ inverf}(2\phi_1 - 1), \quad (4)$$
where \( \text{inverf}(x) \) represents the inverse error function. Examples of generated microstructures for different values of \( \xi \) are depicted in Figure 2.

As discussed in detail in [31], besides being random, bicontinuous composite microstructures can also be ordered. Triply periodically architected polymer composites with interpenetrating phases constitute examples of ordered structures obtained through manufacturing [47]. In nature, e.g., skeletons of sea urchin [48], butterfly wings [49] and certain self-assembled block copolymers [50] have ordered bicontinuous structures in which the phase interface geometrical features resemble triply periodic minimal surfaces [48]. Bicontinuous microstructures generated in this work are generally neither ordered nor periodic. It is possible to attain periodicity while keeping the stochastic nature of the phase distribution [17]. One way to obtain \( f \) with translational periodicity with lattice vectors of magnitude \( a \) with \( f(r) = f(r + m \mathbf{e}_1 + n \mathbf{e}_2 + o \mathbf{e}_3) \) for arbitrary integers \( m, n, o \) is to select a finite number of waves \( q_i \) with integer wave number in all directions and constant modulus. To this end, letting the integers \( h, k, l \) denote Miller indices, \( a \) a constant and \( \mathbf{e}_1, \mathbf{e}_2, \mathbf{e}_3 \) unit vectors of an orthonormal basis in real space, \( q_i \) should have the form 
\[
q_i = \left[ \frac{2\pi}{a} \right] (h,k,l).
\]

2.2. Homogenization theory

The asymptotic homogenization method used here is similar to that described in [36, 51, 52]. We assume that the system is composed of two different periodically distributed\(^2\) linear elastic materials, in which a unit reference cell of volume \( V \) is periodically repeated covering the macroscopic domain. Let \( F^\epsilon(Mx) = F^\epsilon(Mx, x) \) denote a generic tensor-valued function which is \( V \)-periodic in \( x \) over the unit cell \( V \) and which features slow (with \( Mx \)) and fast (with \( x \)) variations. Hence, we have
\[
\nabla_{Mx} F^\epsilon(Mx) = \nabla_{Mx} F^\epsilon(Mx, x) + \frac{1}{\epsilon} \nabla_x F^\epsilon(Mx, x),
\]
\[
div_{Mx} F^\epsilon(Mx) = \div_{Mx} F^\epsilon(Mx, x) + \frac{1}{\epsilon} \div_x F^\epsilon(Mx, x).
\]

In a heterogeneous body under applied loads, examples of such multiscale functions are the displacements \( \mathbf{u}^\epsilon \), strains \( \mathbf{\epsilon}^\epsilon \) and stresses \( \mathbf{\sigma}^\epsilon \), which we write as
\[
\mathbf{u}^\epsilon(Mx) = \mathbf{u}^\epsilon(Mx, x),
\]
\[
\mathbf{\epsilon}^\epsilon(Mx) = \mathbf{\epsilon}^\epsilon(Mx, x),
\]
\[
\mathbf{\sigma}^\epsilon(Mx) = \mathbf{\sigma}^\epsilon(Mx, x).
\]

\(^2\)Even if the microstructure is not periodic, the response functions and the solutions are assumed to be so.
For convenience, a third domain, $B^\epsilon$, which is referred to as the composite domain, is introduced \cite{36}. Here $\epsilon$ reflects the presence of fine-scale features, e.g., unlike the coarse-scale domain boundary $\partial B$, the composite domain boundary $\partial B^\epsilon$ may be rough at the fine-scale. The equilibrium equation of elastomechanics at the composite domain, assuming vanishing body forces, is given by
\begin{equation}
0 = \text{div}_{M^\epsilon} \sigma^{\epsilon} \quad \text{in } B^\epsilon.
\end{equation}
On the other hand, by assuming infinitesimal and linear elasticity we have the following stress description
\begin{equation}
\sigma^{\epsilon} = C^{\epsilon} : \epsilon^{\epsilon} \quad \text{in } B^\epsilon.
\end{equation}
In general $C^{\epsilon} = C^{(M)x, x}$ where the constitutive tensor $C$ is $\mathcal{V}$-periodic in $x$ over the unit cell $\mathcal{V}$ and it shows slow as well as fast variations. For simplicity, we disregard its slow variation and directional dependence and assume that $C^{\epsilon} = C(x)$ with $C_i = 3K_i \mathbb{I}^\text{vol} + 2G_i \mathbb{I}^\text{dev}$ where $\mathbb{I}^\text{vol} = 1/3 \mathbb{1} \otimes \mathbb{1}$, and $\mathbb{I}^\text{dev} = \mathbb{I} - \mathbb{I}^\text{vol}$ with $\mathbb{1} = 1/2(1 \otimes 1 + 1 \otimes 1)$. Here, $K_i$ and $G_i$ are bulk and shear moduli associated with phase $i$, respectively, and $1$ is the second-order identity tensor. The $\mathcal{V}$-periodic compliance tensor $S$ is defined as $S = C^{-1}$. The following definition is valid for strain $\epsilon^{\epsilon}$
\begin{equation}
\epsilon^{\epsilon} = \text{sym}(\nabla_{M^\epsilon} u^{\epsilon}) \quad \text{in } B^\epsilon.
\end{equation}
Finally, Eqs. (10-12) are subject to the prescribed boundary displacements and tractions with $u^{\epsilon} = \mathbf{w}$ on $\partial B^\epsilon_a$ and $\sigma^{\epsilon} \cdot n^{\epsilon} = \mathbf{t}$ on $\partial B^\epsilon_b$, respectively. $n^{\epsilon}$ is the unit normal to the surface at which the traction is computed. Here, considering that $\partial B^\epsilon$ is the boundary of the composite domain $B^\epsilon$, $\partial B^\epsilon_a$ and $\partial B^\epsilon_b$ respectively denote the boundary parts subjected to prescribed displacements and tractions with $\partial B^\epsilon_a \cap \partial B^\epsilon_b = \emptyset$ and $\partial B^\epsilon_a \cup \partial B^\epsilon_b = \partial B^\epsilon$.

We now apply a two-scale asymptotic expansion of the solution $u^{\epsilon}(M^\epsilon x)$ in terms of the fast and slow coordinates
\begin{equation}
u^{\epsilon}(M^\epsilon x) = u^{(0)}(M^\epsilon x) + \epsilon u^{(1)}(M^\epsilon x, x) + \epsilon^2 u^{(2)}(M^\epsilon x, x) + O(\epsilon^3),
\end{equation}
where $u^{(i)}$ are $\mathcal{V}$-periodic functions in $x$. We note that the leading order $u^{(0)}$ corresponds to the homogenised displacement field, and as is shown below, it only depends on the macroscopic coordinates $M^\epsilon x$, i.e., it is constant over the unit cell domain. Putting the above ansatz into Eqs. (11-13) we obtain the following expansions for $\epsilon^{\epsilon}$ and $\sigma^{\epsilon}$
\begin{align}
\epsilon^{\epsilon}(M^\epsilon x) &= \frac{1}{\epsilon} \epsilon^{(1)(M^\epsilon x, x)} + \epsilon \epsilon^{(1)(M^\epsilon x, x)} + \epsilon^2 \epsilon^{(2)(M^\epsilon x, x)} + O(\epsilon^3), \\
\sigma^{\epsilon}(M^\epsilon x) &= \frac{1}{\epsilon} \sigma^{(1)(M^\epsilon x, x)} + \sigma^{(0)(M^\epsilon x, x)} + \epsilon \sigma^{(1)(M^\epsilon x, x)} + \epsilon^2 \sigma^{(2)(M^\epsilon x, x)} + O(\epsilon^3),
\end{align}
where we have defined the quantities
\begin{equation}
\epsilon^{(n)} = \text{sym}(\nabla_{M^\epsilon} u^{(n)}) \quad \text{and} \quad \epsilon^{(k)} = \epsilon^{(M^\epsilon x)} + \epsilon^{(k+1)} \quad \text{for } k \geq 0
\end{equation}
with
\begin{equation}
\epsilon^{(k)} = \text{sym}(\nabla_{M^\epsilon} u^{(k)}) \quad \text{and} \quad \epsilon^{(k)} = \text{sym}(\nabla_{M^\epsilon} u^{(k)}).
\end{equation}
Using Eq. (11) the quantities $\sigma^{(k)}$ and $\epsilon^{(k)}$ are then related by the following elastic constitutive relation
\begin{equation}
\sigma^{(k)} = C : \epsilon^{(k)} \quad \text{for } k \geq -1.
\end{equation}
We substitute now the asymptotic expansion for the stress tensor, Eq. (15), into the equilibrium equation (10), and comparing coefficients of different powers in $\epsilon$ we obtain
\begin{align}
O(\epsilon^{-2}) : & \quad 0 = \text{div}_{M^\epsilon} \sigma^{(1)}, \\
O(\epsilon^{-1}) : & \quad 0 = \text{div}_{M^\epsilon} \sigma^{(0)} + \text{div}_{M^\epsilon} \sigma^{(0)}, \\
O(\epsilon^0) : & \quad 0 = \text{div}_{M^\epsilon} \sigma^{(0)} + \text{div}_{M^\epsilon} \sigma^{(1)}.
\end{align}
Since $C$ depends only on the microscopic variables, and rewriting Eq. (19) as
\[
\text{div}_x \left[ C : \text{sym}(\nabla_x u^{(0)}) \right] = 0, \quad (22)
\]
we can conclude that $u^{(0)} = u^{(0)}(M, x)$, that is, $u^{(0)}$ is expressed only in terms of macroscopic coordinates, as mentioned above, and so is $\varepsilon^{(0)}_{(M,x)}$. In addition, and considering Eqs. (16) and (18), we have $\varepsilon^{(-1)} = \sigma^{(-1)} = 0$. This shows that the leading orders of the stress and strain tensors are $\varepsilon^{(0)}$ and $\sigma^{(0)}$, respectively. The goal now is to find a homogenised (macroscopic) equation for $u^{(0)}$ that is written in terms of the homogenised (macroscopic) strain tensor $\varepsilon^{(0)}_{(M,x)}$.

Since $\sigma^{(-1)} = 0$, Eq. (20) becomes $\text{div}_x \sigma^{(0)} = 0$, which, using Eq. (16), can be rewritten as
\[
\text{div}_x (C : \varepsilon^{(1)}_{(x)}) = -\text{div}_x (C : \varepsilon^{(0)}_{(M,x)}). \quad (23)
\]

We note that the right-hand side of the above equation is the product between a function that depends on the microscopic variables only ($C$) and a function that depends on the macroscopic variables only ($\varepsilon^{(0)}_{(M,x)}$). Therefore, to solve $u^{(1)}$ up to a constant, we apply separation of variables and consider solutions of the form $u^{(1)}(M, x) = x^{mn}(x)\varepsilon^{(0)}_{(M,x),mn}$, and so we have
\[
\varepsilon^{(1)}_{(x)} = \text{sym} (\nabla_x x^{mn} ) \varepsilon^{(0)}_{(M,x),mn}. \quad (24)
\]

Here, $x^{mn}(x)$ is a $V$–periodic $C^0$ continuous, vector-valued first-order displacement influence function, also known as a corrector function, with symmetry $x^{mn}(x) = x^{mn}(x)$ for $m, n = 1, 2, 3$. Moreover, $V$–periodicity of $x^{mn}(x)$ renders the following integration over the unit cell
\[
\int_V \nabla_x x^{mn} dV = 0 \quad \text{for} \quad m, n = 1, 2, 3. \quad (25)
\]

Putting the ansatz for $\varepsilon^{(1)}_{(x)}$ given in Eq. (24) into Eq. (23) and considering the validity of Eq. (23) for arbitrary macroscopic strains $\varepsilon^{(0)}_{(M,x)}$, along with using the minor symmetry of $C$ which provides $C_{ijkl} = C_{ijlk} = C_{jilk}$ with $C_{ijkl} = [e_i \otimes e_j] \times [e_k \otimes e_l]$ we obtain the following cell problem
\[
\frac{\partial}{\partial x_j} \left[ C_{ijkl} \frac{\partial x^{mn}(x)}{\partial x_i} \right] = \frac{\partial C_{ijmn}}{\partial x_j} \quad \text{in} \quad V = B_1 \cup B_2. \quad (26)
\]

Together with locally periodic boundary conditions, Eq. (26) is a linear boundary value problem for $x^{mn}(x)$ up to a constant. The function $x^{mn}(x)$, which is a solution of the cell problem (26), provides information of the microscopic details of the system, and as such, it is a key quantity of the homogenised problem.

We can write the leading order (fine scale) strain tensor $\varepsilon^{(0)}_{(M,x,x)} = \varepsilon^{(0)}_{(M,x)} + \varepsilon^{(1)}_{(x)}$ in the following separated form
\[
\varepsilon^{(0)}_{kl} = \varepsilon^{mn}_{kl}(x)\varepsilon^{(0)}_{(M,x),mn} \quad \text{with} \quad \varepsilon^{mn}_{kl}(x) = \mathcal{I}_{klmn} + \frac{1}{2} \left[ \frac{\partial x^{mn}(x)}{\partial x_l} + \frac{\partial x^{mn}(x)}{\partial x_k} \right], \quad (27)
\]

where $\varepsilon^{mn}_{kl}(x)$ is the strain influence function. $\mathcal{I}_{klmn} = 1/2[\delta_{km}\delta_{ln} + \delta_{kn}\delta_{lm}]$ for $k, l, m, n = 1, 2, 3$ are the components of the fourth-order symmetric identity tensor. This shows, in view of Eqs. (18) and (27), that the leading order (fine scale) stress tensor $\sigma^{(0)}_{(M,x,x)}$ depends only on the corrector function $x^{mn}(x)$ and the macroscopic strain tensor $\varepsilon^{(0)}_{(M,x)}$ with
\[
\sigma^{(0)}_{ij} = S^{mn}_{ij}(x)\varepsilon^{(0)}_{(M,x),mn} \quad \text{with} \quad S^{mn}_{ij}(x) = C_{ijkl}(x)\varepsilon^{mn}_{kl}(x) = C_{ijmn} + C_{ijkl} \frac{\partial x^{mn}(x)}{\partial x_l}, \quad (28)
\]
where $S_{ij}^{mn}(x)$ is the stress influence function. Making now use of the divergence theorem and the fact that $\sigma^{(1)}$ is periodic in $V$, we have $\int_V \text{div}_{x} \sigma^{(1)} \, dV = \int_{\partial V} \sigma^{(1)} \cdot n \, dA = 0$. Thus, integrating Eq. (21) over the unit cell, we obtain

$$
\frac{1}{|V|} \int_V \left[ \text{div}_{x} \sigma^{(0)} + \text{div}_{x} \sigma^{(1)} \right] \, dV = \text{div}_{x} \left( \frac{1}{|V|} \int_V \sigma^{(0)} \, dV \right) = \text{div}_{x} M \sigma = 0,
$$

which is the (macroscopic) homogenised equilibrium equation where the volume averaged stress tensor $M \sigma$ reads

$$
M \sigma = \frac{1}{|V|} \int_V \sigma^{(0)} \, dV.
$$

Analogously to Eq. (30), volume averaged strain tensor $M \varepsilon$ can be computed through an averaging of $\varepsilon^{(0)}$ over the unit cell

$$
M \varepsilon = \frac{1}{|V|} \int_V \varepsilon^{(0)} \, dV.
$$

In view of Eqs. (25) and (27), one computes $M \varepsilon = \varepsilon^{(0)}_{[\text{total}]}$. Substituting Eq. (28) into the right-hand side of Eq. (30) gives the following coarse scale constitutive equation

$$
M \sigma = C^* : M \varepsilon,
$$

where $C^*$ is the macroscopic elastic stiffness tensor with

$$
C^*_{ijmn} = \frac{1}{|V|} \int_V \varepsilon_{ij}^{mn}(x) \, dV.
$$

$C^*$ possesses both major and minor symmetries as does $C$. For derivation of the components of the macroscopic elasticity tensor $C^*$, we represent the unit cell problem given in Eq. (26) in terms of the so-called total displacement influence function $\psi^{mn} = \chi^{mn} \neq \varepsilon^{mn}$ where $\varepsilon_k^{mn} = x_n \delta_{km}$ which gives

$$
\frac{\partial}{\partial x_l} \left[ C^*_{ijkl} \frac{\partial \psi_k^{mn}(x)}{\partial x_l} \right] = 0 \quad \text{in} \quad V = B_1 \cup B_2.
$$

Analogous to Eq. (26), together with locally periodic boundary conditions, Eq. (34) is a linear boundary value problem for $\psi^{mn}(x)$ up to a constant. To provide uniqueness, a common approach used is to set $\psi^{mn}(x) = \varepsilon^{mn}(x)$, i.e., $\chi^{mn}(x) \equiv 0$, on the vertices of the unit cell, which constitute control nodes used to impose macroscopic strains.

Substituting the representation $\chi^{mn} = \psi^{mn} - \varepsilon^{mn}$ into the strain influence function given in Eq. (27) with the definition $\varepsilon_k^{mn} = x_n \delta_{km}$ we reach

$$
\mathcal{E}_{kl}^{mn}(x) = I_{klmn} + \frac{1}{2} \left[ \frac{\partial \psi_k^{mn}(x) - \varepsilon_k^{mn}(x)}{\partial x_l} + \frac{\psi_l^{mn}(x) - \varepsilon_l^{mn}(x)}{\partial x_k} \right],
$$

$$
= I_{klmn} - I_{klmn} + \frac{1}{2} \left[ \frac{\partial \psi_k^{mn}(x)}{\partial x_l} + \frac{\psi_l^{mn}(x)}{\partial x_k} \right],
$$

$$
= \frac{1}{2} \left[ \frac{\partial \psi_k^{mn}(x)}{\partial x_l} + \frac{\psi_l^{mn}(x)}{\partial x_k} \right].
$$

Considering the unitary character macroscopic strain due to total displacement influence function $\psi^{mn}$ for each $mn$-pair, we may define $\mathcal{E}_{kl}^{mn}(x)$ as the microscopic strain components due to total displacement influence function $\psi^{mn}$ with $\mathcal{E}_{kl}^{mn}(x) = \varepsilon_k^{(0)}(\psi^{mn})$. Similarly, in view of Eq. 28, $S_{kl}^{mn}(x)$ is interpreted as the
Figure 3: Considering that the problem is a linear one, and in order to provide stress and strain distributions over the unit cell with reasonable magnitudes, we apply small macroscopic strains with six homogeneous deformation fields corresponding to \( \alpha \omega^m \) for \( mn = 11, 22, 33, 12, 13, 23 \). These yield macroscopic strains of \( M\epsilon(\alpha \omega^m) = \alpha M\epsilon(\omega^m) \) where \( M\epsilon(\omega^1) = e_1 \otimes e_1, M\epsilon(\omega^2) = e_2 \otimes e_2, M\epsilon(\omega^3) = e_3 \otimes e_3, M\epsilon(\omega^{12}) = 1/2[e_2 \otimes e_1 + e_1 \otimes e_2], M\epsilon(\omega^{13}) = 1/2[e_3 \otimes e_1 + e_1 \otimes e_3], M\epsilon(\omega^{23}) = 1/2[e_1 \otimes e_2 + e_2 \otimes e_1] \) and \( \alpha = -0.001 \). The \( V \)-periodic fluctuation field \( \chi^m \), which is not displayed above, has no influence on the emergent macroscopic strains. The grey box represents the undeformed volume element contours whereas the dashed curves convect with the deformation. For visibility purposes the displacements are amplified.

Microscopic stress components due to total displacement influence function \( \psi^m \) with \( C_{ijmn}^m(x) = \sigma_{kl}^{(0)}(\psi^m) \).

Substituting this into Eq. 33, we find

\[
C_{ijmn}^m = \frac{1}{|V|} \int_V \sigma_{kl}^{(0)}(\psi^m) dV.
\]  

(38)

In words, the component of the macroscopic elasticity tensor \( C^m \) with the indices \( ijmn \) corresponds to the homogenized stress tensor component \( M\sigma_{ij} \) for due to total displacement influence function \( \psi^m \) computed for the imposed macroscopic strains at unit cell vertices with \( \epsilon_k^m \). Thus, computation of the 36 macroscopic constitutive constants making up \( C_{ijmn}^m \) requires computation of the homogenized stress \( M\sigma \) for six load cases with \( mn = 11, 22, 33, 12, 13, 23 \), see Figure 3. For convenience, in the following pages we denote \( \epsilon^{(0)} \) and \( \sigma^{(0)} \) with \( \epsilon \) and \( \sigma \), respectively. The results listed above, which consider periodic microstructures, is valid even if the material is random and not periodic as in the current case.\(^3\)

For completeness, we close this part by presenting the boundary value problem at the macroscale domain \( \mathcal{B} \). For vanishing body forces, this aims at finding the coarse-scale displacement field \( M\mathbf{u} = \mathbf{u}^{(0)}(\mathbf{M}x) \) on \( \mathcal{B} \) such that

\[
0 = \text{div}_{M\mathbf{u}} M\sigma \quad \text{in} \quad \mathcal{B}.
\]  

(39)

Eq. (39) with \( M\sigma \) computed in view of Eq. (32) are subject to the prescribed boundary displacements and tractions with \( M\mathbf{u} = M\mathbf{n} \) on \( \partial \mathcal{B}_u \) and \( M\sigma \cdot M\mathbf{n} = M\mathbf{t} \) on \( \partial \mathcal{B}_t \), respectively. \( M\mathbf{n} \) is the unit normal to the surface at which the traction is computed. Here, considering that \( \partial \mathcal{B} \) is the boundary of the domain \( \mathcal{B} \), \( \partial \mathcal{B}_u \) and \( \partial \mathcal{B}_t \) respectively denote the boundary parts subjected to prescribed displacements and tractions with \( \partial \mathcal{B}_u \cap \partial \mathcal{B}_t = \emptyset \) and \( \partial \mathcal{B}_u \cup \partial \mathcal{B}_t = \partial \mathcal{B} \).

2.3. Boundary conditions

During the application of the different load cases, we subject the representative volume boundaries to two different boundary conditions each of which results in a periodic deformation of the unit cell, in accordance with the outlined asymptotic homogenization based macroscopic property definition scheme. These are periodic boundary conditions (PBC) and kinematically uniform boundary conditions (KUBC), both of which are applied under displacement control and for which the equivalence of average microscopic stress power to the macroscopic stress power [54] is a priori satisfied [44]. We consider periodic boundary conditions by taking both periodic deformations and antiperiodic tractions as

\[
\mathbf{u}(x^+), t - \mathbf{u}(x^-), t = M\mathbf{d}(t) \cdot [x^+ - x^-],
\]

\[
t(x^+), t + t(x^-), t = 0.
\]  

(40)

\(^3\)At the expense of doubling the size of the volume element, periodization of the microstructure is possible using a mirroring operation [53].
Here, $M^d$ is the macroscopic displacement gradient yielding $M^\varepsilon = \text{sym}(M^d)$. Moreover, $x^+ \in \partial V^+$ and $x^- \in \partial V^-$ correspond to two material points periodically located at the representative volume boundary with outward normals $n^+$ and $n^-$, respectively, which satisfy $n^+ = -n^-$. On the other hand, considering that $\partial V$ corresponds to the representative volume boundary, kinematically uniform boundary conditions are defined by taking displacements that comply with the assigned macroscopic strains on $\partial V$

$$u(x, t) = M^d(t) \cdot x \text{ for all } x \in \partial V,$$  

(41)

Thus, kinematically uniform boundary conditions correspond to a special case of periodic boundary conditions where the perturbation field vanishes on $\partial V$.

A third type of boundary condition, referred to as uniform traction condition (UTBC), is defined via tractions that comply with the assigned macroscopic stresses $t(x, t) = M^\sigma(t) \cdot n$. This boundary condition is applied under force control to yield the apparent compliance tensor. Denoting elastic stiffness tensors obtained by using periodic, kinematically uniform and uniform traction boundary conditions by $C_{\text{PBC}}, C_{\text{KUBC}}$ and $C_{\text{UTBC}}$, respectively, the homogenization results derived by Suquet [55] yield the following universal inequality

$$M^\varepsilon : C_{\text{UTBC}} : M^\varepsilon \leq M^\varepsilon : C_{\text{PBC}} : M^\varepsilon \leq M^\varepsilon : C_{\text{KUBC}} : M^\varepsilon.$$  

(42)

Thus, the macroscopic elastic stiffness predictions of kinematically uniform and uniform traction boundary conditions respectively correspond to an upper and lower bound on the macroscopic stiffness. Therefore, the use of periodic boundary conditions for the computations of the elastic properties is a more reasonable approach.

3. Results and discussions

3.1. Determination of the RVE size

Effective properties inherently assume the existence of an RVE, a concept on which continuum mechanics relies [56]. Unit cells making up periodic media and volume elements of very large sizes (mathematically tending to infinity), which encapsulate sufficient microstructural information and that feature statistical homogeneous ergodic properties, qualify as RVEs [41, 57]. In the current paper, we apply homogenization by systematically increasing the generated volume element size and investigate the convergence of homogenized apparent elastic properties. To this end, we consider periodic boundary conditions.

For the elastic moduli of polycrystals, i.e. aggregate of single crystals, randomly distributed orientations of single crystals lead to macroscopically isotropic properties. For polycrystalline materials, considering that the aggregate of crystals occupy the whole volume, the Voigt and Reuss averages correspond to directional averages considering all possible lattice orientations, with

$$C_V = \frac{1}{4\pi} \int_0^{2\pi} \int_0^\pi C(\Theta, \Phi) \sin \Theta \, d\Theta \, d\Phi \quad \text{and} \quad S_R = \frac{1}{4\pi} \int_0^{2\pi} \int_0^\pi S(\Theta, \Phi) \sin \Theta \, d\Theta \, d\Phi,$$  

(43)

which are fourth-order stiffness and compliance tensors, respectively. Since both $C_V$ and $S_R$ are isotropic we can describe them in terms of $K_V, G_V$ and $K_R, G_R$, respectively.

Similar to the case of polycrystals, the generated bicontinuous stochastic composite microstructures feature macroscopically isotropic elastic properties only for sufficiently large volume element sizes, otherwise a strong directional dependence may be observed in the macroscopic elasticity tensor. Due to randomness in the generation of the microstructures, computation of elastic properties for only one selected direction may be misleading. Therefore, we treat the macroscopic elasticity tensor of each volume element as that of a single crystal making up a crystalline aggregate by using the substitution of the macroscopic elasticity and compliance tensors, $\hat{C}^*$ and $\hat{S}^*$, respectively, in the integrands of Eqs. (43). This allows demonstrating macroscopic
elastic properties with a single parameter, namely Hill’s aggregate elastic properties, \( K_{\text{HVR}}^* = (K_V^* + K_R^*)/2 \) and \( G_{\text{HVR}}^* = (G_V^* + G_R^*)/2 \). Moreover, this allows quantifying the level of anisotropy in the material using the macroscopic universal anisotropy index \( A_U^* \) [59], with \( A_U^* = \frac{K_V^*}{K_R^*} + \frac{5G_V^*}{G_R^*} - 6 \geq 0 \). \( A_U^* \) increases with increasing level of anisotropy. As the medium converges to an isotropic one, the gap in-between Voigt and Reuss bounds vanishes with \( K_V^* \to K_R^* \) and \( G_V^* \to G_R^* \). This amounts to \( A_U^* \to 0 \). Corresponding Young’s moduli and Poisson’s ratios are computed with \( E_{\text{HVR}}^* = \frac{9K_{\text{HVR}}^*G_{\text{HVR}}^*}{3K_{\text{HVR}}^* + G_{\text{HVR}}^*} \) and \( \nu_{\text{HVR}}^* = \frac{\nu_V^* - 2G_{\text{HVR}}^*}{3K_{\text{HVR}}^* + G_{\text{HVR}}^*} \), respectively. Once the effective properties are concerned, the subscript HVR is dropped.

In the definition of the RVE size, model generations for various volume element sizes are considered as demonstrated in Figure 4. A two-phase elastic nanocomposite, with constituent phase contrast corresponding to \( E_2/E_1 = 1 \), is homogeneous and any material volume, no matter how small its size is, encapsulates the macroscopic properties. Thus, one deduces that a phase contrast of \( E_2/E_1 = 0 \) constitutes the most stringent condition for a minimum RVE size which is computationally detected. With this motivation, in this part of our work, we consider single phase gold with phase contrast of \( E_2/E_1 = 0 \), where \( E_1 \) and \( E_2 \) respectively denote Young’s modulus of gold and pore. Taking into account the experimentally observed phase volume fraction interval in nanoporous gold, phase volume fractions of \( \phi_1 = 0.20 \) and \( \phi_1 = 0.50 \) are studied. For the single gold phase, we assume isotropic elasticity and use \( E_1 = 79 \) GPa and \( \nu_1 = 0.44 \).

In the definition of the RVE size, model generations for various volume element sizes are considered as demonstrated in Figure 4. A two-phase elastic nanocomposite, with constituent phase contrast corresponding to \( E_2/E_1 = 1 \), is homogeneous and any material volume, no matter how small its size is, encapsulates the macroscopic properties. Thus, one deduces that a phase contrast of \( E_2/E_1 = 0 \) constitutes the most stringent condition for a minimum RVE size which is computationally detected. With this motivation, in this part of our work, we consider single phase gold with phase contrast of \( E_2/E_1 = 0 \), where \( E_1 \) and \( E_2 \) respectively denote Young’s modulus of gold and pore. Taking into account the experimentally observed phase volume fraction interval in nanoporous gold, phase volume fractions of \( \phi_1 = 0.20 \) and \( \phi_1 = 0.50 \) are studied. For the single gold phase, we assume isotropic elasticity and use \( E_1 = 79 \) GPa and \( \nu_1 = 0.44 \).

All of the reported results on the subsequent pages constitute averages of those corresponding to five stochastic realizations using the leveled-wave model, as defined by Eq. (2). As shown in the subsequent results, for the determined RVE size the standard deviation in the computed effective properties from the five stochastic realizations is sufficiently small. In each realization, \( N = 10000 \) waves are used which is sufficient to guarantee Gaussian statistical properties of the random field \( f(x) \). We use 3D full integration first order trilinear finite elements carried out of voxelization of the generated domain where the voxels are dimensionless and unit-sized. In absence of consideration of any size dependent constitutive phenomena, the computed mechanical properties are equally valid for any microstructural size.

The volume element size dependence of the computed apparent elastic properties, more specifically bulk modulus \( K^* \), shear modulus \( G^* \) and Poisson’s ratio \( \nu^* \) are given in Figure 5 for the solid phase volume fractions of 0.20 and 0.50. Results are also tabulated in Tables B.1 and B.2. As anticipated, a fast convergence of the mean elastic properties with increased volume element size is observed with the use of periodic boundary conditions. During this convergence of mean values, corresponding error bars get smaller. The mean anisotropy index \( A_U^* \) of both volume fractions decrease swiftly with increasing volume element size, which
signals isotropicization. Depending on the computed relative errors (cf. Tables B.1 and B.2) and considering the computational resources, RVE size is judged to be 12 wavelengths and it is used in all of the subsequent investigations. At this size, for 0.20 of phase volume fraction, \( K^* \), \( G^* \) and \( \nu^* \) are computed as 32.92 ± 7.72 MPa, 27.49 ± 6.88 MPa and 0.1654 ± 0.0180, respectively. Moreover, the effective anisotropy index is computed to be \( A_2^* = 2.27 \times 10^{-1} \). For 0.50 of phase volume fraction, on the other hand, \( K^* \), \( G^* \) and \( \nu^* \) are computed as 10915.24 ± 176.32 MPa, 5588.84 ± 66.48 MPa and 0.2813 ± 0.009. Also, the effective anisotropy index is computed to be \( A_2^* = 2.21 \times 10^{-2} \), cf. [17]. As the effective bulk and shear moduli are concerned, these predictions are much below the upper bounds computed by Hashin-Shtrikman, three-point Beran-Molyneux and Milton-Phan-Tien bounds. The bounds for 0.20 gold volume fraction are \( K_{U,HS} = 7567.05 \) MPa, \( G_{U,HS} = 3428.82 \) MPa, \( [K_{U,BM,1} + K_{U,BM,II}]/2 = 1935.43 \) MPa, and \( [G_{U,MPT,1} + G_{U,MPT,II}]/2 = 1484.50 \) MPa. The bounds for 0.50 gold volume fraction are \( K_{U,HS} = 27430.56 \) MPa, \( G_{U,HS} = 9974.75 \) MPa, \( [K_{U,BM,1} + K_{U,BM,II}]/2 = 15647.72 \) MPa, and \( [G_{U,MPT,1} + G_{U,MPT,II}]/2 = 7831.89 \) MPa (cf. Tables B.1 and B.2). The bounds get closer to the computed values with increasing solid volume fraction.

![Figure 5: Convergence of elastic properties with increasing volume element size for (a) \( \phi_1 \approx 0.20 \) and (b) \( \phi_1 \approx 0.50 \) and phase contrast of \( E_2/E_1 = 0 \) as input. The mean values converge to the desired effective values with corresponding error bars getting smaller as the volume element size increases. Periodic boundary conditions are used in the simulations. Based on the results RVE size is selected to be 12 wavelengths. Detailed numerical values are listed in Tables B.1 and B.2. Data is presented as mean value \( \mu \) (dots) and standard deviation \( \sigma \) from analysis of 5 random realizations. Lines merge mean values.](image)

3.2. The influence of material property contrast

Based on the determined RVE size, in this section we demonstrate the influences of phase contrast on the effective elastic properties of the composite. To this end, fixing \( E_1 \) to the elasticity modulus of gold, four phase contrast values, in terms of elasticity moduli ratio \( E_2/E_1 = \{10^{-4}, 10^{-3}, 10^{-2}, 10^{-1}\} \) are considered. \( E_2/E_1 = 1 \) corresponds to the trivial case of a homogeneous material and does not require any computations. \( E_2/E_1 = 0 \) corresponds to a porous solid for which the results are reported in the previous section.

Figures 6 and 7 demonstrate deformed shapes of the volume elements as well as strain and stress contours for \( E_2/E_1 = 10^{-4} \) and \( E_2/E_1 = 10^{-1} \), respectively, considering \( \phi_1 \approx 0.20 \). Here, the six independent loading scenarios applied in determination of the effective elastic properties are considered and the plotted
stress and strain contours display the components corresponding to the nonzero macroscopic strain component in each case. For $E_2/E_1 = 10^{-4}$, due to high level of phase contrast, applied macroscopic strain is mainly accommodated by the softer phase at which significant strain localization occurs. With the use of periodic boundary conditions, a significant waviness occurs in the volume element face. Once the phase contrast is decreased from $E_2/E_1 = 10^{-4}$ to $E_2/E_1 = 10^{-1}$, the periodic oscillations at the volume element face significantly dissipate and the deformed volume element shapes resemble those of the kinematically uniform loading case in which the volume element faces remain flat. As compared to the results for $E_2/E_1 = 10^{-4}$, a relatively more balanced distribution of deformation between both phases is observed for $E_2/E_1 = 10^{-1}$.

Similar comments apply for the demonstrated results in Figures 8 and 9 where $\phi_1 \approx 0.50$ is considered. This time, however, these localizations are less severe and the oscillations in the volume element face is reduced. Considering the stress development, with the improved force transmission along dense and continuous network of the stiff phase much larger stresses are observed for $\phi_1 \approx 0.50$.

The results for intermediate phase contrast values are demonstrated in Figure 10 and tabulated in Tables B.3 and B.4. Corresponding analytical bounds are listed in Tables B.5, B.6, B.7 and B.8. In agreement with our observations on the strain and stress contours for different phase volume fraction ratios, for $\phi_1 \approx 0.20$, there is a monotonically decreasing trend in the composite elastic stiffness with increasing phase contrast. This shows that the relative significance of the compliant phase in overall composite stiffness for $\phi_1 \approx 0.20$ is higher than that for $\phi_1 \approx 0.50$ in which we observe a saturating composite macroscopic stiffness behavior towards $E_2/E_1 \rightarrow 0$. This signals a dominant contribution of the stiffer phase. At the other end, that is for $E_2/E_1 = 1$, single phase elastic properties are recovered. The observed Poisson’s ratios decrease from 0.44 to 0.17 and to 0.28 approximately as phase contrast is changed from $E_2/E_1 = 1$ to $E_2/E_1 = 0$ for $\phi_1 \approx 0.20$ and $\phi_1 \approx 0.50$, respectively. Similar to the composite bulk and shear modulus, the Poisson’s ratio for the latter case also saturates towards $E_2/E_1 \rightarrow 0$.

Plots for the Hashin-Shtrikman (HS) and the three-point Beran-Molyneux (BM) (for the bulk modulus) and the Milton-Phan-Tien (MPT) (for the shear modulus) are also shown in Figure 10. As required, none of the computational results violate the analytical bounds. As anticipated, the three-point Beran-Molyneux bounds (for the bulk modulus) and the Milton-Phan-Tien bounds (for the shear modulus) are much more stringent than the Hashin-Shtrikman bounds. We note that to evaluate the three-point bounds we need to know the parameters $\eta_i$ and $\zeta_i$ (see Eq. (A.2) in Appendix A), which depend on the underlying Gaussian random field used to generate the microstructure. The curves shown in Figure 10 were obtained by using the values that were tabulated in [60, 61] corresponding to different Gaussian random fields. Both curves are almost indistinguishable, hence indicating that the analytical three-points bounds are very insensitive to the fine details of the underlying random field, something that was already mentioned in [62]. Therefore, even though the random function used in our work, Eq. (2), to generate the microstructures has slightly different statistics to the functions used in Refs. [60] and [61] (see Appendix A for more details), the three-point bounds shown in Figure 10 are valid for the microstructures studied in this work.

As Figure 10 shows, for the material contrast range of $E_2/E_1 < 10^{-1}$, analytical bounds give a sufficiently narrow prediction. For $E_2/E_1 > 10^{-4}$ and for $\phi_1 \approx 0.20$ the computed effective bulk and shear moduli tend to be closer to the lower bounds whereas for the same region for $\phi_1 \approx 0.50$ computations tend to be closer to the upper bounds. Nevertheless, in general, for the selected cases the effective composite properties cannot be accurately predicted by the analytical bounds. This is the case especially for lower gold volume fractions.
Figure 6: Strain (row 2) and stress (row 3) plots over the volume elements for $\phi_1 \simeq 0.20$ and $E_2/E_1 = 10^{-4}$ for the six independent loading cases: (a) $\varepsilon_{11}/\sigma_{11}$, (b) $\varepsilon_{22}/\sigma_{22}$, (c) $\varepsilon_{33}/\sigma_{33}$, (d) $\varepsilon_{13}/\sigma_{13}$, (e) $\varepsilon_{23}/\sigma_{23}$, (f) $\varepsilon_{12}/\sigma_{12}$. For strain resp. stress, legend max is $0.001 [-]$ resp. $2.5 [\text{MPa}]$ and legend min is $-0.0025 [-]$ resp. $-7.5 [\text{MPa}]$. In top row, phase 1 resp. 2 is displayed in red resp. grey. A uniform deformation scaling of 100 is applied. The results are given for one of the stochastically realized microstructures. Periodic boundary conditions are applied.

Figure 7: Strain (row 2) and stress (row 3) plots over the volume elements for $\phi_1 \simeq 0.20$ and $E_2/E_1 = 10^{-1}$ for the six independent loading cases: (a) $\varepsilon_{11}/\sigma_{11}$, (b) $\varepsilon_{22}/\sigma_{22}$, (c) $\varepsilon_{33}/\sigma_{33}$, (d) $\varepsilon_{13}/\sigma_{13}$, (e) $\varepsilon_{23}/\sigma_{23}$, (f) $\varepsilon_{12}/\sigma_{12}$. For strain resp. stress, legend max is 0 resp. 0 and legend min is $-0.0025 [-]$ resp. $-50 [\text{MPa}]$. In top row, phase 1 resp. 2 is displayed in red resp. grey. A uniform deformation scaling of 100 is applied. The results are given for one of the stochastically realized microstructures. Periodic boundary conditions are applied.
Figure 8: Strain (row 2) and stress (row 3) plots over the volume elements for $\phi_1 \simeq 0.50$ and $E_2/E_1 = 10^{-4}$ for the six independent loading cases: (a) $\varepsilon_{11}/\sigma_{11}$, (b) $\varepsilon_{22}/\sigma_{22}$, (c) $\varepsilon_{33}/\sigma_{33}$, (d) $\varepsilon_{13}/\sigma_{13}$, (e) $\varepsilon_{23}/\sigma_{23}$, (f) $\varepsilon_{12}/\sigma_{12}$. For strain resp. stress, legend max is 0.001 [–] resp. 0 and legend min is −0.0025 [–] resp. −100 [MPa]. In top row, phase 1 resp. 2 is displayed in red resp. grey. A uniform deformation scaling of 100 is applied. The results are given for one of the stochastically realized microstructures. Periodic boundary conditions are applied.

Figure 9: Strain (row 2) and stress (row 3) plots over the volume elements for $\phi_1 \simeq 0.50$ and $E_2/E_1 = 10^{-1}$ for the six independent loading cases: (a) $\varepsilon_{11}/\sigma_{11}$, (b) $\varepsilon_{22}/\sigma_{22}$, (c) $\varepsilon_{33}/\sigma_{33}$, (d) $\varepsilon_{13}/\sigma_{13}$, (e) $\varepsilon_{23}/\sigma_{23}$, (f) $\varepsilon_{12}/\sigma_{12}$. For strain/stress, legend max is 0 resp. 0 and legend min is −0.0025 [–] resp. −100 [MPa]. In top row, phase 1 resp. 2 is displayed in red/grey. A uniform deformation scaling of 100 is applied. The results are given for one of the stochastically realized microstructures. Periodic boundary conditions are applied.
Figure 10: Influence of phase contrast on the computed effective elastic properties for (a) $\phi_1 \simeq 0.20$ and (b) $\phi_2 \simeq 0.50$. Detailed numerical values of the computations are listed in Tables B.3 and B.4 and of the bounds are listed in Tables B.7, B.8, B.5 and B.6. Periodic boundary conditions are used in the simulations. Plots for the Hashin-Shtrikman (HS) and the three-point Beran-Molyneux (BM) (for the bulk modulus) and the Milton-Phan-Tien (MPT) (for the shear modulus) are also shown. As required, none of the computational results violate the analytical bounds. As anticipated, the three-point Beran-Molyneux bounds (for the bulk modulus) and the Milton-Phan-Tien bounds (for the shear modulus) are much stringent then the Hashin-Shtrikman bounds. The two curves given for each of the three-point bounds are created with the tabulated $\eta_i$ and $\zeta_i$ values (see Eq. A.2) corresponding to the Gaussian random fields studied in [60] and [61]. Data is presented as mean value $\mu$ (dots) and standard deviation $\sigma$ from analysis of 5 random realizations. Lines merge mean values.
3.3. Effective elastic properties of metal-polymer nanocomposites and associated scaling law

In the final part of this section, we investigate the effective elastic properties of gold-polymer nanocomposites. To this end, (stiff) phase 1 and (compliant) phase 2 are selected as gold and epoxy resin, respectively, where the latter has a Young’s modulus of 1.038 GPa and a Poisson’s ratio of 0.35 [21, 23].

Effective properties of the gold-polymer nanocomposites are computed for volume elements of 12 wavelength size (see Section 3.1) and under periodic boundary conditions. Results of the Young’s moduli and the Poisson’s ratios for various phase volume distributions are demonstrated in Figure 11 and tabulated in Table B.9. A linear trend in lin-log scale is evident for the plotted Young’s moduli values with respect to the gold phase’s volume fraction. This trend is quite different from what is observed in nanoporous gold. Although in nanoporous gold, the load is transmitted along gold ligaments which hinges upon the phase topology through network connectivity, in the space filling composite, force transmission is ensued in all directions without cease. Thus, in metal-polymer composites, loss of metal percolation does not result in structural collapse, as it does in nanoporous metals. For the current gold-epoxy composite, the lost stiffness with greatly reduced connectivity among load bearing ligaments is compensated by that of impregnated epoxy despite of the relatively high phase contrast with \( \frac{E_{\text{epoxy}}}{E_{\text{gold}}} \approx 0.0131 \). The consequent linear behavior at this scale well agrees with the composite scaling law proposed in [11] as a simple adaptation of the Gibson and Ashby law [63] which is largely used for cellular materials with invariant topological properties under relative density changes

\[
E^* = (E_1 - E_2)\phi_1^n + E_2. \tag{44}
\]

Here, \( E_2 \) represents the Young’s modulus of the compliant phase, which, in the current case is epoxy resin. \( n \approx 2.45 \) is used in the depicted plot of the scaling law in Figure 11. With this scaling law \( E^* = E_1 \) is recovered at \( \phi_1 = 1 \) and \( E^* = E_2 \) at \( \phi_1 = 0 \). These computations result in a stiffer response as compared to a very limited number of experimental results with composite elasticity moduli of \( E^* \approx 2.78 \) and \( E^* \approx 2.74 \) GPa for ligament diameters of 20 and 50 nm and gold volume fraction around 0.27 – 0.285 with epoxy elasticity modulus of \( E_2 = 1.05 \) GPa [24]. For \( E_2 \to 0 \) Gibson and Ashby scaling law [63] for open-cell foams is recovered which is shown to be inaccurate for nanoporous gold [17]. Accuracy of the scaling law given in Eq. (44) is expected to deteriorate for composites with phase contrasts higher than that of gold-polymer composites such that at \( E_2 = 0 \), nanoporous gold scaling law given in Fig. 11 should be satisfied.

As opposed to the monotonic and relatively sharp decrease of the Poisson’s ratio with reducing gold phase volume fraction \( \phi_1 \) in nanoporous gold, the Poisson’s ratio of the metal-polymer composite exhibits a non-monotonic trend with a minimum of \( \nu^* \approx 0.286 \) at \( \phi_1 \approx 0.35 \) for the observed gold phase volume fraction interval. Considering that the bulk Poisson’s ratio’s of both gold and epoxy are larger than 0.3, this is attributed to the mutual structural effects dominated by the stiffer gold phase network rather than local bulk deformation effects of the phases which considerably reduces the composite’s effective Poisson’s ratio.

4. Conclusions

In this work, based on a finite element-based asymptotic homogenization scheme and an efficient and robust method for generating 3D random and heterogeneous bicontinuous microstructures, the influence of the volume element size, phase contrast, relative volume fraction of phases and applied boundary conditions on the estimated macroscopic elastic properties is investigated. Using the determined RVE size we computed the effective elastic properties of gold-epoxy nanocomposites of various phase volume fractions which agree well with the recorded literature. These results are also in agreement with the composite scaling law proposed in [11] as an adaptation of the Gibson and Ashby law [63] which is largely used for cellular materials with invariant topological properties under relative density changes.

The major outcomes of this work are:
In bicontinuous metal-polymer composites, compliant phase impregnation compensates for the stiffness loss due to topological changes in the stiffer phase with corresponding volume fraction reduction towards stiffer phase percolation threshold. This results in a distinct scaling relation for the elastic stiffness of the composite.

- Considering a large interval of relative phase volume fractions and high phase contrast only periodic boundary conditions provide effective elastic moduli at reasonably small volume element sizes. At this size, only for bicontinuous composites with a phase contrast of $E_2/E_1 > 10^{-1}$, the boundary condition influence on the computed apparent properties can be disregarded \(^4\).

- Even the third-order analytical bounds are not stringent enough to serve determination of effective elastic properties of bicontinuous metal-polymer composites. Thus, computational homogenization devising periodic boundary conditions is justified to be an indispensable tool in efficient and accurate determination of the effective properties of 3D bicontinuous random composites with high contrast and volume fraction bias towards the weaker phase.

Acknowledgments

We gratefully acknowledge financial support from the German Research Foundation (DFG) via SFB 986 “M^3”, sub-project B6.

\(^4\)Currently studied gold-epoxy composite have higher phase contrasts with $E_2/E_1 < 10^{-1}$. Bicontinuous composites of rubber-photopolymer [47], bicontinuous binary polymers [11] and composites of polymer-elastomer [22] exhibit relatively smaller phase contrast.
Appendix A. Analytical bounds for bicontinuous random composites

In this part, we summarize rigorous bounds on effective bulk and shear moduli of random materials. These bounds devise certain microstructural informations, e.g., phase volume fraction and $n$-point correlations functions. Defining the indicator function $\Theta(x) = 1$ if $x \in B_i$ and 0 otherwise, we define the following quantities

$$\phi_i = \langle \Theta(x) \rangle, \quad S_2(r) = \langle \Theta(x_i)\Theta(x_j) \rangle, \quad S_3(r, s, t) = \langle \Theta(x_i)\Theta(x_j)\Theta(x_k) \rangle,$$

(A.1)

where $S_2$ and $S_3$ are the two- and three-point correlation function. Since the random field is statistically stationary and isotropic, these correlation functions only depend on the distances $r = |x_i - x_j|$, $s = |x_j - x_k|$, and $t = |x_i - x_k|$ [61]. To evaluate the three-point bounds, parameters $\eta_i$ and $\zeta_i$ for $i = 1, 2$ have to be computed using [61, 62, 64]

$$\zeta_i = \frac{9}{2\phi_1\phi_2} \int_0^\infty \frac{dr}{r} \int_0^\infty \frac{ds}{s} \int_0^1 P_2(\cos \theta) \left[ S_3^{(i)}(r, s, t) - \frac{S_2^{(i)}(r) S_2^{(i)}(s)}{\phi_1} \right] d(\cos \theta),$$

$$\eta_i = \frac{5\zeta_i}{21} + \frac{150}{7\phi_1\phi_2} \int_0^\infty \frac{dr}{r} \int_0^\infty \frac{ds}{s} \int_0^1 P_4(\cos \theta) \left[ S_3^{(i)}(r, s, t) - \frac{S_2^{(i)}(r) S_2^{(i)}(s)}{\phi_1} \right] d(\cos \theta).$$

(A.2)

Here, $P_2$ and $P_4$ denote second- and fourth-order Legendre polynomials, respectively. For a randomly inserted triangle in the sample, $S_3^{(i)}(r, s, t)$ is the probability of finding phase $i$ in the vertices of the triangle with edge lengths of $r$, $s$ and $t$. For two-phase composites, $\phi_1 + \phi_2 = 1$, $\zeta_1 + \zeta_2 = 1$ and $\eta_1 + \eta_2 = 1$. Tabulated values of these parameters have been reported in [60, 61] for different Gaussian random fields, which are characterized by different field-field correlation functions. The field-field correlation function of the Gaussian random function used in our work is $C(r) \sim \sin(q_0 r)/q_0 r$ (see [17] for details), which is different to that of any of the models used in [60, 61]. However, as was discussed in [62], parameters $\zeta_i$ and $\eta_i$ are found to be relatively insensitive to the fine details of the microstructure statistical properties. Therefore, to compute the analytical three-point bounds we directly use the numerical values tabulated in [60, 61]—we also note that an additional justification for doing so is that for sufficiently small distances, all field-field correlation functions have in fact the same expression $C(r) \sim 1 - ar^2$, where $a$ is a constant [62].

Weighted arithmetic and harmonic averages of the constituent elastic moduli, which are referred to as Voigt and Reuss bounds constitute the earliest rigorous bounds on the effective material properties of two-phase materials [58]. A slightly more involved bound which is valid for well-ordered random materials$^5$, that is $[K_2 - K_1]/G_2 - G_1 \geq 0$, is the Hashin-Shtrikman bound [66]. Using the notation

$$\langle \bullet \rangle_{\phi} = \phi_1 \langle \bullet \rangle_1 + \phi_2 \langle \bullet \rangle_2 \quad \text{and} \quad \langle \{\bullet\} \rangle_{\phi} = \phi_2 \langle \{\bullet\} \rangle_1 + \phi_1 \langle \{\bullet\} \rangle_2,$$

$$\langle \bullet \rangle_{\eta} = \eta_1 \langle \bullet \rangle_1 + \eta_2 \langle \bullet \rangle_2 \quad \text{and} \quad \langle \{\bullet\} \rangle_{\zeta} = \zeta_1 \langle \{\bullet\} \rangle_1 + \zeta_2 \langle \{\bullet\} \rangle_2,$$

(A.3)

and for $K_1 < K_2$ and $G_1 < G_2$, it reads for $K^*$ and $G^*$

$$K_{L,HS} \leq K^* \leq K_{U,HS} \quad \text{and} \quad G_{L,HS} \leq G^* \leq G_{U,HS},$$

(A.4)

where

$$K_{L,HS} = K_1 + \frac{\phi_2}{[K_2 - K_1]^{-1} + 3\phi_1 [3K_1 + 4G_1]^{-1}},$$

$$K_{U,HS} = K_2 + \frac{\phi_1}{[K_1 - K_2]^{-1} + 3\phi_2 [3K_2 + 4G_2]^{-1}},$$

(A.5)

$^5$A generalization of the Hashin-Shtrikman bounds to badly-ordered materials can be found in [65].
and
\[ G_{L,HS} = G_1 + \frac{\phi_2}{[G_2 - G_1]^{-1} + 6\phi_1[K_1 + 2G_1][5G_1[3K_1 + 4G_1]]^{-1}}, \]
\[ G_{U,HS} = G_2 + \frac{\phi_1}{[G_1 - G_2]^{-1} + 6\phi_2[K_2 + 2G_2][5G_2[3K_2 + 4G_2]]^{-1}}. \]  

The simplified form of the three-point Beran-Molyneux [67] bounds by Milton [68] for the effective bulk modulus \( K^* \) reads
\[ K_{L,BM} \leq K^* \leq K_{U,BM}, \]  
where
\[ K_{L,BM} = \left( \langle K^{-1} \rangle_\phi - \frac{4\phi_1\phi_2[K_2^{-1} - K_1^{-1}]^2}{4\langle K^{-1} \rangle_\phi + 3\langle G^{-1} \rangle_\zeta} \right)^{-1} \]
\[ K_{U,BM} = \langle K \rangle_\phi - \frac{3\phi_1\phi_2[K_2^{-1} - K_1^{-1}]^2}{3\langle K \rangle_\phi + 4\langle G \rangle_\zeta}. \]  

Finally, the Milton-Phan-Thien three-point bounds [69] for \( G^* \) read
\[ G_{L,MPT} \leq G^* \leq G_{U,MPT}, \]  
where
\[ G_{L,MPT} = \left( \langle G^{-1} \rangle_\phi - \frac{\phi_1\phi_2[G_2^{-1} - G_1^{-1}]^2}{\langle G^{-1} \rangle_\phi + 6\Omega_{MPT}} \right)^{-1}, \]
\[ G_{U,MPT} = \langle G \rangle_\phi - \frac{6\phi_1\phi_2[G_2 - G_1]^2}{6\langle G \rangle_\phi + \Lambda_{MPT}}, \]  
with
\[ \Omega_{MPT} = \frac{5\langle G^{-1} \rangle_\eta(6K^{-1} - G^{-1})_\zeta + \langle G^{-1} \rangle_\eta[2K^{-1} + 21G^{-1}]_\zeta}{(128K^{-1} + 99G^{-1})_\zeta + 45\langle G^{-1} \rangle_\eta}, \]
\[ \Lambda_{MPT} = \frac{3\langle G \rangle_\eta(6K + 7G)_\zeta - 5\langle G \rangle_\eta^2}{(2K - G)_\zeta + 5\langle G \rangle_\eta}. \]  

For further bounds and details on derivations, the reader is referred to the original articles and works of Quintanilla [70] and Torquato [64].

Appendix B. Detailed numerical results

In this part, we tabulate some numerical results corresponding to the depicted plots.
Table B.1: Computed apparent elastic properties for various volume element sizes for \( \phi_1 \approx 0.20 \) phase volume fraction. \( \lambda \) corresponds to the wavelength. Here, \( E_2/E_1 = 0 \) with \( E_1 = 79 \) GPa and \( \nu_1 = 0.44 \) which gives \( K_1 \approx 21944.44 \) MPa and \( G_1 \approx 27430.56 \) MPa. The standard deviations for \( A_{ij}^T \) are not given.

<table>
<thead>
<tr>
<th>Volume Element Size</th>
<th>( K_{U,B,C} ) [MPa]</th>
<th>( G_{U,B,C} ) [MPa]</th>
<th>( \nu_{B,C} )</th>
<th>( A_{ij} ) [MPa]</th>
</tr>
</thead>
<tbody>
<tr>
<td>( \phi_1 \approx 0.20 )</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>( \phi_1 \approx 0.60 )</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>( \phi_1 \approx 0.70 )</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>( \phi_1 \approx 0.80 )</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>( \phi_1 \approx 0.90 )</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>( \phi_1 \approx 1.0 )</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Table B.2: Computed apparent elastic properties for various volume element sizes for \( \phi_1 \approx 0.50 \) phase volume fraction. \( \lambda \) corresponds to the wavelength. Here, \( E_2/E_1 = 0 \) with \( E_1 = 79 \) GPa and \( \nu_1 = 0.44 \) which gives \( K_1 \approx 21944.44 \) MPa and \( G_1 \approx 27430.56 \) MPa. The standard deviations for \( A_{ij}^T \) are not given.

<table>
<thead>
<tr>
<th>Volume Element Size</th>
<th>( K_{U,B,C} ) [MPa]</th>
<th>( G_{U,B,C} ) [MPa]</th>
<th>( \nu_{B,C} )</th>
<th>( A_{ij} ) [MPa]</th>
</tr>
</thead>
<tbody>
<tr>
<td>( \phi_1 \approx 0.50 )</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>( \phi_1 \approx 0.60 )</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>( \phi_1 \approx 0.70 )</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>( \phi_1 \approx 0.80 )</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>( \phi_1 \approx 0.90 )</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>( \phi_1 \approx 1.0 )</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Table B.3: Computed apparent (KUBC) and effective (PBC) elastic properties for various phase contrast values for \( \phi_1 \approx 0.20 \) phase volume fraction at RVE size determined using periodic boundary conditions. \( E_1 = 79 \) GPa and \( \nu_1 = 0.44 \) which gives \( K_1 \approx 21944.44 \) MPa and \( G_1 \approx 27430.56 \) MPa. The standard deviations for \( A_{ij}^T \) are not given.

<table>
<thead>
<tr>
<th>Phase Contrast</th>
<th>( E_2 ) [( E_1 ) = 79 GPa]</th>
<th>( K^* ) [MPa]</th>
<th>( G^* ) [MPa]</th>
<th>( \nu^* )</th>
<th>( A_{ij}^T )</th>
</tr>
</thead>
<tbody>
<tr>
<td>( i )</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>( j )</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Table B.4: Computed apparent (KUBC) and effective (PBC) elastic properties for various phase contrast values for \( \phi_1 \approx 0.50 \) phase volume fraction at RVE size determined using periodic boundary conditions. \( E_1 = 79 \) GPa and \( \nu_1 = 0.44 \) which gives \( K_1 \approx 21944.44 \) MPa and \( G_1 \approx 27430.56 \) MPa. The standard deviations for \( A_{ij}^T \) are not given.

<table>
<thead>
<tr>
<th>Phase Contrast</th>
<th>( E_2 ) [( E_1 ) = 79 GPa]</th>
<th>( K^* ) [MPa]</th>
<th>( G^* ) [MPa]</th>
<th>( \nu^* )</th>
<th>( A_{ij}^T )</th>
</tr>
</thead>
<tbody>
<tr>
<td>( i )</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>( j )</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Table B.5: Analytical Hashin-Shtrikman and the three-point Beran-Molyneux bounds for the bulk modulus for phase contrast \( \phi_1 \approx 0.20 \). The lower and upper bounds are given for the three-point bounds are created with the tabulated \( n \) and \( \zeta \) values (see Eq. A.2) corresponding to the Gaussian random fields studied in the Refs. [60] and [61], respectively. \( E_1 = 79 \) GPa and \( \nu_1 = 0.44 \) which gives \( K_1 \approx 21944.44 \) MPa and \( G_1 \approx 27430.56 \) MPa.

<table>
<thead>
<tr>
<th>Phase Contrast</th>
<th>( E_2 ) [( E_1 ) = 79 GPa]</th>
<th>( K_{L,H,S} ) [MPa]</th>
<th>( K_{L,B,M,I} ) [MPa]</th>
<th>( K_{L,B,M,I} ) [MPa]</th>
<th>( K_{U,H,S} ) [MPa]</th>
<th>( K_{U,B,M,I} ) [MPa]</th>
<th>( K_{U,B,M,I} ) [MPa]</th>
</tr>
</thead>
<tbody>
<tr>
<td>( i )</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>( j )</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Table B.6: Analytical Hashin-Shtrikman and the three-point Beran-Molyneux bounds for the bulk modulus for phase contrast values for $\phi_1 \approx 0.50$ phase volume fraction. The two columns identified by I and II give the three-point bounds are created with the tabulated $\eta_i$ and $\zeta_i$ values (see Eq. A.2) corresponding to the Gaussian random fields studied in the Refs. [60] and [61], respectively. $E_1 = 79$ GPa and $\nu_1 = 0.44$ which gives $K_1 \approx 219444.44$ MPa and $G_1 \approx 27430.56$ MPa.

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>27430.56</td>
<td>15622.18</td>
<td>15673.26</td>
</tr>
<tr>
<td>$10^{-4}$</td>
<td>47.54</td>
<td>51.17</td>
<td>51.19</td>
<td>27464.16</td>
<td>15661.38</td>
<td>15712.44</td>
</tr>
<tr>
<td>$10^{-3}$</td>
<td>474.87</td>
<td>510.90</td>
<td>511.18</td>
<td>27766.33</td>
<td>16013.93</td>
<td>16064.76</td>
</tr>
<tr>
<td>$10^{-2}$</td>
<td>4695.68</td>
<td>5034.14</td>
<td>5036.69</td>
<td>30765.78</td>
<td>19506.14</td>
<td>19554.73</td>
</tr>
<tr>
<td>$10^{-1}$</td>
<td>42275.33</td>
<td>44105.35</td>
<td>44117.75</td>
<td>58688.63</td>
<td>51408.61</td>
<td>51440.39</td>
</tr>
<tr>
<td>1</td>
<td>219444.44</td>
<td>219444.44</td>
<td>219444.44</td>
<td>219444.44</td>
<td>219444.44</td>
<td>219444.44</td>
</tr>
</tbody>
</table>

Table B.7: Analytical Hashin-Shtrikman and the three-point Milton-Phan-Tien bounds for the shear modulus for phase contrast values for $\phi_1 \approx 0.20$ phase volume fraction. The two columns identified by I and II give the three-point bounds are created with the tabulated $\eta_i$ and $\zeta_i$ values (see Eq. A.2) corresponding to the Gaussian random fields studied in the Refs. [60] and [61], respectively. $E_1 = 79$ GPa and $\nu_1 = 0.44$ which gives $K_1 \approx 219444.44$ MPa and $G_1 \approx 27430.56$ MPa.

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>3428.82</td>
<td>1460.51</td>
<td>1508.48</td>
</tr>
<tr>
<td>$10^{-4}$</td>
<td>4.34</td>
<td>4.60</td>
<td>4.61</td>
<td>3431.44</td>
<td>1463.97</td>
<td>1511.92</td>
</tr>
<tr>
<td>$10^{-3}$</td>
<td>43.39</td>
<td>45.93</td>
<td>46.08</td>
<td>3455.97</td>
<td>1495.10</td>
<td>1542.83</td>
</tr>
<tr>
<td>$10^{-2}$</td>
<td>429.74</td>
<td>453.49</td>
<td>454.94</td>
<td>3691.09</td>
<td>1804.70</td>
<td>1850.33</td>
</tr>
<tr>
<td>$10^{-1}$</td>
<td>3951.53</td>
<td>4075.15</td>
<td>4082.30</td>
<td>6029.63</td>
<td>4754.32</td>
<td>4783.06</td>
</tr>
<tr>
<td>1</td>
<td>27430.56</td>
<td>27430.56</td>
<td>27430.56</td>
<td>27430.56</td>
<td>27430.56</td>
<td>27430.56</td>
</tr>
</tbody>
</table>

Table B.8: Analytical Hashin-Shtrikman and the three-point Milton-Phan-Tien bounds for the shear modulus for phase contrast values for $\phi_1 \approx 0.50$ phase volume fraction. The two columns identified by I and II give the three-point bounds are created with the tabulated $\eta_i$ and $\zeta_i$ values (see Eq. A.2) corresponding to the Gaussian random fields studied in the Refs. [60] and [61], respectively. $E_1 = 79$ GPa and $\nu_1 = 0.44$ which gives $K_1 \approx 219444.44$ MPa and $G_1 \approx 27430.56$ MPa.

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>9974.75</td>
<td>7827.60</td>
<td>7836.18</td>
</tr>
<tr>
<td>$10^{-4}$</td>
<td>9.14</td>
<td>12.77</td>
<td>12.79</td>
<td>9976.97</td>
<td>7830.74</td>
<td>7839.31</td>
</tr>
<tr>
<td>$10^{-3}$</td>
<td>91.14</td>
<td>127.00</td>
<td>127.18</td>
<td>9996.96</td>
<td>7858.97</td>
<td>7867.51</td>
</tr>
<tr>
<td>$10^{-2}$</td>
<td>855.54</td>
<td>1202.68</td>
<td>1204.24</td>
<td>10196.31</td>
<td>8139.23</td>
<td>8147.40</td>
</tr>
<tr>
<td>$10^{-1}$</td>
<td>6057.99</td>
<td>8072.01</td>
<td>8076.48</td>
<td>12137.41</td>
<td>10752.63</td>
<td>10757.80</td>
</tr>
<tr>
<td>1</td>
<td>27430.56</td>
<td>27430.56</td>
<td>27430.56</td>
<td>27430.56</td>
<td>27430.56</td>
<td>27430.56</td>
</tr>
</tbody>
</table>

Table B.9: Computed effective gold-epoxy composite properties for various volume fractions and boundary conditions. $E_1 = 79$ GPa and $\nu_1 = 0.44$ which gives $K_1 \approx 219444.44$ MPa and $G_1 \approx 27430.56$ MPa. The standard deviations for $A'_1$ are not given.

<table>
<thead>
<tr>
<th>$\phi_{gold}$ [-]</th>
<th>$K'$ [MPa]</th>
<th>$G'$ [MPa]</th>
<th>$\nu'$ [-]</th>
<th>$A'_1$ [-]</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.20</td>
<td>2161.21</td>
<td>959.34</td>
<td>0.37</td>
<td>25139.33</td>
</tr>
<tr>
<td>0.25</td>
<td>2846.48</td>
<td>1345.37</td>
<td>0.36</td>
<td>3373.38</td>
</tr>
<tr>
<td>0.30</td>
<td>3903.67</td>
<td>1926.76</td>
<td>0.35</td>
<td>4689.14</td>
</tr>
<tr>
<td>0.35</td>
<td>5454.15</td>
<td>2722.56</td>
<td>0.34</td>
<td>6415.70</td>
</tr>
<tr>
<td>0.40</td>
<td>7588.90</td>
<td>3760.47</td>
<td>0.33</td>
<td>8784.20</td>
</tr>
<tr>
<td>0.45</td>
<td>10107.51</td>
<td>5014.16</td>
<td>0.32</td>
<td>11785.60</td>
</tr>
<tr>
<td>0.50</td>
<td>13534.85</td>
<td>6467.20</td>
<td>0.31</td>
<td>15574.02</td>
</tr>
</tbody>
</table>
Appendix C. A summary of the influence of the selected boundary conditions on the macroscopic material response

Based on the determined RVE size, computed apparent (KUBC) and effective (PBC) elastic properties tabulated in Tables B.3 and B.4 show that kinematically uniform boundary conditions overestimate the effective properties for the range of observed property contrast. The difference in between estimations reduces with decreasing phase contrast and finally vanishes for the case where both phases feature identical properties, see Table C.10. We judge from the demonstrated results for \( \phi_1 \simeq 0.20 \) and \( \phi_1 \simeq 0.50 \) that, at this volume element size the boundary condition influence can be disregarded only for the material contrast of \( E_2/E_1 > 10^{-1} \).

Table C.10: Ratio of computed apparent (KUBC) and effective (PBC) elastic properties for various phase contrast values for \( \phi_1 \simeq 0.20 \) and \( \phi_1 \simeq 0.50 \) phase volume fraction at RVE size determined using periodic boundary conditions, \( E_1 = 79 \) GPa and \( \nu_1 = 0.44 \) which gives \( K_1 \simeq 219444.44 \) MPa and \( G_1 \simeq 27430.56 \) MPa.

<table>
<thead>
<tr>
<th>( E_2/E_1 ) [-]</th>
<th>( K_{\text{KUBC}}/K_{\text{PBC}} ) [-]</th>
<th>( G_{\text{KUBC}}/G_{\text{PBC}} ) [-]</th>
<th>( \phi_1 \simeq 0.20 )</th>
<th>( \phi_1 \simeq 0.50 )</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>1.34</td>
<td>1.47</td>
<td>1.17</td>
<td>1.13</td>
</tr>
<tr>
<td>( 10^{-4} )</td>
<td>5.05</td>
<td>5.70</td>
<td>1.17</td>
<td>1.13</td>
</tr>
<tr>
<td>( 10^{-3} )</td>
<td>1.81</td>
<td>2.55</td>
<td>1.16</td>
<td>1.13</td>
</tr>
<tr>
<td>( 10^{-2} )</td>
<td>1.10</td>
<td>1.32</td>
<td>1.10</td>
<td>1.10</td>
</tr>
<tr>
<td>( 10^{-1} )</td>
<td>1.01</td>
<td>1.04</td>
<td>1.02</td>
<td>1.04</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
</tbody>
</table>

References

References