Copy the page URI to the clipboard
Tsamis, Y. G.; Rawlings, J. M. C.; Yates, J. A. and Viti, S.
(2008).
DOI: https://doi.org/10.1111/j.1365-2966.2008.13464.x
Abstract
The evolution of star-forming core analogues undergoing inside-out collapse is studied with a multipoint chemodynamical model which self-consistently computes the abundance distribution of chemical species in the core. For several collapse periods the output chemistry of infalling tracer species such as HCO+, CS and N2H+ is then coupled to an accelerated Λ-iteration radiative transfer code, which predicts the emerging molecular line profiles using two different input gas/dust temperature distributions. We investigate the sensitivity of the predicted spectral line profiles and line asymmetry ratios to the core temperature distribution, the time-dependent model chemistry, as well as to ad hoc abundance distributions. The line asymmetry is found to be strongly dependent on the adopted chemical abundance distribution. In general, models with a warm central region show higher values of blue asymmetry in optically thick HCO+ and CS lines than models with a starless core temperature profile. We find that in the formal context of Shu-type inside-out infall, and in the absence of rotation or outflows, the relative blue asymmetry of certain HCO+ and CS transitions is a function of time and, subject to the foregoing caveats, can act as a collapse chronometer. The sensitivity of simulated HCO+ line profiles to linear radial variations, subsonic or supersonic, of the internal turbulence field is investigated in the separate case of static cores.
Viewing alternatives
Download history
Metrics
Public Attention
Altmetrics from AltmetricNumber of Citations
Citations from DimensionsItem Actions
Export
About
- Item ORO ID
- 61813
- Item Type
- Journal Item
- ISSN
- 0035-8711
- Academic Unit or School
- Faculty of Science, Technology, Engineering and Mathematics (STEM)
- Copyright Holders
- © 2008 The Authors
- Depositing User
- Yiannis Tsamis