Coupled climate–carbon cycle simulation of the Last Glacial Maximum atmospheric CO2 decrease using a large ensemble of modern plausible parameter sets

How to cite:

For guidance on citations see FAQs.

© 2019 The Authors

Version: Supplementary Material

Link(s) to article on publisher’s website:

Copyright and Moral Rights for the articles on this site are retained by the individual authors and/or other copyright owners. For more information on Open Research Online's data policy on reuse of materials please consult the policies page.
Supplement of

Coupled climate–carbon cycle simulation of the Last Glacial Maximum atmospheric CO$_2$ decrease using a large ensemble of modern plausible parameter sets

Krista M. S. Kemppinen et al.

Correspondence to: Krista M. S. Kemppinen (krista.kemppinen@asu.edu)

The copyright of individual parts of the supplement might differ from the CC BY 4.0 License.
S1

The ensemble was integrated for another 10 kyr after stage 3 (yielding 20 kyr of LGM climate in total) to simply verify, by analysing a subset of the ensemble, that the sediments (being the slowest component in the model) were in equilibrium by 10 kyr.

S2

ENS$_{315}$ has a mean atmospheric CO$_2$ concentration of 278.1 ± 1.3 ppmv (standard deviation). The ensemble mean and range for the eight modern climate plausibility metrics of Holden et al., 2013a are shown in Table S2.1. The ensemble response is additionally reported in Table S2.2 for the annual average global ocean carbon inventory, sea surface temperature and sea ice area, and compared with observations. The ensemble mean ocean carbon inventory is close to the 36,000 PgC equilibrium preindustrial ocean carbon inventory predicted by GENIE-1 in Lenton et al. (2006), below reconstructed estimates of ca. 38,000 PgC (Houghton et al., 1990), largely attributable to an underestimated ocean volume at our low resolution (Lenton et al 2006). The ensemble mean sea surface temperature (SST) exceeds observations but the error is still comparable to that associated with previous model predictions (e.g. Kim et al., 2003). The ensemble mean sea ice area (SIA) lies within the range of observed estimates.

Table S2.1. The eight modern climate plausibility metrics. The first two columns show the mean (plus minus one standard deviation) and range of ENS$_{315}$, the second and third, the same metrics but for the Holden et al. (2013a), H13, ensemble (Table 2). All values are annual averages, except for the Antarctic sea ice area.
Table S2.2. Preindustrial ocean carbon inventory, sea surface temperature and sea ice area. All values are annual averages.

<table>
<thead>
<tr>
<th></th>
<th>ENS$_{315}$ mean</th>
<th>ENS$_{315}$ range</th>
<th>Observations</th>
</tr>
</thead>
<tbody>
<tr>
<td>Global ocean carbon inventory</td>
<td>36056.2 ± 252.4</td>
<td>35280.5 to 36655.7</td>
<td>38000</td>
</tr>
<tr>
<td>(PgC)</td>
<td></td>
<td></td>
<td>Houghton et al. (1990)</td>
</tr>
<tr>
<td>Global sea surface temperature</td>
<td>18.9 ± 1.2</td>
<td>16.4 to 21.9</td>
<td>15.9</td>
</tr>
<tr>
<td>(°C)</td>
<td></td>
<td></td>
<td>NCDC, 2015</td>
</tr>
<tr>
<td>Global sea ice area (million km2)</td>
<td>23 ± 4.2</td>
<td>16.3 to 38.6</td>
<td>19 to 27</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Lemke et al. (2007)</td>
</tr>
</tbody>
</table>

References

