The Open UniversitySkip to content

Investigating magmatic processes in the early Solar System using the Cl isotopic systematics of eucrites

Barrett, T. J.; Barnes, J. J.; Anand, M.; Franchi, I A.; Greenwood, R. C.; Charlier, B. L. A.; Zhao, X.; Moynier, F. and Grady, M. M. (2019). Investigating magmatic processes in the early Solar System using the Cl isotopic systematics of eucrites. Geochimica et Cosmochimica Acta, 266 pp. 582–597.

Full text available as:
PDF (Version of Record) - Requires a PDF viewer such as GSview, Xpdf or Adobe Acrobat Reader
Download (1MB) | Preview
DOI (Digital Object Identifier) Link:
Google Scholar: Look up in Google Scholar


Generally, terrestrial rocks, martian and chondritic meteorites exhibit a relatively narrow range in bulk and apatite Cl isotope compositions, with δ37Cl (per mil deviation from standard mean ocean chloride) values between − 5.6 and + 3.8 ‰. Lunar rocks, however, have more variable bulk and apatite δ37Cl values, ranging from ∼ − 4 to + 40 ‰. As the Howardite-Eucrite-Diogenite (HED) meteorites represent the largest suite of crustal and sub-crustal rocks available from a differentiated basaltic asteroid (4 Vesta), studying them for their volatiles may provide insights into planetary differentiation processes during the earliest Solar System history.

Here the abundance and isotopic composition of Cl in apatite were determined for seven eucrites representing a broad range of textural and petrological characteristics. Apatite Cl abundances range from ∼ 25 to 4900 ppm and the δ37Cl values range from − 3.98 to + 39.2 ‰. Samples with lower apatite H2O contents were typically also enriched in 37Cl but no systematic correlation between δ37Cl and δD values was observed across samples. Modelled Rayleigh fractionation and a strong positive correlation between bulk δ66Zn and apatite δ37Cl support the hypothesis that Cl degassed as metal chlorides from eucritic magmas, in a hydrogen-poor environment. In the case of lunar samples, it has been noted that δ37Cl values of apatite positively correlate with bulk La/Yb ratio. Interestingly, most eucrites show a negative correlation with bulk La/Yb ratio. Recently, isotopically light Cl values have been suggested to record the primary solar nebular signature. If this is the case then 4 Vesta, which accreted rapidly and early in Solar System history, could also record this primary nebular signature corresponding to the lightest Cl values measured here. The significant variation in Cl isotope composition observed within the eucrites are likely related to degassing of metal chlorides.

Item Type: Journal Item
ISSN: 0016-7037
Project Funding Details:
Funded Project NameProject IDFunding Body
Secular evolution of water in the lunar mantle (SE-10-037-MA)ST/I001298/1STFC (Science & Technology Facilities Council)
Astronomy and Planetary Sciences at the Open UniversityST/L000776/1STFC (Science & Technology Facilities Council)
Keywords: Eucrites; Apatite; Chlorine Isotopes; NanoSIMS
Academic Unit/School: Faculty of Science, Technology, Engineering and Mathematics (STEM) > Physical Sciences
Faculty of Science, Technology, Engineering and Mathematics (STEM)
Item ID: 62189
Depositing User: ORO Import
Date Deposited: 26 Jun 2019 13:28
Last Modified: 28 May 2020 01:59
Share this page:


Altmetrics from Altmetric

Citations from Dimensions

Download history for this item

These details should be considered as only a guide to the number of downloads performed manually. Algorithmic methods have been applied in an attempt to remove automated downloads from the displayed statistics but no guarantee can be made as to the accuracy of the figures.

Actions (login may be required)

Policies | Disclaimer

© The Open University   contact the OU