Characterization of a Cell Death Mechanism in a Mouse Model of Multiple Sulfatase Deficiency: Role of Mitochondrial Autophagy

Thesis

How to cite:

For guidance on citations see FAQs.

© 2011 The Author

https://creativecommons.org/licenses/by-nc-nd/4.0/

Version: Version of Record

Link(s) to article on publisher’s website:
http://dx.doi.org/doi:10.21954/ou.ro.0000f1a5

Copyright and Moral Rights for the articles on this site are retained by the individual authors and/or other copyright owners. For more information on Open Research Online’s data policy on reuse of materials please consult the policies page.
Characterization of a cell death mechanism in a mouse model of Multiple Sulfatase Deficiency: role of mitochondrial autophagy

Thesis submitted for the degree of DOCTOR OF PHILOSOPHY
The OPEN UNIVERSITY, January 2011
by
RAQUEL DE PABLO LATORRE, B.Sc. M.Sc.

DATE OF SUBMISSION: 28 JAN 2011
DATE OF AWARD: 8 JUNE 2011
"If we knew what it was we were doing, it would not be called research, would it?"

Albert Einstein
Mitochondria are organelles recognized as central players in cell death. Dysfunctional mitochondria are a well-known hallmark of disease since the accumulation of aberrant mitochondria can alter cell homeostasis thus resulting in tissue degeneration. Lysosomal storage disorders (LSDs) are a group of genetic diseases characterized by the accumulation of un-degraded material inside lysosomes that leads to autophagic-lysosomal function failure. In LSDs, mitochondrial aberrations have been associated to autophagic stress. However, the mechanisms by which autophagic deregulation determines mitochondrial dysfunction and how such alterations are involved in tissue pathogenesis remain largely unexplored. Normally, mitochondrial clearance occurs by a selective form of autophagy, known as mitophagy, which relies on a parkin-mediated mitochondrial priming and subsequent engulfment by autophagosomes. Here, we have performed a comprehensive analysis of mitophagy in a mouse model of Multiple sulfatase deficiency (MSD), an LSD characterized by both severe neurological and systemic involvement. We demonstrated that, in MSD liver, reduced parkin results in an inefficient mitochondrial turnover thus determining the accumulation of effete organelles outside autophagic vesicles. As consequence, dysfunctional mitochondria release cytochrome c into the cytosol ultimately leading to apoptotic cell death. Otherwise, in MSD brain, we observed minor morphological and functional changes that could not be directly associated to specific defects in mitochondrial priming machinery. Together these data provide new evidences on the mechanisms underlying mitochondrial dysfunction in LSDs and indicate that mitochondrial alterations differently contribute to tissue pathogenesis in a mouse model of LSD.
ACKNOWLEDGEMENTS

First of all, I would really like to thank both my supervisors, Prof. Andrea Ballabio and Prof. David C. Rubinsztein, whose advice and personal guidance have been essential for the completion of my thesis project.

Thanks to Dr. Elena and Roman Polishuck, who actively contributed to this work.

Thanks to all my colleagues, especially to Alberto, Cristina, Carmine, Diego, Edo, Fabio, Mina and Valentina, for their unselfish and unfailing technical and moral support. A special mention is to my dear Susy, whose helpfulness and friendship have been of great worth.

I am deeply grateful to Alessandro Fraldi, to whom I will always be indebted for all his support.

I warmly thank all people at TIGEM, for every single moment passed together. You have made me feel like home.

I owe my loving thanks to all my family, my parents Mercè and Lluís, my brother Albert and my grandparents Titi, Pepita and Luis. They have lost a lot due to my research abroad but I know that they are so proud of me. This is the best reward I could have ever got.

Finally, a special thank to my boyfriend, Andrea, who wiped away my tears in the hardest moments and shared the joyful for each little success. I could have never done it without you.
TABLE OF CONTENTS

ABSTRACT

iii

ACKNOWLEDGEMENTS

iv

LIST OF TABLES

viii

LIST OF FIGURES

ix

ABBREVIATIONS

xi

INTRODUCTION

1

CHAPTER 1

LYSOSOMES

1.1. Synthesis and sorting of lysosomal enzymes

1

1.2. Lysosome biogenesis

3

CHAPTER 2

LYSOSOMAL STORAGE DISORDERS (LSDs)

2.1. Genetics

7

2.2. Clinical features and diagnosis

8

2.3. Treatment

- *Metabolic cross-correction*

10

- *Substrate reduction therapy*

11

- *Chaperone-mediated therapy*

12

- *Gene therapy*

12

CHAPTER 3

SULFATASE DEFICIENCIES

3.1. Sulfatases family

- *Classification*

15

- *Animal models*

17

3.2. Sulfatase Modifying Factors (SUMFs)

17

3.3. The Multiple Sulfatase Deficiency (MSD)

- *Genetics*

20

- *Clinical features*

21

- *Diagnosis*

22

- *Treatment*

22

3.4. The *Sumf1/-* mouse: an animal model for Mutliple Sulfatase Deficiency (MSD)

23
TABLE OF CONTENTS

CHAPTER 4

AUTOPHAGY AND MITOCHONDRIA IN LSDs

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>4.1. Mitophagy as a selective form of autophagy</td>
<td>32</td>
</tr>
<tr>
<td>4.2. Autophagy impairment in Lysosomal Storage disorders</td>
<td>35</td>
</tr>
<tr>
<td>Autophagy impairment in Multiple Sulfatase deficiency</td>
<td>37</td>
</tr>
<tr>
<td>4.3. Mitochondrial aberrations in LSDs</td>
<td>39</td>
</tr>
</tbody>
</table>

AIM OF THE THESIS

41

MATERIALS AND METHODS

42

1. *Sumf1/-* mice genotyping
 1.1. Genomic DNA extraction 42
 1.2. PCR amplification 42

2. Generation of immortalized MEFs 43

3. Immunoblotting of total lysates
 3.1. Total protein extraction of tissue samples 44
 3.2. SDS-PAGE electrophoresis 44

4. Immunoblotting of subcellular fractions
 4.1. Subcellular fractioning 45
 4.2. SDS-PAGE electrophoresis 46

5. Electron microscopy 46
 5.1. Tissue processing 46
 5.2. Analysis of mitochondrial morphology 47
 5.3. Analysis of autophagosome content 47

6. Real-time PCR 47
 6.1. RNA extraction and retrotranscription 47
 6.2. cDNA amplification 48

7. Analysis of mitochondrial functionality 48
 7.1. Mitochondria isolation 48
 7.2. Analysis of mitochondrial membrane integrity 49
 7.3. Analysis of mitochondrial ATP content 49

8. Detection of apoptotic cells 50

9. Analysis of mitochondrial morphology and dynamics in MEFs
 9.1. Plasmid transfection 50
 9.2. Analysis of mitochondrial morphology 50
TABLE OF CONTENTS

9.3. Analysis of mitochondrial dynamics 51

10. Data Analysis 51
 10.1. Immunoblotting quantification 51
 10.2. Statistics 51

RESULTS 52

1. Morphologically-altered mitochondria accumulate in a tissue-specific and time-dependent manner in MSD 52

2. Mitochondria accumulate outside autophagosome membranes 57

3. Impaired mitochondrial targeting is due to insufficient parkin-mediated mitochondrial ubiquitination 64

4. Inhibition of macroautophagy may contribute to defective mitochondrial removal 70

5. Dysfunctional mitochondria release cytochrome c and trigger cell death in a tissue-specific fashion as a consequence of impaired mitophagy 75

CONCLUSIONS 82

BIBLIOGRAPHY 90

APPENDICES 97

<table>
<thead>
<tr>
<th>TABLE</th>
<th>PAGE</th>
</tr>
</thead>
<tbody>
<tr>
<td>I. Lysosomal storage disorders</td>
<td>6</td>
</tr>
<tr>
<td>II. Presenting features in some Lysosomal storage disorders</td>
<td>9</td>
</tr>
<tr>
<td>III. Metabolic cross-correction of some types of LSDs</td>
<td>11</td>
</tr>
<tr>
<td>IV. Human Sulfatases</td>
<td>15</td>
</tr>
<tr>
<td>V. Animal models of sulfatases deficiencies</td>
<td>17</td>
</tr>
<tr>
<td>VI. Classification of MSD patients and associated clinical phenotype</td>
<td>21</td>
</tr>
<tr>
<td>FIGURE</td>
<td>PAGE</td>
</tr>
<tr>
<td>--------</td>
<td>------</td>
</tr>
<tr>
<td>1. Model for the intracellular transport of MPR and proteins to lysosomes</td>
<td>2</td>
</tr>
<tr>
<td>2. Expression analysis of lysosomal genes after TFEB over-expression and silencing</td>
<td>3</td>
</tr>
<tr>
<td>3. Mapping of the MSD gene by microcell-mediated chromosome transfer</td>
<td>18</td>
</tr>
<tr>
<td>4. Murine SUMF1, Drosophila SUMF1 and human SUMF2 enhance human sulfatase activities in Cos-7 cells</td>
<td>19</td>
</tr>
<tr>
<td>5. Localization of the mutations associated with MSD</td>
<td>20</td>
</tr>
<tr>
<td>6. Growth and survival rates in Sumf1-/- mice</td>
<td>23</td>
</tr>
<tr>
<td>7. Skeletal development in Sumf1-/- mice</td>
<td>24</td>
</tr>
<tr>
<td>8. Proteolytic systems in mammalian cells</td>
<td>26</td>
</tr>
<tr>
<td>9. Schematic model of macroautophagy</td>
<td>27</td>
</tr>
<tr>
<td>10. ATG proteins take part in the induction and formation of new autophagosome membranes</td>
<td>28</td>
</tr>
<tr>
<td>11. A summary of the functions of autophagy</td>
<td>31</td>
</tr>
<tr>
<td>12. Scheme of the different steps of mitochondria life cycle</td>
<td>33</td>
</tr>
<tr>
<td>13. PINK1-dependent Parkin recruitment of mitochondria for autophagic degradation</td>
<td>34</td>
</tr>
<tr>
<td>14. Possible alterations in macroautophagy under pathological conditions</td>
<td>36</td>
</tr>
</tbody>
</table>
15. Mitochondrial membrane potential in MSD MEFs ..38
16. Gene trapping insertion site within the SUMF1 gene43
17. Accumulation of mitochondria in MSD tissues ...53
18. PGC1α mRNA levels in MSD tissues ...54
19. Analysis of mitochondrial morphology in MSD tissues55
20. Fusion and fission protein levels in MSD tissues ..56
21. Analysis of autophagosomes content in MSD tissues59
22. Depolarized mitochondria do not completely co-localize with the autophagic marker LC3 in MSD MEFs ...62
23. Mitochondrial morphology in MSD MEFs ...63
24. Ubiquitination of mitochondrial proteins in MSD tissues65
25. Parkin translocates to mitochondria in MSD tissues ..67
26. Parkin levels in MSD tissues ...68
27. Parkin translocates to depolarized mitochondria in MSD MEFs69
28. PARK2 relative expression in MSD tissues ..70
29. Autophagosome accumulation in MSD tissues ..71
30. Autophagy is induced in MSD brain but not in liver73
31. Loss of mitochondrial membrane integrity in MSD tissues75
32. ATP content in mitochondria from MSD tissues ...77
33. Analysis of cytochrome c release in MSD tissues ..78
34. Release of cytochrome c triggers cell death in MSD liver80
35. Proposed working model ..87
<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Full Form</th>
</tr>
</thead>
<tbody>
<tr>
<td>α-GalA</td>
<td>Alpha-galactosidase A</td>
</tr>
<tr>
<td>AAV</td>
<td>Adeno-associated vector</td>
</tr>
<tr>
<td>AD</td>
<td>Alzheimer's disease</td>
</tr>
<tr>
<td>ALS</td>
<td>Autophagy-lysosome system</td>
</tr>
<tr>
<td>ARS</td>
<td>Arylsulfatase</td>
</tr>
<tr>
<td>ATG</td>
<td>Autophagy genes</td>
</tr>
<tr>
<td>AV</td>
<td>Autophagosome vesicle</td>
</tr>
<tr>
<td>BECN-1</td>
<td>Beclin-1</td>
</tr>
<tr>
<td>Bp</td>
<td>Base pair</td>
</tr>
<tr>
<td>CCCP</td>
<td>Carbonyl cyanide m-chlorophenyl hydrazone</td>
</tr>
<tr>
<td>CD-MPR</td>
<td>Cation-dependent mannose phosphate receptor</td>
</tr>
<tr>
<td>CI-MPR</td>
<td>Cation-independent mannose phosphate receptor</td>
</tr>
<tr>
<td>CDPX1</td>
<td>Chondrodisplasia punctata 1</td>
</tr>
<tr>
<td>CLEAR</td>
<td>Coordinated Lysosomal Expression and Regulation</td>
</tr>
<tr>
<td>COX IV</td>
<td>Cytochrome oxidase IV</td>
</tr>
<tr>
<td>DAPI</td>
<td>4',6-diamidino-2-phenylindole</td>
</tr>
<tr>
<td>DIOC6</td>
<td>3,3'-dihexyloxacarbocyanine iodide</td>
</tr>
<tr>
<td>DLP-1</td>
<td>Dynamin-like protein 1</td>
</tr>
<tr>
<td>DMEM</td>
<td>Dulbecco's modified eagle medium</td>
</tr>
<tr>
<td>DTT</td>
<td>Dithiothreitol</td>
</tr>
<tr>
<td>EE</td>
<td>Early endosome</td>
</tr>
<tr>
<td>EM</td>
<td>Electron Microscopy</td>
</tr>
<tr>
<td>ELM</td>
<td>Embryonic liver macrophages</td>
</tr>
<tr>
<td>ER</td>
<td>Endoplasmic reticulum</td>
</tr>
<tr>
<td>ERT</td>
<td>Enzyme replacement therapy</td>
</tr>
<tr>
<td>FBS</td>
<td>Fetal bovine serum</td>
</tr>
<tr>
<td>FGE</td>
<td>Formylglycine-generating enzyme</td>
</tr>
<tr>
<td>FGly</td>
<td>Formilglycine</td>
</tr>
<tr>
<td>Abbreviation</td>
<td>Description</td>
</tr>
<tr>
<td>--------------</td>
<td>-------------</td>
</tr>
<tr>
<td>FIS1</td>
<td>Fission protein 1</td>
</tr>
<tr>
<td>FLU</td>
<td>Fluorescence units</td>
</tr>
<tr>
<td>GAG</td>
<td>Glycosaminoglycans</td>
</tr>
<tr>
<td>GM1</td>
<td>Monosialotetrahexosylganglioside</td>
</tr>
<tr>
<td>HAT</td>
<td>Hypoxanthine-aminopterin-thymidine</td>
</tr>
<tr>
<td>HD</td>
<td>Huntington’s disease</td>
</tr>
<tr>
<td>HSCT</td>
<td>Hematopoietic stem cell transplantation</td>
</tr>
<tr>
<td>Htt</td>
<td>Huntingtin</td>
</tr>
<tr>
<td>IMM</td>
<td>Inner mitochondrial membrane</td>
</tr>
<tr>
<td>IMS</td>
<td>Intermembrane space</td>
</tr>
<tr>
<td>JC-1</td>
<td>5,5',6,6'-tetrachloro-1,1',3,3'-tetraethylbenzimidazolylcarbocyanine iodide</td>
</tr>
<tr>
<td>LAMP-1/2</td>
<td>Lysosomal associated membrane protein 1/2</td>
</tr>
<tr>
<td>LC3</td>
<td>Light chain 3</td>
</tr>
<tr>
<td>LE</td>
<td>Late endosome</td>
</tr>
<tr>
<td>LSD</td>
<td>Lysosomal storage disorders</td>
</tr>
<tr>
<td>LYS</td>
<td>Lysosome</td>
</tr>
<tr>
<td>M6-P</td>
<td>Mannose 6-phosphate</td>
</tr>
<tr>
<td>MEF</td>
<td>Mouse embryonic fibroblasts</td>
</tr>
<tr>
<td>MFN1/2</td>
<td>Mitofusins 1/2</td>
</tr>
<tr>
<td>MHC II</td>
<td>Major histocompatibility complex II</td>
</tr>
<tr>
<td>ML</td>
<td>Mucolipidoses</td>
</tr>
<tr>
<td>MLD</td>
<td>Metachromatic Leukodystrophy</td>
</tr>
<tr>
<td>MPS</td>
<td>Mucopolysaccharidoses</td>
</tr>
<tr>
<td>MPT</td>
<td>Mitochondrial permeability transition</td>
</tr>
<tr>
<td>MRI</td>
<td>Magnetic resonance imaging</td>
</tr>
<tr>
<td>MSD</td>
<td>Multiple Sulfatase Deficiency</td>
</tr>
<tr>
<td>mTOR</td>
<td>Mammalian target of rapamycin</td>
</tr>
<tr>
<td>NPC</td>
<td>Niemann-Pick C disease</td>
</tr>
<tr>
<td>OMM</td>
<td>Outer mitochondrial membrane</td>
</tr>
<tr>
<td>OPA-1</td>
<td>Optic atrophy 1</td>
</tr>
<tr>
<td>PBS</td>
<td>Phosphate buffer solution</td>
</tr>
<tr>
<td>Abbreviation</td>
<td>Description</td>
</tr>
<tr>
<td>--------------</td>
<td>-------------</td>
</tr>
<tr>
<td>PCR</td>
<td>Polymerase chain reaction</td>
</tr>
<tr>
<td>PD</td>
<td>Parkinson’s disease</td>
</tr>
<tr>
<td>PFA</td>
<td>Paraformaldehyde</td>
</tr>
<tr>
<td>PINK1</td>
<td>PTEN induced putative kinase 1</td>
</tr>
<tr>
<td>PVDF</td>
<td>Poly(vinylidene fluoride)</td>
</tr>
<tr>
<td>ROS</td>
<td>Reactive oxygen species</td>
</tr>
<tr>
<td>SDS-PAGE</td>
<td>Sodium Dodecyl Sulphate - PolyAcrylamide Gel Electrophoresis</td>
</tr>
<tr>
<td>SNARE</td>
<td>Soluble NSF Attachment Protein REceptrons</td>
</tr>
<tr>
<td>SQSTM1</td>
<td>Sequestosome 1</td>
</tr>
<tr>
<td>SRT</td>
<td>Substrate reduction therapy</td>
</tr>
<tr>
<td>STS</td>
<td>Steroid sulfatase</td>
</tr>
<tr>
<td>SUMF1</td>
<td>Sulfatase modifying factor 1</td>
</tr>
<tr>
<td>SV40</td>
<td>Simian vacuolating virus 40</td>
</tr>
<tr>
<td>TFEB</td>
<td>Transcription factor elongation B</td>
</tr>
<tr>
<td>TGN</td>
<td>Trans Golgi network</td>
</tr>
<tr>
<td>TUNEL</td>
<td>Terminal deoxynucleotidyl transferase dUTP nick end labeling</td>
</tr>
<tr>
<td>VDAC1</td>
<td>Voltage-dependent anion channel 1</td>
</tr>
<tr>
<td>VPS</td>
<td>Vacuolar protein sorting</td>
</tr>
<tr>
<td>XLI</td>
<td>X-linked icthyosis</td>
</tr>
</tbody>
</table>
Chapter 1. Lysosomes

Lysosomes are single-membrane-delimited organelles engaged in the degradation of several types of macromolecules. They were first described by de Duve as “a special type of cytoplasmic granules with sedimentation properties between those of mitochondria and microsomes” (1). Lysosomes contain in their lumen more than 40 hydrolases including proteases, glycosidases, sulfatases, phosphatases and lipases. These enzymes have an optimum pH below 6 and this acidic microenvironment, essential for several lysosomal functions, is maintained by a vacuolar-type H⁺-ATPase enclosed in the limiting membrane. The membrane is formed by a single phospholipid bilayer that retains many integral proteins (i.e. LAMP-1 and -2) that control the passage of material into and out of lysosomes by both permeability and its ability to fuse with other vacuoles. This material is delivered from the cell's own cytoplasm (i.e. autophagy) as well as macromolecules taken up from the extracellular space (endocytosis) by an interconnected network of membranes known as the endo-lysosomal system (2, 3).

1.1. Synthesis and sorting of lysosomal enzymes

Lysosomal hydrolases are glycoproteins originally synthesized with an N-terminal sequence of 20-25 amino acids recognized by the signal recognition particle, which enables the nascent polypeptides to be translocated across the
membrane of the rough endoplasmic reticulum (ER) (figure 1). Subsequent to the removal of the signal peptide and N-glycosylation, they move to the Golgi compartment where they acquire a mannose 6-phosphate (M6-P) ligand. The acquisition of the M6-P marker is required to guarantee the targeting of proteins to lysosomes although M6-P-independent trafficking to lysosomes has also been described. However, in most cases, the failure of acquisition of the M6-P ligand results in either mistargeting of lysosomal enzymes or their secretion.

Figure 1. Model for the intracellular transport of MPR and proteins to lysosomes. Soluble lysosomal enzymes are synthesized and translocated into the ER lumen (1). Once in the Golgi (2), the MP6 tag is added (3) and recognized by MPRs. Receptor-ligand complexes are transported to the early endosomal compartment (EE, 4). A lower pH produces complex dissociation and the lysosomal enzymes are delivered to the lysosome (Lys; 5 and 6). MPRs return back to the TGN (7 and 8) or to the plasma membrane (9). Exogenous M6P-containing proteins can be internalized by CI-MPR (10) and directed to lysosomes along the endocytic pathway (11). Enzymes that do not bind to MPR are secreted (12).
In mammalian cells two MPR exist: the 46 KDa cation-dependent MPR (CD-MPR, MPR46) and the 300 KDa cation-independent MPR (CI-MPR, MPR300). Subsequently, receptor-ligand complexes exit from the TGN in clathrin-coated vesicles and fuse with membranes of the endosomal compartment. Once in the acidic environment of lysosomes, hydrolases undergo additional post-translational modifications including proteolysis, folding and aggregation (2, 4, 5).

1.2. Lysosome biogenesis

Acidic hydrolases can be found in each type of cell except for erythrocytes. It is therefore not surprising that genes encoding some lysosomal enzymes have regions upstream of the coding sequence that are common to promoters of housekeeping genes.
Figure 2. Expression analysis of lysosomal genes after TFEB over-expression and silencing. Blue bars show the fold change of the mRNA levels of lysosomal genes in TFEB- versus pcDNA3- transfected cells. Red bars show the fold change of mRNA levels in mimic-miR-128–transfected cells versus cells transfected with a standard control miRNA (mimic-miR-cel-67). Randomly chosen nonlysosomal genes were used as controls. Gene expression was normalized relative to glyceraldehyde-3-phosphate dehydrogenase (GAPDH).

Recently, a comprehensive analysis of promoter regions of 96 lysosomal genes resulted in the identification of a palindromic sequence, called CLEAR, highly enriched in this promoter set. Among the transcription factors that bind sequences similar to the CLEAR consensus, only TFEB resulted in the upregulation of lysosomal genes (figure 2). The increase in the number of lysosomes and the upregulation of some non-lysosomal enzymes tightly related to lysosomal function (i.e. M6PR) make TFEB a master regulator of lysosomal biogenesis (6).
Chapter 2. Lysosomal storage disorders (LSDs)

Lysosomal storage disorders are a group of inherited metabolic disorders that result from defective lysosomal acid hydrolysis of endogenous macromolecules. Although the first description of a lysosomal storage disorder was that of Tay-Sachs disease in 1881, the link between an enzyme deficiency and a storage disorder was only demonstrated by Hers in 1963 (4, 5). Currently, over 40 LSDs involving soluble hydrolases and integral membrane proteins have been described (Table I from ref.7).

LSDs can be classified according to the defective enzyme or protein but perhaps, the most useful classification is made on the basis of the kind of substrate that accumulates. For example, in Mucopolysaccharidoses (MPS), glycosaminoglycans (mucopolysaccharides) accumulate due to the impaired function of any 1 of 11 lysosomal enzymes that include exoglycosidases, sulphatases and one transferase. In some cases, a defect in a single enzyme can lead to the accumulation of different substrates (7).

However, it is important to highlight that these disorders are not simply a consequence of pure storage but result from perturbation of complex cell signaling mechanisms that give rise to secondary structural and biochemical changes.
Table I. Lysosomal storage disorders

<table>
<thead>
<tr>
<th>Disease</th>
<th>Defective protein</th>
<th>Main storage materials</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sphingolipidoses</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fabry</td>
<td>α- Galactosidase A</td>
<td>Globotriasylceramide and blood-group-B substances</td>
</tr>
<tr>
<td>Faber lipogranulomatosis</td>
<td>Ceramide</td>
<td>Ceramide</td>
</tr>
<tr>
<td>Gaucher</td>
<td>β- Glucosidase</td>
<td>Glucosylceramide</td>
</tr>
<tr>
<td></td>
<td>Saposin-C activator</td>
<td>Glucosylceramide</td>
</tr>
<tr>
<td>Niemann-Pick A and B</td>
<td>Sphingomyelinase</td>
<td>Sphingomyelin</td>
</tr>
<tr>
<td>Sphingolipid-activator deficiency</td>
<td>Sphingolipid activator</td>
<td>Glycolipids</td>
</tr>
<tr>
<td>GM1 gangliosidosis</td>
<td>β- Galactosidase</td>
<td>GM1 ganglioside</td>
</tr>
<tr>
<td>GM2 gangliosidosis (Tay-Sachs)</td>
<td>β- Hexosaminidase A</td>
<td>GM2 ganglioside and related glycolipids</td>
</tr>
<tr>
<td>GM2 gangliosidosis (Sandhoff)</td>
<td>β- Hexosaminidase A and B</td>
<td>GM2 ganglioside and related glycolipids</td>
</tr>
<tr>
<td>GM2 gangliosidosis (GM2-activator deficiency)</td>
<td>GM2-activator protein</td>
<td>GM2 ganglioside and related glycolipids</td>
</tr>
<tr>
<td>Mucopolysaccharidoses (MPS)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>MPS I (Hurler, Scheie, Hurler/Scheie)</td>
<td>α-iduronidase</td>
<td>Dermatan sulphate and heparan sulphate</td>
</tr>
<tr>
<td>MPS II (Hunter)</td>
<td>Iduronate-2-sulphatase</td>
<td>Dermatan sulphate and heparan sulphate</td>
</tr>
<tr>
<td>MPSIIIA (Sanfilippo)</td>
<td>Heparan N-sulphatase (sulphamidase)</td>
<td>Heparan sulphate</td>
</tr>
<tr>
<td>MPSIIIB (Sanfilippo)</td>
<td>N-Acetyl-α-glucosaminidase</td>
<td>Heparan sulphate</td>
</tr>
<tr>
<td>MPSIIIC (Sanfilippo)</td>
<td>Acetyl-CoA:α-glucosamide N-acetyltransferase</td>
<td>Heparan sulphate</td>
</tr>
<tr>
<td>MPSIIID (Sanfilippo)</td>
<td>N-Acetylglucosamine-6-sulphatase</td>
<td>Heparan sulphate</td>
</tr>
<tr>
<td>Morquio-A disease</td>
<td>N-Acetylgalactosamine-6-sulphate-sulphatase</td>
<td>Keratan sulphate, chondroitin 6-sulphate</td>
</tr>
<tr>
<td>Morquio-B disease</td>
<td>β-Galactosidase</td>
<td>Keratan sulphate</td>
</tr>
<tr>
<td>MPS VI (Maroteaux-Lamy)</td>
<td>N-Acetylglucosamine-4-sulphatase (arylsulphatase B)</td>
<td>Dermatan sulphate</td>
</tr>
<tr>
<td>MPS VII (Sly)</td>
<td>β- Glucuronidase</td>
<td>Heparan sulphate, dermatan sulphate, chondroitin-4- and -6-sulphates</td>
</tr>
</tbody>
</table>
Table 1. *Lysosomal storage disorders* (continue)

<table>
<thead>
<tr>
<th>Disease</th>
<th>Defective protein</th>
<th>Main storage materials</th>
</tr>
</thead>
<tbody>
<tr>
<td>Oligosaccharidoses and glycoproteinosis</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pompe (glycogen-storage-disease type II)</td>
<td>α-Glucosidase</td>
<td>Glycogen</td>
</tr>
<tr>
<td>Diseases caused by defects in integral membrane proteins</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cystinosis</td>
<td>Cystinosin</td>
<td>Cystine</td>
</tr>
<tr>
<td>Danon disease</td>
<td>LAMP2</td>
<td>Cytoplasmic debris and glycogen</td>
</tr>
<tr>
<td>Infantile sialic-acid-storgae disease and Salla disease</td>
<td>Sialin</td>
<td>Sialic acid</td>
</tr>
<tr>
<td>Mucolipidosis (ML IV)</td>
<td>Mucolipin-1</td>
<td>Lipids and acid mucopolysaccharides</td>
</tr>
<tr>
<td>Niemann-Pick C (NPC)</td>
<td>NPC1 and 2</td>
<td>Cholesterol and sphingolipids</td>
</tr>
<tr>
<td>Others</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Galactosialidosis</td>
<td>Cathepsin A</td>
<td>Sialyloligosaccharides</td>
</tr>
<tr>
<td>I Cell and pseudo-Hurler polydystrophy (ML II and ML III, respectively)</td>
<td>UDP-N-acetylglucosamine:lysosomal enzyme N-acetylglucosaminyl-1-phosphotransferase</td>
<td>Oligosaccharides, mucopolysaccharides and lipids</td>
</tr>
<tr>
<td>Multiple sulfatase deficiency</td>
<td>Co-formylglicine-generating enzyme</td>
<td>Sulphatides</td>
</tr>
<tr>
<td>Neuronal ceroid lipofuscinosis (NCL) 1 (Batten disease)</td>
<td>CLN1 (protein palmitoylthioesterase-1)</td>
<td>Lipidated thioesters</td>
</tr>
<tr>
<td>NCL2 (Batten disease)</td>
<td>CLN2 (tripeptidyl amino peptidase-1)</td>
<td>Subunit c of the mitochondrial ATP synthase</td>
</tr>
<tr>
<td>NCL3 (Batten disease)</td>
<td>Arginine transporter</td>
<td>Subunit c of the mitochondrial ATP synthase</td>
</tr>
</tbody>
</table>

2.1. Genetics

LSDs are monogenetic disorders usually inherited in an autosomal-recessive fashion except for Fabry disease, MPS II and Danon disease that are X-linked. The prevalence is 1 in 5000 to 8000 births in USA, Europe and Australia. Different
mutations have been described in the same gene and these include missense, nonsense and splice-site mutations, and partial deletions and insertions. Depending on the type of mutation, complete or partial loss of enzyme activity can be found. The levels of enzyme activity account for the severity of the phenotype: the lower the residual activity, the earlier the age of onset and the more severe the disease (5, 7).

2.2. Clinical features and diagnosis

In LSDs, the severity of the disease is related to the type and amount of substrate that accumulates and the tissues or cells in which it accumulates. The most severe, the infantile forms, present acute brain involvement and patients usually die within the first years of life. In adult forms, symptoms develop more slowly and disability often arises mainly from peripheral symptoms. Juvenile forms are intermediate between infantile and adult forms. Neurological symptoms can include seizures, dementia and brainstem dysfunction. Among the peripheral symptoms we find enlargement of the spleen and liver (hepatosplenomegaly), heart and kidney injury, abnormal bone formation, muscle atrophy and ocular disease. Several LSDs are characterized by prominent neurological involvement and minimal peripheral impairment (for example, Sanfilippo disease), whereas others have peripheral dysfunction with rare brain involvement (for example, Fabry disease) (7).

The identification of a LSD can be complex and lengthy. Certain symptoms, especially when appearing in clusters, should alert physicians to the possibility of a
LSD as the underlying cause. However, many of these appear with other more common diseases leading to delays caused by misdiagnosis.

Table II. Presenting features in some Lysosomal storage disorders

<table>
<thead>
<tr>
<th>Disease</th>
<th>Signs and symptoms</th>
<th>Samples for diagnosis</th>
</tr>
</thead>
<tbody>
<tr>
<td>GM1 gangliosidosis</td>
<td>IO: hypotonia, DD, coarse facial features, HM, CRS (±) LO: DD, ataxia, dysarthria, PR, dystonia</td>
<td>L, P, F</td>
</tr>
<tr>
<td>Metachromatic Leukodystrophy</td>
<td>Late IO: weakness, hypotonia, DD, genu recurvatum JO: weakness, PR, ataxia, behavior changes AO: pyramidal or cerebellar signs, behavior changes, psychoses, dementia</td>
<td>L, F, U</td>
</tr>
<tr>
<td>MPS IIIA (Sanfilippo)</td>
<td>Aggressive behavior, DD, mildly coarse facial features, hirsute, coarse hair, mild DM</td>
<td>F</td>
</tr>
<tr>
<td>Multiple sulfatase deficiency</td>
<td>DD, ichthyosis, coarse facial features, deafness, mild DM, PR</td>
<td>L, F</td>
</tr>
<tr>
<td>Mucolipidosis IV</td>
<td>DD, corneal opacities, retinal degeneration, strabismus</td>
<td>F</td>
</tr>
<tr>
<td>Pompe disease</td>
<td>Hypotonia, DD, cardiac enlargement</td>
<td>F</td>
</tr>
</tbody>
</table>

Abbreviations: AO, adult onset; DD, developmental delay; DM, dysostosis multiplex; F, fibroblasts; HM, hepatomegaly; HSM, hepatosplenomegaly; IO, infantile onset; JO, juvenile onset; LO, late onset; L, leukocytes; MR, mental retardation; P, plasma; PR, psychomotor regression; U, urine.

The main method of validating a clinical suspicion is enzyme assay, available for most LSDs. These tests compare enzyme levels in a patient sample (generally blood, urine, or skin fibroblasts) against normal benchmarks (Table II). Low levels of a particular enzyme confirm the LSD associated with that enzyme defect. In some cases, other methods may be used, such as brain MRIs, electroretinogram, or biopsy of enlarged tissue. Mutation analysis can check for a gene mutation known to cause a particular disorder but it is not always conclusive as several mutations may cause a certain LSD (8).
2.3. Treatment

The phenotypic heterogeneity has resulted in considerable difficulty especially when considering treatment. Specific therapy can be broadly divided into those that address the symptoms and those that address the cause.

Metabolic cross-correction

- **Stem cell transplantation (HSCT)**

 Hematopoietic cells from donors are able to build up sufficient amounts of enzyme to correct the deficient activity. Engraftment after transplantation results in a rapid decline in GAG excretion, reduction of liver and spleen volume, and improvement of obstructive airway symptoms. However, the skeleton does not respond as well and patients often need surgical intervention (9).

- **Enzyme replacement therapy (ERT)**

 Exogenously enzymes are taken up by cells. The results of ERT vary considerably from disease to disease and depend on the age of onset, rapidity of progression and the presence or absence of neurological involvement. Recombinant enzymes are already available for some LSDs (Pompe, Fabry, MPSI, II and VI and Gaucher) (5, 9) (Table III).
Table III. Metabolic cross-correction of some types of LSDs

<table>
<thead>
<tr>
<th>Category</th>
<th>Diagnosis</th>
<th>BMT</th>
<th>ERT</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mucopolysaccharidosis</td>
<td>MPS I</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td></td>
<td>MPS II</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td></td>
<td>MPS III A-D</td>
<td>Yes</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>MPS IV A-B</td>
<td>Yes</td>
<td>-</td>
</tr>
<tr>
<td>Glycproteinosis</td>
<td>Aspartylglucosaminuria</td>
<td>Yes</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>Fucosidosis</td>
<td>Yes</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Mannosidosis α and β</td>
<td>Yes</td>
<td></td>
</tr>
<tr>
<td>Sphingolipidosis</td>
<td>Fabry’s</td>
<td>-</td>
<td>Yes</td>
</tr>
<tr>
<td></td>
<td>Farber’s</td>
<td>Yes</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>Gaucher’s I-III</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td></td>
<td>GM1 gangliosidosis</td>
<td>Yes</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>Niemann-Pick A and B</td>
<td>Yes</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>Tay-Sachs disease</td>
<td>Yes</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>Krabbe disease</td>
<td>Yes</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>MLD</td>
<td>Yes</td>
<td>-</td>
</tr>
<tr>
<td>Other lipidosis</td>
<td>Ceroid lipofuscinosis</td>
<td>Yes</td>
<td>-</td>
</tr>
</tbody>
</table>

BMT, bone marrow transplantation; ERT, enzyme replacement therapy

Substrate reduction therapy (SRT)

The concept of this therapeutic principle is to reduce the amount of storage material instead of enhancing the activity of the degrading enzymes. For example, N- butyldeoxyajirimycin (Miglustat, Zavesca1, Actelion Pharmaceuticals, Allschwil/Basel, Switzerland) has the ability to inhibit ceramide glucosyltransferase, the enzyme that synthesizes glucosylceramide, the storage compound in Gaucher disease (10). This compound has also successfully been used in other LSDs such as NPC as glycosphingolipids directly derivate from glucosylceramide (11).
Chapter 2. Lysosomal storage disorders

Chaperone-mediated therapy

Mutations that affect accurate folding prevent the lysosomal enzymes from reaching their final destination so that they cannot fulfill their function. Chaperones are small molecular weight ligands that stabilize misfolded proteins and ensure their correct targeting to the lysosome. One of the advantages of pharmacological chaperones is their better biodistribution profile in comparison with recombinant enzymes. Unfortunately, this therapy is likely to be effective only in patients with mutations outside the catalytic site (5, 9).

For example, in Fabry disease, it has been demonstrated that subinhibitory doses of the competitive inhibitor of α-GalA, 1-deoxygalactonojirimycin (DGJ), stabilize mutant α-GalA \textit{in vitro} and correct the trafficking defect (12).

Gene therapy

- \textit{In vivo} Gene therapy

Vector delivery systems (i.e. retroviruses, AAVs) containing the correct copy of a gene are administrated to effectively transduce organs, which become a source of enzyme for metabolic correction. Intravenous delivery of AAV2 vectors has resulted in biochemical, histological, and clinical improvements in several murine models of LSD. Moreover, numerous studies have been done to test the hypothesis that directed brain gene transfer can be therapeutic in animal models of LSD with neurologic involvement. Unfortunately, in some cases, the expression of
the delivered gene can be transient due to the severe immune reactions directed against the vector (13).

- **Ex vivo Gene therapy**

 The goal of this strategy is to transplant autologous genetically modified hematopoietic stem cells that express the defective protein thus creating a reservoir of enzyme that can be secreted into the circulation and correct the disease at distant sites. Although the preclinical hematopoietic-directed gene therapy experiments are promising, the success has not translated into the clinic as pre-clinical experiments in small animals suggest that there is no selective advantage for enzyme-positive cells in LSDs (13).

However, in the last years, research in LSDs has been largely addressed to understand the relationship between storage and cellular dysfunction. Understanding what is occurring in each cell at a molecular level would allow us to find common features/pathways with other type of storage disorders (i.e. Alzheimer’s, Parkinson’s) and design new therapeutic strategies.
Chapter 3. Sulfatase Deficiencies

3.1. Sulfatases family

Sulfatases are a family of enzymes that carry out the hydrolysis of sulfate ester bonds from a wide variety of substrates such as glycosaminoglycans, sulfolipids and steroid sulfates (14).

\[
R-\text{OSO}_3^- + H_2O \rightarrow R-OH + H^+ + SO_4^{2-}
\]

\[
R-\text{NHSO}_3^- + H_2O \rightarrow R-NH_3^+ + SO_4^{2-}
\]

The similarities shared by sulfatases include: 1) 20–60% sequence homology over the entire protein length, 2) a highly conserved N-terminal region containing the consensus sulfatase motifs, and 3) a unique active-site aldehyde residue, \(\alpha\)-formylglycine (FGly), which is installed post-translationally (15). The significant sequence conservation strongly suggests that sulfatases are members of an evolutionary conserved gene family sharing a common ancestor (16).

The first sulfatases described were identified through the study of a disease (i.e. STS, steroid sulfatase). Years after, positional cloning strategies first and analysis of the human genome sequence allowed the identification of many new sulfatases (17). To date, 17 different sulfatases have been described in humans (Table IV from ref.17)
Table IV. Human Sulfatases

<table>
<thead>
<tr>
<th>Gene</th>
<th>Chromosomal localization</th>
<th>Enzyme</th>
<th>Subcellular localization</th>
<th>Human disorder</th>
</tr>
</thead>
<tbody>
<tr>
<td>ARSA</td>
<td>22q13</td>
<td>Arylsulfatase A</td>
<td>Lysosomal</td>
<td>Metachromatic leukodystrophy</td>
</tr>
<tr>
<td>ARSB</td>
<td>5q13</td>
<td>Arylsulfatase B</td>
<td>Lysosomal</td>
<td>Maroteaux-Lamy syndrome</td>
</tr>
<tr>
<td>IDS</td>
<td>Xq27-28</td>
<td>Iduronate sulfatase</td>
<td>Lysosomal</td>
<td>Hunter syndrome</td>
</tr>
<tr>
<td>SGS /SH</td>
<td>17q25.3</td>
<td>Sulfamidase</td>
<td>Lysosomal</td>
<td>Sanfilippo A syndrome</td>
</tr>
<tr>
<td>G6S</td>
<td>12q14</td>
<td>Glucosamine-6-sulfatase</td>
<td>Lysosomal</td>
<td>Sanfilippo D syndrome</td>
</tr>
<tr>
<td>GAL6S</td>
<td>16q24</td>
<td>Galactose-6-sulfatase</td>
<td>Lysosomal</td>
<td>Morquio A syndrome</td>
</tr>
<tr>
<td>ARSC/STS</td>
<td>Xp22.3</td>
<td>Arylsulfatase C</td>
<td>Microsomal</td>
<td>X-linked Ichthyosis</td>
</tr>
<tr>
<td>ARSD</td>
<td>Xp22.3</td>
<td>Arylsulfatase D</td>
<td>ER</td>
<td>N.I.</td>
</tr>
<tr>
<td>ARSE</td>
<td>Xp22.3</td>
<td>Arylsulfatase E</td>
<td>Golgi</td>
<td>Chondrodysplasia Punctata I</td>
</tr>
<tr>
<td>ARSF</td>
<td>Xp22.3</td>
<td>Arylsulfatase F</td>
<td>ER</td>
<td>N.I.</td>
</tr>
<tr>
<td>ARSH</td>
<td>Xp22.3</td>
<td>Arylsulfatase H</td>
<td>N.D.</td>
<td>N.I.</td>
</tr>
<tr>
<td>HSULF1</td>
<td>8q13.2-13.3</td>
<td>Hsulf1</td>
<td>Cell surface</td>
<td>N.I.</td>
</tr>
<tr>
<td>HSULF2</td>
<td>20q13.12</td>
<td>Hsulf2</td>
<td>Cell surface</td>
<td>N.I.</td>
</tr>
<tr>
<td>ARSG</td>
<td>17q23-24</td>
<td>Arylsulfatase G</td>
<td>Lysosomal (?)</td>
<td>N.I.</td>
</tr>
<tr>
<td>ARSJ</td>
<td>4q26</td>
<td>Arylsulfatase J</td>
<td>ER</td>
<td>N.I.</td>
</tr>
<tr>
<td>ARSI</td>
<td>5q32</td>
<td>Arylsulfatase I</td>
<td>ER</td>
<td>N.I.</td>
</tr>
<tr>
<td>T SULF</td>
<td>5q15</td>
<td>T.Sulfatase</td>
<td>N.D.</td>
<td>N.I.</td>
</tr>
</tbody>
</table>

ER, endoplasmic reticulum; ND, not determined; NI, not identified

Classification

- **Lysosomal sulfatases**

Sulfatases localized into the lysosomes are soluble enzymes that exert their activity (mostly catabolic) at an acidic pH. They demonstrate substrate
specificity and little functional redundancy. Six diseases are due to deficiencies of lysosomal sulfatases. They include (17):

a) MLD (Metachromatic Leukodystrophy), in which sulfatide accumulation destroys myelin sheaths of the nervous system;

b) and five different types of Mucopolysaccharidoses,

i. MPS II (Hunter), heparan and dermatan sulfate storage.

ii. MPS IIIA and D (Sanfilippo), heparan sulfate accumulation.

iii. MPS IVA (Morquio), keratan sulfate storage.

iv. MPS VI (Maroteaux-Lamy), dermatan and chondroitin sulfate accumulation.

• **Non-lysosomal sulfatases**

Sulfatases localized in non-acidic subcellular compartments such as the ER, the Golgi and the cell surface; are membrane-bound enzymes involved in biosynthetic pathways (15). Extracellular matrix sulfatases (Sulf1/2) have a pivotal role in signaling and embryonic development based on the modulation of interactions between GAGs and signaling molecules. Mutations in the ER/Golgi sulfatases (STS/ARSC and ARSE) are, respectively, responsible for:

a) X-linked ichthyosis (XLI),

b) and X-linked recessive chondrodysplasia punctata 1 (CDPX1), characterized by abnormalities in cartilage and bone development (17).
Chapter 3. Sulfatase Deficiencies

Animal models

Currently, animal models for sulfatases deficiencies are available except for the two non-lysosomal sulfatases deficiencies. Although rare genetic disorders are as infrequent in animals as they are in humans, most of these animal models are spontaneous models (table V from ref.17). Fortunately, these animal models resemble the human phenotype thus becoming of great importance for the study of new therapeutic approaches for these types of disorders.

<table>
<thead>
<tr>
<th>Sulfatase disorder</th>
<th>Animal model</th>
</tr>
</thead>
<tbody>
<tr>
<td>MLD</td>
<td>Mouse</td>
</tr>
<tr>
<td>MPS VI</td>
<td>Cat*, rat*, dog*, mouse</td>
</tr>
<tr>
<td>MPS II</td>
<td>Dog*, mouse</td>
</tr>
<tr>
<td>MPS III A</td>
<td>Dog*, mouse*</td>
</tr>
<tr>
<td>MPS III D</td>
<td>Goat*</td>
</tr>
<tr>
<td>MPS IV A</td>
<td>Mouse</td>
</tr>
<tr>
<td>XLI</td>
<td>Not available</td>
</tr>
<tr>
<td>CDPX</td>
<td>Not available</td>
</tr>
</tbody>
</table>

* spontaneous models

3.2. Sulfatase Modifying Factors (SUMFs)

Two highly homologous amino acid motifs, recognized as the sulfatase signature sequences I and II, are found within the first third of the N-terminal sequence of all known hydrolytic sulfatases (18). The signature sequence I (C/S-X-P-S/X-R-X-X-L/X-T/X-G/X-R/X) is critical for directing the post-translational
modification of the initial cysteine or serine residue into the catalytically active residue formylglycine (FGly) (19, 20). This step occurs within the ER before the sorting to different cellular compartments and is directed by the product of the SUMF1 gene.

The identification of the SUMF1 gene was carried out by two different approaches, one biochemical (21) and the other genetic (22). In this case, Cosma and collaborators used a panel of human/mouse hybrid cell lines containing individual normal human chromosomes tagged with the dominant selectable marker HyTK and fused to an immortalized cell line from a patient with Multiple Sulfatase Deficiency (MSD) (see chapter section 3.3).

Figure 3. Mapping of the MSD gene by microcell-mediated chromosome transfer. ARSA, ARSB and ARSC activities are expressed in enzymatic units x mg total protein\(^{-1}\) x 3 hr\(^{-1}\). Chromosome 3 clones complement the MSD defect (from ref. 22).

All 22 human autosomes were transferred one by one to the patient cell line and hybrids were selected in hygromycin and HAT-containing medium. Subsequently, cells were harvested for ARSA, ARSB and ARSC enzymatic assay.
Chapter 3. Sulfatase Deficiencies

Several clones deriving from the chromosome 3 transfer were significantly higher compared to clones from all other chromosomes (figure 3).

Further analysis determined 3p26 as the specific chromosomal region containing the $SUMF1$ gene. This gene is composed of 9 exons, spans approximately 106 kb and encodes a glycoprotein of 374 amino acids, the formylglycine-generating enzyme (FGE). Northern blot analysis revealed an ubiquitous expression pattern of $SUMF1$ with a higher abundance in kidney and liver (22).

Highly conserved $SUMF1$ homologues were found in many eukaryotic and prokaryotic species, which is not surprising given the importance of the FGly modification. Catalytic and functional conservation among FGE homologues was demonstrated by the production of active human sulfatases co-expressed with $SUMF1$ cDNAs from mice and Drosophila (figure 4) (22).

Figure 4. Murine $SUMF1$, Drosophila $SUMF1$ and human $SUMF2$ enhance human sulfatase activities in Cos-7 cells (from ref. 22).
Chapter 3. Sulfatase Deficiencies

Sequence comparison identified the presence of a $SUMF1$ gene parologue located on human chromosome 7q11 that was designated $SUMF2$. The product of this gene also showed FGE activity, albeit much less efficient than that of $SUMF1$ (22).

3.3. The Multiple Sulfatase Deficiency (MSD)

Genetics

The Multiple Sulfatase Deficiency (OMIM #272220) is an autosomal recessive disorder caused by mutations in the $SUMF1$ gene (figure 5).

Most MSD patients have residual sulfatases activity due to hypomorphic mutations in the $SUMF1$ gene thus suggesting that complete loss of $SUMF1$ function is likely to be lethal in humans (23). Nevertheless, this residual activity is not sufficient for the proper modification of sulfatases.
Chapter 3. Sulfatase Deficiencies

Clinical features

Patients suffering from MSD combine clinical symptoms of the different single sulfatase defects and can be classified into four clinical forms (table VI from ref. 24): very severe neonatal MSD, whose diagnosis is established in the first months of life and whose symptomatology is very similar to mucopolysaccharidosis (MPS) with death within the first 12 months of life; severe late-infantile MSD, whose onset is in the first year of life and neurological problems are similar to the late-infantile form of metachromatic leukodystrophy (MLD); mild late-infantile MSD, with symptoms occurring between the age of 2 and 4 years, absence of intrauterine manifestations, facial dysmorphism, visceromegaly, and cardiopathy, and presence of a milder/slower neurodegeneration; and juvenile MSD, which is a rare subtype associated with a few of the symptoms of MSD, such as ichthyosis and mental retardation (25).

Table VI. Classification of MSD patients and associated clinical phenotype

<table>
<thead>
<tr>
<th>Symptoms</th>
<th>Neonatal (very severe)</th>
<th>Late Infantile (Severe)</th>
<th>Late Infantile (Mild)</th>
<th>Juvenile (Mild)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Retardation</td>
<td>+++</td>
<td>+++</td>
<td>+++</td>
<td>++</td>
</tr>
<tr>
<td>Neurodegeneration</td>
<td>+++</td>
<td>+++</td>
<td>+++</td>
<td>++</td>
</tr>
<tr>
<td>Ichthyosis</td>
<td>+++</td>
<td>+++</td>
<td>++</td>
<td>+</td>
</tr>
<tr>
<td>Dysmorphism</td>
<td>+++</td>
<td>+++</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Organomegaly</td>
<td>+++</td>
<td>+++</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Skeletal changes</td>
<td>+++</td>
<td>++</td>
<td>+</td>
<td>-</td>
</tr>
<tr>
<td>Intrauterine manifestation</td>
<td>+++</td>
<td>+++</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Heart disease</td>
<td>+++</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Corneal clouding</td>
<td>+++</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Hydrocephalus</td>
<td>+++</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
</tbody>
</table>

Age at onset: +++ <2 years, ++ 2–4 years, + >4 years, - not observed.)
No genotype-phenotype correlation has been established so far with any clinical form, but the severe neonatal subtype appears to be related to nonsense mutations and large deletions as well as to missense mutations that directly affect the active site of FGE (26).

Diagnosis

Biochemically, MSD is distinct and classifiable. Patients with MSD show a mixed excretion of glycosaminoglycans (GAGs) and storage of the different sulfatase substrates. The residual activities of different sulfatases measured in leukocytes and fibroblasts of patients can be sub-grouped into two classes with less than 15% compared to normal activities into group I (severe) and more than 15%, sometimes reaching normal values, into group II (mild) (reviewed in 24).

Treatment

Currently, there are no available therapies for the treatment of MSD. However, a patient treated with human recombinant arylsulfatase B (Galsufase) showed significant improvement (26). In that case, the main clinical manifestations were similar to those of MPS VI but, in general, the severity of the phenotype makes MSD unsuitable to be treated by enzyme replacement or bone marrow transplantation.

Recently, an in vivo gene-therapy approach has been tested on an MSD mouse model. Combined administration (intra-cerebral and systemic) of an AAV9 vector...
vector encoding $SUMF1$ resulted in the global activation of sulfatases and the near-complete clearance of GAGs (27).

3.4. The $Sumf1$-/ mouse: an animal model for Multiple Sulfatase Deficiency (MSD)

In 2007, in our lab, a transgenic mouse (C57B6/S129j background) carrying a null mutation in the $SUMF1$ gene was generated.

![Figure 6. Growth and survival rates in $Sumf1$-/ mice.](image)

(a) Kaplan–Meyer survival curve of $Sumf1$-/mice. (b) Mean weight values of WT (purple) and individual weight values of $Sumf1$-/ mice (blue). (c) $Sumf1$-/ mice (KO) are smaller than their WT littermates at P40. (d) $Sumf1$-/ mice (on the left) display the typical flat facial profile of patients affected by MPSs.

Although $Sumf1$-/ mice differ from patients for the total absence of SUMF1 protein (FGE), they share a common phenotype: $Sumf1$-/ mice display congenital
growth retardation and frequent mortality in the first weeks of life, with only 10% reaching 3 months of age (figure 6) (28). Hind limb clasping, head tremor and seizures were also detected, indicating neurological involvement. Hepatosplenomegaly and skeletal abnormalities are other typical features of this disorder due to the accumulation of storage material in peripheral organs. Strong signs of inflammation have been observed in all tissues of Sumf1-/− mice. Detailed analysis of the accumulated material pointed out macrophages as the primary site of GAG storage, thus indicating a link between storage and inflammation. Moreover, immunohistochemical analysis revealed a remarkably astroglyosis, progressive loss of Purkinje cells and massive apoptosis at a late stage of disease (28).

As SUMF1 regulates not only lysosomal sulfatases but also sulfatases localized in other cellular compartments (i.e. extracellular matrix, ER/Golgi), some of the clinical features observed in MSD may be due to alterations in signaling pathways since GAGs are involved in developmental processes.

Figure 7. Skeletal development in Sumf1-/− mice. (G) Newborn, (H) and P4 with femur and tibia magnification.
A study of Settembre and collaborators in 2008 (29) have shown that some of the skeletal abnormalities observed in \textit{Sumf1-/-} mice are due to altered proteoglycan desulfation, a critical step for chondrocyte differentiation and proliferation (figure 7).

Research on MSD has underlined the general importance of studying inherited diseases even if only very few patients are affected. However, many questions need to be answered to unravel the steps from the basic molecular defect to the manifestation of the disease in order to gain deeper insight into complex pathophysiological mechanisms. Hence, the MSD mouse (\textit{Sumf1-/-}) represents a good animal model to study the pathogenic mechanisms of this rare genetic disorder as it recapitulates most of the clinical features described in MSD patients.
Chapter 4. Autophagy and Mitochondria in LSDs

In order to maintain cell homeostasis, a well-controlled balance between protein synthesis/degradation and organelle biogenesis/turnover is required. The cell's major pathways of degradation are autophagy-lysosome system (ALS) and the proteasome. Whereas proteasome degradation depends on specific tagging of target proteins by ubiquitin molecules, autophagy is a dynamic process by which parts of the cytoplasm and organelles are delivered to lysosomes for their degradation (30) (figure 8).

Depending on the delivery route, three different autophagic routes are known (reviewed in 32):
1) **macroautophagy** (usually referred simply as autophagy), in which a double-membrane vesicle, called autophagosome, encircles part of the cytoplasm and fuses with lysosomes for the degradation of its content;

2) **microautophagy**, in which the lysosomal membrane itself sequesters a portion of the cytoplasm;

3) **chaperone-mediated autophagy**, by which only proteins with a specific sequence signal are recognized by cytosolic chaperones and transported from the cytosol to the lysosomal lumen.

The process of macroautophagy can be divided into at least 4 steps: induction, formation of the autophagosome, autophagosome docking and fusion and autophagic body breakdown (30) (figure 9).

![Figure 9. Schematic model of macroautophagy.](image-url)
1) **Induction of macroautophagy**

This process is both developmentally and nutritionally regulated. Under nutrient-rich conditions, autophagy is inhibited by mTOR (mammalian target of Rapamycin), a member of the phosphatidylinositol 3-kinase-related kinase protein with a conserved role in sensing cellular nutrients, energy levels and redox status. During starvation instead, mTOR kinase is inactivated and autophagy is induced. Downstream of TOR kinase, more than 20 *ATG* genes (yeast) encode proteins essential for the execution of autophagy (figure 10).

![Molecular Mechanism of Autophagy](image)

Figure 10. ATG proteins take part in the induction and formation of new autophagosome membranes.
In the initial steps of autophagy we find numerous proteins including:

- Atg1-Atg13-Atg17, a serine/threonine kinase complex (ULK1 complex) that responds to upstream signals (i.e. mTOR)

- Atg6-Atg14-Vps34-Vpsl5, a lipid kinase- signaling complex (PI3K complex) that mediates vesicle nucleation. Beclin-1 is the mammalian orthologue of the yeast Atg6 gene and when over-expressed, it can induce autophagy. Moreover, Beclin-1 can bind to Bcl-2, an important regulator of apoptosis, leading to the inhibition of autophagosome formation (reviewed in 32).

2) Formation of the autophagosome

After induction, a double-membrane vesicle begins to form in the cytosol. The origins of this membrane is still unknown but for mammalian cells it is generally thought to be the ER (33) and/or mitochondria (34), despite a recent study has demonstrated the involvement of plasma membrane (35). LC3, a mammalian homologue of yeast Agp8p, is widely used as a marker for tracking autophagosomes (36). There are two forms of LC3: the cytosolic LC3-I and the membrane bound LC3-II. During autophagy, LC3-I gets lipidated and converted to
LC3-II, which is found specifically on autophagosomes. Therefore, the amount of LC3-II is correlated with the extent of autophagosome formation.

3) Autophagosome docking and fusion

Once autophagosomes have sequestered their cargo, this is delivered to lysosomes. Specific proteins on both autophagosome and lysosome membranes are required for the proper docking and/or fusion. These proteins are called SNARE (Soluble NSF Attachment Protein REceptors) and are a large superfamily of more than 60 members that mediate vesicle fusion. Besides SNARE proteins, fusion also depends on microtubule and maintenance of proper acidification of vesicles (reviewed in 30).

4) Autophagic body breakdown

Fusion with lysosomes causes the release of the single-membrane bound inner vesicle of the autophagosome (called autophagic body) into the vacuole lumen while the outer membrane is incorporated into the limiting membrane of the receptor vesicle. Once inside the lumen, cargo is broken down by the activity of acidic hydrolases.

Autophagy has many physiological functions in mammalian cells (resumed in figure 11 from 32). Among the main functions of this pathway we highlight its pivotal role in:
Chapter 4. Autophagy & Mitochondria

- **Stress response.** Production of energy and nutrients during stress conditions (i.e. starvation).
- **Quality control.** Turnover of organelles and aggregate-prone proteins.
- **Innate and adaptive immunity.** Delivery of cytosolic proteins for MHC class II presentation.
- **Cell death.** Clearance of apoptotic cells during embryonic development in mice and cross-talk between Atg proteins and apoptotic factors.
- **Aging and longevity.** Increased autophagic turnover of cytoplasmic constituents contributes to longer life.

![Figure 11. A summary of the functions of autophagy.](image)

Maintenance of proper activity of this pathway is essential to guarantee cell survival. When autophagy is impaired (i.e. mutations in ATG genes or reduction/increasement of the autophagic flux), cell homeostasis is altered and this imbalance can lead to a pathogenic state and subsequently to cell death.
4.1. Mitophagy as a selective form of autophagy

Among the principal functions of mitochondria we find: 1) energy production by oxidative phosphorylation, 2) calcium signaling, 3) regulation of cellular metabolism and proliferation, and 4) apoptosis-programmed cell death. Mitochondrial life cycle consists of a series of fusion and fission events that allows the maintenance of a healthy population of mitochondria (figure 12). Mediators of fusion and fission were first described in *D. melanogaster* (37). In mammals, mitochondrial fusion involves multiple steps, including mitochondrial tethering and fusion of OMMs, docking and fusion of IMM and mixing of intramitochondrial components. The fusion machinery is composed by mitofusins MFN1/2, located on the OMM (38), which form trans complexes on adjacent mitochondria during fusion processes; and OPA-1, which controls IMM fusion (39). On the other side, fission processes are driven by the OMM protein Fis1 and the cytosolic protein DLP1, which is recruited to mitochondrial surfaces and associates with Fis 1 (40, 41).

Twig et al (42) have demonstrated that fusion triggers fission and that fission is essential for autophagy. Fission events can produce metabolically different daughter units; one with high membrane potential (Δψm) and the other with low Δψm. Whereas mitochondria with high Δψm can re-enter the cycle by fusing with the mitochondrial network, the one with low Δψm is less likely to re-fuse and is targeted by autophagy. This means that fusion is a selective process that depends on the metabolic state of the organelle and that fission targets depolarized mitochondria for digestion and elimination.
How are depolarized mitochondria recognized by the autophagic machinery? Although long assumed to be a random process, increasing evidence indicates that mitochondrial autophagy (also called mitophagy) is a selective process. This idea gave raise as a result of a study carried out by Kissova et al (43), who identified an outer membrane protein, Uth1p, as an essential protein for efficient mitophagy in yeast. Recently, two independent studies have described the existence of a specific receptor for autophagy on the mitochondrial surface of yeast (44, 45). However, a mammalian homologue for this receptor, known as Atg32, has not been found yet. Interestingly, it seems that selective recognition of damaged mammalian mitochondria depends on the PINK1-dependent recruitment of Parkin. Many studies have addressed this issue in the last two years (46-49). PINK1 (PTEN-induced putative kinase 1) is a putative serine/threonine kinase with a
mitochondrial targeting sequence that recognizes depolarized mitochondria and promotes the translocation of cytosolic parkin onto the mitochondrial surface. The fact that PINK1 and parkin act in a common genetic pathway was demonstrated in Drosophila PINK1 mutants, which shared marked similarities with parkin mutants. Moreover, parkin could compensate for the PINK1 loss-of-function phenotype but not vice versa (50).

![Diagram of mitochondrial network and autophagy process](image)

Figure 13. PINK1-dependent Parkin recruitment of mitochondria for autophagic degradation (from ref.51)

Among the principal substrates of parkin, an E3 ubiquitin ligase, VDAC1 and mitofusins have been pointed out as the main candidates. Poly-ubiquitin-positive clusters of mitochondria are then recognized by the autophagic adaptor p62/SQSTM1 and directly targeted to autophagosomes for degradation (figure 13).
Mutations in the parkin gene (*PARK2*) and PINK1 (*PARK6*) are associated with autosomal recessive inheritance of Parkinson's disease (PD). Parkin loss-of-function
Drosophila exhibit increased sensitivity to ROS, dopaminergic cell loss and swollen mitochondria with fragmented cristae (52). Thus, dysfunctional parkin, or its non-recruitment, prevents proper targeting of irreparably damaged mitochondria for mitophagy, leading to a buildup of toxic, dysfunctional mitochondria, ultimately leading to death. Alterations in mitochondrial function have also been described in Alzheimer's disease and Huntington's disease (53) suggesting the involvement of mitochondria dynamics in the pathogenesis of these neurodegenerative disorders.

4.2. Autophagy impairment in Lysosomal Storage Disorders

Autophagy has become a growing research field in the past years. This process has been studied in many diseases such as neurodegenerative disorders, inflammatory diseases and cancer (reviewed in 54). However, the reason behind autophagic failure can be very diverse because of the different steps required for autophagy and the molecular players involved in each of them. Understanding the step(s) affected in each disorder could explain differences in the course of these pathologies and will be essential to develop targeted therapeutic approaches for each disease based on modulation of autophagy. Among the possible defects that could be behind macroautophagy we can find: 1) reduced autophagy induction; 2) enhanced autophagy repression; 3) altered cargo recognition; 4) inefficient autophagosome/lysosome fusion, and 5) inefficient degradation of the autophagic cargo (figure 14 from ref.55).
As lysosomes are the final destination for autophagic cargo, autophagy has become an attractive target for new studies in LSDs. This pathway had already been studied in some neurodegenerative disorders such as Alzheimer’s, Parkinson’s and Huntington’s (55). Although the etiology of LSD is different, the similarities shared with these disorders have given rise to a new line of research. To date, autophagy has been studied in Mucopolysaccharidosis type IIIA (MPS IIIA) (56), GM1-Gangliosidosis (57), Niemann-Pick Disease type C (NPC) (58), Neuronal Ceroid Lipofuscinosi (NCL) (59), Mucolipidosis type IV (60), Danon Disease (61) and Multiple Sulfatase Deficiency (56). In all disorders, an increase in the number of autophagosomes has been described (reviewed in 62). However, whereas in some cases the accumulation of autophagic vesicles was due to a block in autophagosome maturation (i.e. NCL), in other cases it was a consequence of autophagy induction.
Nevertheless, despite numerous studies in LSDs animal models, the precise mechanism leading to malfunction of the autophagic pathway remains still elusive.

Autophagy impairment in Multiple Sulfatase deficiency

In a study carried out in 2008 and published on *Human Molecular Genetics* we speculated an impairment of the autophagic pathway in two different mouse models of LSDs: Multiple Sulfatase Deficiency (MSD) and Mucopolysaccharidosis type IIIA (MPS IIIA) (56). Using different approaches we showed the accumulation of autophagosomes in MSD tissue (brain) and cells (embryonic fibroblast and liver macrophages). We postulated that this abnormal accumulation of vesicles was due to defective clearance caused by impaired autophagosome-lysosome fusion. The results obtained supported our hypothesis:

1) Reduced co-localization of LAMP1 (lysosomal marker) and LC3-II (autophagic marker) in MSD MEFs.

2) MSD MEFs had increased levels of autophagy substrates like mutant proteins (α-synuclein and huntingtin) overexpressed.

3) Chemical induction of autophagy by rapamycin increased LC3-II levels in both control and MSD MEFs.
4) Treatment of MSD MEFs with Bafilomycin A1 (an inhibitor of autophagosome-lysosome fusion), alone or in combination with rapamycin; equally increased the number of autophagosomes (63).

5) Accumulation of endogenous autophagic substrates (polyubiquitinated proteins, p62/SQSTM1 aggregates and mitochondria) in MSD brain (figure 15).

Figure 15. Mitochondrial membrane potential in MSD MEFs. Control and MSD MEFs were grown in either normal serum or starved conditions (4 h). Cells were then stained with 40 nM DiOC6 and 1 mg/ml propidium iodine. ∆ψm was measured by flow cytometry. Propidium iodine was used as counterstain. All experiments were performed in triplicate and analyzed using Stat-View software and ANOVA test. Results were considered significant if P < 0.05.
According to these results, lysosomal accumulation of undegraded material results in defective fusion between autophagosomes and lysosomes and causes a block of the autophagic pathway. Our data suggest that LSDs may share common mechanisms with other neurodegenerative disorders (i.e. Alzheimer's, Parkinson's and Huntington's) raising the possibility of overlapping therapeutic strategies.

A study recently published by our group (64) further confirms the block of autophagy in LSDs and demonstrates that this impairment is caused by dysfunction of SNARE proteins involved in the autophagosome/lysosome fusion machinery.

4.3. Mitochondrial aberrations in LSDs

Mitochondrial aberrations have already been described in some LSDs. In GM1-gangliosidosis, measurement of cytochrome c oxidase activity in brains from β-gal-/- mice revealed decreasing mitochondria functionality, which was parallel to disease progression. Primary astrocytes obtained from these mice showed abnormally small fragmented mitochondria with reduced membrane potential (57). Cultured skin fibroblasts from MLIV patients have been used to investigate the mitochondrial-autophagosomal axis in mucolipidoses. In these cells, mitochondria appeared fragmented and had reduced buffering capacity (60). Similar results were obtained in MLI, MLIII and NCL2 fibroblasts (65).

All these studies suggest that the presence of dysfunctional mitochondria may be due to defects in the autophagic pathway as the modulation of this pathway can rescue the mitochondrial phenotype.
However, most of these data describe the accumulation of mitochondria as a merely consequence of autophagy impairment. A detailed study on mitochondrial autophagy in LSDs would allow us to see whether mitochondrial priming/engulfment is altered in these types of disorders. Currently, it is unclear whether mitochondria are eventually degraded or if mitophagy fails to efficiently eliminate mitochondria.
AIM OF THE THESIS

1) To elucidate whether the accumulation of dysfunctional mitochondria is a consequence of impaired mitochondrial targeting to autophagosomes and, in turn, whether this impairment is due to defects in the mitophagic machinery.

2) To establish the role of dysfunctional mitochondria in MSD pathology.
MATERIALS & METHODS

1. Sumf1-/- mice genotyping

1.1. Genomic DNA extraction

Tails were cut off from mice around P20 and lysed in 500µl lysis buffer (50mM TrisHCl pH 8, 100mM EDTA, 100mM NaCl, SDS 1%), supplemented with 20 µl proteinase K (20mg/ml) at 55°C O/N. After removal of cellular debris (5 minutes centrifugation at maximum speed), DNA was precipitated by adding 1 ml of 100% ethanol (EtOH) to each tube and gently mixed by inverting the tubes. Subsequently, DNA was washed once with 70% EtOH, air-dried and resuspended in 500 µl H2O.

1.2. PCR Amplification

We genotyped the mice by PCR on tail DNAs using β-gal-specific primers coupled with Sumf1- specific primers (figure 16):

\begin{align*}
\text{Int3rev} & \quad 5' - \text{AGA AAC CAC CTC ACC AAA GCA GAG} - 3' \\
\text{Int3for} & \quad 5' - \text{TTT GTG CCT TTA CTG CCC TCT TGG} - 3', \\
\beta\text{geo rev} & \quad 5' - \text{CAA AGT CAG GGT CAC AAG GTT CAT} - 3'.
\end{align*}

PCR conditions using the Takara LA Taq mixture (Takara Bio Inc., Japan):

1) 95 °C 2 min;
Materials & Methods

2) 95 °C 30 sec/68 °C 30 sec/68 °C 1 min for 30 cycles;

3) 72 °C 10 min.

Resolution in a 1.5% agarose gel: 1153 bp band (Sumf1+/+), 800 bp band (Sumf1/-) or both (Sumf1+/−).

Figure 16. Gene trapping insertion site within the SUMF1 gene. Genomic PCR analysis of DNAs from Sumf1+/+, Sumf1+/- and Sumf1-/- littermates demonstrates that the insertion site is in intron 3 of the Sumf1 gene

2. Generation of immortalized MEFs (Mouse Embryonic Fibroblasts)

MEFs were isolated by trypsinization of littermate embryos collected at E14.5 and grown in DMEM supplemented with 20% FBS and 1% penicillin/streptomycin. Immortalization was performed by transfection of the pMSSVLT plasmid containing
the SV40 gene. Selection of immortalized clones by neomycin treatment was carried out for 3 weeks and the immortalized cells were maintained in DMEM supplemented with 10% FBS and antibiotics.

3. Immunoblotting of total lysates

3.1. Total protein extraction of tissue samples

Mice were anesthetized with avertin (20μl/g weight) and then perfused with PBS. Brain and liver samples were collected and homogenized in ice-cold lysis buffer (50mM TrisHCl pH 7.4, 150mM NaCl, 1mM EDTA, 1% Triton X-100, 0.1% SDS, 0.5% Na deoxycholate) in presence of protease inhibitors (Sigma-Aldrich, MO, USA). Mechanical disruption of samples was performed using the TissueLyser equipment (Qiagen, Netherlands). Homogenates were incubated on ice for 30 minutes and then centrifugated at maximum speed to eliminate cellular debris. Proteins were quantified by the Bradford method (Bio-Rad, CA, USA) and stored at -80°C.

3.2. SDS-PAGE electrophoresis

Mini-protean SDS-PAGE gels were prepared according to protocol. Proteins (10-50μg) were prepared in sample buffer 4x containing β-mercaptoethanol, boiled for 5 minutes and loaded. Pre-stained protein marker (175-7KDa) was from New England Biosciencies (MA, USA). Electrophoresis was run at 80V for almost 3 hours at RT. Proteins on SDS-PAGE gels were transferred to PVDF membranes (Millipore, MA, USA) at 30V O/N 4°C. The day after, membranes were blocked in TBS/Tween
5% milk for 1 hour at RT followed by incubation with primary antibody (1-2 hours). Filters were washed 3 times in TBS/Tween and incubated with secondary HRP-conjugated antibody (GE healthcare, WI, USA). Detection was performed using the enhanced chemiluminescence (ECL) from Pierce (Thermo Scientific, MA, USA).

Primary antibodies used on tissue total lysates were: rabbit anti-COXIV 1:1,000 (#4844 Cell Signaling Technology Inc., MA, USA), rabbit anti-LC3 1:1,000 (NB100-2331, Novus biologicals, CO, USA), mouse anti-Parkin 1:1,000 (#4211, Cell Signaling Technology, MA, USA), rabbit anti-BECN1 1:1,000 (sc-11427, Santa Cruz biotech., CA, USA), mouse anti-OPA-1 1:1,000 (612607, BD Biosciences, NJ, USA), mouse anti-DLP1 1:1,000 (611112, BD Biosciences, NJ, USA) and mouse anti-β-actin 1:10,000 (A1978, Sigma-Aldrich, MO, USA).

4. Immunoblotting of subcellular fractions

4.1. Subcellular fractioning

Brain and liver samples were collected from PBS-perfused mice. Tissue was weighted and homogenized in 10 volumes of ice-cold hypotonic buffer (300mM sucrose, 10mM HEPES pH 7.4, 0.2mM EDTA) in presence of protease inhibitors (Sigma-Aldrich, MO, USA). Samples were mechanically disrupted with micropesstles (Eppendorf, Germany) and then passed through a 20G- and a 26G-needle for several times. The same amount of protein (1 mg) was processed in an equal volume of buffer for all samples. The supernatant of the first centrifugation (5 minutes, 600 g) was further centrifugated at 16,000 g for 15 minutes. Supernatants
were conserved as the cytosolic fraction. Pellets were washed in buffer and re-centrifugated. The resultant pellets (mitochondria) were resuspended in the same volume of lysis buffer (50mM TrisHCl pH 7.4, 150mM NaCl, 1mM EDTA, 1% Triton X-100, 0.1% SDS, 0.5% Na deoxycholate). Samples were quantified by the Bradford method (BioRad, CA, USA) and stored at -80°C.

4.2. SDS-PAGE electrophoresis

Sample preparation and electrophoresis run were performed as described in 3.2. For parkin immunoblotting, same amounts of protein were loaded (10-20μg). For cytochrome c and ubiquitin immunoblotting, same volumes of each subcellular fraction were loaded (10-20μl).

The antibodies used were: mouse anti- Cytochrom c 1:1,000 (Cat.556433 BD Pharmingen, NJ, USA), mouse anti-Parkin 1:1,000 (#4211, Cell Signaling Technology, MA, USA) and rabbit anti-Ubiquitin 1:500 (Z0458, Dako cytomation, CO, USA). Rabbit anti- COX IV 1:1,000 (#4844 Cell Signaling Technology Inc., MA, USA) and mouse anti- ATPase β subunit 1:10,000 (ab14730, Abcam, UK) were used as mitochondrial markers.

5. Electron Microscopy

5.1. Tissue processing

Tissue was fixed in 1% gluteraldehyde solution (in 0.2 M HEPES) and postfixed in OsO₄ and uranyl acetate. After dehydration in graded series of ethanol, tissue
samples were cleared in propylene oxide, embedded in Epoxy resin (Epon 812) and polymerized at 60°C for 24 h. From each sample, ultrathin sections (70 nm- thick) were cut with a Leica EM UC6 ultramicrotome. EM images were acquired using a FEI Tecnai-12 electron microscope equipped with an ULTRA VIEW CCD digital camera (FEI, Einhoven, The Netherlands). All these steps were performed by both Dr. Elena Polishchuk and Dr. Roman Polishchuk.

5.2. Analysis of mitochondrial morphology

Quantification of the mitochondrial dimensions (diameter) was performed using the AnalySIS software (Soft Imaging Systems GmbH, Munster, Germany). The morphological analysis was performed by Dr. Elena Polishchuk.

5.3. Analysis of autophagosome content

EM images were qualitatively analyzed and autophagosomes were classified as “empty” (electron-clear vesicles) or “filled” (electron-dense vesicles).

6. Real-time PCR

6.1. RNA extraction and retrotranscription (RT-PCR)

Total RNA was extracted from tissue using the RNeasy® kit (QIAGen, Netherlands): homogenization of samples was performed mechanically using the TissueLyser equipment and processed according to manufacturer’s manual. RNA
samples were quantified using a NanoDrop 8000 spectrophotometer (Thermo Scientific, MA, USA) and 1 μg of each sample was retrotranscribed with the QuantiTect® Reverse Transcription kit (Qiagen, Netherlands).

6.2. cDNA amplification

Amplification of cDNA was performed using the SYBR Green I Master for LightCycler® 480 (Roche, Switzerland). Primer sequences were designed using the GenScript Primer Design tool (https://www.genscript.com/ssl-bin/app/primer):

- **PARK2**
 - forward 5'- GCA GCC ATA CCC TGC CGG TG-3’
 - reverse 5'- TGT GGC AGG GGC CTT TGC AG-3’

- **PGC1α**
 - forward 5'- CCC AGA GTC ACC AAA TGA CCC CA-3’
 - reverse 5'- TGA GGA GGA GTT GTG GGA GGA GT-3’

7. Analysis of mitochondrial functionality

7.1. Mitochondria isolation

Isolation of tissue mitochondria was performed using the Mitochondria Isolation kit protocol (MITOISO1, Sigma-Aldrich, MO, USA). Briefly, small amounts of tissue samples (75-150mg) were homogenized in Extraction Buffer A using
Materials & Methods

Micropestles (Eppendorf, Germany) and 20G- and 26G- needles. After a series of centrifuges, the final pellet of mitochondria was resuspended in storage buffer (10mM HEPES pH 7.4, 250mM sucrose, 1mM ATP, 0.08 mM ADP, 5mM sodium succinate, 2mM K₂HPO₄, 1mM DTT) and proteins were quantified by the Bradford method (Bio-Rad, CA, USA). All functional assays were performed by 4 hours after mitochondria isolation.

7.2. Analysis of mitochondrial membrane integrity

Mitochondria (10μg) obtained from MSD and control mice (n=3) were incubated with the JC-1 working solution (Sigma-Aldrich, MO, USA) for 7 minutes. Subsequently, fluorescence (excitation: 485, emission: 590) was measured in a Fluoroskan Ascent FL fluorometer (Thermo Scientific, MA, USA).

7.3. Analysis of mitochondrial ATP content

Mitochondria obtained from MSD and control mice (n=3) were resuspended in an ATP-free storage buffer. ATP was measured using the ATP determination kit (Invitrogen, CA, USA). The assay is based on luciferase’s requirement for ATP in producing light from the reaction:

\[
\text{Luciferin} + \text{ATP} + \text{O}_2 \rightarrow \text{oxyluciferin} + \text{AMP} + \text{pyrophosphatase} + \text{CO}_2 + \text{light}
\]

Luciferase was added to mitochondria samples (5-10μl) and luminescence was measured in a GloMax 96-well luminometer (Promega, WI, USA). Results were normalized by the amount of mitochondrial protein.
8. Detection of apoptotic cells

Paraffin-embedded tissues were sectioned (7 µM) in a Leica RM165 microtome (Germany) and fixed (PFA 4%). Apoptotic nuclei were detected using the In Situ cell death detection kit (Roche, Switzerland). Images were acquired in a Zeiss Axioimager A.1 fluorescence microscope (Carl Zeiss, Germany).

9. Analysis of mitochondrial morphology and dynamics in MEFs

9.1. Plasmids transfection

All plasmids transfections were performed using the Lipofectamine 2000 reagent (Invitrogen, CA, USA). Four hours after transfection, medium was replaced with a growth medium containing antibiotics.

The plasmids used in our experiments were: GFP-LC3 (52), GFP-myc-Parkin and DsREDmito, which are a kindly gift of Prof. Wolfdieter Springer (University of Tübingen) and Prof. Luca Scorrano (University of Geneva) respectively.

9.2. Analysis of mitochondrial morphology

In vitro morphological analysis of mitochondria was performed by transfection of the DsREDmito plasmid into MSD and control iMEFs. Cells from four independent experiments were analyzed (= 185 cells/experiment) and classified following a pre-established criteria of mitochondria size/shape.
9.3. Analysis of mitochondrial dynamics

Plasmids couples GFP-LC3/DsREDmito and GFP-Parkin/DsREDmito were co-expressed in MEFs. 24 hours after transfection, cells were treated with 20μM CCCP (Sigma-Aldrich, MO, USA) for 20 hours. Cells were fixed in PFA 4% and mounted in vectashield + DAPI (Vector laboratories, CA, USA).

Images were acquired in a Zeiss LM 710 confocal microscope (Germany) with a 63x/1.4 Oil DIC Plan Apo lens. Laser lines at 488 nm (GFP) and 561 nm (DsRED) were used.

10. Data Analysis

10.1. Immunoblotting quantification

Quantification of immunoblotting bands was performed using the Image J software. For all experiments, data from four control and four MSD mice were processed and the average was expressed as the fold-change respect to control.

10.2. Statistics

Data were analyzed by Student’s t distribution. A p-value < 0.05 was considered statistically significant.
1. Morphologically-altered mitochondria accumulate in a tissue-specific and time-dependent manner in MSD

In order to evaluate the pattern of mitochondrial accumulation, we determined the content of mitochondria in two of the most affected tissues of MSD mice: brain and liver. For this purpose we used COX IV, a component of the mitochondrial electron transport chain, which has been widely used as a marker for quantifying the number of mitochondria (56). Levels of COX IV were determined by western blot analysis on brain and liver total homogenates obtained from MSD (n=4) and control mice (n=4) at four different ages (P15, 1-, 2- and 3 months) (figure 17). In MSD brain, levels of COX IV were comparable to control mice (P15, 0.85 ± 0.04; 1 month, 0.80 ± 0.07; 2 months, 1.02 ± 0.02; 3 months, 1.01 ± 0.023) thus indicating that mitochondrial content remained unaltered over time. The same amount of COX IV protein was observed in MSD liver at an early stage compared to control (P15, 0.87 ± 0.08; 1 month, 0.97 ± 0.01) whereas increased levels were detected at a late stage (2 months, 1.57 ± 0.04; 3 months, 1.32 ± 0.04; p-value<0.01). Further analysis of PGC1α mRNA levels by qPCR, a master transcriptional co-activator that controls many genes involved in mitochondrial biogenesis, excluded the possibility that the accumulation observed in MSD was due to enhanced mitochondrial biogenesis (Brain 3 months, 0.7 ± 0.13; Liver 3 months, 0.91 ± 0.44), thus suggesting a defect in mitochondrial removal (figure 18).

Since abnormal accumulation of mitochondria can result in morphological changes, we then wondered whether mitochondria from MSD tissues were ultrastructurally altered. For this purpose, we measured the size (diameter) of
Results

mitochondria in both cerebellum and liver ultra-thin sections of control (average number of mitochondria measured ≈ 53) and MSD mice (av. number of mitochondria measured ≈ 73) using the AnalySIS software (figure 19).
Results

Figure 17. Accumulation of mitochondria in MSD tissues. Levels of COX IV in brain and liver total lysates obtained from MSD (n=4) and control mice (n=4) at P15, 1-, 2- and 3 months. Here we show the most representative blot as obtained after quantification with Image J software. The COX IV/Actin ratio is expressed in terms of fold-change compared to control. ** p-value< 0.01

![Graph showing COX IV levels in MSD and control tissues](image)

Figure 18. PGC1α mRNA levels in MSD tissues. Relative expression of PGC1α measured by quantitative PCR in both brain and liver extracts of MSD mice (n=3) at 3 months. Results are represented in terms of fold-change compared to control.

Mitochondria of MSD cerebellum exhibited a similar morphology as their control littermates at an early stage (control, 498 ± 38; MSD, 503 ± 36) but significantly increased in size at 2 months (control, 625 ± 40; MSD, 929 ± 77). Surprisingly, mitochondria appeared smaller (fragmented) at an advanced stage (control, 604 ± 43; MSD, 481 ± 18). Morphological analysis of liver samples showed that mitochondria of MSD mice (av. num. mitochondria measured ≈ 75) were larger (giant) compared to control mice (av. num. mitochondria measured ≈ 56) as soon as 15 days after birth (control, 994 ± 35; MSD, 1211 ± 30). Similar results were obtained at advanced ages (1 month; control, 840 ± 39; MSD, 1760 ± 131; 2 months; control, 712 ± 37; MSD, 1112 ± 84; 3 months; control 820 ± 34; MSD, 1277 ± 62).
Results

Cerebellum

3 months

Mitochondria size (a.u.)

control
MSD

control
MSD

1 month 2 months 3 months

Liver

1 month

Mitochondria size (a.u.)

control MSD

P15 1 month 2 months 3 months
Figure 19. **Analysis of mitochondrial morphology in MSD tissues.** Electron microscopy images from cerebellum and liver ultra-thin sections of MSD and control mice (*, mitochondria). Mitochondrial size (diameter) was measured using the AnalySIS software on EM images obtained from cerebellum and liver ultra-thin sections of MSD and control mice at different time points (P15, 1-, 2-, and 3 months). Measurements have been expressed in arbitrary units (a.u.). ** p-value < 0.01

The presence of giant mitochondria may be explained by: 1) Enhanced fusion, 2) defective fission and/or 3) impaired mitophagy. We therefore checked for the levels of both the fusion protein OPA-1 and the fission protein DLP1 in total brain and liver homogenates at 3 months.

Figure 20. **Fusion and fission protein levels in MSD tissues.** OPA-1 (left) and DLP-1 (right) protein levels in total brain and liver homogenates obtained from MSD (n=3) and control mice (n=3) at 3 months. Here we show the most representative blot as obtained after quantification with Image J software. Both OPA-1/Actin and DLP-1/Actin ratio are expressed in terms of fold-change compared to control. ** p-value < 0.01

As shown in figure 20 (left), OPA-1 levels were similar to control in both brain (1 ± 0.05) and liver (0.99 ± 0.21) of MSD mice thus indicating no changes in
fusion rates. Similar results were obtained for the fission protein DLP-1 in MSD brain (right) (0.90 ± 0.24). On the contrary, DLP-1 levels were dramatically reduced in liver (0.05 ± 0.004, p-value< 0.01) when compared to control.

These data suggest that the morphology observed in liver mitochondria of MSD may be a consequence of impaired fission. Moreover, these mitochondrial alterations are tissue-specific and time-related features of MSD pathology since they are mostly observed in liver rather than brain.

2. Mitochondria accumulate outside autophagosome membranes

As previously described in Chapter 4, abnormal mitochondria are recycled by mitophagy through their targeting to autophagosomes. However, mitochondrial fission is an essential event for proper mitochondrial segregation (42). Defects in fission proteins, as observed in MSD liver, might result in impaired mitochondrial degradation. Therefore, we investigated whether mitochondria were properly sequestered inside autophagic vesicles. To this end, we analyzed the content of autophagosomes by electron microscopy (figure 21). Qualitative analysis of ultra-thin sections revealed the presence of autophagosomes with fuzzy content in both brain and liver of MSD mice. After a detailed analysis of AVs, the number of vesicles with no-recognizable structures, called “empty” autophagosomes (eAVs), represented out of 35% of the total number of vesicles screened in brain. Interestingly, this percentage remained constant over time: P15, 35.7%; 1 month, 34.9%; 2 months, 33.3%; 3 months, 35.3%. Otherwise, in MSD liver, the percentage
Results

of eAVs increased over time (P 15, 17.7%; 1 month, 54.3%; 2 months, 47%; 3 months, 80%) thus suggesting a progressive impairment of autophagic cargo sequestration.

To confirm these observations, we transiently co-expressed GFP-LC3 and DsREDmito plasmids in MSD and control mouse embryonic fibroblasts (MEFs). As previously demonstrated by our group (56), MSD MEFs present a higher percentage of depolarized mitochondria in steady-state conditions. However, it is hardly difficult to detect a mitophagic event unless depolarization is not exacerbated by drug treatments. We then treated cells with CCCP (20μM, 20h), a mitochondrial-uncoupling agent that induces mitochondria depolarization and promotes their elimination by autophagy (figure 22). Upon CCCP treatment, mitochondria from both MSD and control cells appeared fragmented (round-shaped), indicating the loss of membrane potential. Under this condition, depolarized mitochondria were surrounded by autophagic membranes in control MEFs, as shown by co-localization of autophagy-mitochondria markers. On the contrary, only few mitochondria were engulfed by autophagosomes in MSD cells even if CCCP treatment was as efficient as in control cells. Moreover, as shown in figure 23, a detailed analysis of mitochondrial morphology indicated that MSD MEFs presented a higher population of intermediate-fragmented mitochondria in both untreated and CCCP- treated conditions compared to control.

Together these data indicate that mitochondria accumulate outside autophagosomes thus suggesting a defect in the mechanism responsible for mitochondrial targeting.
Results

Cerebellum

Figure 21.
Figure 21 (cont.)
Figure 21. Analysis of autophagosomes content in MSD tissues. Electron microscopy analysis of autophagosomes of cerebellum and liver ultra-thin sections from MSD and control mice at 4 different time points (P15, 1-, 2-, and 3 months). Qualitatively, autophagosomes of MSD tissues have been classified into two categories: empty AVs (white arrows) and filled Avs (black arrows), based on the presence of clearly recognizable structures.
Results

Figure 22. Depolarized mitochondria do not completely co-localize with the autophagic marker LC3 in MSD MEFs. Transient co-expression of GFP-LC3 (green) and DsREDmt (red) plasmids in MSD and control MEFs. 24-hours after transfection, cells were cultured in presence/absence of CCCP (20μM, 20h). Images were taken using a 63x/1.4 Oil DIC Plan Apo objective in a Zeiss LSM710 confocal microscope. Merge zoomed area is indicated with a white square.
Figure 23. Mitochondrial morphology in MSD MEFs. Mitochondrial morphology has been classified following a pre-established criteria: “Network” for long interconnected mitochondria; “Fragmented” as for round-shaped mitochondria; and “Intermediate” for those cells with a half-and-a-half pattern. The graph represents the percentage of cells with a certain mitochondrial morphology in absence/presence of CCCP (20μM 6h). This value is an average value obtained from 4 independent experiments.
3. Impaired mitochondrial targeting is due to insufficient parkin-mediated mitochondrial ubiquitination

During mitochondrial priming, PINK1 recognizes depolarized mitochondria and recruits parkin to the OMM, where it exerts its E3 ubiquitin ligase activity. This step is crucial for proper mitochondrial recognition and degradation by autophagy. Therefore, we analyzed the efficiency of parkin-mediated ubiquitination in MSD tissues. To this end, we determined the total amount of ubiquitinated proteins in mitochondrial extracts obtained from both brain and liver of MSD and control mice (figure 24). Analysis of the blots revealed equal amounts of ubiquitinated proteins in MSD brain mitochondrial fractions except for a slight increase at early stages (1 month, 1.17 ± 0.015, p-value<0.05; 3 months, 0.97 ± 0.03). On the contrary, we observed lower levels of ubiquitinated proteins per mitochondrial number (ATPase content) in MSD liver compared to control (1 month, 0.71 ± 0.04; 3 months, 0.70 ± 0.05, p-value> 0.05) thus suggesting an incomplete/partial ubiquitination of mitochondrial proteins that might probably result into inefficient cargo recognition.

Since OMM ubiquitination is carried out by parkin, we hypothesized that incomplete mitochondrial ubiquitination might be due to 1) inefficient translocation and/or 2) reduced levels of parkin. To address this issue, we evaluated the presence of parkin in tissue subcellular fractions obtained from both brain and liver of MSD and control mice.
Results

Brain

1 month 3 months

α-Ubiquitin

ATPaseβ

Liver

1 month 3 months

α-Ubiquitin

ATPaseβ

Ub prot/mito content

Control

MSD

1 month 3 months

Ub prot/mito content

Control

MSD
Figure 24. Ubiquitination of mitochondrial proteins in MSD tissues. Analysis of ubiquitinated proteins in mitochondrial fractions obtained from MSD (n=4) and control mice (n=4) at 1- and 3 months of age. Here we show the most representative blot as obtained after quantification with Image J software. Results have been expressed as the amount of ubiquitin respect to mitochondrial number. ** p-value< 0.01

As shown in figure 25, in MSD liver, parkin was predominantly localized in mitochondrial fractions when compared to control (1 month, cytosol control 42.2% MSD 13.99% p-values< 0.05, mitochondria control 57.7% MSD 86.1% p= 0.32; 3 months, cytosol control 39.1% MSD 17.6% p= 0.09, mitochondria control 60.8% MSD 82.4% p-value= 0.35) although total levels of the protein were significantly reduced (1 month, 0.48 ± 0.04; 3 months, 0.35 ± 0.03; p-value< 0.01) (figure 26). On the contrary, in MSD brain, parkin levels were comparable to those of control mice, being mostly localized in the cytosol (cytosol control 54.2% MSD 64.6% p-value= 0.14, mitochondria control 45.8% MSD 35.4% p-value= 0.06) (figure 25) and this was associated to unaltered amounts of parkin in total tissue homogenates (1 month, 1.26 ± 0.1; 3 months, 0.8 ± 0.11) (figure 26).

Proper parkin translocation was further confirmed in MSD MEFs. In this case, we transiently co-expressed GFP-parkin and DsREDmito plasmids in MSD and control cells, which were then incubated in absence/presence of the mitochondrial uncoupler CCCP (20μM, 20h). As shown in figure 27, parkin localization was entirely cytoplasmic in untreated cells. Upon CCCP treatment, massive depolarization of mitochondria induced the translocation of large amounts of parkin in both types of cell thus indicating that parkin is properly recruited to depolarized mitochondria in MSD cells.
Figure 25. Parkin translocates to mitochondria in MSD tissues. Levels of parkin in cytosolic and mitochondrial fractions obtained from MSD (n=4) and control mice (n=4) at 1- and 3 months. Here we show the most representative blot as obtained after quantification with Image J software. COX IV has been used as loading control for mitochondrial fraction.
Figure 26. Parkin levels in MSD tissues. Western blot analysis of parkin in brain and liver total homogenates obtained from MSD (n=4) and control mice (n=4) at 1- and 3 months. Here we show the most representative blot as obtained after quantification with Image J software. The Parkin/Actin ratio has been expressed in terms of fold-change compared to control. ** p-value<0.01
Figure 27. Parkin translocates to depolarized mitochondria in MSD MEFs. Transfection of GFP-parkin (green) and DsREDmt (red) constructs in MSD and control MEFs. 24-hours after transfection, cells were treated with 20μM CCCP for 20 hours. Images were taken with a 63x/1.4 Oil DIC Apo Plan lens in a Zeiss LSM710 confocal microscope. Merge zoomed area is indicated with a white square.

Our results indicate that despite parkin is able to efficiently translocate to mitochondria, levels of this protein are strongly reduced in MSD liver thus providing a suitable explanation for the incomplete mitochondrial ubiquitination observed in
this tissue. Moreover, we found that low parkin levels are likely due to enhanced posttranslational alterations since no significant differences were observed in PARK2 relative expression (MSD brain, 1 month, 1.26 ± 0.08, p-value < 0.05; 3 months, 1.29 ± 0.18; MSD liver, 1 month, 0.51 ± 0.31; 3 months, 0.6 ± 0.28) (figure 28).

![Figure 28](image)

Figure 28. PARK2 relative expression in MSD tissues. Analysis by qPCR of PARK2 mRNA levels in brain and liver of MSD (n=3) and control mice (n=3) at 1- and 3 months. Results are represented in terms of fold-change compared to control. * p-value < 0.05

4. Inhibition of macroautophagy may contribute to defective mitochondrial removal

In a previous study, we described a defect in autophagosome maturation in LSDs (56, 64). We hypothesize that this autophagic distress may also affect the recycling of dysfunctional mitochondria thus exacerbating the mitochondrial phenotype already observed.
Results

Figure 29. Autophagosome accumulation in MSD tissues. LC3 immunoblots on brain and liver total homogenates from MSD (n=4) and control mice (n=4) at P15, 1-, 2- and 3 months. Here we show the most representative blot as obtained after quantification with Image J software. Autophagosome accumulation has been expressed as the LC3-II/Actin ratio in terms of fold-change respect to control. * p-value< 0.05; ** p-value< 0.01
First, we monitored the accumulation of the autophagic marker LC3-II in MSD tissues (figure 29). LC3-II/Actin ratios in brain and liver total homogenates showed a significant accumulation of autophagosomes in MSD mice compared to control, both in brain (P15, 3 ± 0.625; 1 month, 1.95 ± 0.05; 2 months, 1.26 ± 0.17; 3 months, 1.58 ± 0.03) and liver (P15, 1.31 ± 0.15; 1 month, 1.6 ± 0.045; 2 months, 2.57 ± 0.075; 3 months, 3.2 ± 0.11). Nevertheless, the trend of accumulation differed between these two tissues. Indeed, whereas in MSD brain the LC3-II/Actin ratio remained constant over time (except for at P15), LC3-II levels gradually increased in liver. These results indicate a distinct autophagic dynamics between these tissues, which might be related to different metabolic requirements and/or stress conditions of each type of cell. This accumulation of LC3-II was in accordance with the block of autophagosome-lysosome fusion already reported (55, 63). However, we have never investigated whether this impairment in autophagosome maturation may somehow affect autophagy induction. The initial step of autophagosome formation depends in part on the phosphorylation-inactivation of the mTOR complex and/or levels of Beclin-1, which is part of the complex that mediates vesicle nucleation.

Therefore, we evaluated both the levels of Beclin-1 mRNA and protein in MSD (n=4) and control tissues (n=4) (figure 30). Immunoblots of MSD brain extracts showed a slight increase of protein levels only at 3 months (BECN1/Actin ratio at P15, 1 ± 0.03; 1 month, 0.98 ± 0.04; 2 months, 0.99 ± 0.01; 3 months, 1.12 ± 0.006), which matched with increased RNAm expression at the same time point (1.41 ± 0.11, p-value< 0.01).
Results

Brain

<table>
<thead>
<tr>
<th>ctrl</th>
<th>MSD</th>
<th>ctrl</th>
<th>MSD</th>
<th>ctrl</th>
<th>MSD</th>
<th>ctrl</th>
<th>MSD</th>
</tr>
</thead>
<tbody>
<tr>
<td>BECN1</td>
<td>β-Actin</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>P15</td>
<td>1 month</td>
<td>2 months</td>
<td>3 months</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

- - mm

![Graph showing BECN1/Actin ratio for Brain samples (P15, 15 days, 1 month, 2 months, 3 months) with control and MSD groups.](image)

Liver

<table>
<thead>
<tr>
<th>ctrl</th>
<th>MSD</th>
<th>ctrl</th>
<th>MSD</th>
<th>ctrl</th>
<th>MSD</th>
<th>ctrl</th>
<th>MSD</th>
</tr>
</thead>
<tbody>
<tr>
<td>BECN1</td>
<td>β-Actin</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>P15</td>
<td>1 month</td>
<td>2 months</td>
<td>3 months</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

- - mm

![Graph showing BECN1/Actin ratio for Liver samples (P15, 15 days, 1 month, 2 months, 3 months) with control and MSD groups.](image)
Figure 30. Autophagy is induced in MSD brain but not in liver. Previous page, Beclin-1 protein levels in total lysates of brain and liver samples obtained from MSD (n=4) and control mice (n=4) at 4 different time points (P15, 1-, 2-, and 3 months). Here we show the most representative blot as obtained after quantification with Image J software. The BECN1/Actin is expressed in terms of fold-change compared to control. This page, BECN-1 mRNA levels in brain and liver samples from MSD (n=4) and control mice (n=4) at 3 months. ** p-value< 0.01

Strikingly, Beclin-1 levels in liver were notably reduced at 3 months (BECN1/Actin ratio at P15, 0.93 ± 0.06; 1 month, 0.75 ± 0.01; 2 months, 0.95 ± 0.04; 3 months, 0.3 ± 0.05) although its RNAm expression was comparable to control (0.97 ± 0.14, p-value = 0.78). These results suggest that autophagy is differentially regulated in brain and liver of MSD mice: whereas in brain we observed a slight induction of autophagy at a late stage; in liver we detected reduced levels of Beclin-1, which may indicate a post-translational cleavage of Beclin-1 since mRNA levels appeared unaltered.

This inhibition of autophagy induction could further contribute to the impairment of mitochondrial removal observed in MSD liver.
5. Dysfunctional mitochondria release cytochrome c and trigger cell death in a tissue-specific fashion as a consequence of impaired mitophagy.

Incomplete removal of mitochondria can have serious consequences for cell integrity. We have previously described a tissue-specific accumulation of morphologically altered mitochondria in our mouse model of lysosomal storage disorders.
Results

Figure 31. Loss of mitochondrial membrane integrity in MSD tissues. Measurement of JC-1 incorporation (JC-1 FLU/mg protein) in freshly isolated mitochondria obtained from brain and liver of MSD (n=3) and control mice (n=3) at three different stages (P15, 1- and 4 months). Values have been expressed in terms of fold-change respect to control. * p-value< 0.05; ** p-value< 0.01

In order to evaluate whether these mitochondria were potentially dangerous for cells, we performed a detailed analysis of mitochondrial functionality in MSD tissues. Initially, we evaluated the integrity of the mitochondrial membrane using JC-1, a fluorescent cationic dye that accumulates in mitochondria with intact electrochemical gradient. For this purpose we isolated mitochondria from both brain and liver of MSD (n=3) and control mice (n=3) and measured the incorporation of JC-1 (figure 31). Isolated mitochondria from MSD brain showed less retention of JC-1 at both 1 month (0.83 ± 0.03, p-value <0.05) and 4 months (0.83 ± 0.15) although the later result was not significant (p-value= 0.35). In liver, loss of membrane potential was evident at 1 month (0.67 ± 0.24, p-value= 0.27) and became significant at 4 months (0.65 ± 0.015, p-value< 0.01).

Since mitochondria are the main source of energy in cells, we used an ATP assay to further evaluate mitochondria functionality. For this analysis we used freshly isolated mitochondria from both brain and liver (n=3) and measured the relative amount of ATP in each mitochondrial fraction (figure 32). Although the results obtained in brain mitochondria were not significant (2 months, 0.61 ± 0.07, 4 months, 0.82 ± 0.06; p-value ≥ 0.05) they showed a slight decrease in ATP content in MSD compared to control mice samples. Instead, mitochondrial fractions from MSD
liver displayed a striking decrease in ATP levels at both time points (2 months, 0.19 ± 0.1; 4 months, 0.19 ± 0.04; p-value < 0.05).

![Graph showing ATP content in mitochondria from MSD tissues.](image)

Figure 32. ATP content in mitochondria from MSD tissues. Measurement of ATP (ATP * μg mitochondrial protein') in freshly isolated mitochondria from brain and liver of MSD (n=3) and control mice (n=3) at 2 different time points (2- and 4 months). Values have been expressed in terms of fold-change respect to control. * p-value < 0.01

Decreased ATP levels and increased permeabilization of the mitochondrial membrane can determine the fate of a cell. The opening of MPT pores can lead to mitochondrial swelling, OMM rupture and release of pro-apoptotic factors such as cytochrome c (41). We therefore evaluated whether mitochondria from brain and
liver of MSD mice were prone to release cytochrome c from the intermembrane space (IMS).

Figure 33. Analysis of cytochrome c release in MSD tissues. *top*, Western blot analysis of cytochrome c in subcellular fractions obtained from brain and liver samples of MSD (n=4) and control mice (n=4) at 4 different stages (P15, 1-, 2-, and 3 months). Here we show the most representative blot as obtained after quantification with Image J software. *bottom*, percentage of cytochrome c in cytosolic fractions from liver of MSD and control mice. ** p-value< 0.01

To this end, we isolated brain and liver samples from MSD (n=4) and control mice (n=4) at 4 different time points (P15, 1-, 2- and 3 months). Each sample was
Results

processed separately and subcellular fractions were obtained by differential centrifugation. Equal amounts of both cytosolic and mitochondrial fractions were loaded into a SDS-PAGE followed by incubation with an antibody against cytochrome c. As shown in figure 33, no traces of cytochrome c were observed in cytosolic fractions of MSD brains at any of the stages analyzed. Nevertheless, we detected high levels of cytochrome c in cytosolic fractions of MSD liver as soon as 1 month of age (% Cyt c in cytosol at 1 month= 52.9 ± 5.6, 2 months= 71.1 ± 22.8 and 3 months= 51.1 ± 2.2). These data are consistent with the results shown in previous figures, that is, changes in mitochondrial morphology and membrane permeability precede the release of cytochrome c in liver but not in brain of MSD mice indicating that cell death is either mediated by different pathways or effectors in these organs.

To test whether the release of cytochrome c lead to cell death we performed an in situ apoptosis assay (TUNEL) on fixed-paraffin brain (cerebellum and cortex regions) and liver sections of MSD mice at an advanced stage of the disease (3 months) (figure 34). As expected, no TUNEL positive cells were detected on brain slices of MSD mice. This result correlates with the absence of cytochrome c in brain cytosolic fractions as shown by immunoblots. The absence of TUNEL positive cells suggests that commitment of cell death is mediated by a cytochrome c-independent mechanism in this tissue. Contrarily, MSD liver sections exhibited a massive presence of TUNEL positive cells per area analyzed.

Hence, we can conclude that mitochondria are the main effectors of cell death in MSD liver by releasing cytochrome c and subsequently activating downstream caspases.
Results

Positive control

DAPI

TUNEL

MERGE

Cerebellum Cortex

control MSD

DAPI

TUNEL

MERGE

Cerebellum Cortex Cerebellum Cortex

TUNEL

Positive control control MSD

Liver
Figure 34. Release of cytochrome c triggers cell death in MSD liver. Detection of apoptotic nuclei (green) on brain (cerebellum and cortex regions) and liver paraffin sections (7µM) of MSD and control mice at 3 months by TUNEL assay. Images were taken in a Zeiss Axioimager A.1 fluorescence microscope (20x objective).
CONCLUSIONS

Mitochondrial aberrations are a hallmark of many neurodegenerative disorders. In Alzheimer’s disease (AD), beta-amyloid (Aβ) fragments have been described to directly interact with mitochondria thus resulting in mitochondrial dysfunction (66). Over-expression of wild-type APP in both M17 and primary hippocampal neurons induced a severe mitochondrial fragmentation concomitantly with a reduction in the number of mitochondria (67). However, evidence showing mitophagy in AD is scarce and controversial: whilst Moreira and collaborators (68) showed increased mitochondrial sequestration in autophagosomes, a previous study had demonstrated cytosolic accumulation of mitochondria as a result of inefficient autophagic-lysosomal degradation (69). Similar to AD, mutant huntingtin (htt) has been described to localize to the mitochondrial outer membrane (OMM) in Huntington disease (HD) (70). The association of mutant htt with mitochondria is responsible for structural changes, decreased mitochondrial trafficking and impairment of mitochondrial dynamics (71). Recently, a study carried out by Martinez-Cuervo and collaborators (53) have revealed the existence of cargo recognition defects that result in the accumulation of dysfunctional mitochondria in HD cells.

Mitochondrial dysfunction has also been involved in the pathogenesis of lysosomal storage disorders. Recently, Sano and collaborators (72) reported that the accumulation of GM1 at the mitochondria-associated ER membranes leads to calcium-dependent mitochondrial apoptosis. Changes in mitochondrial morphology
and function have been described in a list of different LSDs (see Chapter 4 - 4.3). However, while in AD and HD mutant proteins directly have been shown to interact with mitochondria, the origin of organelle dysfunction in LSDs may be associated to different mechanisms indirectly correlated with the storage.

As previously demonstrated by our group, the accumulation of effete mitochondria was initially related to an impairment of autophagosome maturation (56, 64). Nevertheless, the results obtained in the present study demonstrate that mitochondria accumulation is not a mere consequence of defective autophagosome-lysosome fusion but may involve a more specific mechanism that mediates mitochondrial priming and targeting to autophagosomes. Furthermore, our findings highlight the tissue-specificity of this phenomenon, which appeared to be compromised in liver but not in brain of MSD mice.

In brains of MSD mice, we have reported the up-regulation of PARK2 expression and the increase in parkin levels. We believe that this higher transcriptional activation may more efficiently control the elimination of potentially dangerous mitochondria. In fact, as consequence of higher parkin activity indicated by the increased levels of ubiquitination of mitochondrial fractions, we do not observe any differences in mitochondrial content. Moreover, the characterization of isolated mitochondria from MSD brain did not reveal significant changes in either mitochondrial integrity (JC-1 assay and cytochrome c release) or functionality (ATP production). Only at an advanced stage of the disease, presumably as a consequence of accumulated metabolic stress, mitochondria from cortical neurons appeared fragmented. Mitochondrial fission has been demonstrated to trigger autophagy (73). In fact, simultaneously to morphological changes, we observed an
Conclusions

increase of beclin-1 levels. The induction of autophagy may reflect the urgent necessity to eliminate fragmented mitochondria that might compromise tissue homeostasis. In a previous study, loss of Purkinje cells has been described in MSD mice as soon as 2 months (28). However, no TUNEL-positive cells have been detected at any of the stages analyzed. We therefore speculate that, under the third month of age, neurodegeneration may not be directly correlated with mitochondria dysfunction but might result as a consequence of both direct accumulation of undegraded material inside lysosomes and the formation of toxic aggregates due to impaired autophagosome maturation (56).

Contrarily to what observed in brain of MSD mice, the analysis of liver samples showed a time-related accumulation of mitochondria as indicated by COX IV levels. Morphological analysis revealed an increase in mitochondrial size, a characteristic that was detected as soon as 15 days after birth. Mitochondrial enlargement can be a consequence of 1) defective fission, 2) a high rate of fusion and 3) impaired mitophagy. We have reported a reduction in DLP-1 levels, which may in part account for the accumulation of enlarged mitochondria. However, in the majority of cases, the presence of giant mitochondria is a result of defective mitochondrial turnover (74). Actually, the qualitative analysis of autophagosome content revealed the presence of a high percentage of vesicles without any recognizable structure inside. Notably, this percentage increased over time concomitantly with the accumulation of mitochondria. From a detailed analysis of key steps of mitophagy emerged that, despite proper translocation, reduced levels of parkin resulted in inefficient ubiquitination of mitochondrial proteins in MSD liver. We hypothesize that this incomplete ubiquitination might in turn derive in an
inadequate cargo recognition by the adaptor protein p62/SQSTM1. However, further analysis need to be performed in order to check whether p62/SQSTM1 is able to recognize ubiquitinated mitochondria in MSD. On the other hand, the non-induction of autophagy, represented by unaltered levels of beclin-1, together with a defect in autophagosome maturation may contribute to the phenotype observed by limiting the availability of new autophagic vesicles. Moreover, at an advanced stage of the pathology, beclin-1 levels appear surprisingly reduced. It has been reported that the mitochondrial proteins Bcl-2 and Bcl-XL negatively regulate autophagy by binding beclin-1, which is then cleaved by caspases (75). These data indicate that apoptosis and autophagic cell death cannot co-exist in the same cell. In line with this, our data demonstrate that the impaired removal and subsequent accumulation of mitochondria may trigger apoptosis thus leading to autophagy inhibition. In fact, detailed analysis of mitochondrial functionality showed the collapse of mitochondrial membrane potential (Ψ_m). Many mitochondrial reactions such as ATP generation, ROS production and Ca$^{+2}$ uptake depend on mitochondrial Ψ_m. Therefore, loss of membrane integrity results in a strong decrease in ATP content and in the opening of the MTP pore, leading to the release of pro-apoptotic proteins. In MSD liver, cytochrome c has been detected in cytosolic fractions as soon as 1 month of age. Once released, cytochrome c contributes to the formation of the apoptosome, which in turns recruits caspases and triggers a cascade of events leading to cell death. Actually, TUNEL analysis on liver sections have confirmed the presence of many apoptotic nuclei in MSD sections thus indicating that in this tissue, mitochondrial dysfunction is directly linked to cell death by the release of pro-apoptotic factors.
Conclusions

We believe that the differences observed in our study might be associated to tissue energetic requirements. Mitochondria are the main powerhouse of cells since the major production of energy (ATP) occurs through oxidative phosphorilation. The brain contains a mixture of both post-mitotic (neurons) and mitotic (astrocytes and microglia) cell types. Neurons contain a high number of mitochondria, approximately 10,000 mitochondria per cell, which play an important role in synaptic maintenance through their ability to buffer Ca$^{2+}$. For this reason, post-mitotic cells are expected to be particularly vulnerable to changes in mitochondrial activity. It is then not surprising that mitochondrial turnover would be a very tightly controlled event in neurons since oxidative damage is considered one of the principal mediators for the progressive decline in cellular function. Actually, it is believed that neuronal populations subjected to higher levels of stress have higher levels of autophagy that allows the proper removal of ROS-producing mitochondria. In fact, not all neurons show the same level of susceptibility to impaired autophagy thus supporting the existence of different compensatory mechanisms. In fact, in a recent study, Van Laar and collaborators (76) have hypothesized the existence of a parkin-independent mechanism of mitochondrial turnover that would depend on cellular ATP levels. However, further analysis must be performed to corroborate this theory.

We have proposed a new working model (figure 35): in non-pathological conditions, parkin molecules are able to recognize depolarized mitochondria and promote their elimination by autophagy. In MSD, reduced levels of parkin impair the degradation of mitochondria thus leading to the accumulation of
Conclusions

morphologically and functional-altered mitochondria. At the same time, the block of autophagosome and lysosome fusion may in turn contribute to the phenotype observed by inhibiting the formation of new autophagic vesicles.

Normal

![Normal Diagram](image)

MSD

![MSD Diagram](image)

Figure 35. Proposed working model.

It is not clear whether the reduced levels of parkin are a consequence of impaired autophagy or it is an independent cause non-related to defects in autophagy. Parkin degradation is controlled by another E3 ubiquitin ligase called Nrdp1. The over-expression of Nrdp1 has been described to reduce the half-life of parkin from 5 to 2.5 hours (77). However, further studies must be performed in order to understand the real causes of parkin reduction and whether it can be directly correlated to SUMF1 deficiency.
In addition, it would be interesting to transduce MSD liver with a vector expressing \textit{PARK2} and analyze whether the introduction of exogenous parkin is able to rescue the phenotype observed in this tissue. Actually, the analysis of parkin translocation in MEFs (GFP-Parkin/DsREDmito) was performed upon parkin over-expression conditions. It is possible then that what we observed in cells was a result of parkin over-expression, which might in turn mask the real phenotype.

Recent publications have described a parkin-dependent proteasomal degradation of OMM proteins, which seems to be a critical step for mitophagy (78-80). Moreover, other studies showed that p62/SQSTM1- null cells have no defects in parkin-mediated mitophagy thus suggesting that this cargo adaptor merely participates in mitochondrial aggregation around the perinuclear region (81,82). These new observations rise up the necessity to further analyze this selective process to better understand its real function.

Differently to other prototypical neurodegenerative disorders such as AD and HD, MSD is characterized not only by progressive neurodegeneration but has a prominent involvement of many systemic organs. In fact, from the analysis of different tissues at the same age has raise up the existence of different degrees of phenotype severity. In this study, many of the markers analyzed have been monitored over time thus making possible to correlate some events with the progression of the pathology. Establishing the onset of a specific molecular event may be of great importance in order to develop new therapeutic strategies. Moreover, since neurodegeneration has a slower progression, the generation of a
Conclusions

SUMF1 conditional mouse strain in brain would be useful to elucidate the contribution of mitochondria to the neurodegenerative process.

18 See the website: http://us.expasy.org/cgi-bin/prosite (PDOCOOH7).

A block of autophagy in lysosomal storage disorders

Carmine Settembre1,‡, Alessandro Fraldi1,‡, Luca Jahreiss2, Carmine Spamppanato1, Consuelo Venturi3,‡,4, Diego Medina1, Raquel de Pablo1, Carlo Tacchetti3,4, David C. Rubinsztein2,* and Andrea Ballabio1,∗

1Telethon Institute of Genetics and Medicine (TIGEM), Naples, Italy 2Department of Medical Genetics, Cambridge Institute for Medical Research, Cambridge, UK 3Department of Experimental Medicine and 4MicroSCoBiO Research Center and IFOM Center of Cell Oncology and Ultrastructure, University of Genoa, Genoa, Italy and 5Medical Genetics, Department of Pediatrics, Federico II University, Naples, Italy

Received August 5, 2007; Revised and Accepted September 30, 2007

Most lysosomal storage disorders (LSDs) are caused by deficiencies of lysosomal hydrolases. While LSDs were among the first inherited diseases for which the underlying biochemical defects were identified, the mechanisms from enzyme deficiency to cell death are poorly understood. Here we show that lysosomal storage impairs autophagic delivery of bulk cytosolic contents to lysosomes. By studying the mouse models of two LSDs associated with severe neurodegeneration, multiple sulfatase deficiency (MSD) and mucopolysaccharidosis type IIIA (MPSIIIA), we observed an accumulation of autophagosomes resulting from defective autophagosome-lysosome fusion. An impairment of the autophagic pathway was demonstrated by the inefficient degradation of exogenous aggregate-prone proteins (i.e. expanded huntingtin and mutated alpha-synuclein) in cells from LSD mice. This impairment resulted in massive accumulation of polyubiquitinated proteins and of dysfunctional mitochondria which are the putative mediators of cell death. These data identify LSDs as 'autophagy disorders' and suggest the presence of common mechanisms in the pathogenesis of these and other neurodegenerative diseases.

INTRODUCTION

Deficiencies of specific lysosomal hydrolases in lysosomal storage disorders (LSDs) cause accumulation of their undegraded target substrates. However, it is not clear if these substrates themselves are the primary mediators of toxicity. Indeed, the biological pathways from lysosomal enzyme deficiency to cellular dysfunction are still largely unknown (1,2). Interestingly, despite the great structural diversity of the accumulating substrates in the different LSDs, these disorders share many phenotypic similarities, suggesting the presence of common pathogenetic mechanisms. Many LSDs are associated with progressive and severe neurodegeneration which represents the most difficult challenge for their therapy (2). In previous studies, we detected severe neurodegeneration in murine models of mucopolysaccharidoses type II and IIIA (MPSII and MPSIIIA, respectively) and of multiple sulfatase deficiency (MSD) (3–6).

The degradation of intracellular proteins is performed by two major mechanisms: the ubiquitin-proteasome system (UPS) and macroautophagy (hereafter referred to as autophagy). The latter is a lysosomal-dependent catabolic pathway through which long-lived cytosolic proteins and organelles, such as mitochondria, are sequestered by double membrane vesicles (autophagosomes) and ultimately degraded after autophagosome-lysosome fusion (7). Many of the aggregate-prone proteins causing late-onset neurodegenerative conditions, such as Huntington’s and familial forms of Parkinson’s
diseases, are autophagy substrates (8). In addition, knock-out of autophagy genes causes abnormal protein accumulation in ubiquitinated inclusions and neurodegeneration in mice (9,10).

We hypothesized that LSDs are associated with a lysosomal dysfunction that impairs the autophagic pathway ultimately leading to cell death. To test this hypothesis, we studied the mouse models of two LSDs: MSD, which is caused by the deficiency of the sulfatase modifying factor 1 (SUMF1) gene involved in the post-translational modification of sulfatases (6,11,12), and MPS-IIIA, caused by sulfamidase deficiency (13). Our results revealed a block of autophagic pathway occurs as a consequence of decreased ability of lysosomes to fuse with autophagosomes. This results in the cellular accumulation of toxic substrates which are the putative mediators of cell death.

RESULTS

Increased autophagosome number in MSD

We assessed autophagosome number in brain sections from MSD mice by using an antibody detecting the autophagosome marker LC3 (14). During autophagosome formation, the LC3-I isoform is converted into LC3-II, whose amount (compared to actin or tubulin) correlates with the number of autophagosomes (14). LC3-II is the only known protein that specifically associates with autophagosomes and not with other vesicular structures. LC3-II levels were clearly raised in whole brain homogenates from MSD mice, compared to wild-type littermates at 1, 3 and 6 months of age (Fig. 1A). Furthermore, immuno-fluorescence analysis revealed increased numbers of LC3-positive vesicles in the cerebral cortex, cerebellum and thalamus of MSD mice, compared to corresponding brain regions of wild-type mice (Fig. 1B). Electron microscopy evaluation of cerebellum (Fig. 1C and D) and cerebral cortex (Fig. 1E and F) sections from MSD mice showed abnormally abundant autophagosomes. Interestingly, the morphology of autophagic vacuoles accumulating in MSD mice resembled that of early immature autophagosomes (15,16) (Fig. 1C–F), suggesting the presence of a defective maturation.

A similar increase in LC3-II levels was observed in mouse embryonic fibroblasts (MEFs) and embryonic liver macrophages (ELMs) (Fig. 2A)—macrophages were previously identified as the primary site of lysosomal storage in MSD mice (6). The increase in both number and size of autophagosomes was confirmed in MEFs by quantitative analysis (Fig. 2B and C).

Autophagosome-lysosome fusion is impaired in MSD

Clearance of autophagosomes occurs via fusion with lysosomes. We postulated that accumulation of autophagosomes...
in MSD is due to defective clearance caused by impaired autophagosome-lysosome fusion. To test this hypothesis, we analyzed the subcellular localization of the lysosomal marker Lgp120 (LAMP1) and the autophagosomal marker LC3 by confocal microscopy. These experiments demonstrated that the extent of Lgp120/LC3 co-localization was significantly reduced (ranging from 40 to 50%) in MSD compared to wild-type MEFs, thus indicating impaired autophagosome-lysosome fusion (Fig. 3A and B). This was observed both in normal medium (basal autophagy) (Fig. 3A) and in starved cells (induced autophagy) (Fig. 3B).

To characterize this impairment, we used drugs which either induce or inhibit autophagy. Autophagy stimulation with rapamycin increased LC3-II levels in both MSD and wild-type MEFs (Fig. 4). Moreover, LC3-II levels in MSD MEFs were further increased with bafilomycin A1, an inhibitor of autophagosome-lysosome fusion (17), alone or in combination with rapamycin, suggesting that the block of autophagy is not complete (Fig. 4).

Decreased ability of MSD cells to degrade exogenous aggregate-prone proteins

Defective autophagosome-lysosome fusion may lead to an impairment of autophagy. We investigated the ability of MSD cells to degrade aggregate-prone proteins which are autophagy substrates (18). These include the mutant huntingtin and A53T α-synuclein which are involved in Huntington and familial Parkinson diseases, respectively. Mutant huntingtin exon 1 constructs aggregate readily in tissue culture and form inclusions readily visible by light microscopy. The proportion of cells with such inclusion is linearly related to the expression levels of the construct (19). The A53T α-synuclein construct does not form overt inclusions in the cell lines we
Figure 3. Defective autophagosome-lysosome fusion in MSD MEFs. (A and B) Co-localization of LAMP1 and LC3 in wild-type and MSD MEFs stained for LAMP1 (red) and LC3 (green). Confocal microscopy shows a reduction in the extent of co-localization of LAMP1 and LC3 proteins. The figure was selected to illustrate the basis for the assays we have quantified. The number of autophagosome-lysosome fusion events in MSD MEFs was quantified both in normal (A) and starved (B) serum conditions, as described in the Methods section.

We have studied (20). We expressed these mutant proteins in MSD cells to test the functionality of the autophagic pathway. The Gln74;Q74 huntingtin, which encodes the first exon of huntingtin with 74 glutamine repeats, and the A53T α-synuclein were fused to green fluorescent protein (GFP) and transiently expressed in both MEFs and ELMs derived from MSD mice. Forty-eight hours after transfection, cells were collected and GFP-fused proteins were detected by western blot. Figure 5A shows an increased accumulation of both types of mutant proteins in MSD compared to wild-type cells. In addition, immuno-fluorescence analysis revealed that the number of GFP-Q74 aggregates was also significantly higher in MSD MEFs and ELMs compared to wild-type cells (Fig. 5B and C). Notably, when cells were analyzed at earlier time points, no significant differences in the accumulation of GFP-Q74 were observed between wild-type and MSD cells (Supplementary Material), this indicating that only at later time points accumulation of overexpressed proteins occurs. Moreover, GFP alone did not accumulate in MSD cells (Supplementary Material) demonstrating that increased levels of GFP-Q74 and GFP-A53T are due to autophagic defective degradation and not to difference in transfection efficiency.

Taken together, these data indicate a dysfunction of autophagy with consequent decreased ability of MSD cells to degrade aggregate-prone proteins.

Polylubquitinated proteins progressively accumulate in MSD neurons

Autophagy is responsible for constitutive protein turnover (8). This function appears to be particularly important in neuronal cells and is relevant to neurodegenerative diseases (21,22). Knockout of autophagy genes results in suppression of autophagy and accumulation of inclusion bodies, which contain polyubiquitinated proteins, in neurons (9,10). We detected a massive and progressive accumulation of ubiquitin-positive inclusions in the cerebral cortex as well as in other brain regions of MSD mice by both anti Ub immuno-histochemical and immuno-fluorescence analyses (Fig. 6A and B and data not shown). Co-localization of Ubiquitin with NeuN neuronal marker indicates that
ubiquitin inclusions are located in neurons (Fig. 6B). Progressive accumulation of polyubiquitinated proteins was also detected by western blotting of brain homogenates (Fig. 6C). Importantly, analysis of chymotrypsin-like proteasome activity in MSD brain at several ages revealed that proteasome function is not affected in MSD mice (data not shown), indicating that the accumulation of ubiquitinated proteins is due to defective autophagy rather than UPS impairment.

In addition, we found that P62/SQSTM1 significantly accumulates (Fig. 6D), and co-localizes with ubiquitin-positive inclusions (Fig. 6E) in brain from MSD mice. The p62/SQSTM1 protein is known to be a common component of ubiquitin-positive protein aggregates in neurodegenerative diseases (23), being involved in the targeting of polyubiquitinated proteins to the autophagosomes and selectively degraded via the autophagic pathway (24).

Accumulation of dysfunctional mitochondria in MSD mice

Autophagy also plays a crucial role in the degradation and turnover of cellular organelles like mitochondria. Indeed, it has been suggested that autophagy selectively degrades dysfunctional mitochondria (25). Fragmented and dysfunctional mitochondria have been reported to accumulate in patients with mucolipidosis types II, III and IV and in patients with neuronal ceroid lipofuscinosis 2 (NCL2), suggesting that lysosomal storage in these diseases impairs autophagy-mediated mitochondrial turnover (26,27). Electron microscopy analysis revealed an increased number of mitochondria in MSD brain sections and MEFs (Fig. 7A and B). Consistently, an increase of Cox4 (a mitochondrial marker) levels was detected by western blotting in MSD brain samples (Fig. 7C). To examine the function of accumulating mitochondria, we measured the mitochondrial membrane potential (ΔΨm) in WT and MSD MEFs by using a mitochondria-specific voltage dependent dye (DiOC6). As shown in Fig. 7D, MSD MEFs show a significant reduction in the ΔΨm compared to wild-type cells in both normal and starved conditions, thus indicating that mitochondria accumulating in MSD are dysfunctional.

Impairment of autophagy in MPSIIIA

Overall, our data identify an impairment of autophagy in MSD, leading to the accumulation of polyubiquitinated proteins and of dysfunctional mitochondria. To investigate whether this applies to other LSDs caused by defective hydrolases, we analyzed the autophagic pathway in the murine model of MPSIIIA, which is also associated with severe neurodegeneration (4,5). The results obtained in MPSIIIA mice were similar to those of MSD mice. We detected increased LC3II levels in MPSIIIA MEFs (Fig. 8A) as well as accumulation of autophagosomes in brain samples (Fig. 8B). Consequently, accumulation of ubiquitin-positive inclusions (Fig. 8C) and P62/SQSTM1 (Fig. 8D) were observed in the brain of MPSIIIA mice. In addition, electron microscopy analysis revealed an increased number of mitochondria in
Figure 5. Decreased ability of MSD cells to degrade exogenous aggregate-prone proteins. (A) Gln74 Huntingtin (encoding the first exon of expanded huntingtin containing 74 glutamine repeats) or A53T a-synuclein were transiently expressed (48 h) as GFP-tagged proteins along with GFP (GFP proteins:GFP 1:5:1 ratio) in both MEFs and ELMs derived from MSD and wild-type mice. The amount of GFP-Q74 and GFP-A53T proteins was then assessed by anti-GFP western blot. (B and C) Fluorescence microscopy evaluation of GFP-aggregates in MEFs (B) and ELMs (C) expressing GFP-Q74 huntingtin. Transfected MSD MEFs and ELMs displayed a significant increase in percentage of GFP-positive cell containing aggregates compared to transfected wild-type cells. Cell counts were performed on three independent experiments and 50 cells were analyzed in each experiment. *P < 0.05.

DISCUSSION

Mucopolysaccharidoses represent a substantial proportion (~25%) of all LSDs (28). Our results in MSD and MPSIIIA indicate that lysosomal storage in these diseases causes cellular dysfunction by blocking autophagic protein clearance. We provide evidence for this block at both structural (i.e. defective autophagosome-lysosome fusion) and functional levels (i.e. impaired ability of cells to degrade exogenous aggregate-prone proteins, and accumulation of endogenous substrates, such as ubiquitinated proteins, P62 and mitochondria).

Accumulation of ubiquitinated proteins was also observed in mice with autophagy gene knockouts and likely results from increased ubiquitination of substrates by virtue of their longer half-lives. These mice show severe neurodegeneration, suggesting that neurons, compared to other cell types, are more susceptible to a block of autophagy. This may be because non-mitotic cells cannot dilute accumulating cytosolic contents by cell division. This may also explain the prevalence of a neurological phenotype in LSDs.

Furthermore, our data provide an explanation for previous reports of autophagosome accumulation in other types of LSDs, namely Danon disease (15), NCL2 (26,29), Glycogenosis type II (Pompe disease) (30) and Mucolipidosis IV (27). Note that these previous studies did not resolve the crucial issue if the autophagosome accumulation was due to increased formation of autophagosomes (which would lead to increased degradation of autophagic substrates), or decreased autophagosome-lysosome fusion (which results in decreased degradation of such substrates). Clearly, these different scenarios result in vastly different pathological consequences. An induction, rather than a block, of autophagy was observed in NPC types 1 and 2, associated with increased levels of beclin-1 expression (31,32). However, NPC represents the 'atypical' type of LSD as it is caused by mutations in cholesterol transporters, thus suggesting a direct role of lipid
A W T 3 months MSD 1 months MSD 3 months
ubiquitin merge
WT MSD WT MSD
MSD WT MSD
175 kDa —
83 kDa —
ubiquitin ubiquitin merge
62 kDa —
47 kDa —
32 kDa
B -tubulin
Figure 6. Accumulation of ubiquitin-positive inclusions and of P62 in MSD brain. (A) Immuno-histochemical staining of ubiquitinated proteins in the cerebral cortex of a 1-month-old wild-type mouse and of 1 and 3 month-old MSD mice. Bar = 30 μm. (B) Anti-Ub (green) and anti-NeuN (red) immuno-fluorescence of cerebral cortex sections derived from MSD and wild-type mice showing the presence of ubiquitin-positive inclusions in MSD neurons. Bar = 20 μm. (C) Anti-Ub western blot from total brain homogenates derived from 1 and 3 month-old MSD mice and wild-type littermates. (D) Western blot analysis of total brain homogenates showing progressive accumulation of P62 in MSD. (E) Immuno-fluorescence with anti-P62 (red) and anti-Ub (green) showed significant co-localization of P62 with polyubiquitinated proteins in the brain of MSD mice. Bar = 12 μm.

trafficking in the regulation of autophagy (32). Accordingly, we found no differences in beclin-1 expression between tissues from MSD mice and wild-type littermates (data not shown).

We propose a model which identifies a block of autophagy as a crucial component in the pathogenesis of LSDs (Fig. 9). Accordingly to this model, lysosomal accumulation of undegraded substrates results in defective fusion between autophagosomes and lysosomes and causes a block of the autophagic pathway. As a consequence of this block, toxic proteins and dysfunctional mitochondria accumulate, ultimately leading to apoptosis, either directly or through the induction of chronic inflammation and cytokine release (6). Indeed, cells with impaired autophagy have an increased susceptibility to mitochondria-mediated apoptosis (33,34). It is interesting to note that bafilomycin A1, a proton-pump inhibitor which attenuates lysosomal acidification, results in similar blocks in autophagosome-lysosome fusion, as suggested by the model proposed by Pandey et al. (39) for LSDs, supporting the idea that defective lysosomal function feed back to inhibit autophagosome-lysosome fusion.

Importantly, we found that the ubiquitin-proteasome degradation is not impaired in our LSD mouse models. Proteasome dysfunction may lead to the accumulation of ubiquitinated inclusions (35) and has been associated to neurodegenerative diseases (36–38). The finding that UPS is functional in our LSD models allows us to conclude that the block of autophagy pathway is the only mechanism accounting for the accumulation of ubiquitinated proteins which are the putative mediators of cell death in LSDs. Interestingly, a recent work from Pandey et al. (39) showed that autophagy and proteasome are compensatory interacting systems, and pointed to the role of autophagy in rescuing protein degradation deficiency due to the proteasome impairment. This finding raises the possibility to exploit new therapeutic approaches for LSDs based on pharmacological induction of proteasome function in order to compensate for autophagy deficiency.

Our model defines LSDs as 'autophagy disorders', resembling more common neurodegenerative diseases such as Alzheimer (AD), Parkinson (PD) and Huntington (HD) diseases. While there are major differences in the initial steps involved in all these diseases (i.e. impaired degradation of polyubiquitinated proteins in LSDs versus expression of aggregate-prone proteins in AD, PD and HD), our data suggest that they may share common mechanisms suggesting the possibility of overlapping therapeutic strategies.

METHODS

Generation of MEFs and ELMs

MEFs were isolated by trypsinization of littermate embryos isolated at E14 and grown in DMEM supplemented with 20% FBS and penicillin/streptomycin. Fetal liver cells were isolated from E14.5 embryos by mechanical homogenization and filtering through a 40 μm cell-strainer. The cells were resuspended in DMEM plus 10% fetal bovine serum and allowed to attach to plastic. Adherent macrophages (obtained by washing wells in DMEM to remove non-adherent cells) were cultured in macrophage medium (PAA) and repurified by immune-separation using CD11b-coating magnetic beads.

103
Figure 7. Accumulation of dysfunctional mitochondria in MEFs and brains of MSD mice. (A and B) Electron microscopy analysis of the brain cortex neurons from MSD mice and wild-type littermates (bar: wild-type = 2.1 μm; MSD = 1.8 μm). MSD neurons contain a significantly higher number of mitochondria (m) compared to wild type neurons as also evident from quantitative analysis (B) (*P < 0.05). (C) Western blot analysis using antibodies recognizing Cox4, a mitochondrial marker, shows increased levels of Cox4 in MSD compared to wild-type MEFs. (D) Wild-type and MSD MEFs were grown in either normal serum or starved conditions (4 h). Cells were then stained with 40 nM DiOC6 and 1 μg/ml propidium iodine. A mit was measured by flow cytometry. Propidium iodine was used as counterstain. All experiments were performed in triplicate and analyzed using Stat-View software and ANOVA test. Results were considered significant if P < 0.05.

(MACs technology, Miltenyi Biotec). Macrophages were characterized by the expression of MOMA-2, and F4/80 antigens by immuno-fluorescence.

Transfections and drug treatments
Sub-confluent cells (MEFs or ELMs) were transfected using lipofectamine™ 2000 (Invitrogen) according manufacturer’s protocols. For co-localization experiments in normal serum conditions, sub-confluent MEFs were co-transfected with 0.5 μg lgp120-GFP and 1 μg mCherry-LC3mCherry-LC3 and cultured in full medium for 24 h. For drug treatments, cells were treated for 14 h with 0.2 mg/ml rapamycin (Sigma), 200 nM bafilomycin A1 (Upstate).

Cloning of mCherry-hLC3B construct
Human LC3B was subcloned from pGEX-6P-1 into pcDNA3 (Invitrogen) using BamHI and EcoRI (both NEB). mCherry pRSET-B was amplified by PCR with the following primers: 5'-TACCGAGTCTGCTGAACCGATCCAT3' and 3'-GCTTACAACTCAGGATCTGCATGC-5'. The resulting fragments were purified, digested with Kpnl and EcoRI (both NEB) and sub-cloned in frame into the 5' end of hLC3B pcDNA3.

Antibodies
Primary antibodies were: rabbit polyclonal anti-LC3 (Novus Biological), rat monoclonal anti-mouse LAMP1 (Developmental Studies Hybridoma Bank, Iowa), rabbit polyclonal anti-ubiquitin (DakoCytomation), mouse monoclonal anti-NeuN (Chemicon), mouse monoclonal P62/SQSTM1 (BD), rabbit polyclonal anti-tubulin (Cell signaling), rabbit polyclonal anti-actin (Sigma) and mouse monoclonal anti-COX4 (Clontech). Secondary antibodies were: goat anti-rabbit or anti-rat conjugated to Alexa Fluor 488 or 594 (Molecular Probes, Eugene, OR, USA), HRP-conjugated anti-mouse or anti-rabbit IgG (Amersham); biotinylated donkey anti-rabbit (Jackson ImmunoResearch).
Appendices

Human Molecular Genetics, 2007, Vol. 16, No. 9

A

Anti-LC3 western blot of MPSIIIA and wild-type MEFs in either normal or starved serum conditions. Quantification of LC3 protein levels shows an increase of the LC3-II isoform in MPSIIIA MEFs in either normal or starved serum conditions. (B) Immunofluorescence staining of LC3 in the thalamus and cerebral cortex of MPSIIIA and wild-type mice. Bar = 7 μm. (C) Anti-Ub immunofluorescence analysis of MPSIIIA mouse brain showing accumulation of ubiquitinated proteins (green) in neurons (NeuN marker:red). Bar = 20 μm. (D) Anti-P62 western blot of total brain homogenates from MPSIIIA and wild-type mice. The levels of P62 protein are significantly higher in MPSIIIA mouse brain.

Western blot

Cells were lysed in cold lysis buffer (20 mM Tris–HCl, pH 7.4,150 mM NaCl, 1% TritonX-100) in the presence of protease inhibitors (Roche Diagnostics) for 30 min on ice. Brain tissue samples were homogenized in sucrose buffer, centrifuged and resulting supernatants lysed in TritonX-100. Proteins were transferred onto nitrocellulose membrane (Amersham Pharmacia Biotech). Primary and (HRP)-conjugated antibodies were diluted in 5% milk. Bands were visualized using the ECL detection reagent (Pierce). Proteins were quantified by the Bradford method.

GFP analysis and immuno-staining

Cells were grown on coverslips and fixed in PBS pH 7.4 4% paraformaldehyde (GFP analysis) for 20 min. Tissues were fixed overnight in PBS pH 7.4 4% paraformaldehyde and were embedded in optimal cutting temperature compound (Tissue Tek). Cryostat sections were cut at 10 μm. For immunofluorescence analysis, cells/tissues were permeabilized and incubated with appropriate primary and secondary antibodies (diluted in PBS-1% FBS). Immuno-histochemistry was performed using Vectastain ABC kit (Vector Laboratories, Burlingame, CA, USA) according to standard protocols. Cells/tissue slides were mounted and cover-slipped in glycerol/DAPI and viewed on an epi-fluorescent microscope or counterstained with hematoxylin and viewed on a light microscope (immuno-histochemical analysis).

Confocal microscopy

For co-localization analysis in normal serum conditions, cover slips were blinded and 20 cells per cell line per experiment were imaged on a Zeiss Axiovert 200 M microscope with a LSM 510 confocal attachment using a ×63 1.4 NA Plan Apochromat oil-immersion lens. Laser lines at 488 nm (Igpl20-GFP) and 543 nm (mCherry-LC3) were used. The detector pinholes were set to give a 0.9 μm optical slice. Acquisition was performed using Zeiss LSM 510 software. These cells were then analysed in Zeiss LSM Image Browser 3.5 as follows: first, only mCherry-LC3+ vesicles were counted and marked, by switching off the GFP-channel. Then, the GFP-channel was switched back on and the number of co-localized vesicles was counted. From these two values, the fraction of co-localized vesicles was then determined. The number of autophagosome-lysosome fusion events in starved MSD and wild-type MEPs were determined by the analysis of confocal images (obtained by a Leica TCS SP2 AOBS confocal microscope with a ×63 Neofluor Pan-Apo 1.3 nm oil objective with laser lines at 488 nm (LC3) and 594 nm (LAMP1)) utilizing Velocity 3.7.0 software.
Accumulation of metabolites in lysosomes

Defective autophagosome-lysosome fusion

Accumulation of toxic proteins

Cellular damage/distress

Inflammatory response

Figure 9. A proposed model for the pathogenesis of LSDs. A defect in lysosomal degradation results in the accumulation of substrates in the lysosomes. Lysosomal storage leads to a reduced ability of lysosomes to fuse with autophagosomes with a consequent block of autophagy. Polyubiquitinated protein aggregates and dysfunctional mitochondria accumulate and promote apoptosis-mediated cell death. The inflammatory response to cell damage further contributes to cell death.

Mitochondrial membrane potential measurements
PBS-washed 1 x 10⁶ cells were incubated in 40 nM DiOC₆ (Sigma-Aldrich) and 1 μg/ml PI (Sigma-Aldrich) for 15 min at 37°C. After washing, cells were suspended in 1 ml PBS (pH 7.4) and were subsequently analyzed using flow cytometry. For the DiOC₆-stained samples, PI-negative cells were excluded of the analysis. Normal and starved MSD and wild-type MEFs were analyzed at the same passage and treated in the same way. At least 10 000 cells were analyzed for each sample. The experiments were performed at least in triplicate, and all statistical analyses were performed using Stat-View 5.0 (Statsoft, USA).

Electron microscopy analysis
MEFs were fixed at room temperature, in 2.5% glutaraldehyde (Polysciences, Inc., Warrington, PA, USA), 0.1 M sodium cacodylate–HCl buffer, pH 7.3, for 10 min, scraped off the dish, pelleted by centrifugation and postfixed in 1% OsO₄ (Polyscience) in the same buffer, for 20 min. After en bloc staining with 1% uranyl acetate for 1 h and ethanol dehydration, cells were embedded in LX112 (Polyscience). Tissue preparations were performed as previously described (26). Grey-silver sections were visualized using FEICM10 and Tecnai12G2 microscopes. Morphometry assessment of both number and size of the autophagosomes in MSD and wild-type MEFs was performed by the point intersection method.

Assay of proteasome activity
Chymotrypsin-like activity of 20S proteasomes was measured on brain homogenates using Suc-LLVY-AMC as substrate (20S proteasome activity assay kit; Chemicon).

Data analysis
Data were analyzed by one-way ANOVA (analysis of variance). A P-value <0.05 was considered to be statistically significant. Odds ratios for co-localization LAMP1-LC3 were determined by unconditional logistical regression analysis, using the general log-linear analysis option of SPSS 9 software (SPSS, Chicago).
Proteoglycan desulfation determines the efficiency of chondrocyte autophagy and the extent of FGF signaling during endochondral ossification

Carmine Settembre,1,2 Emilio Arteaga-Solis,1 Marc D. McKee,2 Raquel de Pablo,2 Qais Al Awqati,1 Andrea Ballabio,2,4 and Gerard Karsenty1,5

Department of Genetics and Development, College of Physicians and Surgeons, Columbia University, New York, New York 10032, USA; Telethon Institute of Genetic and Medicine (TIGEM), Naples 80131, Italy; Faculty of Dentistry, and Department of Anatomy and Cell Biology, McGill University, Montreal, Quebec H3A 2B3, Canada; Medical Genetics, Department of Pediatrics, Federico II University, Naples 80131, Italy

Cartilage extracellular matrix (ECM) contains large amounts of proteoglycans made of a protein core decorated by highly sulfated sugar chains, the glycosaminoglycans (GAGs). GAGs desulfation, a necessary step for their degradation, is exerted by sulfatases that are activated by another enzyme, Sulfatase-Modifying Factor 1 (SUMF1), whose inactivation in humans leads to severe skeletal abnormalities. We show here that despite being expressed in both osteoblasts and chondrocytes SUMF1 does not affect osteoblast differentiation. Conversely, in chondrocytes it favors ECM production and autophagy and promotes proliferation and differentiation by limiting FGF signaling. Thus, proteoglycan desulfation is a critical regulator of chondrogenesis.

Endochondral ossification, a multistep process responsible for embryonic bone formation and postnatal longitudinal bone growth (Kronenberg 2003), begins once mesenchymal cells condense, forming the blueprint of the future skeleton. Then, these mesenchymal cells differentiate into resting and proliferating chondrocytes that express Aggrecan and α (II) Collagen while cells at the periphery express α (IX) Collagen and form the perichondrium. Subsequently, chondrocytes in the center of this structure further differentiate into hypertrophic chondrocytes expressing α (X) Collagen but not Aggrecan and α (II) Collagen. The extracellular matrix (ECM) secreted by hypertrophic chondrocytes allows vascular invasion, degradation of the calcified ECM, and initiation of osteogenesis. Thus, the ECM plays important functions during skeletal development (Olsen et al. 2000).

Alongside collagen fibrils the cartilaginous ECM contains large amounts of proteoglycans that protect these fibrils and provide resistance against compression. Proteoglycans are composed of a protein core to which one or more highly sulfated polysaccharide chains (glycosaminoglycan [GAG]) bind. The GAGs moiety of proteoglycans can regulate the distribution and binding ability of several signaling molecules, thereby influencing developmental processes. GAGs fulfill these functions according to their degree of sulfation (Esko and Selleck 2002; Perrimon and Hacker 2004) a process determined by two classes of intracellular enzymes: the sulfotransferases, that catalyze incorporation of sulfated groups into a nascent molecule, and the sulfatases, that remove them (Diez-Roux and Ballabio 2005; Bulow and Hobert 2006). There are at least 17 different sulfatases in vertebrates, whose function is determined by their subcellular localization in the lysosomes, cell surface, or ER/Golgi, and by substrates specificity (Diez-Roux and Ballabio 2005).

In addition, sulfatase becomes active following a post-translational formylation catalyzed by the enzyme Translational Formylglycination (Cosma et al. 2003). To date, no other substrates besides the sulfatases have been identified for SUMF1 (Diez-Roux and Ballabio 2005); hence, it can be viewed as the master regulator of proteoglycan desulfation. Further underscoring the biological importance of SUMF1 and of proteoglycan desulfation a broad spectrum of diseases, most of them including skeletal abnormalities, results from loss of function mutations in various sulfatases or in SUMF1 itself (Diez-Roux and Ballabio 2005). In most of these diseases, called mucopolysaccharidoses, the lack of lysosomal sulfatases causes a block in GAG degradation and an intralysosomal GAG accumulation (Neufeld and Muenzer 2001). In order to define the importance of proteoglycan desulfation during skeletogenesis we studied mice lacking SUMF1 (Settembre et al. 2007). We show here that although SUMF1 is expressed in osteoblasts during skeletogenesis, it has no overt function in osteoblasts. In contrast, SUMF1 and, as a result, proteoglycan desulfation, favors ECM production, chondrocyte autophagy, and promotes chondrocyte proliferation and differentiation. Genetic and biochemical evidence show that SUMF1 regulation of chondrocyte proliferation and differentiation occurs by inhibiting FGF signaling.

Results and Discussion

SUMF1 expression during skeletogenesis

To determine whether SUMF1 is an appropriate tool to study the role(s) of proteoglycan desulfation during skeletogenesis we examined its pattern of expression using a LacZ gene inserted in the SUMF1 locus (Settembre et al. 2007). β-Galactosidase staining of whole embryos showed that SUMF1 starts to be expressed in skeletal elements as early as embryonic day 14.5 (E14.5) (Fig. 1A–C). Histological analysis revealed that this staining was
nursos (3.0 mm wild type vs. 2.8 mm P with alcian blue for unmineralized cartilagineous ECMs. Examination of E16.5 embryos revealed that femurs were shorter in Sumfl'1' than in wild-type littermates (data not shown), This dwarfism, that worsened in newborn mice, was reflecting a decrease in chondrocyte number. We observed that there was a significant difference in chondrocyte number in Sumfl'1' growth plate at E16.5 and at postnatal day 0 (P0) (Fig. 3A), indicating that the extent of proteoglycan desululation regulates, in ways studied below, chondrocyte survival and/or proliferation during endochondral ossification.

Proteoglycan desululation affects endochondral ossification

As a first approach to study the importance of proteoglycan desulflation during skeletogenesis we analyzed skeletal preparations of Sumfl'1' embryos and mice stained with alcian blue for unmineralized cartilagineous ECMs and alizarin red for mineralized cartilagineous and bony ECMs. E14.5 Sumfl'1' embryos were indistinguishable from wild-type littermates (data not shown), an observation consistent with the fact that Sumfl is not express in the developing skeleton before this stage. In contrast, examination of E16.5 embryos revealed that femurs were significantly shorter in Sumfl'1' than in wild-type embryos (3.0 mm wild type vs. 2.8 mm Sumfl'1'; n = 5, P < 0.05). This dwarfish, that worsened in newborn Sumfl'1' mice (4.2 mm wild type vs. 3.8 mm Sumfl'1'; n = 5, P < 0.01) was generalized, as every bone analyzed (femurs, vertebrae, mandibles, components of the skull) were shorter in Sumfl'1' than in wild-type littermates (Fig. 1F,G; data not shown). These morphological abnormalities that were not caused by a decrease in insulin growth factor 1 production (Supplemental Fig. 1A), illustrate that the extent of proteoglycan desulflation is an important determinant of the growth of most skeletal elements during embryonic development.

Proteoglycan desulflation affects growth plate cartilaginous hypertrophy

Next, we performed histological and gene expression analyses. Consistent with the absence of morphological defects in E14.5 Sumfl'1' embryos there was no difference in the morphology of the various populations of chondrocytes between Sumfl'1' and wild-type embryos at that stage and expression of a1(II)Collagen, a marker of proliferating chondrocytes, and of a1(X)Collagen, a marker of hypertrophic chondrocytes, was similar in Sumfl'1' and wild-type embryos at E14.5 (Fig. 2A). At E16.5 the zone of proliferating chondrocytes, determined by cell morphology and the extent of a1(II) Collagen expression, was significantly shorter in Sumfl'1' than in wild-type embryos (Fig. 2B). The intensity of a1(X) Collagen expression was also weaker in E16.5 Sumfl'1' than in wild-type embryos (Fig. 2B). At birth, the classical columnar organization of the proliferating chondrocytes was lost in the Sumfl'1' growth plate and expression of a1(II) Collagen and of a1(X) Collagen was again noticeably weaker in mutant than in wild-type growth plate (Fig. 2C). Remarkably, despite the high level of Sumfl expression in osteoblasts, bone formation. defined by the presence of bone trabeculae and expression of a1(X) Collagen was not affected by Sumfl inactivation (Fig. 2B,C,D). Taken together, these results suggest that inactivation of Sumfl, i.e., inhibition of proteoglycan desulflation affects more severely chondrogenesis than osteogenesis during development.

We next investigated whether the weaker expression of a1(II) and a1(X) Collagen in the Sumfl'1' growth plate was reflecting a decrease in chondrocyte number. We observed that there was a significant decrease in chondrocyte number in Sumfl'1' growth plates at E16.5 and at postnatal day 0 (P0) (Fig. 3A), indicating that the extent of proteoglycan desulflation regulates, in ways studied below, chondrocyte survival and/or proliferation during endochondral ossification.

Proteoglycan desulflation influences ECM production and turnover

Since abnormalities in proteoglycan desulflation result in lysosomal defects in several tissues in vertebrates [Neufeld and Muenzer 2001], we asked if lysosomal function was affected in Sumfl'1' chondrocytes and/or osteoblasts.

Electron microscopic (EM) analysis of wild-type and mutant growth plates did not reveal any morphological difference between Sumfl'1' and wild-type chondrocytes at E14.5 (Fig. 3C), while in E16.5 Sumfl'1' embryos and newborn mice the cytoplasm of chondrocytes was filled with vacuolar structures that had characteristic appearance of lysosomes filled with GAGs as seen in cells from patients affected by mucopolysaccharidoses [Neufeld and Muenzer 2001] (Fig. 3D,E, inset; Supplemental Fig. 785).
Chondrocyte autophagy is hampered in the absence of proteoglycan desulfation

We next asked what were the mechanisms leading the decrease in chondrocyte number in Sumfl"-" growth plate. There was no overt increase in chondrocyte apoptosis in Sumfl"-" mice before or after birth (data not shown). BrdU incorporation did not reveal any significant difference in chondrocyte proliferation between Sumfl"-" and wild-type embryos at E14.5 and E16.5 either, although chondrocyte proliferation was significantly decreased after birth in Sumfl"-" mice (Fig. 4A).

Thus, at least two mechanisms explain the paucity of chondrocytes in the Sumfl"-" growth plate: a decrease in chondrocyte proliferation beyond birth, and another one, yet to be determined, during embryonic development.

Macroautophagy (hereafter referred as autophagy) is a lysosomal process of cellular self-digestion required for turnover of cytoplasmic structure and for producing energy in conditions of cellular starvation (Mizushima 2007). Since chondrocytes reside in a hypoxic and avascular environment (Schipani et al. 2001) we hypothesized that autophagy may be a physiological means al-

Figure 2. Sumfl"-" deficiency affects chondrogenesis but not osteogenesis. (A) Hematoxylin/eosin (H/E) staining and in situ hybridization analysis of femoral sections. No differences between Sumfl"-" and wild-type growth plates are observed in E14.5 embryos, while in E16.5 (B) and newborn (C) there is a progressive shortening of both proliferative and hypertrophic area in mutant mice. Expression of a1(I) and a1(X) Collagen was decreased in newborn Sumfl"-" compared with wild-type mice. a2(I) Collagen expression was similar in wild-type and Sumfl"-" samples at all stages analyzed. (D) Von Kossa-Van Gieson staining of femoral sections showed normal mineralization (black staining) in E16.5 and newborn Sumfl"-" mice. Magnification: A–C, 100x, D, 50x.

IB). Lysosomal vacuolization in osteoblasts was not nearly as dramatic, further suggesting that proteoglycan desulfation is a more important process during chondrogenesis than osteogenesis (Fig. 3F).

This impaired lysosomal degradation of GAGs in chondrocytes led us to ask whether the amount of GAGs present in the ECM was affected by the absence of Sumfl in chondrocytes by measuring the amount of GAGs in wild-type and Sumfl"-" chondrocytes. As hypothesized, mutant chondrocytes produced 30% fewer membrane-bound GAGs than wild-type chondrocytes, GAG secretion in the medium was also reduced by 50% (Fig. 3G). This explained why staining with alcian blue, a dye marking proteoglycans, was significantly weaker in Sumfl"-" than in wild-type growth plates (Fig. 3H). EM analysis of ER and Golgi did not show any morphological differences between wild-type and Sumfl"-" chondrocytes at E16.5 or P0, indicating that the reduced amount of ECM is not caused by a block in the GAGs biosynthetic pathway (Supplemental Fig. 1C).

Figure 3. Defective ECM in Sumfl"-" growth plate. (A) Chondrocyte number in the growth plate proliferative zone. Values are the mean ± SD. Student's test (*P<0.05). (B) Toluidin blue staining of chondrocostal cartilage of newborn Sumfl"-" and wild-type littermates. Note the presence of cytoplasmatic vacuolization in Sumfl"-" chondrocytes. (C) EM analysis of E14.5 Sumfl"-" and wild-type chondrocytes showing no evidence of lysosomal vacuolization in Sumfl"-" embryos. (D) EM analysis of ER and Golgi did not show any morphological differences between wild-type and Sumfl"-" chondrocytes at E16.5 or P0, indicating that the reduced amount of ECM is not caused by a block in the GAGs biosynthetic pathway (Supplemental Fig. 1C).
lowing them to survive, and that impairment in this process could cause chondrocyte death in Sumfl-/- embryos. Indeed, EM analysis of E16.5 embryos and newborn chondrocytes from newborn Sumfl-/- mice harboring a transgene expressing a GFP-tagged LC3 protein (Mizushima et al. 2004). Western blot quantification of LC3II proteins showed a 2.5-fold increase in LC3II in newborn Sumfl-/- chondrocytes. (Boxed inset) Note the double membrane vesicles surrounding a portion of cytoplasm and degraded organelles, a feature characteristic of autophagy (Mizushima 2007) (Fig. 4B, arrows). Remarkably, the number of autophagosomes in wild-type chondrocytes was greatly increased in newborn Sumfl-/-;GFP-LC3 and wt;GFP-LC3 growth plate. In GFP-LC3 (right), (B) Western blot analysis showing a 2.5-fold increase in LC3II level in newborn Sumfl-/- chondrocytes. No difference was observed in osteoblasts. Values shown are means of triplicate experiments. (F) Abnormal autophagy in Sumfl-/- chondrocytes during serum and nutrient starvation. Wild-type and Sumfl-/- chondrocytes were starved for the indicated period of time, harvested, and subjected to LC3 immunoblotting. Sumfl-/- chondrocytes and wild-type stimulated with Baf presented an increased amount of LC3H compared with wild-type chondrocytes at all time points analyzed. (G) ATP amount is decreased in wild-type chondrocytes when autophagy is inhibited with Baf (Sumfl-/-;GFP-LC3) or when chondrocytes are cultured in glucose-free and serum-free medium, a condition in which autophagy is required for energy production and cell survival (Lum et al. 2007). Baf treatment of wild-type chondrocytes triggered an increase in autophagosome accumulation as measured by LC3-II level and a significant decrease of energy (ATP) production (Fig. 4F,G). In contrast, in Sumfl-/- chondrocyte the level of LC3II was higher than in wild-type chondrocytes, and Baf did not decrease energy production significantly (Fig. 4F,G). These results support the notion that autophagy is impaired in Sumfl-/- chondrocytes. To determine if this impairment of autophagy could lead to chondrocyte death, wild-type and mutant chondrocytes were cultured in glucose-free and serum-free medium, which autophagy is required for energy production and cell survival (Lum et al. 2005). LC3-II immunoreactivity decreased rapidly upon nutrient starvation, suggesting that autophagosomes were efficiently digested by lysosomes in wild-type but not in Sumfl-/- chondrocytes (Fig. 4F,G). Moreover, when measured with a colorimetric assay, cell viability was decreased in Sumfl-/- chondrocytes compared with wild-type cells (Fig. 4H).

In summary, in vivo and cell-based assays establish that autophagy is used by wild-type chondrocytes to produce energy and suggest that disruption of intralysosomal GAG digestion impairs autophagy in Sumfl-/- chondrocytes. This impairment in turn leads to cell death.

Proteoglycan desulfation regulates chondrocyte proliferation and differentiation

To explain the decrease in chondrocyte proliferation noted in Sumfl-/- mice we asked whether Sumfl expression modulates growth factor signaling. We first looked at Indian Hedgehog (Ihh), since its signaling is influenced in vivo by GAGs (Koziel et al. 2004), but failed to detect any difference in the level of expression of Ihh or of its receptor Patched (Ptch) between Sumfl-/- and wild-type chondrocytes at E16.5, P0, or P4 (Supplemental Fig. 2, data not shown). These observations indicate that Sumfl deletion does not affect overall Ihh signaling during endochondral ossification.
The defect in chondrocyte proliferation and differentiation noticed in Sumfl1 mice was reminiscent of what is observed in mice harboring an increase in FGF signaling (Omittz and Matie 2002). To determine if FGF signaling was increased we generated Sumfl1 mice lacking one copy of Fgfl8, a known regulator of chondrocyte proliferation (Liu et al. 2002). Several lines of evidence indicate that proteoglycan desulfation indeed regulates, directly or indirectly, FGF signaling. First, skeletal preparation showed that removing one allele of Fgfl8 rescued Sumfl1 mice short stature at P0 (Fig. 5B, quantification). Second, chondrocyte proliferation measured by BrdU incorporation, which was reduced by 20% in the PO Sumfl1, was indistinguishable from wild-type in Sumfl1; Fgfl8 mice (Fig. 5B, quantification). As a result, the zone of hypertrophic chondrocytes was larger, and there was a significant increase in growth plate cellularity in Sumfl1; Fgfl8 compared with Sumfl1 mice (Fig. 5E). Third, (II) Collagen and a(II) Collagen expression was restored almost to its normal intensity in Sumfl1; Fgfl8 newborn mice (Fig. 5C,D). Together, these data support the notion that the absence of Fgf18 results in an increase in FGF signaling, explaining the decrease in chondrocyte proliferation observed in Sumfl1 mice. Of note, removing one Fgfl8 allele did not normalize the chondrocyte number (Fig. 5E), indicating that the abnormal autophagy seen in the Sumfl1 embryos is not secondary to the increase in FGF signaling.

To identify the cause(s) of this increased FGF signaling in Sumfl1 chondrocytes we first compared Fgfl8 expression in Sumfl1 and wild-type newborn mice but failed to detect any significant difference (Supplemental Fig. 3), thus ruling out that Sumfl1 is not a regulator of Fgfl8 expression. It has been proposed that proteoglycans, through their degree of sulfation, modulate the affinity of FGFs for their cognate receptors (Bishop et al. 2007). To determine if this was the case in Sumfl1 mice we stimulated wild-type and Sumfl1 primary chondrocytes with FGF18 and measured activation of FGF signaling. Both the ERK kinase and the ribosomal protein S6, which are involved in FGF signaling (Murakami et al. 2004), were more phosphorylated in Sumfl1 than in wild-type chondrocytes [Fig. 5F]. These results support the hypothesis that Sumfl1 and more generally proteoglycan desulfation, influence FGF signaling in chondrocytes during skeletal development.

Sulfatases catalyze desulfation of the GAGs moiety of proteoglycans in the intracellular and extracellular space. These enzymes are substrates of Sumfl1 whose only known function is to activate sulfatases. By studying endochondral ossification in Sumfl1 mice we show that proteoglycan desulfation regulates several aspects of chondrocyte biology. Indeed, the block in proteoglycan desulfation caused by Sumfl1 deletion severely decreases chondrocytes viability by hampering their capacity to generate enough energy through autophagy to survive in their avascular environment. Our data suggest that this defect in autophagy is caused, in part, by the engulfment of lysosomes with undigested GAGs that leads to an impairment of the autophagosome-lysosome fusion (Settembre et al. 2008).

Growth plate cartilage is a hypoxic structure in which the transcription factor Hif1α is required for chondrocyte survival. The fact that hystopia stimulates autophagy (Mizushima 2007) suggests that autophagy could be one pathway through which Hif1α allows chondrocytes to survive. Moreover, chondrocytes are starved in cartilage and do not increase the autophagosome number as commonly observed in other cellular lines, suggesting that in this cell type autophagy is a constitutive rather than an adaptive pathway.

Our study also shows that proteoglycan desulfation is a negative regulator of FGF18 signaling during endochondral ossification. This may be a direct consequence of the level of desulfation of certain proteoglycans such as heparan sulphate proteoglycan (HSPG) rather than a secondary effect of the engulfment of lysosomes with GAGs. Our results are in agreement with the notion that, in cell culture, ECM proteoglycans, and particularly HSPG bind members of FGF family (Bishop et al. 2007). It is likely that the two main sulfatases involved in this regulatory pathways are Sulfl1 and Sulfl2, which are strongly expressed in chondrocytes and whose substrate is HSPG (Lum et al. 2007). Together, our data show that proteoglycan desulfation eventually affects several aspects of chondrocyte biology during skeletal development not only by determining lysosomal function but also by modulating growth factor signaling.

Materials and methods

Animals

Sumfl1, Fgfl8, and GFP-LC3 transgenic mice were described previously (Liu et al. 2002; Mizushima et al. 2004; Settembre et al. 2007). Genotyping was performed by genomic PCR.

Summary of Figures

Figure 5. Sumfl1 regulates FGF signaling activity during endochondral ossification. (A) HE staining of femurs showing shortening of Sumfl1 bone length (arrowheads) and its rescue in Sumfl1; Fgfl8 mice. Body staining (B) and in situ expression of a1(II) Collagen (C) and a1(II) Collagen (D) in wild-type [left], Sumfl1 [middle], and Sumfl1; Fgfl8 mice. (E) Quantification of femora length, BrdU index, and cell number in newborn wild-type, Sumfl1, and Sumfl1; Fgfl8 mice. At least three mice were analyzed per each genotype. Error bars represent SEM. Student's test (**P < 0.01, *P < 0.05; (X) P < 0.005) F < 0.01. (F) Primary chondrocytes from wild-type and Sumfl1 mice treated with Fgfl8 (20 ng/mL) for the indicated period of time. Note the more sustained phosphorylation of ERK and 70S6K in Sumfl1 than in wild-type chondrocytes following Fgfl8 treatment.
Skeletal preparation
Skeletalons were fixed in 100% ethanol overnight and stained with alcin blue and alizarin red according to standard protocols. At least three mice of each genotype were analyzed per stage.

Light and electron microscopy
Tibiae were fixed in 4% paraformaldehyde/1% glutaraldehyde fixative solution (pH 7.4) in 0.1 M sodium cacodylate buffer, dehydrated in ethanol, and embedded in plastic resin. Ultrathin sections (80 nm) were examined with a transmission electron microscope operated at 80 kV.

Cell cultures, Western blot analyses, and in situ hybridization
See the Supplemental Material.

References

Acknowledgments
We are indebted to Drs. D.M. Omitz and N. Mizushima for providing Fgf18-deficient mice and GFP-LC3 transgenic mice. C.S thanks M.P. Cosma, P. Ducy, A. Fraldi, and G. Parenti for their critical reading of the manuscript. C.S is the recipient of a predoctoral fellowship of the European School of Molecular Medicine (SEMm). This work was supported by grants from the NIH to G.K.

Appendices