
For guidance on citations see FAQs.

© [not recorded]

Version: Poster

Link(s) to article on publisher’s website: https://www.hou.usra.edu/meetings/lpsc2019/
Could life, or its signatures, survive the journey from Mars to Phobos?

- Studies have suggested that impact ejecta from Mars, which would represent Mars’ surface over its geological history, could have accreted onto Phobos [2].
- Mars ejecta could constitute up to 0.05% of Phobos’ regolith, where ~200 ppm was deposited in the last 10 million years [2-4].
- If life existed on Mars during its ancient past, evidence may have been altered or destroyed by subsequent geological processes [5].
- Impact ejecta, which could have contained ancient martian biosignatures, may have been deposited onto Phobos and could still be preserved today [5,6] - lithopanspermia.

Without direct samples, regolith simulants are vital.

- Currently, all we know about Phobos comes from remote sensing.
- Future sample return missions (i.e. JAXA’s Martian Moons eXploration mission MMX) are in development.

Demand for Phobos simulants:

- Mission tests – landing/take off mechanisms, microgravity sampling techniques and spacecraft exhaust contamination – Planetary Protection.
- Science - in-situ resource utilisation potential assessment of Phobos and NEAs [7] and testing the Mars-Phobos lithopanspermia hypothesis.

An ESA concept study funded the design and production of a Phobos regolith simulant. Feasibility dictated that two simulants were needed to meet all the physical and chemical requirements of potential uses [4].

Crushed aggregate concrete Topcrete chosen for the physical simulant because it is physically comparable to Phobos [8] with a density of 1.67 ± 0.05 g cm⁻³, Density 1.67 ± 0.05 g cm⁻³, Compressive strength 3.5 MPa

Compositional simulant (Phobos-1C)

- Inherent density of compositional simulant is comparable to Phobos’ regolith.
- Crushed particles subsequently sieved into three size fractions <425 µm, 1.2-3.3 mm and >5 mm for future experiments.

Physical simulant (Phobos-1P)

- Using size distribution power law: N(>D) = k (Dᵇ + D₀ᵇ)⁻ˢ⁻ᵇ power law index s, turnover index D₀, cut-off index b constant k [12].
- Physical simulant mimics Phobos’ hypothesized average regolith grain size of ~1 mm [13], with <300 µm depletion [14].

Crushed particles subsequently sieved into three size fractions <425 µm, 1.2-3.3 mm and >5 mm for future experiments.

Spectral data suggest Phobos’ surface is similar in composition to D- or T-type asteroids, carbonaceous chondrites and lunar mare regolith [8,9].

Best available analogue is a combination of Tagish Lake and lunar regolith [4,10,11].

<table>
<thead>
<tr>
<th>Component</th>
<th>Wt %</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>JSC-1A</td>
<td>46</td>
<td>Vesicular component accounts for space weathering processes [4,8]</td>
</tr>
<tr>
<td>Antigorite</td>
<td>35</td>
<td>Phyllosilicate component present on Phobos’ surface according to 0.65 and 2.8 µm spectral absorptions [10]</td>
</tr>
<tr>
<td>Gilonite</td>
<td>4</td>
<td>Contributes complex organics seen in Tagish Lake [4]</td>
</tr>
</tbody>
</table>

Compositional simulant mineralogy

- Plagioclase: An₃.₄₋₇.₄ Or₃₋₉ Ab₆₋₉.₆
- Pyroxene: Woₐ₋₈₈ En₂₇.₆₋₈₃ Fe₂₅₋₈₄
- Olivine: Fo₇₄₋₈₅ Fe₁₅₋₂₅.₅
- Quartz and glassy phases

Both simulants represent the true grain size range of Phobos’ regolith and are dominated by angular, low sphericity grain shapes.

Without direct samples, regolith simulants are vital.

- Currently, all we know about Phobos comes from remote sensing.
- Future sample return missions (i.e. JAXA's Martian Moons eXploration mission MMX) are in development.

Demand for Phobos simulants:

- Mission tests – landing/take off mechanisms, microgravity sampling techniques and spacecraft exhaust contamination – Planetary Protection.
- Science - in-situ resource utilisation potential assessment of Phobos and NEAs [7] and testing the Mars-Phobos lithopanspermia hypothesis.

An ESA concept study funded the design and production of a Phobos regolith simulant. Feasibility dictated that two simulants were needed to meet all the physical and chemical requirements of potential uses [4].

Crushed aggregate concrete Topcrete chosen for the physical simulant because it is physically comparable to Phobos [8] with a density of 1.67 ± 0.05 g cm⁻³, Density 1.67 ± 0.05 g cm⁻³, Compressive strength 3.5 MPa

Compositional simulant (Phobos-1C)

- Inherent density of compositional simulant is comparable to Phobos’ regolith.
- Crushed particles subsequently sieved into three size fractions <425 µm, 1.2-3.3 mm and >5 mm for future experiments.

Physical simulant (Phobos-1P)

- Using size distribution power law: N(>D) = k (Dᵇ + D₀ᵇ)⁻ˢ⁻ᵇ power law index s, turnover index D₀, cut-off index b constant k [12].
- Physical simulant mimics Phobos’ hypothesized average regolith grain size of ~1 mm [13], with <300 µm depletion [14].

Crushed particles subsequently sieved into three size fractions <425 µm, 1.2-3.3 mm and >5 mm for future experiments.

Spectral data suggest Phobos’ surface is similar in composition to D- or T-type asteroids, carbonaceous chondrites and lunar mare regolith [8,9].

Best available analogue is a combination of Tagish Lake and lunar regolith [4,10,11].

<table>
<thead>
<tr>
<th>Component</th>
<th>Wt %</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>JSC-1A</td>
<td>46</td>
<td>Vesicular component accounts for space weathering processes [4,8]</td>
</tr>
<tr>
<td>Antigorite</td>
<td>35</td>
<td>Phyllosilicate component present on Phobos’ surface according to 0.65 and 2.8 µm spectral absorptions [10]</td>
</tr>
<tr>
<td>Gilonite</td>
<td>4</td>
<td>Contributes complex organics seen in Tagish Lake [4]</td>
</tr>
</tbody>
</table>

Compositional simulant mineralogy

- Plagioclase: An₃.₄₋₇.₄ Or₃₋₉ Ab₆₋₉.₆
- Pyroxene: Woₐ₋₈₈ En₂₇.₆₋₈₃ Fe₂₅₋₈₄
- Olivine: Fo₇₄₋₈₅ Fe₁₅₋₂₅.₅
- Quartz and glassy phases

Both simulants represent the true grain size range of Phobos’ regolith and are dominated by angular, low sphericity grain shapes.

Future aims:

- Further characterisation: XRD (NHM)
- Run impact experiments using the high-velocity All-Axis Light-Gas Gun to test the survival and modification of biosignatures.
- Assess the accuracy and reliability of current biosignature identification and analysis techniques.