The Effects of Strain Variation on Respiratory Syncytial Virus Infection and Immunity

Thesis

How to cite:

For guidance on citations see FAQs.

© 2013 The Author

https://creativecommons.org/licenses/by-nc-nd/4.0/

Version: Version of Record

Link(s) to article on publisher’s website:
http://dx.doi.org/doi:10.21954/ou.ro.0000f0ba

Copyright and Moral Rights for the articles on this site are retained by the individual authors and/or other copyright owners. For more information on Open Research Online’s data policy on reuse of materials please consult the policies page.
The effects of strain variation on Respiratory Syncytial
Virus infection and immunity

By

Charles Jumba Sande
Bsc, MSc

Sponsoring Establishment
KEMRI-Wellcome Trust Research Programme
Kilifi, Kenya

October 2012

Thesis submitted for the Degree of Doctor of Philosophy
Open University (UK)

Date of Submission: 17 October 2012
Date of Award: 27 April 2013
Abstract

Introduction: The transmission of RSV in the human population is characterised by seasonal epidemics displaying cyclic alternation in dominance of the two antigenic groups A and B. The mechanisms that underlie this population-level competition between RSV A and B, and heterogeneity in transmission fitness of RSV genotypes are not clearly defined. The dynamics of neutralising antibody response following birth and primary infection as well as pro- and anti-inflammatory cytokines/chemokines following natural infection in infants, especially in relation to RSV antigenic variation, have not been well characterised.

Methods: Neutralising antibodies were measured in the acute and convalescent sera of infants with RSV-associated pneumonia as well as from a birth cohort. Additionally, 10 cytokines/chemokines were measured in nasal secretions obtained from infants recruited within the household setting and from whom samples were obtained twice weekly during an RSV epidemic.

Results: The proportion of RSV A infected individuals seroconverting to a contemporary group A test virus was significantly higher than the proportion seroconverting to a contemporary group B virus (p=0.0005). The proportion of RSV B infected individuals seroconverting to a contemporary group B virus was higher than the proportion seroconverting to a contemporary A virus (p=0.008). The mean duration of maternal neutralising antibodies above a putative protective threshold was 2.8 months (95%CI 2.5–3.1 months). Primary neutralising antibodies declined to pre-infection levels within 3-4 months. The levels of some cytokines/chemokines correlated with viral load but not with RSV group.
Conclusion: The data suggest that population-level competition between RSV A and B is related to development of transient group-specific immunity following natural infection. Thus it might be argued that future RSV vaccines should include strains from both groups in order to maximise the indirect protective effect of a vaccination programme. No evidence was found for strain-specificity in cytokine/chemokine responses following RSV infection.
Acknowledgements

It is with immense gratitude that I acknowledge the support and help of my supervisors, Profs James Nokes, Patricia Cane and Peter Openshaw. James for his profound interest not only in my immediate research work, but also for his unfailing guidance and dependable support without which many successes would have remained pipe dreams. Pat for sagely advice which was always skilfully delivered and which inspired both circumspection and critical analysis of my own work. Peter for his insightful thoughts that always left me questioning many basic scientific assumptions.

A debt of gratitude is owed to all my office colleagues; Tim, Charles, Patrick and Moses for the thought provoking discussions that helped spark curiosity in many areas of scientific interest. I’m also thankful to members of our lab, Abwao, Anne, Carol, Martin, Regina, Gertrude, James, Clement, Alex, Joyce, James and Patience who made the laboratory a vibrant and invigorating environment. Grateful thanks are also due to Eva, who left us too soon.

Finally, I am enormously grateful to family. To Dad and Mum - David and Stella - I dedicate this work to you. Your labours were not in vain. Antony, Winnie, Dorothy, Bonny, Racheal, Albert, Alex, Brandon, Lisa, David and Maya, thank you for everything. To Angela, your love and support gave me the strength to press on undaunted. To you, I dedicate this work.
Table of Contents

List of Tables ... ix
List of Figures .. x
Abbreviations ... xv

Chapter 1 - General Introduction ... 1

The significance of RSV in the context of the global burden of respiratory illness due to bacterial and viral pathogens ... 1
Defining the question .. 3
Thesis research objectives .. 5
Specific objectives ... 6
Approach ... 6
Declaration of author’s role ... 7
Overview of the thesis .. 7

Chapter 2 - Literature Review .. 9

Burden of disease of RSV ... 9
Molecular structure of RSV .. 10
The epidemiology of RSV .. 12
Group replacement dynamics of RSV epidemics 13
Role of G and F proteins in virus binding and membrane fusion 18
The role of innate and cell mediated immune responses in RSV infection ... 19
Immunity to RSV: targets of protective antibody responses 20
Mechanisms of virus neutralisation .. 21
The G Protein .. 23
<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>The antigenic structure of the G protein</td>
<td>24</td>
</tr>
<tr>
<td>Human antibody responses to the G protein</td>
<td>27</td>
</tr>
<tr>
<td>The F protein</td>
<td>30</td>
</tr>
<tr>
<td>Antigenic structure of the F protein</td>
<td>30</td>
</tr>
<tr>
<td>Antibody responses to the F protein</td>
<td>33</td>
</tr>
<tr>
<td>Potential mechanisms of protection by F and G specific antibodies</td>
<td>33</td>
</tr>
<tr>
<td>Antigenic characteristics of RSV</td>
<td>34</td>
</tr>
<tr>
<td>Early cross neutralisation studies</td>
<td>34</td>
</tr>
<tr>
<td>The paradox of lack of cross-reactive immune response and population level competition between RSV A and B</td>
<td>36</td>
</tr>
<tr>
<td>Comparison of the F and G gene sequences of RSV A and B</td>
<td>37</td>
</tr>
<tr>
<td>Analysis of antigenic similarity between RSV A and B</td>
<td>39</td>
</tr>
<tr>
<td>Molecular evolution of RSV</td>
<td>40</td>
</tr>
<tr>
<td>Antigenic evolution of the F protein under immunoprophylactic pressure</td>
<td>44</td>
</tr>
<tr>
<td>Correlates of immunity from severe disease</td>
<td>45</td>
</tr>
<tr>
<td>Association between age and immune function</td>
<td>45</td>
</tr>
<tr>
<td>Physiological maturity of the lung</td>
<td>46</td>
</tr>
<tr>
<td>Protective antibody responses</td>
<td>46</td>
</tr>
<tr>
<td>Duration of antibody responses to RSV</td>
<td>48</td>
</tr>
<tr>
<td>Innate immune response to RSV infection</td>
<td>49</td>
</tr>
<tr>
<td>Respiratory Syncytial Virus Vaccines</td>
<td>49</td>
</tr>
<tr>
<td>The formalin-inactivated vaccine</td>
<td>50</td>
</tr>
<tr>
<td>Postulated models of FI vaccine mediated pathology</td>
<td>52</td>
</tr>
<tr>
<td>Development of live attenuated RSV vaccines</td>
<td>53</td>
</tr>
<tr>
<td>Potential for indirect protection of vulnerable infants using live attenuated vaccines</td>
<td>55</td>
</tr>
</tbody>
</table>
Chapter 3 – Materials and methods ..56

Overview...56

Study site, Population and Sampling ..56

The RSV Inpatient Surveillance study at KDH ..57

The Kilifi Birth Cohort (KBC) Study ...58

The RSV household transmission Study ..59

Ethical Considerations ..59

Laboratory methods ..60

Cell and virus culture ..60

Immunofluorescent Antibody Testing (IFAT) ..60

Plaque assay ..61

Measurement of cytokine/chemokine concentration using the MSD mesoscale platform ..64

Protocol for measurement of cytokines/chemokines in the nasal secretions of infants using the MSD mesoscale system ..65

Sequencing of the F and G genes of infecting RSV strains66

RNA extraction and cDNA synthesis ...66

G Gene amplification and sequencing ..67

F gene amplification and sequencing ..68

Chapter 4 - Development of Plaque reduction microneutralisation assay ..69

Introduction ..69

Methods ..70

Plaque Reduction Neutralisation Assay ..70
Development of high throughput plaque counting using an ELISPOT reader 71
Validation of automated plaque counting using an ELISPOT reader 73
Calculation of neutralising dose 50 (ND_{50}) endpoint using the Spearman-Karber method .. 76

Chapter 5 - Neutralising antibody responses to natural RSV infection

Introduction .. 79

Chapter Aims ... 81

Methods .. 82
 Study population, sampling and molecular characterisation of test and infecting viruses .. 82
 Statistical Analyses .. 83

Results ... 84
 Age distribution and description of study participants ... 84
 Distribution of serum neutralising antibodies ... 87

The age dynamics of serum acute and convalescent phase neutralising antibody
 responses of infants and children admitted with pneumonia 89
 Distribution of acute and convalescent phase responses by age 89
 Age dynamics of the acute phase response .. 92
 Development of the neutralising response with age: comparison of the acute and
 convalescent responses ... 93

Relationship between seroconversion and age ... 94
The relationship between neutralising antibodies and severe pneumonia 98
Analysis of the genetic relationship between infecting RSV A and B strains 99
Analysis of variation on putative neutralising epitopes on the deduced F protein amino acid sequences of infecting strains .. 100

Analysis of variation on putative neutralising epitopes on the deduced G protein amino acid sequences of infecting strains .. 103

Group-specificity of the neutralising antibody response 106

Discussion .. 111

Chapter 6 - Kinetics of the neutralising antibody response 120

Introduction ... 120

Chapter Aims ... 123

Materials and methods ... 124

Study population and design ... 124

Statistical analyses ... 125

Results .. 126

General age dynamics of the neutralising response .. 126

The relationship between exposure and the neutralising antibody response 127

The duration of the primary neutralising response .. 136

Duration of protective, maternally-derived neutralising antibodies 138

The rate of development of neutralising antibodies following primary and secondary infection ... 139

Discussion .. 141

Chapter 7 - RSV genotype-specific neutralising antibody responses 146

Introduction ... 146

Chapter Aims ... 148
Chapter 8 - Cytokine/chemokine responses following natural infection in infants

Introduction

Chapter Aims

Methods

Results

Cytokine/chemokine Responses in the Longitudinal Household study

Diversity of respiratory pathogens detected
Association between cytokine/chemokine concentration/viral load and URTI in infants..182

Comparison of cytokine/chemokine responses in RSV positive and rhinovirus positive samples..185

Association between RSV Viral Load and cytokine/chemokine response..............186

Kinetics of cytokine/chemokine responses following natural infection in infants....189

Kinetics of the pro-inflammatory cytokine/chemokine response189

Kinetics of the chemokine response ..194

Kinetics of the IFN-γ and IL-10 response..199

Kinetics of T cell associated mediators ...204

Summary of cytokine/chemokine responses in the household study......................208

Mediator responses in nasal secretions of infants admitted with RSV associated severe/very severe pneumonia. ...212

RSV group-specific cytokine/chemokine responses..212

Association between cytokine/chemokine responses and severe or very severe pneumonia..213

Discussion..214

Chapter 9 - Overall Discussion ...220

Summary of key findings..220

Significance of the findings..222

Group-specific neutralising antibody immunity..222

Duration of neutralising antibody immunity..225

The relationship between genetic and antigenic variation of RSV226

The natural history of the cytokine/chemokine response to RSV.......................228

Limitations of the study and suggestions for future work229
The role of G-specific responses on the neutralising response ..229
Group and genotype-specificity of secretory IgA response ..230
Kinetics of the secondary neutralising response ...230
Relative fitness of BA and non-BA strains ..231
Relevance of upper respiratory tract sampling to lower respiratory tract disease232
Mathematical modelling of the transmission dynamics of RSV232

References ...234

APPENDIX 1 ..280
APPENDIX 2 ..298
APPENDIX 3 ..323
List of Tables

Table 2.1 Nucleotide and amino acid identity estimates between RSV A and B strains........13
Table 4.1. The optimal size and intensity and parameters of the four test viruses used in this
study...73
Table 4.2 The mean (of two) plaque counts at varying dilutions of infant sera..................78
Table 5.1 The pneumonia status of infants and children admitted.....................................85
Table 5.2 The median ages of RSV A and B infected infants recruited into the study.........87
Table 5.3 The genetic relatedness between infecting strains of RSV A and B....................100
Table 6.1 Epidemic start and end weeks over the period of follow up of the 2 birth cohorts.
..125
Table 6.2 The beginning and end dates of each stratum shown in figure 6.3132
Table 6.3 The start and end dates, mean age in months, total number of samples and
proportion of samples collected during an epidemic for each cohort 2..............................135
Table 7.1 Analysis of the level of nucleotide and amino acid identity among different
genotypes of RSV A and B...153
Table 7.2 Comparison of genetic relatedness of infecting RSV A genotypes in terms of
percent nucleotide and amino acid identity ..162
Table 7.3 Comparison of the proportion seroconverting to the RSV A constant region in the
sera of RSV A or RSV B infected infants..169
Table 8.1 Distribution of samples in the household study which were found to be positive for
RSV, rhinovirus, both viruses or none of the viruses..185
List of Figures

Figure 1.1 Pie chart showing the relative contribution of RSV and different bacterial pathogens in causing severe pneumonia in developing countries ..3

Figure 2.1 Schematic diagram of the structure of RSV ...11

Figure 2.2 Occurrence of RSV epidemics over a nine year period of surveillance16

Figure 2.3 The pattern of genotype replacement over a period of 11 epidemics in Birmingham, United Kingdom ..17

Figure 2.5 Infant responses to GST fusion proteins representing the carboxy terminal third of the G protein ...29

Figure 2.6 The predicted antigenic structure of the F protein32

Figure 2.7 The global dissemination of RSV B strains containing a 60 nucleotide duplication in the G gene ..43

Figure 3.1 Immunofluorescence (bright apple-green colour) from an IFAT slide61

Figure 3.2 The appearance of RSV plaques on a HEp-2 monolayer background63

Figure 3.3 Illustration of a 4 spot MSD mesoscale plate ...65

Figure 4.1 Illustration of the appearance of a plate at the completion of PRNA assay71

Figure 4.2 Plaque morphologies of two strains of RSV B which were grown to approximately comparable titres ..72

Figure 4.3 Comparison of mean plaque counts at different dilutions of virus by three human readers and the ELISPOT reader ..74

Figure 4.4 The relationship between automated and manual plaque counting75

Figure 4.5 The neutralisation profile of RSV A2 by increasing dilutions of sera77

Figure 5.1 Distribution of ages at admission for paediatric inpatients85
Figure 5.2 The temporal distribution of RSV A and B transmission over 7 years in Kilifi, Kenya.

Figure 5.3 Acute and convalescent sera from 118 infants infected with RSV were normalised by logarithmic transformation.

Figure 5.4 Overlay of log transformed acute and convalescent phase neutralising antibody titre distributions from the sera of 118 infants infected with RSV. Sera was tested against 4 test viruses (A2, 8/60, Ken/A/2006 and Ken/B/2008) and a mean titre obtained for use in these analyses.

Figure 5.5 Age stratified comparison of acute and convalescent phase titre distributions.

Figure 5.6 The dynamics of the acute phase response by age.

Figure 5.7 Comparison of the acute and convalescent neutralising response in different age classes.

Figure 5.8 The proportions of infants seroconverting within different age classes.

Figure 5.9 Acute phase titres stratified into quartiles and the proportions seroconverting in each quartile determined.

Figure 5.10 Relationship between the magnitude of the neutralising antibody response and (a) the acute phase titre and (b) age of infant.

Figure 5.11 The Odds Ratios of developing various clinical features of severe pneumonia.

Figure 5.12 Mapping of selected neutralising antibody epitopes on an alignment of a limited set of infecting F protein amino acid sequences.

Figure 5.13 Mapping of selected neutralising antibody epitopes on an alignment of a limited set of infecting G protein amino acid sequences.

Figure 5.14 Group-specific neutralising antibody responses to RSV infection.

Figure 5.15 Comparison of neutralising homologous and heterologous neutralising responses among infants born at different times.
Figure 6.1 The age dynamics of the neutralising antibody titre in the RSV birth cohort....127
Figure 6.2 The dynamics of the neutralising antibody response relative to population level transmission of RSV. ...128
Figure 6.3 The dynamics of the neutralising response in cohort 1 relative to incidence of RSV...131
Figure 6.4 The temporal dynamics of the neutralising response in cohort 2 relative to RSV occurrence..134
Figure 6.5 The distribution of neutralising antibody titres during epidemic and interepidemic periods for an infant birth cohort from coastal Kenya.136
Figure 6.6 The duration of the primary neutralising antibody response..................137
Figure 6.7 The proportion of infants in different age classes with mean neutralising titres that are above a putative protective threshold..139
Figure 6.8 Neutralising titres in sera collected within 10 days of identification of RSV during primary and secondary infection...140
Figure 7.1 The results of a checkerboard titration assay in which varying dilutions of sera were titrated against decreasing concentrations of synthetic peptides......................151
Figure 7.2 The results of MDS analysis in which the relationship between the G genes of different infecting (20 BA viruses and 20 non-BA viruses) and test strains of RSV B is depicted on a two dimensional space...155
Figure 7.3 The phylogenetic relationship of partial G gene sequences (between nucleotide 284 of the G gene and nucleotide 9 on the F gene) ..157
Figure 7.4 Multidimensional scaling (MDS) plot showing the antigenic relationship between BA and non-BA strains...158
Figure 7.5 Acute and convalescent phase responses to representative BA (Ken/B/2008) and non-BA (8/60) test viruses...160
Figure 7.6 Multidimensional scaling plot showing the genetic relationship between the G
genes of 20 infecting RSV A strains and the two RSV A test viruses.................................163

Figure 7.7 Maximum likelihood phylogenetic tree showing the relationship between the G
genes of infecting and test RSV A viruses..164

Figure 7.8 Comparison of the magnitude of the neutralising response to the A2 and
Ken/A/2006 test viruses...165

Figure 7.9 Comparison of responses to the conserved region of the RSV A G gene.........167

Figure 7.10 Comparison of responses to the conserved region of the RSV B G gene168

Figure 8.1 The total number of respiratory pathogens identified in the household study182

Figure 8.2 The relationship between RSV viral load and the presence or absence of URTI in
infants who an RSV infection..183

Figure 8.3 The distribution of different cytokines/chemokines in samples obtained from
infants in whom symptoms of URTI were present or absent..184

Figure 8.4 Comparison of geometric mean (with 95% CI) cytokine/chemokine
concentrations in samples that were positive exclusively either for RSV or rhinovirus ...186

Figure 8.5 The relationship between RSV viral load and cytokine/chemokine concentration.
..188

Figure 8.6 The kinetics of pro-inflammatory cytokines/chemokines in serially collected nasal
secretions..194

Figure 8.7 The kinetics of different chemokines in serially collected nasal secretions.......199

Figure 8.8 The kinetics of IFN-γ and IL-10 in serially collected nasal secretions204

Figure 8.9 The kinetics of T cell cytokines/chemokines in serially collected nasal secretions
..208

Figure 8.10 Comparison of mean cytokine/chemokine concentrations at different time points
pre- and post-infection..211
Figure 8.11 Comparison of mean cytokine/chemokine concentrations in nasal secretions from which RSV A or RSV B was isolated..213

Figure 8.12 Comparison of mean cytokine/chemokine concentrations in nasal secretions obtained from infants admitted with severe or very severe pneumonia ..214

Figure 9.1 Hospitalisations with RSV..224
Abbreviations

<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Full Form</th>
</tr>
</thead>
<tbody>
<tr>
<td>AEC</td>
<td>Amino ethylcarbazole</td>
</tr>
<tr>
<td>ADCC</td>
<td>Antibody Dependent Cell-mediated Cytotoxicity</td>
</tr>
<tr>
<td>ALRI</td>
<td>Acute Lower Respiratory Infection</td>
</tr>
<tr>
<td>CD</td>
<td>Cluster of Differentiation</td>
</tr>
<tr>
<td>CHD</td>
<td>Chronic Heart Disease</td>
</tr>
<tr>
<td>CI</td>
<td>Confidence Interval</td>
</tr>
<tr>
<td>CLD</td>
<td>Chronic Lung Disease</td>
</tr>
<tr>
<td>CPE</td>
<td>Cytopathic Effect</td>
</tr>
<tr>
<td>CTL</td>
<td>Cytotoxic T Lymphocyte</td>
</tr>
<tr>
<td>DMSO</td>
<td>Dimethyl sulfoxide</td>
</tr>
<tr>
<td>DNA</td>
<td>Deoxyribonucleic acid</td>
</tr>
<tr>
<td>EDTA</td>
<td>Ethylenediaminetetraacetic acid</td>
</tr>
<tr>
<td>ELISA</td>
<td>Enzyme Linked Immunosorbent Assay</td>
</tr>
<tr>
<td>FCS</td>
<td>Foetal Calf Serum</td>
</tr>
<tr>
<td>FI</td>
<td>Formalin-inactivated (RSV vaccine)</td>
</tr>
<tr>
<td>FITC</td>
<td>Fluorescein isothiocyanate</td>
</tr>
<tr>
<td>GAG</td>
<td>Glycosaminoglycan</td>
</tr>
<tr>
<td>GE</td>
<td>Gene End (sequence)</td>
</tr>
<tr>
<td>GS</td>
<td>Gene Start (sequence)</td>
</tr>
<tr>
<td>GST</td>
<td>Glutathione-S-transferase</td>
</tr>
<tr>
<td>HBD</td>
<td>Heparin Binding Domain</td>
</tr>
<tr>
<td>HIV</td>
<td>Human Immunodeficiency Virus</td>
</tr>
<tr>
<td>Acronym</td>
<td>Full Form</td>
</tr>
<tr>
<td>---------</td>
<td>-----------</td>
</tr>
<tr>
<td>HLA</td>
<td>Human Leukocyte Antigen</td>
</tr>
<tr>
<td>HRP</td>
<td>Horseradish peroxidase</td>
</tr>
<tr>
<td>IFAT</td>
<td>Immunofluorescence Antibody Test</td>
</tr>
<tr>
<td>IFN</td>
<td>Interferon</td>
</tr>
<tr>
<td>IL</td>
<td>Interleukin</td>
</tr>
<tr>
<td>IP</td>
<td>Inpatient</td>
</tr>
<tr>
<td>KBC</td>
<td>Kilifi Birth Cohort</td>
</tr>
<tr>
<td>KDH</td>
<td>Kilifi District Hospital</td>
</tr>
<tr>
<td>MCHC</td>
<td>Maternal Child Health Clinic</td>
</tr>
<tr>
<td>MCP</td>
<td>Monocyte Chemoattractant Protein</td>
</tr>
<tr>
<td>MDC</td>
<td>Macrophage-Derived Chemokine</td>
</tr>
<tr>
<td>MDS</td>
<td>Multi Dimensional Scaling</td>
</tr>
<tr>
<td>MEM</td>
<td>Minimum Essential Media</td>
</tr>
<tr>
<td>MHC</td>
<td>Major Histocompatibility Complex</td>
</tr>
<tr>
<td>MIP</td>
<td>Macrophage Inflammatory Protein</td>
</tr>
<tr>
<td>MRCA</td>
<td>Most Recent Common Ancestor</td>
</tr>
<tr>
<td>NK</td>
<td>Natural Killer (cells)</td>
</tr>
<tr>
<td>NOD</td>
<td>Nucleotide Oligomerization Domain</td>
</tr>
<tr>
<td>OPD</td>
<td>o-Phenylenediamine dihydrochloride</td>
</tr>
<tr>
<td>OR</td>
<td>Odds Ratio</td>
</tr>
<tr>
<td>ORF</td>
<td>Open Reading Frame</td>
</tr>
<tr>
<td>PBS</td>
<td>Phosphate Buffered Saline</td>
</tr>
<tr>
<td>PCR</td>
<td>Polymerase Chain Reaction</td>
</tr>
<tr>
<td>PFU</td>
<td>Plaque Forming Units</td>
</tr>
<tr>
<td>Abbreviation</td>
<td>Full Form</td>
</tr>
<tr>
<td>--------------</td>
<td>-----------</td>
</tr>
<tr>
<td>PRNA</td>
<td>Plaque Reduction Neutralisation Assay</td>
</tr>
<tr>
<td>PRNT</td>
<td>Plaque Reduction Neutralisation Titre</td>
</tr>
<tr>
<td>PRR</td>
<td>Pattern Recognition Receptor</td>
</tr>
<tr>
<td>RANTES</td>
<td>Regulated And Normal T cell Expressed and Secreted</td>
</tr>
<tr>
<td>RFLP</td>
<td>Restriction Fragment Length Polymorphism</td>
</tr>
<tr>
<td>RIG-1</td>
<td>Retinoic acid-Inducible Gene I</td>
</tr>
<tr>
<td>RLR</td>
<td>Retinoic acid-Inducible Gene I-like receptors</td>
</tr>
<tr>
<td>RNA</td>
<td>Ribonucleic Acid</td>
</tr>
<tr>
<td>RSV</td>
<td>Respiratory Syncytial Virus</td>
</tr>
<tr>
<td>RSVIG</td>
<td>RSV Immune Globulin</td>
</tr>
<tr>
<td>RT</td>
<td>Reverse Transcriptase</td>
</tr>
<tr>
<td>SD</td>
<td>Standard Deviation</td>
</tr>
<tr>
<td>SDS</td>
<td>Sodium dodecyl sulphate</td>
</tr>
<tr>
<td>TLR</td>
<td>Toll Like Receptor</td>
</tr>
<tr>
<td>TNF</td>
<td>Tumour Necrosis Factor</td>
</tr>
<tr>
<td>TRIM-21</td>
<td>Tripartite Motif-containing 21</td>
</tr>
<tr>
<td>URTI</td>
<td>Upper Respiratory Tract Infection</td>
</tr>
<tr>
<td>WHO</td>
<td>World Health Organisation</td>
</tr>
</tbody>
</table>
Chapter 1 - General Introduction

The significance of RSV in the context of the global burden of respiratory illness due to bacterial and viral pathogens

Respiratory infections are a leading cause of the global infectious disease burden (Lozano et al., 2012). Infections caused by such pathogens as *Mycobacterium tuberculosis*, *Streptococcus pneumoniae* and human influenza A virus have in the past exerted a heavy mortality and morbidity burden in different parts of the world, and for many continue to do so, particularly in low resource countries. For example, it is estimated that in 2000 approximately 14.5 million cases of severe pneumococcal disease occurred as a result of infection with *Streptococcus pneumoniae*, resulting in about 826,000 deaths worldwide among children who were less than 5 years of age (O'Brien et al., 2009). *Haemophilus influenzae* type b which has been a leading cause of pneumonia in children is estimated to have caused about 8.13 million cases of serious illness worldwide in 2000, resulting in approximately 371,000 deaths among children who were less than five years of age (Watt et al., 2009). It has been reported that in 2011, there were an estimated 8.7 million new cases of tuberculosis caused by *Mycobacterium tuberculosis* of which 13% were co-infections with HIV (World Health Organization, 2012). In the same year about 1.4 million deaths due to tuberculosis occurred, of which only about 430,000 were attributed to individuals with human immunodeficiency virus (HIV) (World Health Organization, 2012).

Respiratory infections caused by viruses have been associated with death and serious illness on a massive scale throughout the world. The influenza pandemic of 1918-1919 which was caused by an influenza A virus is thought to have infected about 500 million individuals worldwide with very high case fatality rates (Taubenberger and Morens, 2006). It is
estimated to have resulted in approximately 50 million deaths worldwide (Johnson and Mueller, 2002). More recently, the 2009 influenza A H1N1 pandemic is estimated to have resulted in 201,200 deaths from respiratory illness and 83,300 deaths as a result of cardiovascular complications (Dawood et al., 2012).

Respiratory Syncytial Virus (RSV) is considered to be the most important viral cause of lower respiratory tract infection in infants and young children globally. It is estimated that in 2005 about 33.8 million new cases of acute lower respiratory infection attributable to RSV occurred among children who were less than 5 years of age (Nair et al., 2010). Of these, at least 3.4 million episodes were of sufficient severity to necessitate hospitalisation. Between 66,000 and 199,000 children who were less than five years of age are estimated to have died in 2005 as a result of acute respiratory illness caused by RSV, with 99% of these deaths occurring in developing countries (Nair et al., 2010). In Kenya for example, incidence rates for hospitalisation of RSV of 1,107 per 100,000 infants have been reported, with an estimated mortality rate of 2.2% among infants with severe RSV pneumonia (Nokes et al., 2009). An analysis of the aetiology of severe pneumonia in children (figure 1.1) has shown that a large proportion of the severe pneumonia burden is attributable to RSV and other respiratory viruses relative to bacterial causes (Scott et al., 2008). Viewed together, these estimates suggest that RSV is responsible for a significant proportion of the burden of respiratory illness caused by viral and bacterial pathogens, suggesting the need to design and conduct studies to understand both its clinical and epidemiological characteristics in order to develop effective control strategies.
Defining the question

RSV can be divided into two distinct groups A and B, which vary in terms of their sequence characteristics as well as in their reaction with certain monoclonal antibodies (Mufson et al., 1985, Anderson et al., 1985, Johnson et al., 1987b). Within the group structure exist strains or genotypes that are variant in their sequence characteristics (Cane and Pringle, 1991). The transmission of RSV in most parts of the world is inherently cyclical and is characterised by regular outbreaks of acute respiratory infection at specific times of the year (Stensballe et al., 2003). Studies on the strain structure of these epidemics have shown evidence of population level competition between the two antigenic groups A and B (Waris, 1991, Zlateva et al., 2007) as well as between different genotypes (Cane, 2001). In some communities, this competition is manifested in alternating patterns of dominance of RSV A and B in successive epidemics (Waris, 1991, Zlateva et al., 2007). This pattern of group and genotype replacement strongly implicates the involvement of an underlying selection mechanism.
A mechanism that potentially underlies the observed variations is immune selection. Following natural infection with one antigenic group, it is reasonable to assume that the resulting immune response would be more effective against the infecting group relative to the alternative group. If this host level response is extrapolated to the population level, it is likely that the transmission of one RSV group in a particular epidemic would lead to a build-up of population-level group-specific immunity, that would generally preclude the re-introduction of that group in the subsequent transmission season, but that would be permissible to the transmission of the alternative group.

RSV is known to repeatedly infect throughout life. The ability of the virus to re-infect may be related to antigenic variation, transient protective immunity or both. Recent studies have shown that repeat infections are often caused by viruses that are genetically different from those that caused the initial infections (Agoti et al., 2012) although prior work had shown that re-infecting strains did not appear to be antigenically different from strains that had caused prior infection (Beem, 1967). The duration of protective immunity following primary RSV infection in infants has not been exhaustively investigated. There is general consensus that protective immunity correlates strongly with development of serum neutralising antibody (Glezen et al., 1981a, Piedra et al., 2003) suggesting the possibility that the duration of these antibodies correlates with the duration of protection. Previous studies have estimated that antibody responses to primary RSV decline to pre-infection levels within one year of infection (Welliver et al., 1980, Kaul et al., 1981). However, many of these studies were based on enzyme immunoassays that detected total antibodies and not neutralising antibodies which are likely to correlate more strongly with protection. The lack of data on the duration
of neutralising responses has hindered the ability to accurately predict the duration of protective immunity induced by natural primary infection.

The natural history of cytokine/chemokine responses following natural RSV infection is imperfectly understood. While animal models have provided in-depth data on the kinetics of different cytokines/chemokines in the course of infection (Sun et al., 2011, Hussell et al., 1996), there has been little validation of these results in infant disease. The most comprehensive data available in the human infant are based on samples obtained following the failed formalin-inactivated vaccine studies conducted in the 1960s. In this model severe disease was associated with development of an intense inflammatory infiltrate in the lungs of vaccinees who developed severe pneumonia following natural exposure (Openshaw and Tregoning, 2005). In addition to this, the role of RSV antigenic variation in driving differential cytokine/chemokine responses to RSV is not clearly understood. It is possible that variation in virus proteins that interact with elements of the host immune system could potentially result in variable cytokine/chemokine responses and ultimately variations in clinical disease.

The research presented in this thesis was designed to contribute to the understanding of the host immune response to RSV and its implications on both the transmission dynamics of the virus as well as in the modification of the host-virus interaction at the acute stage of illness.

Thesis research objectives

The key objective was to define the group and strain-specificity of the serum neutralising antibody response generated upon natural infection in infants. Two secondary objectives were to define the kinetics of the neutralising antibody response following natural infection and to
describe the natural history of different cytokine/chemokine cytokine/chemokine responses at
the acute stage of RSV infection in infants, within the context of RSV strain diversity.

Specific objectives

1. Describe the development of the serum neutralising antibody response in the acute
 and convalescent phase of infection
2. Compare the partial G and F gene sequences of infecting RSV A and B viruses
3. Compare homologous and heterologous serum neutralising antibody responses to both
 RSV A and B
4. Evaluate the effect of the novel 60 nucleotide G gene duplication (BA genetic
 change) on the neutralising antibody response
5. Measure the average duration of neutralising antibodies following primary infection
 in infants
6. Evaluate the kinetics of different cytokine/chemokine responses over the course of
 natural RSV infection in infants and assess the effect of RSV strain variation on these
 responses

Approach

The research studies reported in this thesis were based on the measurement of neutralising
antibody titres in both acute and convalescent phase sera obtained from infants with severe or
very severe pneumonia admitted to a district hospital serving a rural coastal Kenyan
community. Neutralising antibodies were also measured in serum obtained from a birth
cohort that was recruited and followed up for up to 30 months of age, with active and passive
surveillance of respiratory infection. Cytokine/chemokine responses were measured in nasal
samples collected at regular intervals prior to, during and after natural RSV infection in infants.

Declaration of author’s role

The studies described in this thesis were designed by the author together with supervisors, Prof James Nokes, Prof Pat Cane and Prof Peter Openshaw. The author of this thesis was responsible for carrying out the laboratory assays and statistical data analysis. The publications that have arisen from this work are listed below:

1. Sande CJ, Mutunga MN, Medley GF, Cane PA, Nokes DJ. Group and genotype-specific neutralising antibody responses against respiratory syncytial virus (RSV) in infants and young children with severe pneumonia. J Infect Dis (Accepted)
3. Sande CJ, Mutunga MN, Medley GF, Cane PA, Nokes DJ. The kinetics of the neutralising antibody response to respiratory syncytial virus infections in a birth cohort (In preparation)
4. Sande CJ, Mutunga MN, Medley GF, Cane PA, Nokes DJ. Neutralising antibody responses among infants with severe RSV pneumonia in Kilifi (In preparation)

Overview of the thesis

Chapter 2 of the thesis contains a review of the literature. The aim of this review is to provide a description of RSV in terms of its burden, transmission, molecular and antigenic
characteristics, and vaccine development. This chapter comprehensively reviews early published cross neutralisation studies that aimed to define the extent of antigenic heterogeneity between different strains of the virus. Chapter 3 provides a detailed description of the study design as well as the laboratory methods used in the different studies discussed in the thesis. Chapter 4 describes the development of a high throughput plaque reduction and neutralisation assay. Chapter 5 provides a description of the development of neutralising antibody responses following natural infection. In this chapter, age dynamics of the neutralising response are explored. The genetic characteristics of infecting strains are described in this chapter and finally, group homologous and heterologous neutralising antibody responses are compared. In Chapter 6, the kinetics of the RSV neutralising antibody response are described. Neutralising antibodies in a birth cohort recruited and prospectively followed up for approximately 30 months are described. The duration of the neutralising antibody response following natural infection is also described. Chapter 7 deals with genotype-specific neutralising antibody responses to RSV. In this chapter, neutralising responses to strains isolated between 40-50 years apart are assessed. Further, the effect of the recent 60 nucleotide duplication on the attachment protein gene of group B strains on the neutralising response is described. Chapter 8 describes the natural history of cytokine/chemokine responses following natural RSV infection in infants. In this chapter, the kinetics of different cytokines/chemokines over the entire course of natural RSV infection is described. The effect of strain variation on different cytokine/chemokine responses is also described in this chapter. Chapter 9 offers a summary and overall discussion of the main findings in this thesis. This chapter discusses limitations in the studies described and proposes potential avenues for future research.
Chapter 2 - Literature Review

Burden of disease of RSV

RSV is the most important viral cause of acute lower respiratory infection (ALRI) among infants globally. In 2005 at least 33.8 million cases of RSV associated ALRI occurred in the under 5 age group and of these, 3.4 million cases were associated with severe illness that necessitated hospital admission (Nair et al., 2010). Between 66,000 and 199,000 deaths were estimated to have occurred in the same year as a result of RSV associated ALRI, with a vast majority of the deaths occurring in developing countries (Nair et al., 2010). RSV mortality is associated with certain risk factors. A recent systematic review of co-morbidities associated with increased risk of death following RSV infection showed the mortality rate in children with congenital heart disease (CHD) was between 2 – 37%, while that of premature infants and those with chronic lung disease (CLD) was between 0 – 6.1% and 2 -37% respectively (Welliver et al., 2010). These rates contrast sharply with the RSV associated mortality rate in otherwise healthy children which is reported to be less than 1% (Welliver et al., 2010). Apart from its effect on the health of the patient, RSV imposes a heavy economic cost. In the United States for example, the average total cost of hospitalisation for term and pre-term infants infected with RSV exceeds the hospitalisation costs of infants admitted with other conditions by an average of $9,151 and $17,465 respectively (Palmer et al., 2010). In view of the fact that the burden of severe RSV disease is highest among infants, these data suggest that the monetary cost associated with severe RSV infection among infants is substantial. The cost of RSV infection may also be measured in terms of days of work or school missed as a result of infection. Previous studies have shown that RSV infection in previously healthy adults is associated with periods of absence from work of up to one week.
As a result of the health and economic costs linked with infection, development of an RSV vaccine is considered to be a research priority.

Molecular structure of RSV

RSV belongs to the subfamily *Pneumovirinae* in the family *Paramyxoviridae*, order *Mononegavirales* (Pringle, 1997, Kingsbury *et al.*). RSV virions exhibit pleomorphic characteristics with virions budding from the plasma membranes of infected cells assuming a rounded or kidney shape of between 150 – 250 nm in diameter (Bachi and Howe, 1973). Alternatively budding virions may appear as filaments with a uniform diameter of 50 to 100 nm (Bachi and Howe, 1973). RSV is an RNA virus (Hamparian *et al.*, 1963) which contains 10 genes that code for 11 proteins (Dubovi, 1982, Huang *et al.*, 1985, Collins *et al.*, 1984). This is due to the fact that one of the 10 genes (M2) contains an internal overlapping open reading frame (ORF) that codes for an 11th protein (M2-2) (Collins *et al.*, 1990a). The viral genome is of negative sense polarity (Lambert *et al.*, 1980, Huang and Wertz, 1982) and contains a functional polymerase within the viral nucleocapsid. Transcriptional mapping studies have demonstrated that the transcription of RSV occurs in a sequential manner in the order: NS1, NS2, N, P, M, SH, G, F, M2 and L (Dickens *et al.*, 1984). Figure 2.1 is an illustration of the molecular structure of RSV.
Sequential virus transcription by the viral polymerase is controlled by conserved gene start (GS) and gene end (GE) sequences at the beginning and end of every gene (Collins et al., 1986). The RSV genome contains a single transcription promoter at the 3' region of the genome (Dickens et al., 1984) which is used to initiate mRNA synthesis for all 10 genes. Once the polymerase binds to the promoter region, it initiates RNA synthesis and progresses until it encounters the GE region. This triggers the release of the nascent positive sense mRNA molecule that is specific for a particular viral protein (Cowton et al., 2006) and that can be translated into protein by the host cell machinery. mRNA synthesis of the subsequent gene is initiated when the polymerase encounters the GS region of the gene and progressively synthesises a new mRNA strand until it encounters the GE region, where the process described above is repeated. This process progresses until the mRNA of the last gene on the RSV genome (L gene) is synthesised (reviewed by Cowton et al. (Cowton et al., 2006)).
Viral proteins translated using the mRNA transcripts are then assembled into new, infectious virion particles along with a copy of the viral genome (Cowton et al., 2006).

The epidemiology of RSV

The transmission of RSV is characteristically seasonal. In countries within the northern hemisphere with temperate climates, RSV typically causes epidemics of acute lower respiratory infection among infants and young children between the months of November and April. The temporal transmission cycles may occur at an annual (Hall et al., 1990, Cane, 2001, Cane et al., 1994, Hall et al., 2009, Zlateva et al., 2007) or biennial (Waris, 1991, Mlinaric-Galinovic et al., 2008, Reyes et al., 1997, Anestad, 1987) frequency depending on the geographical location. Countries with tropical and semitropical climate experience RSV at equally regular intervals but with different patterns of seasonality. In northern tropical countries, the increase of RSV transmission is associated with increase in rainfall and decrease in temperature (Cherian et al., 1990, Weber et al., 1998). In southern tropical countries, RSV epidemics are associated with decreases in both temperature and rainfall (Madhi et al., 2006). In equatorial countries the association between climatic conditions and seasonal increases in transmission is less well defined. Some equatorial countries with perennial rainfall appear to experience RSV all year round (Reese and Marchette, 1991, Berman et al., 1983, Tsai et al., 2001), while others appear to experience seasonal epidemics at specific times of the year. The group replacement dynamics in Kilifi over a period of 9 years are depicted in Figure 2.2.

The onset of RSV epidemics in different geographical areas varies considerably. In general, RSV epidemics appear to occur in a south to north direction in the northern hemisphere and a north to south direction in the southern hemisphere (Stensballe et al., 2003). In the United
States for example, over a 10 year period, epidemics on average began in the South on week 47 of the year followed by those in the Northeast at week 49, the West at week 52 and the Midwest at week 1 of the subsequent year. (Mullins et al., 2003). Notably, the respective onset times of RSV seasons were found to vary widely year on year in the same geographical locations in the United States (Panozzo et al., 2007).

Group replacement dynamics of RSV epidemics

RSV can be classified into two main groups A and B on the basis of both reaction with monoclonal antibodies and sequence data (Mufson et al., 1985, Anderson et al., 1985, Johnson, 1987). Each group can further be categorised into strains or genotypes which vary to a lesser extent than the 2 main groups, both at the nucleotide and amino acid sequence level. Table 2.1 shows the extent of nucleotide and amino acid identity in some virus genes.

<table>
<thead>
<tr>
<th>Protein</th>
<th>Nucleotide identity (%)</th>
<th>Amino acid identity (%)</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>G</td>
<td>67</td>
<td>53</td>
<td>(Johnson et al., 1987b)</td>
</tr>
<tr>
<td>F</td>
<td>79</td>
<td>91</td>
<td>(Johnson and Collins, 1988)</td>
</tr>
<tr>
<td>SH</td>
<td>78</td>
<td>76</td>
<td>(Collins et al., 1990b)</td>
</tr>
<tr>
<td>NS1</td>
<td>78</td>
<td>87</td>
<td>(Johnson and Collins, 1989)</td>
</tr>
<tr>
<td>M2</td>
<td>78</td>
<td>92</td>
<td>(Collins et al., 1990a)</td>
</tr>
<tr>
<td>NS2</td>
<td>78</td>
<td>92</td>
<td>(Johnson and Collins, 1989)</td>
</tr>
<tr>
<td>N</td>
<td>86</td>
<td>96</td>
<td>(Johnson and Collins, 1989)</td>
</tr>
</tbody>
</table>

Table 2.1 Nucleotide and amino acid identity estimates between RSV A and B strains
RSV epidemics exhibit extensive genotype variability. Generally RSV A strains appear to circulate at a higher frequency than RSV B strains throughout the world (Hall et al., 1990, Reiche and Schweiger, 2009, Zhang et al., 2010, Zlateva et al., 2007). Studies of the group replacement dynamics in successive RSV epidemics have shown that the two RSV groups cyclically alternate in a generally predictable manner. For example, data collected in England and Wales over an 11 year period showed a cyclic triennial pattern in RSV A and B transmission (Cane, 2001). A similar pattern of population level competition between RSV A and B in successive epidemics has also been reported in Belgium (Zlateva et al., 2007). The pattern of cyclic alternation in Finland is markedly different from that in England and Wales and Belgium, where the dominant group alternates every two years (Waris, 1991). In Uruguay between two and three successive epidemics of RSV A are followed by one RSV B epidemic (Arbiza et al., 2005) while in France and Boston in the United States, less regular patterns of group replacement have been reported in which successive seasons of co-dominance are followed by dominance by either RSV A or B (Hendry et al., 1989, Freymuth et al., 1991). The mechanisms though which certain epidemics display co-dominance in transmission between strains from the two groups are not understood. While determinants such as relative reproductive rates, degree of cross-protection and rate of waning immunity will be important (White et al., 1998) stochastic effects will undoubtedly play a role. It might be speculated that co-dominance could by chance arise due to the proportion of the population that is exposed to infection in any given epidemic. For example if only half the population is exposed to infection by one group during an epidemic while the other half remains un-infected, it may be that in the subsequent epidemic, the previously exposed group would be at an elevated risk of infection with the alternative group, while individuals who were not infected in the previous epidemic could be equally at risk of infection by both RSV A and B.
Studies of the genotype diversity of RSV epidemics in different parts of the globe have yielded largely similar results. Multiple genotypes appear to constitute most epidemics, with the predominant genotype being successively replaced from one year to the next. For example, a study in Birmingham in the United Kingdom found that different genotypes of both RSV A and B were predominant in each of 5 successive epidemics between 1988 and 1993 and that the predominant genotypes appeared to decline over time and were replaced by alternative genotypes in epidemics that followed (Cane et al., 1994). These data are graphically shown in figure 2.3. A Korean study that looked at genotype prevalence over 9 consecutive epidemics found that multiple genotypes were in circulation and the predominant genotype in each epidemic was replaced in subsequent epidemics. Phylogenetic analysis of sequences in this study as well as others derived from other parts of the world, showed that similar strains were simultaneously circulating in other parts of the world (Choi and Lee, 2000). These observations were supported by the findings of Cane et al. who also reported on the homogeneity of simultaneously circulating genotypes in different parts of the world (Cane et al., 1992). Seki et al. looked at genotype diversity over 15 successive epidemics in Japan and found that the dominant genotypes were similarly replaced in subsequent epidemics (Seki et al., 2001). Similar findings were reported in two separate studies of hospitalized and ambulatory children in Rochester, New York (Hall et al., 1990, Peret et al., 1998). These observations have led to suggestions of the existence of population-level competition between the two RSV groups as well as competition between different genotypes and that a build up of group/genotype-specific immunity at population level underlies the observed group/genotype replacement patterns in consecutive epidemics (Cane, 2007).
Figure 2.2 Occurrence of RSV epidemics over a nine year period of surveillance. Of the nine epidemics that occurred with this period, 5 were predominantly RSV A epidemics (i.e. the epidemics of 2001/2002, 2003/2004, 2005/2006, 2006/2007 and 2008/2009), 2 RSV B (i.e. the epidemics of 2004/2005 and 2007/2008), while 2 appeared to have been co-dominated by both RSV A and B (i.e. epidemics of 2002/2003 and 2009/2010) (Nokes et al., In Preparation).
Figure 2.3 The pattern of genotype replacement over a period of 11 epidemics in Birmingham, United Kingdom (Cane et al., 1994).
Role of G and F proteins in virus binding and membrane fusion

Many paramyxoviruses gain entry into the cell through fusion of the virus and cell membranes (Chang and Dutch, 2012). In the case of RSV, prior to the fusion process, the virus through the G protein has been shown to attach to nucleolin on the surface of susceptible cells (Tayyari et al., 2011). This conclusion is based on the fact the ability of the virus to infect cells in vitro is significantly reduced in the presence of anti-nucleolin antibodies, soluble nucleolin and RNA interference that is targeted at reduced intracellular nucleolin expression (Tayyari et al., 2011). In addition to nucleolin, entry is likely to be facilitated by binding of the virus to heparin which is a soluble proteoglycan on the cell surface (Krusat and Streckert, 1997). The binding of RSV to heparin and other proteoglycans appears to be through recognition of the glycosaminoglycan (GAG) moieties of proteoglycans (Hallak et al., 2000, Martinez and Melero, 2000). Heparin sulphate has been suggested to be the main GAG involved with this entry mechanism (Hallak et al., 2000, Martinez and Melero, 2000). There is evidence that suggests that the interaction of RSV with GAGs on the host cell surface occurs through the G protein (Techaarpornkul et al., 2002). The region of the G protein consisting of amino acid residues 184-198 for RSV A and 183-197 for RSV B has been identified as the heparin binding domains (HBD) for human RSV (Feldman et al., 1999).

The role of the G protein in the attachment process has been investigated using recombinant viruses in which the G protein has been deleted. Recombinant viruses lacking the G protein have been shown to replicate efficiently in vitro in a cell-line dependent manner but poorly in mice which are intranasally inoculated with the virus (Teng et al., 2001). This suggests that the G protein may be dispensable in the attachment and entry process in some cells but is required for efficient replication in vivo. The role of the central conserved region in the
attachment process has been investigated using recombinant viruses containing a deletion of this region. Surprisingly in these studies it was found that deletion of the central conserved region did not reduce the efficiency of attachment to susceptible cell lines (Teng and Collins, 2002) suggesting that despite being conserved this region does not play a significant role in the interaction between RSV and it’s cell surface receptors. The role of the conservation of the central part of the protein in the attachment process remains to be explained.

Upon attachment of the virus to the host cells, fusion of the virus and cell membranes takes place following activation of the F protein. The process of activation of the F protein is thought to be dependent on close proximity of the protein to the host cell membrane since this process involves exposure of the fusion peptide (Melero, 2007). This proximity requirement is crucial for successful infectivity since without it the hydrophobic fusion peptide is instead inserted into the virus membrane thus abrogating its infectivity (Lamb and Jardetzky, 2007). Upon binding to the host cell, the fusion peptide is exposed and inserted into the cell membrane and subsequently folds, bringing the cell and virus membrane into close proximity. This is followed by mixing of the two membranes and formation of the fusion pore, that connects the interior of the of the virus to the host cell’s cytoplasm (Melero, 2007).

The role of innate and cell mediated immune responses in RSV infection

Activation of the host innate immune system by viruses typically occurs through the interaction of virus with pattern-recognition receptors (PRRs) on the host’s innate immune cells such as dendritic cells and macrophages (Medzhitov, 2007). PRRs bind to viral molecules such as double-stranded RNA (dsRNA) (Yoneyama et al., 2004), single-stranded RNA (ssRNA) (Pichlmair et al., 2006), RNA with 5’-triphosphate ends (Hornung et al., 2006) and proteins of viral origin (Thompson et al., 2011). Among the PRRs known to
interact with viral components are Toll-like receptors (TLRs), nucleotide oligomerization domain (NOD)-like receptors (NLRs) and retinoic acid-inducible gene I (RIG-I)-like receptors (RLRs) (Takeuchi and Akira, 2009). RLRs and TLRs are important for the stimulation of type I IFNs (Kato et al., 2005) which lead to elimination of viral components from infected cells. Activation of these receptors also leads to production of pro-inflammatory cytokines and chemokines which provoke inflammation and recruit innate and acquired immune cells to the site of infection (Kumar et al., 2006). In response to the inflammatory response mounted by the host, RSV has evolved mechanisms to antagonise these responses. The NS1 and NS2 proteins have been shown to have an inhibitory role in the induction of interferon alpha, beta and gamma responses by the host (Spann et al., 2004).

T cells have a key role in the clearance of viral infection and exhibit a number of effector functions that are crucial in viral clearance. For example CD8+ effector T cells can provide complete protection against influenza infection in the absence of B cell specific responses (Graham and Braciale, 1997). The importance of T cell responses in protection is underscored by murine studies that have shown that cytotoxic T lymphocytes (CTLs) play a key role in the clearance of RSV infection (Cannon et al., 1988). Individuals with defects in T cells responses do not effectively control RSV infection, further suggesting a clear role for T cell specific responses in viral clearance (Hall et al., 1986).

Immunity to RSV: targets of protective antibody responses

The surface of the infectious virion contains 3 virus encoded proteins; F, G and SH that are exposed to the host immune system. Studies with infant and monoclonal antibodies have confirmed that these surface proteins, are the targets of antibody responses (Cote et al., 1981, Akerlind-Stopner et al., 1993) suggesting that they might be targets of protective immunity. Two of these proteins, F and G are thought to be targets of the neutralising antibody response.
The mechanisms through which virus neutralisation is thought to occur as well as description of the antigenic characteristics of the F and G proteins are discussed below.

Mechanisms of virus neutralisation

Virus neutralisation can broadly be defined as the abrogation of virus infectivity by antibody mediated mechanisms. The mechanisms through which antibodies neutralise virus can be classified on the basis of the event within the replication cycle of the virus that is blocked by such antibodies. A number of these mechanisms are discussed below.

Attachment of the virus onto host cells is crucial for successful infection. Antibodies that block this step of the infection process effectively curtail the ability of the virus to infect the cell (Burton et al., 2000). Abrogation of infectivity can also be mediated by antibodies that block both conformational changes and un-coating. This mechanism of neutralisation has been well demonstrated in the case of poliovirus (Wetz, 1993). Some neutralising antibodies act by preventing intermediate steps in the virus life cycle. For example, some poliovirus neutralising antibodies have been found to prevent the formation of the 135S particle (Vrijsen et al., 1993), an essential intermediate in the entry of poliovirus into the cell (Fricks and Hogle, 1990). Neutralisation of poliovirus has also been associated with aggregation of infectious particles by antibodies, with residual infectivity being associated with un-aggregated virions (Thomas et al., 1986). Neutralising antibodies have recently been found to mediate inactivation of virus through cytosolic degradation. A recent study has shown that antibody coated adenoviruses are transported into the cytosol where they bind to an intracellular cytosolic protein called tripartite motif-containing 21 (TRIM21). TRIM21 has been demonstrated to bind with high affinity to an invariant region of antibody molecules (James et al., 2007). Virus-antibody complexes within the cytosol bind to TRIM21, which
targets these complexes to the proteasome for degradation (Mallery et al., 2010). Virus infectivity can also be effectively curtailed through antibody dependent cell-mediated cytotoxicity (ADCC). ADCC is a mechanism through which immune effector cells target infected cells for lysis through the recognition of antibody on the surface of infected cells. ADCC has been shown to be mediated by natural killer (NK) cells, macrophages, neutrophils and eosinophils. In the case of RSV, specific ADCC responses have been observed as early as 3 days following infection and peak at between 2 to 4 weeks after the onset of illness (Kaul et al., 1982). Direct cell killing of RSV infected cells has also been reported to be mediated through complement. Lysis of RSV infected cells has been shown to involve both the classical and alternative complement activation pathways (Edwards et al., 1986). Kaul et al. showed that complement mediated killing of RSV infected cells is enhanced in the presence of neutrophils. This complement dependent cytotoxicity is not as pronounced in the presence of lymphocytes or monocytes (Kaul et al., 1984). Antibody mediated complement activation has also been linked to virus clearance. Antibodies that are defective in complement activation do not reduce lung titres in RSV challenged mice relative to antibodies that are capable of fixing complement, strongly suggesting that antibody activation of complement may play a key role in viral clearance upon infection (Mekseepralard et al., 2006).

There is evidence that suggests RSV may escape the host neutralising antibody response through generation of escape mutants. Previous studies have shown that neutralising monoclonal antibodies directed at both the G and F protein can be used to select for escape mutants that are no longer recognised by the selecting antibodies (Garcia-Barreno et al., 1990, Zhu et al., 2011). Analysis of the viruses shed by children who are under palivizumab immunoprophylaxis have shown the development of escape mutations against this
immunoprophylactic antibody (Papenburg et al., 2012). It is possible that the lack of proofreading ability by the virus’ RNA polymerase might lead to the generation of a large diversity of genetically distinct viruses during replication. Through a process of natural selection, only the variants that are capable of surviving the prevailing antibody pressure would then be selected for replication and ultimately transmission as escape mutants.

The G Protein

The G protein is the virus attachment protein (Levine et al., 1987), which mediates attachment of the virus to a cell surface receptor recently identified to be nucleolin (Tayyari et al., 2011). The G protein is synthesised as a 33 kD precursor which is extensively modified by the addition of N and O linked carbohydrates (Gruber and Levine, 1985a). These carbohydrates contribute about 57 kD to the molecular weight of the mature protein which is estimated to be about 90 kD (Gruber and Levine, 1985a). The protein is approximately 300 amino acids long although this may vary depending on the strain. Two forms of the protein are synthesised in the course of infection; a membrane anchored form and a soluble form (Hendricks et al., 1987). The soluble forms are 6-9 kD smaller than the membrane anchored forms (Hendricks et al., 1988) and are translated through an alternative in-frame start codon (Roberts et al., 1994). The soluble form of the molecule is thought to act as an antigenic decoy, by binding to host antibody and thus helping the virus to evade antibody-mediated restriction both in vivo and in vitro (Bukreyev et al., 2008). The G protein ectodomain can be divided into three distinct segments; a central conserved segment sandwiched between two hypervariable domains on the N and C terminals of the protein (Cane et al., 1991). The central conserved region contains a 13 amino acid motif (residues 164 – 176) as well as 4 cysteine residues (173, 176, 182 and 186) that are perfectly conserved in all human RSV isolates (Melero et al., 1997, Cane et al., 1991). The high degree of sequence conservation in
this region is strongly suggestive of functional constraint and the region may therefore constitute an effective target for protective antibody responses.

The antigenic structure of the G protein

Identification of antibody epitopes on the primary structure of the G protein has been achieved mainly through reactivity with murine monoclonal antibodies. Three distinct epitope groups on the G protein have been identified using this approach: conserved, group-specific and strain-specific epitopes (Martinez et al., 1997). Antibodies to conserved epitopes bind to all RSV strains, while group-specific antibodies bind to all strains from one of the two antigenic groups. Strain-specific antibodies bind to only certain strains of an antigenic group.

Escape mutants selected using monoclonal antibodies to conserved epitopes (i.e. antibodies that bind to all strains of RSV) contain amino acid changes in the central part of the G molecule (Martinez et al., 1997, Rueda et al., 1994, Walsh et al., 1998) including the loss of one of the four conserved cysteines (Rueda et al., 1994), suggesting that conserved epitopes are located on the central part of the molecule. On the other hand, escape mutants selected by antibodies to strain-specific epitopes contain amino acid substitutions (Martinez et al., 1997), premature stop codons (Rueda et al., 1991) or frame shift mutations (Garcia-Barreno et al., 1990) in the carboxy terminal region of the G protein. Antibodies to the G protein are thought to recognise linear rather than conformational epitopes. This assertion is based on the fact that no murine monoclonal antibodies have so far been found to select for non synonymous substitutions at sites that are distant from their putative epitopes (Melero et al., 1997). Antibodies to the G protein have also been shown to bind to overlapping stretches of synthetic peptides (Cane, 1997) covering different regions of the G protein, further
suggesting the lack of a conformational requirement for antibody binding. The genetic and antigenic structure of the G protein is graphically depicted in figure 2.4.

Sequence conservation in the central part of the G molecule suggests, as previously discussed, that it may be functionally constrained and possibly the target of cross-reactive antibody responses. Up to 40% of adults with natural RSV infection (Murata et al., 2010) generate antibody responses to the central part of the G molecule. This region is the target of a partially neutralising cross-reactive monoclonal antibody (Walsh et al., 1989) providing grounds for inferring the importance of responses to this region to neutralising antibody protection.
Figure 2.4 (a) The genomic structure of RSV (Collins and Murphy, 2005) (b) The sequence features of the G protein including the trans-membrane region and the two hypervariable mucin-like regions separated by a central conserved region. The triangles indicate potential N-glycosylation sites while the circles indicate the four conserved cysteine residues in the central part of the molecule (Melero et al., 1997). (c) is the predicted structure of the three dimensional structure of the G protein (Melero, García-Barreno et al. 1997).
Human antibody responses to the G protein

Due to its extensive variability, antibody responses to the G protein are thought to be genotype-specific (Johnson et al., 1987a, Anderson et al., 1985, Walsh et al., 1987, Hendry et al., 1988, Yamazaki et al., 1994, Cane, 1997). Enzyme linked immunosorbent assays carried out using acute and convalescent phase sera from infants with acute RSV infection show that the group homologous infant response to purified F protein is cross-reactive but the infant response to the G protein is strongly group-specific (Hendry et al., 1988). Due to the extensive glycosylation on the G protein, several studies have looked at the role of carbohydrate moieties on the infant response to the G protein. Wagner et al. found that the infant IgG response to both the G and F protein were primarily of the IgG1 and IgG3 subclass (Wagner et al., 1986) and that the infant IgG2 response to the G and F proteins was generally poor (Wagner et al., 1986). The lack of an infant IgG2 subclass response to these glycoproteins was surprising since the natural IgG2 response is typically directed at carbohydrate antigens while IgG1 and IgG3 responses are typically directed at protein antigens (Barrett and Ayoub, 1986). In contrast, the adult anti-G response is characterised by high production of both IgG1 and IgG2 (Wagner et al., 1987b). The results of these studies suggest that the protein moieties on the G glycoprotein may have an immunodominant role over sugar moieties in the infant response and that recognition of the sugar moieties of the G glycoprotein appears to progressively increase with age. Studies of human serum responses to pneumococcal polysaccharide vaccines have confirmed this age structured response to carbohydrate antigens; the IgG1:IgG2 ratio decreases significantly with age in response to vaccination with both the polysaccharide and protein-polysaccharide conjugate Streptococcus pneumoniae vaccines (Lottenbach et al., 1999).
A number of studies have looked at the antigenic specificity of infant serological response to the G protein following natural infection. Norrby *et al.* investigated the serum responses of infants with natural infections against a series of 23 overlapping peptides spanning the entire length of the G protein ectodomain (Norrby *et al.*, 1987). They reported that only three of these peptides reacted with human sera and none of these was located in the variable region of the protein (Norrby *et al.*, 1987). A possible reason for the failure to recognise the variable regions of the G protein could have been the fact that the infant responses were to wild-type strains that could have been antigenically different from the A2 strain that was used as a template for peptide synthesis. To address this possibility, Cane *et al.* looked at infant serological responses to Glutathione-S-Transferase (GST) fusion proteins representing 84-85 amino acids on the variable carboxy terminal third of 6 contemporary isolates of RSV A (Cane *et al.*, 1996). They reported that over half of the infants recognised these proteins, suggesting that the lack of recognition of this region in the work reported by Norrby *et al.* could be explained by the lack of antigenic similarity between the test and infecting antigens, possibly as a result of antigenic drift within this region over time. Interestingly, the pattern of recognition of this variable region of the protein was closely related to the infecting genotype (Cane *et al.*, 1996) with infants generating greater responses to sequences that more closely resembled the infecting strains (Cane *et al.*, 1996). These data are shown in figure 2.5. Further work on the infant serological response against overlapping peptides spanning the terminal 84-85 amino acids of the carboxy terminal end of the protein, showed that single amino acid mismatches could abrogate antibody binding (Cane, 1997), providing further evidence of the genotype-specificity of the antibody response to the variable region of the G protein. More recent evidence shows that the antibody repertoire to this region appears to generally broaden with repeated exposure (Scott *et al.*, 2007).
Babies infected with A:2

Figure 2.5 Infant responses to GST fusion proteins representing the carboxy terminal third of the G protein. The acute (a) and convalescent (c) phase sera of each child was tested against a panel of the GST fusion proteins indicated on the legend on the top left of the graph. In this example, babies infected with the A:2 strain of the virus clearly make significantly greater responses to the A:2 GST fusion protein, relative to the others (Cane et al., 1996).
The F protein

The F protein is the viral fusion protein (Walsh and Hruska, 1983). It mediates cell to cell fusion of virus infected cells leading to syncytia formation, a characteristic of RSV infected cells (Walsh and Hruska, 1983). The protein is synthesised as an inactive 69kD precursor (F₀) (Gruber and Levine, 1985a, Gruber and Levine, 1983) which is co-translationally modified in the endoplasmic reticulum by the addition of N-linked carbohydrates (Gruber and Levine, 1985a, Collins and Mottet, 1991). It is then cleaved into two subunits F₁ (49 kD) and F₂ (20 kD) which remain linked by a disulphide bond (Gruber and Levine, 1985b) and are subsequently transported to the cell surface (Collins and Mottet, 1991).

Antigenic structure of the F protein

Mapping of antibody binding sites on the primary structure of the fusion protein has been done using two approaches: generation and sequencing of monoclonal antibody escape mutants and use of synthetic peptides to examine regions of binding by monoclonal antibodies along the length of the protein. Arbiza et al. used these approaches to define two antigenic sites along the F protein that are targets of antibody responses. The first site contained a number of overlapping epitopes on the amino terminal third of the F₁ subunit while the second was located on the carboxy terminal end of the F₁ subunit’s cysteine rich region (Arbiza et al., 1992). Sequence comparison between the wild-type RSV Long strain and the monoclonal antibody escape mutants showed that a series of non-synonymous substitutions between amino acid position 190 and 272 were key to antibody escape in the first region while non-synonymous substitutions between amino acid 429 and 447 were responsible for antibody escape in the second region (Arbiza et al., 1992, Lopez et al., 1998).
There is evidence that suggests that antibodies to the F protein recognise conformational rather than linear epitopes. The conformational nature of epitopes on the F protein can be demonstrated by an analysis of the positions of amino acid substitution required for abrogation of antibody binding. Arbiza et al. reported the generation of a monoclonal antibody escape mutant in which a non-synonymous amino acid substitution that was necessary for antibody escape, occurred 57 amino acids upstream of the putative monoclonal antibody binding site (Arbiza et al., 1992, Lopez et al., 1993). Further evidence of the conformational requirement for F protein antibodies has been obtained from studies using synthetic peptides where it has been found that some F-specific antibodies only bind to long peptides and fail to bind to shorter peptides spanning the length on the longer one (Lopez et al., 1993), suggesting that these antibodies can only bind to a peptide that is long enough to fold upon itself. More evidence of the need for higher order structures for antibody binding to the F protein has been shown in experiments in which fragments of the F protein are pre-treated with Sodium Dodecyl Sulphate (SDS) prior to reaction with antibodies. The results of these experiments have shown that pre-treatment with SDS – which linearizes proteins by conferring a net negative charge – leads to loss of antibody binding (Lopez et al., 1993). Figure 2.6 is a summary of the antigenic structure of the F protein.
Figure 2.6 The predicted antigenic structure of the F protein (Lopez et al., 1998).
Antibody responses to the F protein

Neutralisation studies with monoclonal antibodies suggest that the F protein is the main target of cross-reactive neutralising antibodies. These studies show that only F-specific monoclonal antibodies mediate complete neutralisation of RSV in vitro while antibodies to the G protein mediate incomplete or strain-specific neutralisation (Anderson et al., 1988, Garcia-Barreno et al., 1989). Passive transfer of F-specific monoclonal antibodies in mice and cotton rats infected with RSV significantly reduces the titre of virus in the lungs of these animals relative to those of controls (Taylor et al., 1984, Walsh et al., 1984) suggesting that F-specific antibodies have a protective effect in vivo. Immunisation of cotton rats with recombinant vaccinia viruses expressing F protein has been shown to lead to development of neutralising antibody titres that are up to 6-fold greater than the response to recombinant vaccinia virus expressing the G protein (Olmsted et al., 1986), further supporting the notion that the F protein is the major target of neutralising antibody responses.

Potential mechanisms of protection by F and G specific antibodies

The availability of the immunoprophylactic monoclonal antibody palivizumab has provided the opportunity to speculate on the potential mechanisms of protection by F specific antibodies. While administration of palivizumab has been shown to significantly reduce the risk of developing severe disease (The IMpact-RSV Study Group, 1998), infants under palivizumab immunoprophylaxis do not appear to have a reduced risk of infection since these infants often become infected despite administration of the antibody (Papenburg et al., 2012, Zhu et al., 2011). This suggests that F specific antibodies are important in the prevention of severe disease but not infection. The role of G specific antibodies in mediating protection against either infection or disease in humans remains to be explained.
Antigenic characteristics of RSV

Early cross neutralisation studies

The question of whether the human neutralising antibody response to RSV is group or genotype-specific has been the subject of a number of important studies, but which has to date not been conclusively answered. In an attempt to define the group-specificity of the neutralising response, Coates et al. conducted studies in both human subjects and animal models (Coates et al., 1963). Separate groups of ferrets were infected with representative strains from the two groups i.e. the Long strain (an RSV A strain isolated in 1956 in Baltimore, (Coates et al., 1963)) and the CH 18537 strain (an RSV B isolated in 1962 Washington D.C. (Coates et al., 1963)) and the resulting post-infection hyperimmune sera were then tested for cross neutralising ability. They found that the ferret post-infection response was group-specific with strong evidence that the animals generated a significantly greater homologous to heterologous neutralising antibody response (Coates et al., 1963). The second arm of the study looked for a similar response in infant convalescent sera following natural infection. Infants with serological evidence of RSV infection who were hospitalised with a diagnosis of bronchiolitis or pneumonia in the 1956-57 RSV season in Baltimore as well as those hospitalised in the 1960 and 1962 RSV seasons in Washington D.C. were included in the study (Coates et al., 1963). The authors reported that irrespective of the year of hospitalisation, infants developed comparable neutralising antibody responses to both the Long and CH 18537 strains of RSV (Coates et al., 1963). This result was surprising since it had been expected that infants hospitalised in the 1956-57 season would have had a greater response to the Long strain, which was isolated in the same year and from the same city relative to the CH 18537 strain which was isolated 5 years later from a different city. It was also expected that sera from infants hospitalised in Washington D.C. in 1962 would neutralise the CH 18537 strain to a greater extent than the Long strain for similar reasons.
Wulff et al. looked at the ability of both rabbit hyperimmune sera and infant convalescent sera to neutralise the Long strain as well as the “87” strain (RSV B) isolated in Kansas in 1962 (Wulff et al., 1964). The results of the study showed that rabbit anti-Long hyperimmune sera had a greater neutralising titre to the Long relative to the “87” strain, indicating that they were antigenically distinct (Wulff et al., 1964). In contrast, infant sera obtained following natural infection in Kansas in 1962, recognised the Long strain to the same extent as the “87” strain, suggesting antigenic homogeneity (Wulff et al., 1964). These results were therefore in general agreement with the findings of Coates et al. (Coates et al., 1963). Similar results were reported when sera from infants in Japan were reacted against both the prototype Long strain and locally circulating Japanese strains (Suto et al., 1965). Despite evidence of antigenic heterogeneity between some of the Japanese strains and the Long strain (following reaction with hyperimmune guinea pig sera), infant sera neutralised the Long strain to the same extent as the local Japanese strains (Suto et al., 1965), supporting previous findings. Subsequent studies reported evidence that showed that antigenic heterogeneity was not a requirement for natural re-infection. Beem et al. found that strains that caused repeat infections in infants and children were not antigenically different (Beem, 1967). Later work found some evidence of group-specificity of the infant RSV neutralising antibody response against either RSV A or RSV B but not to both (Muelenaer et al., 1991, Roca et al., 2003, Hendry et al., 1988). To date no study that has systematically sought to address the group and strain-specificity of the immune response has reported a significantly greater homologous to heterologous infant neutralising response at both the group and strain/genotype level for both RSV A and B.
The paradox of lack of cross-reactive immune response and population level competition between RSV A and B

Epidemiological surveillance studies have documented evidence of population level competition between RSV A and B, as earlier discussed. The lack of strong evidence supporting the notion of group-specificity of the convalescent human response presents a challenge in explaining the population level competition between RSV A and B. The regular and predictable sequence of alternation in transmission between RSV A and B, seen in some studies, is strongly suggestive of an underlying selection mechanism. The most plausible explanation for this cyclic alternation in dominance is population level immune selection of the dominant strain. It is reasonable to hypothesize that cyclic alternation of transmission of RSV A or B can be explained by the generation of population level group-specific immunity which precludes, albeit transiently, the continued transmission of a particular group in the population. A high level of population level group-specific immunity (relative to the alternative group) would then reduce the likelihood of re-introduction of the most recently predominant group in the population in the subsequent RSV season while giving a transmission advantage to the alternative group.

Closer scrutiny of the early cross neutralisation work reveals a number of important study design problems that could potentially have confounded interpretation of the results. At the time the studies were being conducted, the technology to definitively characterise each individual infecting strain did not exist. With the advent of monoclonal antibodies and sensitive molecular genotyping techniques such as the polymerase chain reaction (PCR), gene sequencing and restriction fragment length polymorphism (RFLP) analysis, detailed molecular characterisation of viruses infecting individual patients became possible. Without these data, it would have been impossible to ascertain that the infecting group or genotype
was identical for all infants recruited in from particular RSV transmission season, a key assumption of the early studies. If, for example, infants were recruited in an epidemic where RSV A and B were co-dominant (as has since been reported in a number of surveillance studies (Hendry et al., 1989, Freymuth et al., 1991)), there would have been equal probability of infection with either RSV A or B, fundamentally invalidating the presumption of homotypic exposure in a single epidemic and thereby confounding interpretation of the data. In the event that both RSV A and B infected infants were recruited, proper interpretation of the data would have been difficult. Further, many of the early studies utilised small sample sizes in their analyses. For example the study by Coates et al. (Coates et al., 1963) utilised a sample of only 15 infants while that by Wulff et al. (Wulff et al., 1964) used a sample of 18 infants. It is possible the small samples sizes may have obscured the detection of a small but biologically significant difference between homologous and heterologous neutralising antibody responses.

Comparison of the F and G gene sequences of RSV A and B

The availability of sequence data has enabled direct comparison at the genetic level of the differences between RSV A and B. Johnson et al. sequenced the G gene mRNAs of representative RSV A and B strains, Long (RSV A) and CH 18537 (RSV B). They then compared these sequences (and their deduced amino acid sequences) to the G gene sequence of another RSV A strain A2 (Johnson, 1987). When the Long G mRNA sequence was compared to the A2 G gene sequence, the authors found that they shared 94% amino acid identity. In contrast, the CH 18537 strain only shared 53% amino acid identity with the A2 G. The authors found that most of the variation was in the extracellular domain of the G protein (Johnson et al., 1987b). Sullender et al. investigated G gene sequence variation between the A2 strain and the 8/60 strain (RSV B). They reported 56% amino acid identity between the RSV G genes of A2 and 8/60 (Sullender et al., 1990). They further reported that the 8/60 G
shared 98% amino acid identity with the CH 18537 strain (Sullender et al., 1990). These results were in general agreement with the G gene variability estimates reported by Johnson et al. (Johnson et al., 1987b). Cane et al. undertook a more detailed analysis of the nature of the variation in the extracellular domain of the G protein. They reported that variation in this extracellular domain was not evenly distributed across the length of the protein. An extensive hypervariable domain on the carboxy terminus of the protein was separated from a less variable domain on the amino terminus by a highly conserved region (Cane et al., 1991).

Johnson et al. studied the degree of relatedness between the F protein sequences of representative RSV A and B strains (Johnson and Collins, 1988). They reported that there was overall 91% identity between the deduced amino acid sequences of strains A2 and CH 18537 (Johnson and Collins, 1988). Viewed together, these data present an apparent paradox – of the two proteins that are targets of neutralising antibodies, one shows extensive sequence divergence between groups (G protein), while the other appears to be highly conserved between groups (F protein). Assuming that diversity in both proteins is driven by host immune pressure it is surprising that the F protein, which is the major target of neutralising antibody immunity, would be under less selection pressure relative to the G protein. An alternative explanation for the greater diversity on the G protein relative to the F is that the F protein could be subject to greater functional constraint reducing the level of variation that could be viably tolerated. However, the notion of functional constraint in a major neutralising target fails to accord with the well documented ability of RSV to re-infect at relatively regular intervals (Hall et al., 1991). It appears therefore that relative sequence homogeneity in a major neutralising antibody target does not necessarily correlate with protection from re-infection. It is possible that neutralising antibodies target only a small but functionally important part of the protein and it is these antibodies that drive the limited
variability within the F protein. There is some evidence that the variable regions of the F protein coincide with known neutralising and Cytotoxic T Lymphocyte (CTL) epitopes (Agenbach et al., 2005), suggesting that despite extensive sequence conservation on the F protein, protective immune responses may be directed at variable parts of the protein.

Analysis of antigenic similarity between RSV A and B

Estimates of genetic relatedness between specific genes from the two groups of RSV provide little insight on the effect of variation on the neutralising antibody response. If amino acid variation does not occur within neutralising/protective epitopes, its impact on the protective response is likely to be limited. In order to obtain an estimate of how the observed inter group genetic variability is related to protective immunity, Johnson et al. intranasally infected different groups of cotton rats with different strains of RSV A and B and assessed the degree of cross reactivity in their respective hyperimmune sera (Johnson et al., 1987a). In order to estimate the degree of antigenic relatedness between RSV A and B, they used the Archetti-Horsfall formula (Archetti and Horsfall, 1950) – whose result is a product of two quotients, each obtained by dividing the heterologous titre by the homologous titre for each of the two strains being compared. Thus in order to infer the degree of antigenic relatedness between the Long and CH 18537 strains, the heterologous response to the CH 18537 strain (i.e. neutralisation of strain CH 18537 by Long-specific hyperimmune sera) is divided by the homologous response to the Long strain (i.e. neutralisation of the Long strain by Long-specific hyperimmune sera) and this quotient is then multiplied by the quotient obtained by dividing the heterologous response to the Long strain by the homologous response to the CH 18537 strain. The result, which is multiplied by 100, is the percent antigenic relatedness between the 2 strains. The authors reported 25% antigenic relatedness between the Long and CH 18537 strains and 28% antigenic relatedness between the A2 and CH 18537 strains (Johnson et al., 1987a). A potential problem with the approach taken in this study is that the
estimates are derived on the basis of animal responses, which may be different from human responses as suggested by the early neutralisation work. To address this concern, studies to estimate the degree of antigenic relatedness using human convalescent sera obtained from infants with primary RSV A and B were conducted by Hendry et al. (Hendry et al., 1988). An antigenic relatedness estimate of 31% between RSV A and B was calculated using the Archetti-Horsfall formula (Hendry et al., 1988). It is notable that this estimate was comparable to the estimates obtained from animal studies of between 25% and 28%. These data therefore suggest that the infant neutralising response to RSV is not significantly different from that obtained from experimentally infected animal models. This conclusion is at odds with the results of the cross neutralisation studies of the 1960s that showed that showed no difference between the homologous and heterologous response (Coates et al., 1963, Wulff et al., 1964). It is worth noting that the infecting antigenic groups of all infants included in the study by Hendry et al. were determined by use of group-specific monoclonal antibodies (Hendry et al., 1988).

Molecular evolution of RSV

A comparison of the deduced G protein amino acid sequences of strains isolated in the 1960s and those isolated in the late 1980s has shown that the rate of non-synonymous amino acid substitution is greater than that of synonymous substitution (Cane et al., 1991), suggesting that the G protein is under positive selection pressure. It is estimated that the rate of accumulation of amino acid change over the length of the protein is 0.25% per year (Cane and Pringle, 1995). The rate of evolution of RSV can be deduced from studies of the most common recent ancestor (MRCA) of circulating strains. The MRCA of currently circulating RSV A strains has been estimated to be the early 1940s (Cane and Pringle, 1995, Zlateva et al., 2004) with an average evolutionary rate of 1.83×10^{-3} nucleotide substitutions per site per
year (Zlateva et al., 2004). The rate of evolution of the RSV B G gene has been estimated to be 1.95×10^3 nucleotide substitutions per site per year with the most recent common ancestor of current RSV B strains being estimated to have occurred between 1938 and 1955 (Zlateva et al., 2005).

At least 6 positively selected sites have been identified on the G genes of both RSV A and B (Woelk and Holmes, 2001). There appears to be an association between the positions of the positively selected sites and known antibody epitopes (Woelk and Holmes, 2001), suggesting that immune pressure may be driving the evolution of RSV and is key to its endemic maintenance. There is however anecdotal evidence that suggests that immune selection may not be the key mechanism that drives diversity and maintenance of the virus in the population. A study of the molecular characteristics of 23 Cuban strains isolated in 1994-1995 showed that they differed from the prototypical Long strain (isolated in the United States in 1956) by only 5 amino acids (Valdes et al., 1998). These data clearly conflict with the theory that immune selection is an important driver of persistence of the virus in the population. It is possible that the relative invariance of Cuban strains may be attributed to long-term political isolation that significantly reduced interaction between Cubans and the rest of the world, thereby reducing the likelihood of importation of novel strains. If this is in fact the case, the implication remains that immune selection is not a key mechanism for generation of RSV diversity and persistence of the virus in the population and that the main source of diversity may be through importation of novel strains from different populations.

The model of dissemination of different RSV strains around the world has been the focus of recent molecular epidemiology studies. The recent emergence of a unique strain of RSV B with a 60 nucleotide duplication – the BA genetic change - (Trento et al., 2003) in the
hypervariable region of the G gene has provided a convenient tag with which to track both the global transmission and the accumulation of natural variation in a single strain of the virus. The first RSV B strain with a 60 nucleotide duplication (BA strain) was identified in Buenos Aires, Argentina in 1998 (Trento et al., 2003). Subsequent surveillance identified this strain in Leuven Belgium between 1999 and 2000 (Zlateva et al., 2005), in Birmingham United Kingdom between 2000 and 2001 (Cane, 2007), Sapporo Japan in 2000 (Sato et al., 2005), in Kilifi Kenya in 2003 (Scott et al., 2004), in New Delhi India between 2004 and 2006 (Parveen et al., 2006). This strain has since out-competed previous strains of RSV B and as of 2012 is the most prevalent RSV B strain globally, as depicted in figure 2.7. The epidemiological success of this strain suggests that BA strains have a fitness advantage or other selection advantage over previous RSV B strains, allowing them to rapidly out-compete them globally over a relatively short period of time. The nature of this advantage is as yet unknown.

There are some data that suggest that RSV strains may become extinct with time. In an analysis of the genetic relatedness of RSV strains isolated from different parts of the world between 1956 and 1993, Cane and Pringle identified a set of RSV A isolates obtained from Northern Europe in the 1970s, which clustered distinctly in a phylogenetic analysis of the G gene (Cane and Pringle, 1995). Extensive analysis of RSV A sequences from the 1970s onwards has failed to identify similar isolates, strongly suggesting that these viruses have become extinct (Cane and Pringle, 1995, Cane, 2007). The mechanism through which extinction of strains occurs remains unknown.
Figure 2.7 The global dissemination of RSV B strains containing a 60 nucleotide duplication in the G gene as of 2010 (Trento et al., 2010).
Antigenic evolution of the F protein under immunoprophylactic pressure

There is some indirect evidence that the F protein may be under antibody selection pressure. The widespread application of immunoprophylaxis provides an opportunity to speculate on the likely model of the antigenic evolution of the F protein under antibody pressure. Palivizumab is a humanised monoclonal antibody that has been licensed for immunoprophylactic use in high risk infants (The IMpact-RSV Study Group, 1998). Palivizumab is a potent neutralising antibody that binds to a conserved region of the F protein (Beeler and van Wyke Coelingh, 1989). In vitro selection studies using palivizumab have shown that some single amino acid substitutions (N268S, N262S, S275F/L and K272N/M/T/Q) result in generation of neutralisation resistant escape mutants (Crowe et al., 1998, Zhao et al., 2004, Zhao et al., 2006, Zhu et al., 2011), some of which have been found to be of greater replication fitness relative to the A2 strain in competition assays (Zhao et al., 2006). A number of studies have demonstrated that selection for escape mutants against this immunoprophylactic antibody can occur under natural infection conditions (Papenburg et al., 2012, Zhu et al., 2011). These palivizumab neutralisation resistant mutants have been identified among infants hospitalised with severe natural RSV infections and who previously were under palivizumab immunoprophylaxis (Papenburg et al., 2012, Zhu et al., 2011), suggesting that it can reasonably be speculated that such selection is possible with naturally produced antibodies. However the question of whether these selected mutants are transmissible and of comparable fitness with unselected wild-type strains is unknown.
Correlates of immunity from severe disease

Association between age and immune function

There appears to be an age related risk for development of severe disease, with infants under the age of one year being at greatest risk of developing severe disease. This risk appears to progressively decrease with age (Glezen et al., 1986, Nokes et al., 2008, Broor et al., 2007, Robertson et al., 2004), suggesting that as individuals grow older, they gradually develop natural resistance against severe disease, while remaining susceptible to repeated infection (Hall et al., 1991). The risk of severe lower respiratory infection in immuno-competent adults is relatively low, with disease primarily being manifested as an upper respiratory infection which self-resolves within an average of 10 days (Breese Hall et al., 2001, O'Shea et al., 2005). However in recent years RSV has become increasingly recognised as a cause of severe respiratory illness among elderly adults (Falsey et al., 2005), an outcome that has been partly attributed to age-related defects in the cellular immune function (Lee et al., 2005, Liu and Kimura, 2007). The risk of severe RSV is also elevated among immuno-suppressed organ transplant patients who are typically under heavy immunosuppressive therapy to minimise the risk of organ rejection (Ison, 2009). In all three instances increased severity of disease may point to underlying immunological deficiencies. In the case of infants and elderly adults, severity may be associated with immunological immaturity and senescence respectively and in immuno-suppressed adults, severe disease may be associated with the depletion of both cellular and humoral responses by immunosuppressive drugs.
Physiological maturity of the lung

The lung pathology associated with acute bronchiolitis caused by RSV in infants is characterised by necrosis of virus infected cells in bronchial epithelia (Aherne et al., 1970, Johnson et al., 2007). Along with increased mucus secretion and a lymphocytic infiltrate, these cells form a dense plug which occludes smaller bronchioles, impairing respiratory function (Aherne et al., 1970). The reduction in incidence of severe disease with age suggests that anatomical and physiological maturation may confer some resistance from severe illness. Between infancy and adulthood there is up to a 2.5 fold increase in airway size and alveoli count (Dunnill, 1962), suggesting that age-associated physiological changes may influence clinical outcome as a result of the increased capacity of the airways. This increased capacity may play a role in modulating severity in older individuals by providing reserve capacity through which some degree of normal respiration can continue even in the presence of cellular debris in the airways brought about by RSV infection.

Protective antibody responses

Protection from infection and disease appears to correlate strongly with the presence of neutralising antibodies. Maternal antibodies have been associated with protection from severe RSV disease in infants (Glezen et al., 1981a). However, maternal antibodies have also been suggested to have a role in limiting the infants’ native response to infection (Parrott et al., 1973, Brandenburg et al., 1997). The role of maternal antibody in preventing severe disease has been disputed in a study of the risk factors for severe RSV infection among Alaskan children, which failed to find a protective association between maternal neutralising antibodies and protection from hospitalisation (Bulkow et al., 2002). The results of this study have however been
controversial as a result of potential inequality of exposure between cases and controls that may have confounded data interpretation (Munoz and Glezen, 2003).

Administration of high doses of RSV specific intravenous immune globulin (RSVIG) has been associated with a reduced risk of severe RSV disease in high risk infants and children (Groothuis et al., 1993). The protective role of antibodies in preventing serious illness among infants has been further underscored by use of prophylactic immunotherapy. Palivizumab, a humanised monoclonal antibody which has been licensed for prophylactic use in pre-term and other high risk infants significantly reduces the risk of developing severe RSV infection (The IMpact-RSV Study Group, 1998). Some studies have defined a minimum protective neutralising antibody threshold for protection against severe infection. Piedra et al. defined a minimum threshold of 6.0 log₂ PRNT and 8.0 log₂ Plaque Reduction Neutralisation Titre (PRNT) as protective against hospitalisation with RSV A and B respectively (Piedra et al., 2003). However the reliability of these estimates in predicting protection may be confounded by other factors that could independently account for protection such as gestational age and age of the infant.

Among elderly adults, antibodies are similarly associated with protection from severe illness. Serum IgG and nasal IgA to the F and G proteins as well as serum neutralising antibody have been found to be at lower titres in RSV infected adults compared to matched controls (Walsh and Falsey, 2004). Low titres of neutralising antibodies have also been associated with the risk of hospitalisation among adults (Walsh et al., 2004).
Duration of antibody responses to RSV

The duration of both maternal and acquired antibody responses is an important factor for protection. The infant maternal antibody half-life is estimated to be of the order of less than three months (Ochola et al., 2009, Ogilvie et al., 1981). The infant serum IgM and IgG response to primary infection declines to pre-infection levels within a year (Welliver et al., 1980). The secondary response is of greater magnitude than the primary response and potentially lasts for a longer duration of time (Welliver et al., 1980). On the other hand, the nasal primary IgA, IgM and IgG response to infection all appear to decline to pre-infection levels by 3 months post-infection (Kaul et al., 1981). Conversely, the rate of development, titre and duration of secondary nasal IgA, IgM and IgG responses appears to be greater than that of the primary response (Kaul et al., 1981). These data suggest that both the acquired secretory and humoral responses to RSV are short-lived and may be related to the ability of the virus to repeatedly re-infect.

The ability of antibodies to protect not only from severe disease but from infection can be gleaned from experimental human infection studies. In a number of such studies, the ability of the virus to successfully infect adult volunteers has been shown to be inversely related to the pre-inoculation serum neutralising antibody titre (Hall et al., 1991, Lee et al., 2004, Mills et al., 1971). These data suggest that antibodies probably have a dual role in protection; (i) against infection in the first instance and (ii) limiting virus infectivity upon infection. However the short-lived duration of antibody responses to RSV (Welliver et al., 1980, Kaul et al., 1981) suggests that such protection is likely to be transient.
Innate immune response to RSV infection

Cytokines are an important element of the early immune response to RSV. RSV infection elicits production of an array of cytokines that mediate a number of functions that are not only necessary for virus clearance but that may also promote pathology. T cells produce pro-inflammatory cytokines/chemokines in response to RSV infection. Type 1 T helper (Th1) cells produce IFN-γ while Th2 cells produce IL-4, -5, -6 and -13. The type of T helper response elicited in response to re-infection is largely dependant on the cytokine milieu present at the time of priming (Openshaw, 2002). An imbalance in Th1/Th2 responses to RSV has been cited as a contributor to severe illness (Folkerts et al., 1998). RSV associated disease severity appears to be the product of a Th2 skewed response (Becker, 2006) although this has not been consistently confirmed in the respiratory secretions of infants with acute RSV bronchiolitis (Garofalo et al., 2001).

Respiratory Syncytial Virus Vaccines

The goal of developing an effective vaccine has been hindered by a number of factors. The peak of disease severity in the paediatric population occurs among infants who are less than 3 months old (Glezen et al., 1986) and who have a high titre of maternal antibody (Murphy et al., 1986a). Vaccination at this age faces a number of important potential challenges. The response to vaccination may be inadequate due to immunological immaturity – younger infants have up to a 10-fold lower convalescent phase response to the G and F protein as well as the neutralising response compared to older infants (Murphy et al., 1986b). A limited response to vaccination at this age may also be the result of suppression of the infant response by maternal antibodies.
Evidence of this may be gleaned from studies that shown that the magnitude of the convalescent infant antibody response is inversely related to acute phase serum antibody levels (Parrott et al., 1973). It is also possible that the success of any future vaccine may depend on its antigenic coverage - monovalent vaccines based on strains from one antigenic group may provide insufficient protection from wild-type challenge with a diverse range of strains. Two vaccine candidates have been extensively characterised over the years are the formalin-inactivated (FI) vaccines and live attenuated vaccines. The course of development of these vaccines and their postulated mechanisms of action are discussed below.

The formalin-inactivated vaccine

Following the successful development of other formalin-inactivated vaccines such as the poliovirus vaccine in the 1950s studies of formalin-inactivated (FI) RSV vaccines were conducted in the United States in the mid to late 1960s. In a study carried out in 1965, Potash et al. used a formalin-inactivated RSV (strain MK5) vaccine concentrated 25-fold by alum precipitation to test for safety and immunogenicity. Vaccinated guinea pigs developed high titres of post-vaccination serum neutralising antibodies (Potash et al., 1966). In the clinical arm of the study, children and adults inoculated intramuscularly with the FI vaccine developed modest serum neutralising antibodies and did not exhibit any severe vaccine-related adverse effects for up to 10 days after vaccination (Potash et al., 1966). It was thus concluded that the vaccine was safe with no systemic adverse effects associated with vaccination (Potash et al., 1966). In 1966 two large scale clinical trials of the FI vaccine in infants and children were carried out. The first, carried out between September and December 1966, recruited infants and children between 4 months and 10 years of age to whom two 0.5
ml intramuscular doses of 100-fold concentrated formalin-inactivated RSV (Bernett strain) vaccine was administered (Chin et al., 1969). A control arm was included in the study for the purpose of comparison. The control arm received a trivalent parainfluenza vaccine containing parainfluenza 1, 2 and 3. In total 191 children received the full dose of FI vaccine while 194 children received the full dose of the control parainfluenza vaccine (Chin et al., 1969). 68% of the FI vaccinees had a 4-fold or greater rise in antibodies against RSV in their post-vaccination sera, while only 0.9% of the control parainfluenza vaccinees had a 4-fold or greater rise in anti RSV titre (Chin et al., 1969). However in the subsequent RSV season, the incidence of medically attended RSV infection in infants less than 1 year of age in the FI vaccine group was approximately 3 times greater than the control group. Overall, the incidence of severe disease in the FI vaccine group across all ages (7.9%) was almost double that in the control group (4.7%) (Chin et al., 1969). 60% of the FI vaccinees who got natural RSV infection were hospitalised compared to 22% of the control group vaccinees who were hospitalised following natural RSV infection (Chin et al., 1969). The severity of disease among hospitalised infants from the FI vaccine group was much greater than that of infants in the control group; 44% of the hospitalised infants in the FI vaccine group had severe or very severe pneumonia compared with 5.6% among the controls (Chin et al., 1969). A second clinical trial of the FI vaccine was conducted between December 1965 and December 1966 where infants between 2 and 7 months of age were recruited (Kim et al., 1969). A similar vaccine formulation and regimen as in the study described above was administered. Similarly a parainfluenza vaccine control group was included in the study. The results of this trial showed that post-vaccination neutralisation titres to RSV were 6-fold greater in the FI vaccine group compared to the control group (Kim et al., 1969). However despite
serological evidence of comparable exposure between the two groups in the subsequent RSV season, 80% of FI vaccinees in this study required hospitalisation following natural infection (Kim et al., 1969). In contrast only 5% of infants in the control group who experienced natural RSV infection required hospitalisation. Also, the severity of illness was greater among the FI vaccinees relative to the control group (Kim et al., 1969). Tragically, two toddlers aged 14 and 16 months who were in the FI vaccine group died upon natural exposure to RSV. The two infants had received the first of 3 inoculations of FI vaccine at 2 and 5 months respectively. Post-mortem examinations found evidence of extensive bronchopneumonia, pneumothorax and eosinophilia (Kim et al., 1969).

Postulated models of FI vaccine mediated pathology

The failure of the FI vaccine led to studies to investigate why the vaccine potentiated disease upon natural exposure. Using post-vaccination sera from infants and young children who had received the FI vaccine, Murphy et al. found that young infants developed a high antibody titre to the F protein but had poor response to the G protein (Murphy et al., 1986c). In contrast, older infants and young children developed high titres to both F and G proteins. None of the vaccinated infants and children developed neutralising antibody titres comparable to that of age-matched individuals who had undergone natural infection (Murphy et al., 1986c). It was concluded that formalin inactivation had somehow altered epitopes on the F and G proteins resulting in the development of non-functional (non-neutralising) antibodies. The authors postulated 3 models in which these non-neutralising antibodies could have potentiated disease; (i) through the formation of immune complexes in the lung, (ii) a poorly developed anti-G response in young infants could have reduced protection from subsequent
challenge and (iii) the poor neutralising response could have delayed the
development of effective responses to clear the virus (Murphy et al., 1986c).
Subsequent studies found that in addition to the poorly neutralising response, F
protein specific antibodies to the FI vaccine were deficient in fusion inhibiting
activity, promoting the spread of the virus in the respiratory tract upon natural
infection (Murphy and Walsh, 1988). Later work suggested that the failure to develop
an effective neutralising response following FI vaccination was not due to formalin
disruption of neutralising epitopes but rather due to the development of low avidity
anti-virus antibodies due to the lack of affinity maturation (Delgado et al., 2009).
This interpretation has however been disputed (Shaw et al., 2009). A model of
immune mediated disease exacerbation has been proposed based on work with
animals. Connors et al. found that in the absence of CD4+ and CD8+ T cells,
antibodies are unable to mediate disease enhancement (Connors et al., 1992). Later
work found that mice vaccinated with FI vaccines had a marked increase in type 2
CD4+ helper T cell cytokines and lower type 1 T helper cell responses (Waris et al.,
1996). Formalin treatment of RSV antigens was later shown to promote the
development of type 2 responses (Moghaddam et al., 2006). These data suggested
that FI vaccine mediated disease exacerbation may have been the result of an over
exuberant inflammatory response to infection.

Development of live attenuated RSV vaccines

Following the failure of the FI RSV vaccines of the 1960s attention shifted to the
development of live attenuated vaccines. Live attenuated RSV vaccines were first
developed through extensive serial passaging of the A2 strain at progressively lower
temperatures i.e. cold passaging or cp (Friedewald et al., 1968). Adaptation of a live,
intranasally delivered vaccine for replication at lower temperatures is considered important since the temperature at the upper respiratory tract is lower than the core body temperature (Polack and Karron, 2004). Experimental infection of adult volunteers showed that one such virus that could grow at 26°C had lost virulence in adults (Friedewald et al., 1968), but had retained virulence, despite showing some evidence of immunogenicity, in infants under the age of 2 months (Kim et al., 1971). To further attenuate the virus, chemical mutagenesis was used to induce a temperature sensitive (ts) phenotype in the cp vaccine strains (Kim et al., 1973). Temperature sensitive mutants have a shutoff temperature above which they are unable to replicate — thus mutants with shutoff temperatures that are close to the core body temperature are unlikely to replicate in the lower respiratory tract and cause severe disease (Murata, 2009). Initial clinical trials with cp-ts live attenuated RSV vaccines showed that they were still insufficiently attenuated and were genetically unstable (Kim et al., 1973). Subsequent studies reported the generation of cp-ts strains with remarkably low shutoff temperatures and greater genetic stability (Crowe et al., 1994b). One such strain (cpts-248) had a shutoff temperature of 38°C and was highly attenuated and immunogenic in animal studies (Crowe et al., 1994b). Further attenuation of the cpts-248 mutant was done through chemical mutagenesis, resulting in a highly attenuated daughter strain cpts-248/404 with a shutoff temperature of 36°C and with up to 1000-fold reduction in its ability to replicate in vivo in animal models (Crowe et al., 1994a). A live attenuated vaccine based on the cpts-248/404 mutant was tested in infants where some evidence for protection from disease following natural infection was reported (Wright et al., 2000). Nonetheless, the vaccine was considered to be insufficiently attenuated as it caused upper respiratory tract congestion in young infants (Wright et al., 2000), a potentially fatal problem for young infants who are
obligatory nose breathers (Bergeson and Shaw, 2001). The vaccine was however considered to be sufficiently attenuated for older children (Wright et al., 2000). Further attenuation through reverse genetics, resulted in a vaccine candidate that was sufficiently attenuated for young infants but that insufficiently elicited antibody responses (Karron et al., 2005).

Potential for indirect protection of vulnerable infants using live attenuated vaccines.

As described above, there are currently available live attenuated vaccines that appear to provide some protection upon natural exposure and are safe for use in young children. Safety concerns however preclude the use of these vaccines in the paediatric infant population who are at the greatest risk of severe disease (Wright et al., 2000). In the absence of a sufficiently attenuated and immunogenic vaccine for the youngest infants, the potential of using these vaccines in older age groups in order to reduce the risk of transmission to the infant is clearly worth consideration. Maternal vaccination is a potential route through which these vaccines could be given in order to boost the titre of trans-placentally transferred antibodies – and hopefully delay the age at which infants first become susceptible to natural infection. The maternal vaccination model for infant protection is currently being used for other infectious diseases. Maternal vaccination with influenza virus vaccine has been reported to result in significant reduction in the number of neonatal hospitalisations with influenza (Poehling et al., 2011, Benowitz et al., 2010).
Chapter 3 – Materials and methods

Overview

This chapter will provide a detailed description of both the participants and the laboratory methods used in this study. The first part of the chapter will describe the study site as well as general characteristics of the study participants. The studies that are presented in this thesis were nested within three previously established studies, i.e. the Kilifi District Hospital (KDH) inpatient RSV surveillance study, the Kilifi Birth Cohort (KBC) study and the household RSV transmission study. The structure of these studies will be described in detail in the first part of this chapter.

The second part of this chapter will provide a detailed description of the laboratory assays used in this study. A detailed description of the following assays and techniques will be provided: cell and virus culture, plaque assay, immunofluorescent Antibody Testing (IFAT), measurement of cytokine/chemokine concentrations in nasal samples using the MSD mesoscale platform, RNA extraction, cDNA synthesis, polymerase chain reaction (PCR) and gene sequencing on the ABI 3130xl platform.

Study site, Population and Sampling

This study was conducted in Kilifi, a rural African district located on the Kenyan Coast. Kilifi experiences high humidity all year round, with two annual rainy seasons; April-July and November-December (Nokes et al., 2009). Although incidence has declined in recent years, the area has traditionally been endemic for malaria, with its associated high morbidity and mortality burden. The studies described here were carried out at the Kilifi District Hospital (KDH) which provides both adult and
paediatric inpatient and outpatient care. As mentioned earlier, the nasal and serum samples used in the study were derived from three established studies. Below is a detailed description of these studies.

The RSV Inpatient Surveillance study at KDH

The samples that were derived from the inpatient surveillance study for use in the present study were obtained from infants and young children between the ages of 1 day and 59 months. These individuals had been admitted to the KDH paediatric ward between December 2002 and February 2008, during which 6 RSV epidemics occurred in Kilifi. The infants included in this study were recruited during 3 of these 6 epidemics: the 2002/2003 epidemic, the 2005/2006 epidemic and 2007/2008 epidemic. The 2002/2003 epidemic was characterised by transmission of RSV A and B in roughly equal proportions, the 2005/2006 epidemic was dominated by RSV A transmission, while the 2007/2008 epidemic was dominated by RSV B transmission. These data are shown in figure 2.1 in Chapter 2. Infants who were admitted met the World Health Organization (WHO) criteria for the clinical syndromes of (i) severe pneumonia, i.e. cough or difficulty in breathing plus lower chest wall indrawing in addition to showing no signs of very severe pneumonia, or (ii) very severe pneumonia i.e. cough or difficulty in breathing plus at least one of the following: hypoxia, defined as an oxygen saturation of less than 90% by fingertip pulse oximetry, inability to drink, breast feed or to sit or impaired consciousness (WHO, 2005). Upon admission, nasal samples were collected for detection of RSV by immunofluorescent antibody testing (IFAT). Acute phase sera were collected at the time of admission while convalescent phase sera were collected from RSV positive infants approximately one month later. Both nasal and serum samples were stored at -80°C for later use.
The Kilifi Birth Cohort (KBC) Study

The second set of samples was derived from the Kilifi Birth Cohort (KBC) study. Participants were recruited at the maternity ward and the Maternal and Child Health Clinic (MCHC) at KDH. Infants were recruited in two phases over two calendar years. Each recruitment phase took place over approximately 6 months and the two recruitment phases were separated by approximately 6 months. The cohort was monitored for approximately four years, until each respective phase had experienced at least 3 RSV epidemics. During RSV epidemics, active surveillance visits by field workers were scheduled every week. Surveillance was also carried out if infants presented to the research outpatient clinic or if they were admitted at KDH. Home visits which identified signs of lower respiratory infection, resulted in referral to the clinic. Caregivers were asked to visit the clinic if they identified symptoms of respiratory infection in the children recruited in the study. Nasal washes were collected during home or clinic visits if in the preceding week, they had been observed to have either (i) difficulty in breathing (ii) a runny nose or nasal congestion or (ii) an acute cough. In the paediatric ward, infants identified to have either a lower respiratory tract infection, bronchiolitis or severe/very severe pneumonia had nasal wash or nasal pharyngeal aspirate samples collected. Collected nasal samples were tested for presence of RSV antigen by IFAT. If RSV was identified in nasal secretions, an acute serum sample was collected and a convalescent serum sample was thereafter collected after a period of approximately one month.
The RSV household transmission Study

This study was designed to characterise the chains of transmission of RSV within the household. Between November 2009 and June 2010, the study recruited 43 households in which all members were repeatedly sampled every 3 to 4 days (irrespective of symptoms) over the duration of an RSV epidemic for evidence of infection with RSV. A range of other common respiratory viruses was also detected. Households were eligible for recruitment if they had a child born after the previous RSV epidemic and had at least one elder sibling to the infant. A total of 19,816 home visits were conducted in which 16,284 nasal flocked swabs (NFS) were collected from 554 participants. The studies described in this thesis investigated the development cytokine/chemokine responses in serially collected nasal flocked swab samples obtained from 10 infants within the household transmission study. These infants experienced at least one natural RSV infection over the course of follow-up and their cytokine/chemokine responses before, during and after infection are reported.

Ethical Considerations

In each of the studies detailed above, written informed consent was sought from the parents and guardians of the infants and children prior to sample collection. All studies received ethical clearance from the Kenya Medical Research Institute Ethical Review Committee.
Laboratory methods

Cell and virus culture

Test viruses were initially propagated on HEp-2 cells to amplify virus titre. Cells were grown in T-25 flasks to between 70-80% confluence in a 37°C humidified CO2 incubator. Contemporary virus strains Ken/A/2006 and Ken/B/2008, were isolated from the nasal washes of infants with acute RSV infection while historical strains A2 (Aus/A/1961) and 8/60 (Swe/B/1960) were kindly provided by Prof Pat Cane. 500μl of seed virus was diluted in 500 μl of minimum essential medium (MEM) containing 2.5% foetal calf serum (FCS) and penicillin/streptomycin (maintenance media). 1 ml of seed virus was transferred to the HEp-2 monolayer that had been washed twice with sterile Phosphate Buffered Saline (PBS). The flasks were then incubated for 2 hours at 37°C with intermittent inversion at 15 minute intervals to increase the likelihood of successful virus attachment to receptors on HEp-2 cells. The flasks were then replenished with 7ml of maintenance media and incubated for up to 5 days. The flasks were observed daily for evidence of virus mediated cytopathic effect (CPE). Once CPE was seen, the virus infected cells were dislodged from the surface of the flask and into the media. The newly established virus stocks were then aliquoted into 1 ml volumes and stored at -80°C for future use. To confirm successful virus infection, the new virus stocks were evaluated using immunofluorescent antibody testing (IFAT).

Immunofluorescent Antibody Testing (IFAT)

250 μl of new virus culture stocks were aliquoted into cytopsin funnels and centrifuged in a desktop centrifuge at 1000 rpm for 10 minutes. Cytoslides were then...
air dried for 30 minutes and fixed in cold acetone for 10 minutes. Following fixing, the slides were air dried for a further 5 minutes. A drop of an RSV detection reagent containing a mixture of a fluorescein isothiocyanate (FITC) conjugated anti-RSV antibody and evans blue counterstain was placed on the fixed cells on the cytoslides (Millipore). The slides were then incubated at 37°C for 30 minutes in a humidified CO₂ incubator. The slides were then washed three times in PBS and air dried for an hour. The dried slides were prepared using an oil immersion and examined at x100 magnification on a fluorescent microscope. Figure 3.1 (a) is an example of an immunofluorescent slide containing successfully cultured virus (Ken/A/2006), while figure 3.1 (b) is a negative control (HEp-2 cells).

![Figure 3.1](image)

Figure 3.1 (a) Immunofluorescence (bright apple-green colour) from an IFAT slide containing HEp-2 cells which were infected with the A2 strain of RSV while (b) is a negative control containing uninfected HEp-2 cells.

Plaque assay

Virus titre was determined using the plaque assay. HEp-2 cells were seeded on 96 well cell culture plates at a concentration of 20,000 cells per well and grown
overnight to confluence at 37°C in a humidified CO₂ incubator. 10-fold dilutions of stock virus were prepared as follows for inoculation onto the HEp-2 monolayer.

Neat virus 50 μl + 450 μl MEM = 10⁻¹ dilution.
10⁻¹ dilution 50 μl + 450 μl MEM = 10⁻² dilution.
10⁻² dilution 50 μl + 450 μl MEM = 10⁻³ dilution.
10⁻³ dilution 50 μl + 450 μl MEM = 10⁻⁴ dilution.

Media was removed from the cells on the 96 well plates and 50 μl of each virus dilution added to successive wells of the plate in duplicate. The plates were then incubated for 2 hours at 37°C in a humidified CO₂ incubator with intermittent agitation at 15 minute intervals. 150 μl of MEM containing 2.5% FCS was then added to each well and the plates incubated for 48 hours in a 37°C CO₂ incubator. After the 48 hour incubation, the cells were fixed with 100 μl/well methanol containing 0.5% hydrogen peroxide for 20 minutes. The plates were then washed twice with 200 μl/well of PBS. 100 μl per well of a 1/300 dilution of a mouse anti-RSV IgG (Novocastra, Leica corporation) was then added and the plates incubated at room temperature for one hour. The plates were then washed three times with 200 μl PBS per well followed by the addition of 100 μl/well of a 1/1000 dilution of goat anti-mouse IgG with a horseradish peroxidase (HRP) tag (Dako Corporation) and one hour incubation at 37°C.

A tablet of 3-amino-9-ethylcarbazole (AEC) (Sigma) was dissolved in 6 ml of dimethyl sulphoxide (DMSO) to give a 3.3 mg/ml concentration of AEC. The development substrate was prepared by adding 600 μl of this solution to 10 ml of 20
mM sodium acetate buffer containing 16 μl hydrogen peroxide. The sodium acetate buffer was adjusted to a pH of between 5.0 and 5.5 prior to addition of the AEC solution. 100 μl of the substrate solution then added to the test wells and the plates incubated for up to one hour at room temperature or until plaques were clearly distinguishable from the cell monolayer background. The substrate solution was then removed and the plates washed twice with 200 μl/well of PBS. Plaques were then counted using either low power microscopy or by using an ELISPOT reader with optimised read settings. Figure 3.2 is an example of RSV A2 plaque morphology under low power microscopy. To determine the virus concentration in the initial virus stock, the virus dilution that resulted in between 10 to 50 plaques was determined and this was then multiplied by the dilution factor to give the stock virus concentration in plaque forming units per ml (PFU/ml). After determination of virus titre, measurement of neutralising antibody in infant sera was carried out using a plaque reduction microneutralisation assay. This assay along with the modifications undertaken to optimise its output are discussed in detail in chapter 4.

Figure 3.2 The appearance of RSV plaques on a HEp-2 monolayer background. The plaques were developed using AEC
Measurement of cytokine/chemokine concentration using the MSD mesoscale platform

The concentration of cytokines/chemokines produced following natural infection was measured using the MSD mesoscale platform (Meso Scale Discovery, Gaithersburg, Maryland, USA). The MSD platform is a proprietary system designed to measure the concentration of up to 10 cytokines/chemokines from a single sample. The assay used in this study was in the 96 well multi-array format, in which multiple cytokines/chemokines were measured in each nasal sample. The assay is designed in a sandwich immunoassay format in which capture antibodies are either coated on a single spot in one microtitre plate well, or in which multiple spots, each coated with a capture antibody specific for a different analyte are arrayed at different positions on a single microtitre plate well. The capture antibodies bind to the cytokines/chemokines of interest in the patient sample, which are in turn bound by a detection antibody that contains a proprietary tag, SULFO-TAG. This tag is activated by the working electrode that is attached to the base of each well, resulting in the production of a chemiluminescent signal, whose magnitude corresponds to the concentration of the cytokine/chemokine of interest in the sample. Figure 3.3 shows an example of a four spot array format. In this study, the MSD system was used to measure the concentrations of 10 cytokines/chemokines in the nasal secretions of infants: interleukin (IL) -6, IL1-b, Tumor Necrosis Factor (TNF)-α, Macrophage Derived Chemokine (MDC), Macrophage Inflammatory Protein (MIP)1-β, IL-8, Interferon (IFN)-γ, IL-10, IL-4 and IL-5.
Figure 3.3 Illustration of a 4 spot MSD mesoscale plate. Each spot is coated with a capture antibody that is specific for a different analyte. These antibodies bind to the cytokines/chemokines of interest in the patient samples. The detection antibody, which is labelled using a proprietary tag (SULFO-TAG) is used to generate a chemiluminescent signal that is activated and subsequently detected by the working electrode.

Protocol for measurement of cytokines/chemokines in the nasal secretions of infants using the MSD mesoscale system

Using a mixed calibrator solution provided by the manufacturer, four-fold standard dilutions were prepared. After preparation of the calibrator dilutions, plates were blocked by addition of 25 μl/well of a blocking solution provided by the manufacturer. The plates were then sealed and incubated for 30 minutes at room temperature on a vibrating platform (600 rpm). After blocking, 25 μl/well of either patient sample or pre-diluted calibrators were added and the plates sealed and incubated at room temperature for 2 hours on a vibrating platform. The plates were then washed three times with PBS containing 0.05% Tween 20. 25 μl/well of a detection antibody solution that was specific for the analytes of interest was added. The plates were then incubated for a further 2 hours at room temperature on a vibrating platform. The plates were then washed 3 times and 150 μl of a read buffer...
provided by the manufacturer was added to each well. The plates were then read on a Sector 2400 Imager and the results analysed. Concentrations of cytokines/chemokines in individual patient samples were measured against the standard curves generated using manufacturer supplied calibrators.

Sequencing of the F and G genes of infecting RSV strains

RNA extraction and cDNA synthesis

Ribonucleic Acid (RNA) was extracted from infant nasal wash samples using the QIAamp Viral RNA mini kit (Qiagen, Germany) following the manufacturer’s instructions. The buffers required for carrying out RNA extraction are proprietary and were supplied by the kit manufacturer. 560 µl of buffer AVL (cell lysis buffer) was added to 140 µl of nasal samples, vortexed and incubated for 10 minutes at room temperature to facilitate cell lysis. 560 µl of absolute ethanol was then added and the reaction vortexed prior to its transfer to a QIAamp spin column. The reaction was centrifuged at 6000 x g for 1 minute. 500 µl of buffer AW1 was then added and the reaction tube centrifuged at 6000 x g for a further 1 minute. 500 µl of buffer AW2 was then added and the spin column centrifuged at 20,000xg for 3 minutes. Elution was done by addition of 60 µl of buffer AVE. The column was thereafter incubated for 1 minute, after which, a final spin of 6000 x g was carried for 1 minute resulting in the elution of the extracted RNA into a clean collection tube. The eluted RNA was subsequently used for complementary DNA (cDNA) synthesis. cDNA synthesis was carried out using the Omniscript Reverse Transcriptase Kit (Qiagen) following the manufacturer’s instructions. A 20 µl reaction mix containing reverse transcriptase buffer, deoxyribonucleoside triphosphates (dNTPs), reverse transcriptase enzyme and
random primers was added to 20 μl of the extracted RNA and incubated at 37°C for 1 hour. The synthesized cDNA was stored at -80°C for subsequent PCR amplification of both the F and G genes.

G Gene amplification and sequencing

G gene amplification was carried out using a nested PCR reaction. For each reaction, 25 μl of Taq PCR Master Mix was added to 1 μl of 25 mM MgCl2, 18 μl of RNase free water, 2 μl of the forward primer AG20 (5'-GGGGCAATGCAAACATGTCC-3') and 2 μl of the reverse primer F164 (5'-GTTATGACACTGGTATACCAACC-3'). The region amplified by these primers was between nucleotide 284 of the G gene and nucleotide 9 of the F gene. 4 μl of the cDNA sample, was then added to this reaction mix and thermocycled using the following conditions: 50°C for 30 min, 95°C for 15 min and then 40 cycles of 94°C for 30 sec, 54°C for 30 sec and 72°C for 1 min. A final extension of 10 min at 72°C was included. The nested PCR utilised 2 μl of the primary PCR product in the reaction mix described above. For the nested PCR, the forward primer was BG10 (5'-GCAATGATAATCTCAACCTC-3') and the reverse primer was FI (5'-CAAATCCATTGTTATTGCC-3'). Thermocycling conditions were as follows: 95 °C for 2 min, followed by 30 cycles of 95 °C for 45 sec, 54 °C for 45 sec, 72 °C for 1 min, followed by a final extension at 72 °C for 5 min. Successful amplification was confirmed by running the secondary PCR products on a 2% agarose gel. PCR products were purified using the QIAquick purification kit (Qiagen) following the manufacturer's instructions. Sequencing of the G gene products was done using the BigDye terminator chemistry on the 3130xl ABI instrument. For each sequencing reaction, 0.5 μl of the ready reaction premix (ABI) was added to 1.75 μl of 5X sequencing buffer, 1 μl of 5 μM primers (BG10 and F1) and 5.25 μl of water.
1.5 μl of the cleaned second round PCR product was used as the template in the reaction. Thermocycling then carried out using the following conditions: 25 cycles of 96°C for 10 seconds, 50°C for 10 seconds, and 60°C for 4 min. The sequencing extension products were then purified using ethanol precipitation. For each reaction, 8 μl of deionised water was added to the reaction tube, followed by 32 μl of 95% ethanol. The reaction tubes (on 96 well PCR plates) were then inverted several times and incubated at room temperature for 15 minutes to precipitate the sequencing extension products. The reaction vessels were then centrifuged at 2000 x g for 45 minutes after which the supernatants were discarded. The reaction vessels were inverted on paper towels and centrifuged for a further 1 minute at 700 x g. The resulting pellets were then dissolved in 3 μl of loading buffer consisting of formamide and EDTA at a ratio of 1:5. The samples were finally loaded on the ABI 3130xl genetic analyser and the sequencing reaction initiated.

F gene amplification and sequencing

RNA extraction and cDNA synthesis was carried out as described in the previous section. Amplification of the F gene product was done using similar reaction conditions as those of the first round G gene PCR and the following primers: primers FRSV-U (5'-GGCAAAATAACAATGGAGTTG-3') and FRSV-4R (5'-AAGAAAGATACTGATCCTG -3'). The region amplified by these primers was between nucleotide 121 and 918 of the F gene. The thermocycling reaction adopted similar reaction conditions as the primary G gene PCR, with an annealing temperature of 52°C. The products of this PCR were purified, precipitated and sequenced as above.
Chapter 4 - Development of Plaque reduction microneutralisation assay

Introduction

Traditional plaque reduction neutralisation assays suffer from a number of critical shortcomings that have limited the widespread use of these assays. Key among these is the labour intensive element of microscopic plaque enumeration that is necessary for the determination of endpoint titres. The reliability of data obtained using this manual enumeration technique is brought into question by its inherent subjective bias. Even when carried out by the same individual, the reproducibility the results can be reasonably be assumed to vary considerably depending on many intra operator factors that vary from assay to assay. For example, operator fatigue could be argued to significantly influence the reproducibility of results.

The results presented in this thesis were primarily based on the measurement of serum neutralising antibody titres in infant sera. In order to improve the reliability of the estimates measured using this assay, a number of modifications were incorporated into the assay. This chapter will discuss the general protocol used in the neutralisation assays as well as the development of a high throughput plaque enumeration system.
Methods

Plaque Reduction Neutralisation Assay

Each test serum sample was initially diluted 1:20 in MEM and complement cascade proteins inactivated by heating the samples in a 56°C water bath for 30 minutes. The samples were then double diluted from 1:20 to 1:10,240 in a volume of 50 μl/well. Each dilution was aliquoted in duplicate. 50 pfu of test virus in a volume of 50 μl MEM was then added to the wells containing 50 μl of pre-diluted serum. The 100 μl serum/virus mix was then thoroughly mixed by repeated pipetting. Each plate contained 3 test samples and one positive control consisting of pooled adult sera to track assay reproducibility as well as a virus-only control. The serum/virus mix was incubated at 4°C for one hour to facilitate virus neutralization by serum antibodies, after which the neutralization reaction was transferred to a confluent monolayer of HEp-2 cells on 96 well plates. These plates were incubated for 2 hours at 37°C in a humidified CO₂ incubator, with intermittent mixing at 15 minute intervals to enhance the likelihood of un-neutralized virus attaching to cell surface receptors. After the 2 hour incubation, the plates were replenished with 100 μl/well of MEM containing 2.5% FCS and incubated for 48 hours in a 37°C humidified CO₂ incubator.

After 48 hours, media was removed from the cells and the plates fixed by addition of 100 μl/well methanol containing 0.5% hydrogen peroxide for 20 minutes. The plates were washed two times with 200 μl/well of PBS. 100 μl/well of a 1/300 dilution of a mouse anti RSV IgG (Novocastra, Leica Corporation) in PBS was added and the plates incubated at room temperature for 1 hour. The plates were thereafter washed 3 times with and 100 μl/well of a 1/1000 dilution of goat anti-mouse IgG with a
horseradish peroxidase (HRP) tag (Dako Corporation) added. The plates were then incubated at room temperature for an hour. After this incubation, the plates were washed three times and a substrate consisting of AEC and sodium acetate added as described in chapter 3. Plaques were counted using an ELISPOT reader with optimised read settings. A detailed description of these optimisations will be discussed in the next section. Figure 4.1 shows an example of a fully developed plate in which the plaques are clearly visible by macroscopic examination.

![Image of a plate with plaques](image)

Figure 4.1 Illustration of the appearance of a plate at the completion of PRNA assay. Plaques can be clearly seen as sharp brown spots by the unaided eye.

Development of high throughput plaque counting using an ELISPOT reader

In order to increase the throughput of the neutralisation assay as well as eliminate the subjective bias associated with manual microscopic counting, an automated plaque enumeration technique was developed. This technique relied on a conventional
ELISPOT reader (AID, Autoimmun Diagnostika, Germany) for the identification and enumeration of plaques on 96 well tissue culture plates. Due to variations in the plaque phenotypes of different strains of RSV, it was necessary to optimise the read settings of each individual virus in order to increase both the sensitivity and specificity of enumeration. Figure 4.2 shows the varying plaque morphologies of the two test strains of RSV B used in this study.

![Image of plaque morphologies](image)

Figure 4.2 Plaque morphologies of two strains of RSV B which were grown to approximately comparable titres are shown. (a) shows the plaque morphology of the 8/60 (Swe/B/1960) while (b) shows the plaque morphology of Ken/B/2008. After a 48 hour culture, 8/60 plaques are considerably larger relative to Ken/B/2008 plaques.

Optimisation of read settings was carried out by adjusting 2 parameters: plaque size and plaque intensity. The intensity parameter was used to set the intensity (darkness) threshold for counting plaques. The value of this parameter represents the difference between the intensity of the peak of the plaque and its surrounding background. Intensity, which is measured in brightness units, took on values between 0 (White) to 255 (Black). Objects whose intensity values that fell below the set ranges were not counted as plaques. The size parameter was used to set the minimum size in pixels.
that an object needed to have in order to be recognized as a plaque. Objects whose size in pixels was outside the set values for this parameter were similarly not included in the final plaque count. This parameter took on values ranging from 1 to 5000. As a result of differing plaque morphologies, optimal plaque settings were determined for each virus strain used in the study. These were the settings that resulted in a final count that most closely conformed to manual plaque counting. Once the optimal parameters had been decided, plates were placed on the ELISPOT reader and read with the optimised settings. To facilitate the automated reading, a white sheet of paper was attached to the base of each plate prior to insertion into the ELISPOT reader in order to maximise the contrast between the dark brown plaques and the clear cell monolayer background. The optimal size and intensity parameters for the different test strains used in this study are shown in table 4.1.

<table>
<thead>
<tr>
<th>Virus/Setting</th>
<th>Size</th>
<th>Intensity</th>
</tr>
</thead>
<tbody>
<tr>
<td>A2</td>
<td>120-5000</td>
<td>50-255</td>
</tr>
<tr>
<td>8/60</td>
<td>80-5000</td>
<td>35-255</td>
</tr>
<tr>
<td>Ken/A/2006</td>
<td>100-5000</td>
<td>50-255</td>
</tr>
<tr>
<td>Ken/B/2008</td>
<td>40-5000</td>
<td>35-255</td>
</tr>
</tbody>
</table>

Table 4.1. The optimal size and intensity and parameters of the four test viruses used in this study. These parameters produced automated counts that were most closely related to microscopy counts.

Validation of automated plaque counting using an ELISPOT reader

In order to confirm the accuracy of the ELISPOT reader plaque counting technique, parallel enumeration of plaques by both the ELISPOT reader and by microscopy was carried out. Serial 2-fold dilutions of the A2 strain were used to infect a monolayer of
HEp-2 cells from a starting titre of approximately 50 pfu/well in duplicate. Three experienced laboratory technicians were independently asked to microscopically count the number of plaques present in each well. The mean count at each dilution was then obtained for all three readers. The same plate was also subjected to enumeration by the ELISPOT reader using optimised count settings and the mean count at each dilution calculated. A comparison of the mean counts at each dilution of virus as determined by both techniques is shown in figure 4.3.

![Graph showing comparison of mean plaque counts at different dilutions of virus by three human readers and the ELISPOT reader. The Y axis contains the number of plaques identified in each instance, while the X axis shows the range of serial dilution from a starting titre of 50 pfu.](image)

Figure 4.3 Comparison of mean plaque counts at different dilutions of virus by three human readers and the ELISPOT reader. The Y axis contains the number of plaques identified in each instance, while the X axis shows the range of serial dilution from a starting titre of 50 pfu.
To assess the level of agreement between counts obtained by the ELISPOT reader and manual counting, Spearman correlation analysis was carried out. For this analysis, the mean plaque count at different dilutions of virus was obtained. The strength of association between the mean manual and ELISPOT counts measured using Spearman correlation analysis, was found to be high \((r=0.98, p<0.0001)\), suggesting a high level of agreement between the manual and automated plaque counting techniques. The relationship between manual and automated plaque counting is shown graphically in figure 4.4. As a result of the high degree of agreement, all subsequent enumeration of plaques was carried out using the ELISPOT reader.

![Graph showing the relationship between automated and manual plaque counting](image)

Figure 4.4 The relationship between automated and manual plaque counting is shown in this figure. The y axis represents the mean plaque count obtained by the ELISPOT reader, while the x axis represents mean counts by 3 manual readers. The association between the two methods was tested using Spearman’s correlation analysis. The spearman correlation coefficient \((r)\) and its corresponding p value are shown.
Calculation of neutralising dose 50 (ND$_{50}$) endpoint using the Spearman-Karber method

Neutralizing antibody titres in this study were measured as ND$_{50}$ endpoint titres using the Spearman-Karber method (Cohen et al., 2007). This method approximates the serum dilution required to halve the initial titre of virus, which in the case of this study, was approximately 50 plaques. Thus the neutralizing titre was estimated as the dilution of sera that permitted the development of approximately 25 plaques.

The Spearman-Karber formula is expressed as follows:

$$\log_{10} \text{ND}_{50} = m - \Delta \left(\Sigma p - 0.5 \right)$$

Where m is the log$_{10}$ dilution of the highest dilution of serum

(i.e. $\log_{10} \left(1/10,240 \right) = -4.01$)

and Δ is the constant interval between dilutions expressed as log$_{10}$

(i.e. $\log_{10} \left(2 \right) = 0.3010$)

and $\Sigma p = x_1/y + x_2/y + x_3/y + x_4/y + x_5/y + x_6/y$

where x_1 is the number of plaques for the first well, x_2 for the second well and so on, and y is the mean number of plaques for the virus (no-serum) control wells.

Figure 4.5 shows an example of the neutralisation profile of strain A2 by different dilutions of infant serum.
Figure 4.5 The neutralisation profile of RSV A2 by increasing dilutions of sera obtained from one infant is shown. The y axis shows the mean number of plaques that were observed at varying dilutions of serum (the serum dilutions are shown on the x axis). The dotted lines are used to indicate the serum dilution that results in the development of 25 plaques.

An example calculation of the neutralizing antibody titre as an ND$_{50}$ endpoint titre using the Spearman-Karber method is shown below. Table 4.2 contains the mean plaque count at increasing dilutions of serum – these data are used in the titre calculation example.
Table 4.2 The mean (of two) plaque counts at varying dilutions of infant sera are shown. These data are used in the example of titre calculation using the Spearman-Karber method.

<table>
<thead>
<tr>
<th>Well number</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
<th>10</th>
</tr>
</thead>
<tbody>
<tr>
<td>mean plaque count</td>
<td>0</td>
<td>2</td>
<td>11</td>
<td>24</td>
<td>42</td>
<td>46</td>
<td>52</td>
<td>48</td>
<td>53</td>
<td>52</td>
</tr>
<tr>
<td>Serum dilution (1:x)</td>
<td>20</td>
<td>40</td>
<td>80</td>
<td>160</td>
<td>320</td>
<td>640</td>
<td>1280</td>
<td>2560</td>
<td>5120</td>
<td>10240</td>
</tr>
</tbody>
</table>

Implementation of the Spearman-Karber formula is shown in expressions i-iv below.

\[
\log_{10} ND_{50} = -4.01 - (-0.301 (0/50+2/50+11/50+24/50+42/50+46/50+52/50 +48/50 +53/50 +52/50 - 0.5)) \quad i \\
\log_{10} ND_{50} = -2.17 \quad \quad \quad \quad \quad ii \\
\text{Anti-log of } -2.17 = 148 \quad \quad \quad \quad iii \\
ND_{50} (PRNT)= 148 \quad \quad \quad \quad iv \\
\]

For comparison, the neutralizing titre is inferred using the data shown on figure 4.5. This is done by using the linear part of the curve to estimate the serum dilution that corresponds to a plaque count of 25 on the y axis (shown using the dashed lines on figure 7). The \(ND_{50} \) value obtained through the Spearman-Karber formula is 148, while that obtained by graphical inference is approximately 160.
Chapter 5 - Neutralising antibody responses to natural RSV infection

Introduction

The group replacement dynamics of RSV at the population level (Cane et al., 1994, Waris, 1991) suggest that population level immune selection is a key factor in the transmission of the virus. Mathematical modelling studies have shown that the assumption of group-specific immunity is sufficient to reproduce the observed group replacement dynamics (White et al., 2005).

Despite RSV’s ability to re-infect throughout life (Henderson et al., 1979), individuals develop natural resistance against severe disease. While factors such as physiological maturation of the respiratory system may account for some resistance from severe disease (Dunnill, 1962), neutralising antibodies are thought to be a key feature of protective immunity and correlate strongly with protection from severe disease (Glezen et al., 1981a) and infection (Hall et al., 1991, Lee et al., 2004). The role of antigenic variation in re-infection has to date not been clearly elucidated, however the extent of nucleotide and amino acid variation in the F and G genes of RSV A and B, provides some basis to suggest that protective immune responses targeted at these proteins may be variant specific. Although animal challenge studies have confirmed that the neutralising response is strongly group-specific, no conclusive data on the group-specificity of the human neutralising response has been published.
The failure by previous human cross neutralisation studies to reveal a group-specific component to the neutralising response (Coates et al., 1963, Wulff et al., 1964) may be attributed to certain study design shortcomings that may have obscured the ability to detect a significant difference between homologous and heterologous neutralising responses. The lack of definitive analysis of the molecular and antigenic characteristics of the infecting strains for example impedes proper interpretation of the data arising from these studies.

A number of studies have explored targets of the neutralising response. By use of monoclonal antibodies, a number of sites on the F and G proteins have been identified to be the targets of the neutralising response (Arbiza et al., 1992, Lopez et al., 1990, West et al., 1994, Connor et al., 2001, Agenbach et al., 2005). Neutralising antibody epitopes have been identified in a number of sites on the F1 subunit of the F protein (Trudel et al., 1987b, Lopez et al., 1990, Martin-Gallardo et al., 1991) as well as the central region of the G protein (Murata et al., 2010, Garcia-Barreno et al., 1992). Analysis of the location of these neutralising epitopes on the F proteins of wild-type strains of RSV has revealed that these epitopes are located on regions of the protein that contain a number of group conserved amino acids (Agenbach et al., 2005). It is possible that amino acids that are conserved within but not between groups may have an impact on the specificity of the neutralising response directed at these epitopes.

The effect of pre-existing antibodies on the infant neutralising antibody response has been studied extensively. There is evidence that suggests that the infant neutralising response to infection is masked by maternally-derived antibodies (Murphy et al., 1986b, Parrott et al., 1973). For this reason, it is thought that vaccination in early
infancy is unlikely to be beneficial since the infant's native response to vaccination would be reduced in the presence of maternal antibody (Murata, 2009). It is however possible that the failure of young infants to mount a high neutralising response following infection or vaccination may be related to immunological immaturity and not solely the presence of pre-existing antibody of maternal origin. There is a paucity of data demonstrating the relationship between the ability to seroconvert to vaccination or natural infection and age among infants with a diverse range of pre-existing antibody titres.

Chapter Aims

This chapter aims to give a general description of the serum neutralising antibody response following natural infection in infants. It will explore the natural distribution of both acute and convalescent phase neutralising antibodies among paediatric RSV admissions. The relationship between acute stage neutralising antibodies and several clinical features of severe pneumonia will be explored with a view to identifying protective associations. It will further look at the effect of both age and pre-existing antibody on the ability of infants to seroconvert following natural infection. The genetic relationship between RSV A and RSV B infecting strains in terms of amino acid identity at both the F and G gene level will be explored. Regions on the F and G proteins of the infecting strains that are thought to be targets of neutralising antibodies identified from the published literature will be mapped on F and G protein sequences of infecting strains. This chapter will finally look at the group-specificity of the serum neutralising response following natural infection.
Methods

Study population, sampling and molecular characterisation of test and infecting viruses

Nasal washing samples were obtained from children less than 60 months of age admitted to Kilifi District Hospital (KDH) with syndromically defined severe or very severe pneumonia. RSV was diagnosed by Immunofluorescent Antibody Test (IFAT, Millipore Corporation). Multiplex RT-PCR (Reverse Transcriptase Polymerase Chain Reaction) was used to determine if the infecting virus was from group A or B. An acute serum sample was collected from all children at admission and a convalescent serum sample from RSV positives approximately 4 weeks later. Nasal wash and serum samples were all stored at -80°C prior to use in the present study. Representative contemporary and historical strains of RSV were used as the test strains in this study. These were: the A2 genotype (RSV A; isolated in Australia in 1961), Kil/A/2006 (RSV A; Kenya, 2006), 8/60 (RSV B; Sweden, 1960) and Kil/B/2008 (RSV B; Kenya, 2008). The attachment and fusion protein genes of all the test viruses as well as a number of infecting strains were sequenced using previously described methods described in details in Chapter 3.

Plaque assay and microplaque reduction and neutralisation assay.

Titres of test strains were determined by plaque assay. Briefly, tenfold dilutions of test virus were made in minimum essential media (MEM) and inoculated onto HEp-2 cultures for 48 hours in 96-well plates. Cells were then fixed in methanol, washed and incubated at room temperature with a primary mouse anti-RSV IgG monoclonal antibody (Leica microsystems) followed by a secondary horseradish peroxidase linked
rabbit anti mouse IgG (Dako, Denmark). Plaques were developed using aminoethylcarbazole (AEC). An ELISPOT reader was used to count the number of plaques in each well. The plaque reduction neutralisation assay was carried out by preparing serial 2-fold dilutions of sera in MEM. 50 pfu of test virus were added to each dilution and following incubation for 1 hour at 4°C, the neutralisation reaction was inoculated onto HEp-2 cells and incubated at 37°C for 48 hours. Plaque development and enumeration were done as above. Neutralising antibody titres were calculated as neutralising dose 50 (ND50) values using the Spearman-Karber method (Cohen et al., 2007) and expressed as Plaque Reduction Neutralisation Titres (PRNT). These titres were normalised using log10 transformation for statistical analyses. A seroconversion was defined as a four-fold or greater rise in the neutralising antibody titre between the acute and convalescent phases of infection.

Statistical Analyses

Data analyses were done using Stata (version 11.1; StataCorp). Multiple regression analysis was used to compare the acute phase neutralising titres in different age classes. Comparison of homologous to heterologous responses in different age classes was done by comparing their mean fold rises in titre. Multiple regression analysis was used to test if the difference in the magnitude of the neutralising response to homologous virus (in terms of log fold rise in titre) in a particular age class was significantly different from the magnitude of the heterologous neutralising response in the same age class. Spearman rank correlation analysis was used to test the association between age and the magnitude of the neutralising response as well as the relationship between the acute phase response and the magnitude of the neutralising response. A logistic regression model was used to calculate the odds ratios of developing different features of severe
pneumonia in infants and children who had high or low tides of acute stage neutralising antibody. Finally, paired comparison of infant response to both homologous and heterologous virus was done using McNemar's χ^2 test. The analytical output for the data shown in this chapter is presented in appendix 1.

Results

Age distribution and description of study participants

Neutralising antibodies were measured in the acute or convalescent sera of 118 paediatric pneumonia admissions with a median age of 4.7 months (range 0.2 – 41 months). 58.5% of the infants in the study were under 6 months of age, 21.2% were between 6 and 11.9 months of age while 20.3% were over 12 months of age. The age distribution of study participants is presented in figure 5.1. Most of the study participants were admitted with severe pneumonia. Very severe pneumonia was restricted to infants below 12 months of age while mild disease occurred only among infants who were over 12 months age (Table 5.1)
Figure 5.1 Distribution of ages at admission for paediatric inpatients whose acute and convalescent sera were used in this study

Table 5.1 The pneumonia status of infants and children admitted. The data are stratified by age.

<table>
<thead>
<tr>
<th>Age (months)</th>
<th>WHO Pneumonia status (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>None</td>
</tr>
<tr>
<td>0 - 5</td>
<td>0</td>
</tr>
<tr>
<td>6 - 11.9</td>
<td>0</td>
</tr>
<tr>
<td>12+</td>
<td>13.0</td>
</tr>
<tr>
<td>Total</td>
<td>2.73</td>
</tr>
</tbody>
</table>

The study participants were recruited in the course of 3 RSV epidemics: 20 individuals were recruited in the 2002/2003 RSV epidemic in Kilifi, 74 individuals were recruited from the 2005/2006 epidemic and 24 individuals were recruited from the 2007/2008 epidemic. During the 2002/2003 RSV epidemic, RSV A and B appeared to co-circulate in roughly equal proportions (Nokes et al. in preparation), while the 2005/2006 and 2008/2009 epidemics appeared to be strongly dominated by RSV A and B respectively.
RSV inpatient surveillance data in Kilifi District Hospital over the sampling period is shown in figure 5.2.

Figure 5.2 The temporal distribution of RSV A and B transmission over 7 years in Kilifi, Kenya. The dark bars represent transmission of RSV A, the grey bars represent transmission of RSV B while the red bars represent the samples that were used in this study. The temporal group replacement dynamics of RSV in Kilifi are also shown in figure 2.2

The infecting viruses isolated from each infant were classified as belonging to antigenic group A or B by multiplex PCR (Scott et al., 2004, Stockton, 1998). 20 (100%) of the infants recruited in the 2002/2003 epidemic were infected with RSV B viruses that did not contain the 60 nucleotide duplication in the G gene (non-BA strains), 73 (98.6%) infants in the 2005/2006 epidemic were infected with RSV A while 1 (1.4%) was infected with RSV B, while 24 (100%) of the infants recruited in the 2008 epidemic were infected with RSV B viruses that contained the 60 nucleotide duplication. These data as well as the median ages of the study participants infected with either group are presented in table 5.2.
<table>
<thead>
<tr>
<th>Epidemic</th>
<th>A</th>
<th>B</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>2002/2003</td>
<td>N/A</td>
<td>7.1 (20)</td>
<td>7.1 (20)</td>
</tr>
<tr>
<td>2005/2006</td>
<td>4.06 (73)</td>
<td>8.2 (1)</td>
<td>4.1 (74)</td>
</tr>
<tr>
<td>2007/2008</td>
<td>N/A</td>
<td>6.2 (24)</td>
<td>6.2 (24)</td>
</tr>
<tr>
<td>Total</td>
<td>4.6 (73)</td>
<td>7.1 (45)</td>
<td>4.7 (118)</td>
</tr>
</tbody>
</table>

Table 5.2 The median ages of RSV A and B infected infants recruited into the study. The data are stratified by the epidemic during which the infections occurred.

Distribution of serum neutralising antibodies

Frequency distribution plots of neutralising antibodies at the acute and convalescent phases of infection were generated. The titres used in these analyses were mean titres obtained from four test viruses i.e. A2, 8/60, Ken/A/2006 and Ken/B/2008. The frequency distributions of the acute and convalescent phase neutralising antibody titres showed that both were skewed sharply to the left with median values of 216 PRNT (range 27 – 1309 PRNT) and 490 PRNT (range 47 – 1738 PRNT) respectively and corresponding mean values of 277 PRNT (SD 213) and 591 PRNT (SD 418) respectively (figure 5.3). Since many of the statistical analyses that were to be applied on these datasets are based on the presumption of normality, it was necessary to transform the data in order to normalise them. A logarithm 10 transformation was applied to both acute and convalescent antibody titres and the resulting distributions analysed for evidence of normality. The transformed distributions appeared to approach normality, with mean and median values generally occurring at the centre of the
distributions (figure 5.3). The log transformed acute and convalescent phase neutralising antibody distributions had medians of 2.3 PRNT (range 1.4 – 3.1 PRNT) and 2.7 PRNT (1.7 – 3.2 PRNT) respectively and means of 2.3 (SD 0.33) and 2.6 (SD 0.35) respectively. Since the log transformed data appeared to be normally distributed, they were used as the basis of all subsequent statistical analyses.

Figure 5.3 Acute and convalescent sera from 118 infants infected with RSV were normalised by logarithmic transformation. (a) Acute phase neutralising antibody titres expressed as Plaque Reduction Neutralisation Titres (PRNT) (b) Log transformed Acute phase titres expressed as log_{10} (PRNT) (c) Convalescent phase neutralising antibody titres expressed PRNT (d) Log transformed convalescent phase titres expressed as log_{10} (PRNT). The titres used in these analyses were mean titres to four test viruses (A2, 8/60, Ken/A/2006 and Ken/B/2008)
The age dynamics of serum acute and convalescent phase neutralising antibody responses of infants and children admitted with pneumonia

Distribution of acute and convalescent phase responses by age

In order to assess the magnitude of the neutralising response to natural infection an overlay of log transformed acute and convalescent titre distributions was generated (figure 5.4). Visual observation of the overlaid distributions showed marked separation between the acute and convalescent titres. There was a 2-fold difference between the mean acute antibody titre (2.3 log\textsubscript{10} PRNT) and the mean convalescent antibody titre (2.6 log\textsubscript{10} PRNT). The overlay of the acute and convalescent phase distributions is shown in figure 5.4.

![Figure 5.4 Overlay of log transformed acute and convalescent phase neutralising antibody titre distributions from the sera of 118 infants infected with RSV. Sera was tested against 4 test viruses (A2, 8/60, Ken/A/2006 and Ken/B/2008) and a mean titre obtained for use in these analyses. The light grey bars represent acute phase titres while the dark bars represent convalescent phase titres](image-url)
In order to explore the effect of age on the neutralising response, the overlaid distributions were stratified by age. Three age classes were defined for these analyses: 0-5.9 months, 6-11.9 months and 12 months of age and above. The results of this stratification showed that age appeared to have a considerable influence on the neutralising antibody response to RSV. There was some difference between the acute and convalescent phase neutralising antibody distributions in the youngest age class (0-5.9 months of age) with mean values of 2.46 log_{10} PRNT and 2.54 log_{10} PRNT respectively (t=-1.9, p=0.03). This difference increased substantially in the 6-11.9 month age class, where the convalescent phase distribution shifted sharply to the right with a mean of 2.8 log_{10} PRNT and the acute phase distribution shifted to the left with a mean of 2.1 log_{10} PRNT. This difference was highly significant (t=-12.4, p<0.0001). In children over 12 months of age, the convalescent phase distribution shifted further to the right with a mean of 2.8 log_{10} PRNT relative to the mean acute phase titre of 2.3 log_{10} PRNT. This difference was also highly significant (t=-8.6, p<0.0001). These data are graphically depicted in figure 5.5.
Figure 5.5 Age stratified comparison of acute and convalescent phase titre distributions. Acute and convalescent phase distributions were overlayed in 3 age classes: 0-5 months (n=69), 6-11 months (n=25) and 12+ months (n=24). The mean titre from 4 test viruses was used in this analysis – i.e. A2, 8/60, Ken/A/2006 and Ken/B/2008.
Age dynamics of the acute phase response

The age dynamics of pre-existing antibodies were analysed in the acute phase samples obtained from infants of different ages. Neutralising titres were stratified into seven age classes: 0-0.9 \((n=11) \), 1-1.9 \((n=18) \), 2-2.9 \((n=16) \), 3-3.9 \((n=6) \), 4-4.9 \((n=14) \), 5-5.9 \((n=6) \), 6-11.9 \((n=25) \) and 12+ \((n=24) \) months of age. The neutralising titres used in these analyses were the mean titres to 4 test viruses: A2, 8/60, Ken/A/2006 and Ken/A/2008. The results of regression analysis showed that there was a progressive decline of acute phase antibodies in the first year of life. However comparison of the acute titres of infants in the 6-11.9 month age class with those of infants above 12 months of age showed that the older infants had a significantly greater mean titre of acute stage neutralising antibodies relative to the younger group \((p<0.0001) \). These data are shown in figure 5.6.

Figure 5.6 The dynamics of the acute phase response by age. Each bar represents the indicated age class. The difference in the mean neutralising titres successive age classes were tested for statistical significance (indicated by the p values). The lines in the middle of the boxes represent median titres while the lower and upper bounds of the boxes represent the 25th and 75th percentiles respectively. The upper and lower whiskers represent values that are up to 1.5 times below and above the 25th and 75th percentile respectively. The dots represent outliers which are values that fall outside the bounds defined by both the upper and lower whiskers.
Development of the neutralising response with age: comparison of the acute and convalescent responses.

The difference between the acute and convalescent phase responses was analysed by comparing the differences between these responses within the age structure defined above. The results of these analyses showed that in the youngest infants (0-0.9 months old) the mean convalescent phase response was significantly lower than the acute phase response (p=0.05). This difference was lost in the 1-1.9 (p=0.15), 2-2.9 (p=0.09) and 3-3.9 (p=0.6) month age classes, where no difference between the acute and convalescent phase responses was seen. However the convalescent phase responses were significantly greater than the acute phase responses in the 5-5.9 (p=0.006), 6-11.9 (p<0.0001) and 12+ month age classes (p<0.0001). These data are shown graphically in figure 5.7.

Figure 5.7 Comparison of the acute and convalescent neutralising response in different age classes. Description of the different elements of the box and whisker plots are as described in figure 5.6. The p values indicated on the line traversing the acute/convalescent distributions in a particular age class indicate whether the differences in mean titre are significantly different.
Relationship between seroconversion and age

The relationship between the ability to seroconvert following natural infection and age was analysed. A seroconversion was defined as a four-fold or greater rise in the convalescent phase response over the acute phase response. The proportions seroconverting in different age classes were calculated and presented graphically in figure 5.8. Analysis of seroconversion rates in different age classes showed an increasing trend with age. In general the seroconversion rate between 0 and 3.9 months of age was less than 20%. The seroconversion rate between 4 and 5.9 months of age was between 20% and 40% while the seroconversion rate among infants who were 6 months or older was above 40%.

Figure 5.8 The proportions of infants seroconverting within different age classes A seroconversion was defined as a 4-fold or greater rise in titre from the acute to convalescent phases of infection. The height of the bars represent the proportion seroconverting within individual age classes while the lines traversing the bars indicate 95% confidence intervals about the proportions.
Next the relationship between the ability to mount a seroconversion and the titre of pre-existing antibodies was explored. The neutralising titres used in these analyses were the mean responses to 4 test viruses i.e. the A2, 8/60, Ken/A/2006 and Ken/B/2008. Acute stage neutralising titres were stratified into quartiles and the proportion of seroconversion in each quartile was calculated. There was a 90.2% seroconversion rate in the first quartile, a 59.6% seroconversion rate in the second quartile, a 13.5% seroconversion rate in the third quartile and no seroconversions (0%) in the fourth quartile (figure 5.9).

Figure 5.9 Acute phase titres stratified into quartiles and the proportions seroconverting in each quartile determined. The open circles denote the acute phase response, while the open diamonds denote the convalescent phase response.
Spearman correlation analysis was used to test the strength of association between the magnitude of the neutralising response (in terms of fold rise in titre) and age on one hand and the titre of pre-existing antibody present in the acute phase sample on the other. The results of these analyses which are presented in figure 5.10, show that there was a strong and statistically significant negative association between pre-existing (acute stage) titres and the magnitude of the neutralising response ($r=-0.75$, $p<0.0001$) and a moderate but statistically significant positive association between the magnitude of the neutralising response and the age ($r=0.6$, $p<0.0001$).
Figure 5.10 Relationship between the magnitude of the neutralising antibody response and (a) the acute phase titre and (b) age of infant. The y axes denote the magnitude of the change in neutralising antibody response expressed as log_{10} fold rise in titre from the acute to convalescent phase of infection. The x axes in (a) and (b) denote the acute phase titres and age of the infant respectively. Spearman correlation coefficients (r) and corresponding p values are indicated on each panel.
The relationship between neutralising antibodies and severe pneumonia

The relationship between the acute phase neutralising antibody titre and severity of RSV infection was explored by comparing the clinical outcome of disease and the neutralising titre at the acute stage of infection. The neutralising titres used in these analyses were the mean titres to 4 test viruses (A2, 8/60, Ken/A/2006 and Ken/B/2008). The acute sera of 106 infants for whom clinical pneumonia syndromic data were available were included in these analyses. Multivariate logistic regression analysis was used to estimate the relationship between acute phase neutralising antibodies and the following clinical features of WHO defined severe or very severe pneumonia: shock, flaring, indrawing, wheeze, hypoxia and crackles. A cutoff titre of \(\log_{10} 2.5 \) PRNT was selected in order to categorise acute stage titres in two classes: high and low level titres. The value of \(\log_{10} 2.5 \) PRNT was derived from a comparison of the frequency distributions of acute and convalescent phase antibodies since it appeared to be the point of separation between the two distributions (figure 5.4). The results of these analyses showed some evidence of protection by neutralising antibodies against shock (OR=0.3; p=0.016). Although not statistically significant, the odds ratios for flaring (OR=0.7; p=0.3), hypoxia (OR=0.7; p=0.6) and crackles (OR=0.8; p=0.6) were all below 1. There was no protective association between wheeze and indrawing and the acute stage neutralising response (figure 5.11).
Figure 5.11 The Odds Ratios of developing various clinical features of severe pneumonia among infants with high ($\geq 2.5 \log_{10}$ PRNT) and low ($< 2.5 \log_{10}$PRNT) acute phase neutralising antibody titres. A statistically significant association between high titres of pre-existing neutralising antibodies and protection from shock was found in the analysis.

Analysis of the genetic relationship between infecting RSV A and B strains

The F and G genes of 60 infecting RSV A and B viruses were partially sequenced in order to infer the level of genetic and antigenic relatedness between them. The region between nucleotide 284 of the G gene and nucleotide 9 of the F gene was sequenced. In the case of the F gene, the region between nucleotides 121 and 918 of the F gene was sequenced. Nucleotide and deduced amino acid sequences from different infecting strains were manually aligned and each position within the alignment analysed for evidence of variation. There was 78.7% nucleotide sequence identity between the F genes of infecting RSV A and B and 87.6% amino acid identity
between them. Infecting RSV A and B strains shared 45% nucleotide sequence identity at the G gene level and only 28.6% amino acid identity. These data are shown in table 5.3.

<table>
<thead>
<tr>
<th>Protein/gene</th>
<th>% identity (RSV A and B)</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Nucleotide</td>
<td>Amino acid</td>
</tr>
<tr>
<td>F</td>
<td>78.7</td>
<td>87.6</td>
</tr>
<tr>
<td>G</td>
<td>45.2</td>
<td>28.6</td>
</tr>
</tbody>
</table>

Table 5.3 The genetic relatedness between infecting strains of RSV A and B at the level of the F and G gene.

Analysis of variation on putative neutralising epitopes on the deduced F protein amino acid sequences of infecting strains.

Amino acid sequences of four neutralising antibody epitopes on the F protein were obtained from the published literature (Trudel et al., 1987b, Lopez et al., 1990, Martin-Gallardo et al., 1991, Bourgeois et al., 1991) and mapped on the F protein amino acid alignments of infecting strains. Each amino acid position was then analysed for evidence of conservation between and within groups. Two of the four neutralising antibody epitopes that were identified were located in regions of the protein that contained amino acids that were conserved within but not between groups. The first of these occurred between amino acid 205 and 225 (Bourgeois et al., 1991) where the glutamine (Q) residue at position 209 was perfectly conserved in all RSV B isolates sequenced but occurred as a perfectly conserved lysine (K) residue.
in all the RSV A patient isolates. The amino acid residue at position 213 within this epitope contained a serine (S) that was perfectly conserved in all RSV A isolates sequenced but that changed to isoleucine (R) in all RSV B isolates. Analysis of the neutralising antibody epitope that occurs between amino acids 221-236 (Trudel et al., 1987b) showed that the amino acid at position 228 within this epitope occurred as a conserved asparagine (N) in all RSV A isolates but changed to a Serine (S) in all sequenced RSV B isolates. The last two neutralising antibody epitopes that were analysed for evidence of group-specific variation occurred between amino acid residues 262-268 (Lopez et al., 1990) and 289-298 (Martin-Gallardo et al., 1991) and were found to be located on regions of the F protein that were perfectly conserved within and between the two groups. Figure 5.12 graphically shows the position of these epitopes within the deduced F protein amino acid sequence alignments of infecting strains.
Figure 5.12 Mapping of selected neutralising antibody epitopes on an alignment of a limited set of infecting F protein amino acid sequences.
Analysis of variation on putative neutralising epitopes on the deduced G protein amino acid sequences of infecting strains.

Analysis of neutralising antibody epitopes on the deduced G protein amino acid sequences of infecting strains was then carried out. Two neutralising antibody epitopes on the G protein were identified in the published literature (Garcia-Barreno et al., 1992, Murata et al., 2010) and highlighted on an alignment of deduced G protein amino acids of infecting strains. The first epitope was located between amino acids 151 and 172 of the G protein (Murata et al., 2010) while the second was located between amino acids 201 and 213 (Garcia-Barreno et al., 1992) – figure 5.13. Both epitopes were located on regions of the G protein that contained multiple group conserved amino acids as well as a smaller number of genotype-specific amino acids. The epitope located between amino acids 151-172 (Murata et al., 2010) contained 7 amino acids that were conserved within but not between groups, meaning that 32% of the amino acid content on this epitope was group-specific. Notably, the terminal 9 amino acids of this epitope’s 22 amino acids fell within the 13 amino acid motif that is perfectly conserved in all human RSV isolates (between amino acids 164 -176). At least one amino acid within this epitope was genotype-specific. The amino acid at position 160 contained an asparagine residue that was conserved in all the RSV A and RSV B isolates from the 2007/2008 epidemic (BA strains) but changed to a lysine in the RSV B isolates from the 2002/2003 epidemic (non-BA strains). Within the neutralising antibody epitope that fell between amino acids 201-213 (Garcia-Barreno et al., 1992), 3 amino acids (23% of the total epitope amino acid content) were conserved within but not between groups. There was one genotype-specific amino acid within this epitope: the amino acid at position 207 contained a threonine residue that was conserved in all RSV A isolates and all RSV B isolates that did not contain
the 60 nucleotide duplication (non-BA) but which changed to either a leucine or proline in BA strains of RSV B. Figure 5.13 is a graphic depiction of the location of these epitopes on an alignment of deduced G protein amino acid sequences of infecting strains.
Figure 5.13 Mapping of selected neutralising antibody epitopes on an alignment of a limited set of infecting G protein amino acid sequences.
Group-specificity of the neutralising antibody response

Neutralising antibody titres were classified as homologous if the group designation of the infecting strain matched that of the test strain and heterologous if the test and infecting strains were discordant at group level. Analyses of the group-specificity of the neutralising response were stratified by age to account for age specific differences in the infant response to RSV. Individuals were considered to have made significant responses to a specific virus strain if they made a four-fold or greater rise in the neutralising antibody response.

Sera from 32 RSV A infected individuals were assayed for neutralising antibody against both Kil/A/2006 and Kil/B/2006. Of these, the proportion that seroconverted to genotype Kil/A/2006 (50%) was significantly greater than the proportion that seroconverted to genotype Kil/B/2008 (12.5%; McNemar’s $\chi^2=12$; $p=0.0005$). Similarly sera from 25 RSV B infected individuals were assayed for neutralising antibody against Kil/A/2006 and Kil/B/2006 and of these the proportion who seroconverted to genotype Kil/B/2008 (40%) was significantly greater than the proportion who seroconverted to genotype Kil/A/2006 (8%; McNemar’s $\chi^2=8$, $p=0.008$).

Of 18 RSV A infected individuals whose sera were tested for neutralising antibody against prototype viruses A2 and 8/60, the proportion of individuals who seroconverted to the A2 genotype (28%) was greater than the proportion who seroconverted to the 8/60 (0%) genotype. This difference was found to be borderline significant (McNemar’s $\chi^2=5$, $p=0.06$). Among 20 RSV B infected individuals
whose sera was assayed for neutralising antibody against both the A2 and 8/60 strains, there was a statistically significant difference between the proportion that seroconverted to genotype 8/60 (65%) and the proportion that seroconverted to the A2 strain (10%; McNemar’s χ² = 11, p = 0.001).

Comparison of the homologous and heterologous neutralising antibody responses in different age classes was also done by analysing the differences between homologous and heterologous fold rises in titre. The test viruses in these analyses were local RSV A and B strains Ken/A/2005 and Ken/B/2008. In each age class the fold rise in titre to both homologous and heterologous virus was calculated by dividing the convalescent phase titre with the acute phase titre and the resulting figures normalised using a log 10 transformation. Multiple regression analysis was used to compare homologous and heterologous rises in titre to both RSV A and B. The homologous response to RSV A by RSV A infected individuals was significantly greater than their heterologous response to RSV B in (a) the 0-5 month age class (1.8 fold rise in titre vs. 0.5 fold rise in titre; p < 0.0001), (b) the 6-11 month age class (11.2 vs. 3.8; p = 0.002) and (c) the 12+ month age class (7.1 vs. 2.2; p = 0.001). Similarly the homologous response to RSV B by RSV B infected individuals was significantly greater than their heterologous response to RSV A in (a) the 0-5 month age class (2.7 vs. 0.7; p < 0.0001), (b) the 6-11 month age class (5.9 vs. 1.7; p < 0.0001) and (c) the 12+ month age class (4.3 vs. 0.9; p < 0.0001). These data are graphically depicted in figure 5.14.
Figure 5.14 Group-specific neutralising antibody responses to RSV infection. Acute and convalescent neutralising antibody responses to homologous and heterologous virus were compared among 118 infants with natural RSV infection. The first letter in each panel heading denotes the group designation of the infecting virus while the second letter denotes the group designation of the test virus. The light grey bars indicate the distribution of the acute phase response while the dark grey bars denote the distribution of convalescent responses. The lines in the middle of the boxes represent median titres while the lower and upper bounds of the boxes represent the 25th and 75th percentiles respectively. The upper and lower whiskers represent values that are up to 1.5 times below and above the 25th and 75th percentile respectively. The dots represent outliers which are values that fall outside the bounds defined by both the upper and lower whiskers. The x axis represents the age classes that were analysed while the y axis represents the neutralising antibody titre (PRNT). The number above each acute/convalescent pair denotes the mean fold rise in titre from the acute to convalescent phases of infection. Comparison of the magnitude of response (in terms of fold rise in titre) to homologous virus and heterologous virus is shown by the long bars traversing the panels. The p value denotes whether the difference between the homologous and heterologous response in a particular age class is statistically significant.
To account for the possible confounding of primary responses by prior undetected infections, a 69 infants born during an inter-epidemic period and who experienced what was assumed to be their first infection in the epidemic immediately following their births was selected. The odds ratio of seroconverting to both homologous and heterologous virus between this group and everyone else in the study was carried out using multiple logistic regression analysis. The results of this analysis showed that there was no difference in the ability of infants within the two groups to seroconvert to homologous or heterologous virus (Odds Ratio 1.8, p=0.4). Comparison by multiple linear regression analysis of the neutralising response of individuals who were born prior to the start of an epidemic and those born within an epidemic showed that there was no difference in their responses to homologous or heterologous virus.

The mean homologous response to RSV A was no different between individuals born prior to the start of an epidemic and those born during the epidemic (4-fold rise in titre vs. 3.1 fold rise in titre; p=0.4) nor was there a difference in their heterologous response to RSV B (1.1 vs. 0.7; p=0.3). Similarly, the homologous RSV B response by individuals born prior to an epidemic was no different from the response of individuals born in the course of an epidemic (4.2 vs. 3.7; p=0.4). There was similarly no difference in their heterologous response to RSV A (1.2 vs. 0.8; p=0.3).

These data are presented graphically in figure 5.15.
Figure 5.15 Comparison of neutralising homologous and heterologous neutralising responses among infants born at different times. The first letter in each panel heading denotes the group designation of the infecting virus while the second letter denotes the group designation of the test virus. The y axis shows the neutralising antibody titre (PRNT) while the x axis denotes the time of birth relative to the epidemic in which the infection occurred. The number above each acute/convalescent pair denotes the fold rise in titre. The p values denote whether the mean fold rise in titre to homologous or heterologous virus, varies by time of birth.
Association between cytokine/chemokine concentration/viral load and URTI in infants

The effect of viral load (recorded as the reciprocal of cycle threshold multiplied by 10) on illness among infants infected with RSV was evaluated by comparing mean RSV viral load in samples collected in the presence of Upper Respiratory Tract Infection (URTI) to viral loads in samples collected in its absence. Samples collected in the presence of URTI had significantly greater viral titres compared to samples collected in the absence of URTI. Figure 8.2 shows the distribution of viral loads among these two groups.
The contribution of different cytokines/chemokines in the development of URTI among infants irrespective of the infecting pathogen was assessed by comparing cytokine/chemokine concentrations in nasal samples collected in the presence of URTI to concentrations in nasal samples collected in the absence of URTI. 58% (n=58) of the nasal samples collected in this study were collected during an URTI episode. Nasal secretions collected during URTI episodes had significantly greater concentrations of IL-1β, IL-6, IL-8, TNF-α, MCP-4, MDC, MIP-1 β, IFN-γ and IL-10 relative to those collected in the absence of URTI. These data are shown in figure 8.3.
Figure 8.3 The distribution of different cytokines/chemokines in samples obtained from infants in whom symptoms of URTI were present (urti; n=58) or absent (no urti; n=42). Geometric mean concentrations and 95% confidence intervals are also indicated.
Comparison of cytokine/chemokine responses in RSV positive and rhinovirus positive samples

Samples found to be positive for either RSV or rhinovirus and negative for all other respiratory pathogens were compared for evidence of differential cytokine/chemokine production. Out of 100 samples tested for 16 respiratory pathogens, RSV was present as the only respiratory pathogen detected in 29 samples (out of a total of 33 RSV positive samples) while rhinovirus was exclusively detected in 21 samples (out of 21 rhinovirus positive samples). The total number of RSV and rhinovirus positive samples, irrespective of co-infection status is presented in table 8.1.

<table>
<thead>
<tr>
<th>RSV present</th>
<th>Rhinovirus present</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>No</td>
<td>46</td>
<td>67</td>
</tr>
<tr>
<td>Yes</td>
<td>33</td>
<td>33</td>
</tr>
<tr>
<td>Total</td>
<td>79</td>
<td>100</td>
</tr>
</tbody>
</table>

Table 8.1 Distribution of samples in the household study which were found to be positive for RSV, rhinovirus, both viruses or none of the viruses

A comparison of cytokine/chemokine concentrations in nasal secretions in which either RSV or rhinovirus was detected as the only respiratory virus is presented in figure 8.4. In general the levels of most cytokines/chemokines were higher in the presence of rhinovirus relative to RSV. The mean concentrations of IL-1β, IL-8, TNF-α, MDC and MIP-1 β were significantly greater in the presence of rhinovirus compared to RSV. In contrast, the mean concentration of IL-17 was greater in the presence of RSV relative to rhinovirus, although this difference was just below statistical significance (p=0.06). The mean concentrations of IL-6, MCP-4, IFN-γ and IL-10 were no different in the presence of either RSV or rhinovirus.
Figure 8.4 Comparison of geometric mean (with 95% CI) cytokine/chemokine concentrations in samples that were positive exclusively either for RSV (n=29) or rhinovirus (n=21)

Association between RSV Viral Load and cytokine/chemokine response

The association between RSV viral load and cytokine/chemokine concentration was measured using Spearman correlation analysis. In this study, an indirect measure of viral load was used. The reciprocal of the diagnostic real-time PCR cycle threshold value was presumed to be a good correlate of viral load. This value was multiplied by 10 to enable more convenient graphical presentation. Figure 8.5 shows the spearman correlation coefficients that describe the strength of association between viral load and cytokine/chemokine concentration. There was a moderate (r=0.5) and statistically significant positive association between the concentration of IL-6 and RSV titre. A
positive and statistically significant relationship between virus titre and cytokine/chemokine concentration was also found for IFN-γ (r=0.6, p=0.0004) and IL-10 (r=0.4, p=0.01). There was no statistically significant association between any of the remaining cytokines/chemokines and viral titre. These data are shown in figure 8.5.
Figure 8.5 The relationship between RSV viral load and cytokine/chemokine concentration. Viral load was calculated as the inverse of cycle threshold (ct) values obtained from diagnostic real time PCR and multiplied by 10. Samples with ct values above 38 were considered to be RSV negative and were assigned a viral load value of 0 in these analyses. Cytokines/chemokines that were below the limit of detection were assigned a value 0.00001 pg/ml to enable log transformation for Spearman correlation analysis.
Kinetics of cytokine/chemokine responses following natural infection in infants

Kinetics of the pro-inflammatory cytokine/chemokine response

The kinetics of the pro-inflammatory cytokine/chemokine response following natural infection were evaluated by relating temporal variations in the RSV viral load to rises in the concentrations of pro-inflammatory cytokines/chemokines IL-6, TNF-α and IL1-β. The presence or absence of URTI symptoms was also related to cytokine/chemokine and viral load kinetics. For comparison the kinetics of rhinovirus viral load were included in the analysis. Figure 8.6 shows the temporal relationships between cytokine/chemokine responses, viral load and illness over the surveillance period. In general the pro-inflammatory cytokine response appeared to be closely related to the titre of both RSV and rhinovirus in infant nasal secretions. The relationship between RSV titre and the pro-inflammatory cytokine/chemokine response was most clearly evident in instances where RSV infection did not coincide with other co-infections or pre-existing URTI symptoms suggestive of an ongoing, but undetected infection. An example of this correlation can be seen in the case of infant 10182 who experienced 2 RSV infections between 25/02/2010-08/03/2010 and on 18/03/2010. In the first episode, the rise in RSV viral load coincided with an increase in the concentration of IL-6, TNF-α and IL-1β and correspondingly, the subsequent decline in viral titre was associated with a drop in concentration of these mediators. Peak RSV viral load in this initial episode was also associated with presence of URTI. In the second episode of infection, in which virus was shed for only one day there was no noticeable increase in the concentrations of these mediators. Towards the end of the surveillance period, there was a sharp rise in the
concentrations of these cytokines/chemokines that appeared to correspond with an increase in rhinovirus viral load.

In total, a good association between RSV viral load and the pro-inflammatory response was observed in 6 of the 7 infants analysed (i.e. infants 10239, 10114, 10182, 10016, 10243 and 10157). On the other hand, the relationship between these variables and disease (i.e. presence or absence of URTI) was less clearly defined. Rises in both pro-inflammatory cytokine/chemokine levels and RSV viral load clearly coincided with development of URTI in only 2 of the seven infants in this study (10114 and 10182). In the case of infants 10239, 10016, and 10243, although peak viral load and pro-inflammatory cytokine/chemokine levels were associated with presence of URTI, serial episodes of URTI were observed prior to and after RSV infection, confounding interpretation of the significance of RSV alone in development of symptoms. In the case of infant 10157, although peak cytokine/chemokine response and RSV viral load were related to the development of URTI, a simultaneous adenovirus infection was detected in the sample collected on the day in which URTI symptoms were observed. Figure 8.6 shows the relationship between cytokine/chemokine kinetics, viral load and disease.
Infant number: 10016

Infant number: 10243

Rhinovirus viral load

- Other Virus
- RSV Viral Load

- TNF-a
- IL-6
- IL1-b

mediator concentration (log₁₀ pg/ml)

viral load (1/cf x 10)

date

sample date

Infant number: 10016

Infant number: 10243

Rhinovirus viral load

- Other Virus
- RSV Viral Load

- TNF-a
- IL-6
- IL1-b

mediator concentration (log₁₀ pg/ml)

viral load (1/cf x 10)

date

sample date

193
Kinetics of the chemokine response

The kinetics of the chemokine response (i.e. MCP-4, IL-8, MIP-1β and MDC) appeared to be closely related with RSV/rhinovirus viral load dynamics in some infants and but not in others. For example for infant 10157, the concentrations of these chemokines appeared to initially decline with decreasing titres of rhinovirus at the beginning of the surveillance period and subsequently rose in correspondence with an increase with RSV viral load. This infant shed RSV between 03/03/2010 and 14/03/2010 and also had a concurrent adenovirus infection that was only detected in the sample collected on 07/03/2010. The dynamics of the IL-8, MDC, MCP-4 and MIP-1β responses for this infant appeared to be closely related with variations in RSV.
titre since cytokine/chemokine concentrations initially rose with increasing RSV viral load and subsequently declined with decreasing virus titre. The presence of URTI was observed on 07/03/2010 while peak RSV viral load occurred on 10/03/2010. After viral clearance, a rise in the levels of IL-8, MDC and MIP-1β was detected in the sample collected on 24/03/10 despite the absence of detectable infection at this time. This rise was nonetheless associated with the presence of URTI, indicating possible presence of a viral or bacterial infection that remained undetected. In certain instances, the dynamics of the chemokine response could not be related to viral load. For instance for infant 10243, whilst the initial rise in RSV viral load was associated with a rise in the level of MIP-1β, the kinetics of the RSV viral load did not appear to correlate with variations in the concentrations of IL-8, MDC and MCP-4. Over the surveillance period highlighted in this study, this particular child had multiple Coronavirus oc43 (4/3/2010, 8/3/2010 and 11/3/2010) and nl63 (18/03/2010 and 26/03/2010) co-infections and was also found to have URTI during 10 of 12 surveillance visits, raising the possibility that an inherent susceptibility to infection might have been present in this infant. Unfortunately neither HIV nor atopic status data were available and therefore overall individual immune status could not be assessed in this study. The dynamics of the chemokine response for the remaining infants fell broadly within these two categories and are shown in figure 8.7.
Kinetics of the IFN-γ and IL-10 response

In order to assess the balance between pro-inflammatory and regulatory responses at the initial stages of the host antiviral response, the kinetics of the IFN-γ response to infection were compared to those of the IL-10 response. For most infants in this study, there was strong evidence of co-ordinated production of IFN-γ and IL-10 following natural infection. The data presented in figure 8.8 highlight the kinetics of these two cytokines in the nasal secretions of infants in this study. For most infants peak levels of these cytokines coincided with peak viral load or occurred shortly afterwards. This strong relationship between peak viral titre and peak IFN-γ/IL-10 response was seen...
in the initial RSV infections of 5 of the 7 infants in this study: 10239, 10114, 10182, 10243 and 10157. In the case of infant 10338 who had two distinct RSV infections, this relationship was seen during the second infection. Two of the 7 infants in this study (10239 and 10157) had increases in IFN-γ/IL-10 levels in the absence of detectable infection, raising the possibility that they had been infected with respiratory pathogens that were not part of the panel that was detected. Of the 5 infants for whom peak RSV viral load correlated with peak IFN-γ and IL-10 concentrations, the concentrations of IL-10 were greater than those of IFN-γ for 4 of these infants (10114, 10182, 10243 and 10157). However, for infant 10243 who appeared to have acquired a re-infection shortly after the initial infection the pattern of the IL-10/IFN-γ response was reversed in the second infection. For two of the seven infants, some RSV infection events could not be clearly related to strong IFN-γ/IL-10 responses. The first infection experienced by infant 10338 (between 26/02/2010 and 04/03/2010) was not associated with clear increases in the levels of either IL-10 or IFN-γ. However, the second infection (between 22/04/2010 and 26/04/2010) appeared to induce increases in the levels of both cytokines. In the case of infant 10016, the initial rise in RSV titre (between 18/02/2010 and 22/02/2010) was associated with a modest increase in the level of IL-10, but no increase in the level of IFN-γ. The second peak, which was only detected on 04/03/2010 was not associated with a clear rise in the concentration of either cytokine. Figure 8.8 shows the dynamics of IFN-γ and IL-10 responses in the samples of the seven infants in this study.
Kinetics of T cell associated mediators

Cytokines associated with T lymphocytes (IL-2, IL-4, IL-5, IL-12p70 and IL-13) were generally not detectable throughout natural RSV infection. As is evident from figure 8.9, except for the second RSV peak in infant 10243, no other infant produced high levels of these cytokines. For infant 10243, the rise in T cell associated cytokines in the sample collected on 26/03/2010, coincided with both an RSV and coronavirus nl63 infection.

Figure 8.8 The kinetics of IFN-γ and IL-10 in serially collected nasal secretions
Figure 8.9 The kinetics of T cell cytokines/chemokines in serially collected nasal secretions

Summary of cytokine/chemokine responses in the household study

Summary cytokine/chemokine profiles were generated using mean cytokine/chemokine concentrations at different time points pre- and post-infection. Infants from whom RSV negative samples were collected approximately 3 days prior to the collection date of an RSV positive sample were considered to have acquired infection between 0-3 days after collection of the RSV negative samples. Similarly, infants from whom RSV positive samples were collected approximately 3 days after collection of RSV negative samples, were considered to have acquired infection between 0-3 days prior to the collection of the RSV positive samples. The mean cytokine/chemokine concentrations were measured at 6 time points; 0-3 days pre-
infection, 0-3, 4-7, 8-11, 12-15 and 16-19 days post infection. Mean viral load as well as the proportion of infants who had URTI at these time points were calculated and plotted relative to cytokine/chemokine concentrations as shown in figure 8.10. Induction and maintenance of cytokine/chemokine responses following natural infection was assessed by comparing the mean cytokine/chemokine concentrations at different time points post infection, to the mean cytokine/chemokine concentrations at between 0-3 days pre-infection. There was a statistically significant increase in the concentration of IL-6 at between 0-3 days post infection (p=0.04) as well as between 4-7 days post infection (p=0.003) relative to the pre-infection control. The mean concentration of IL-6 at between 8-11 days post infection, was no different from the mean pre-infection control concentration (p=0.1). The proportion of infants who had URTI at between 0-3 days pre-infection was 40%, while the proportion of URTI at 0-3, 4-7, 8-11, 12-15 and 16-19 days post infection was 60%, 70%, 71% and 86%, respectively. The mean concentration of IL-1β at between 0-3 days post infection, was similar to the mean pre-infection control concentration (p=0.4), but was significantly raised at between 4-7 days post infection (p=0.047). There was no significant difference between the mean concentration of IL-1β at between 8-11 days post infection and the mean pre-infection control concentration (p=0.5). In the case of all other mediators, there was no statistically significant difference between mean cytokine/chemokine concentration in the pre-infection control and mean cytokine/chemokine concentrations at between 0-3, 4-7 and 8-11 days post infection. Figure 8.10 is a summary of these data.
Figure 8.10 Comparison of mean cytokine/chemokine concentrations at different time points pre- and post-infection
Mediator responses in nasal secretions of infants admitted with RSV associated severe/very severe pneumonia.

RSV group-specific cytokine/chemokine responses

In order to determine whether virus-specific factors contribute to variations in the cytokine/chemokine response, the levels of different cytokines/chemokines in infants infected with RSV A or B and who had been admitted with severe RSV-associated pneumonia were compared. There were no statistically significant differences in the levels of IL-1β, IL-6, IL-8, TNF-α, MDC, MIP-1β, IFN-γ, IL-10 and IL-17 in nasal samples obtained from RSV A or RSV B infected infants. However, there was a statistically significant difference between the levels of MCP-4 in the nasal secretions of RSV A and RSV B infected infants \((p=0.005) \) with RSV A being associated with higher concentrations of this cytokine/chemokine relative to RSV B. These data are graphically shown in figure 8.11.
Figure 8.11 Comparison of mean cytokine/chemokine concentrations in nasal secretions from which RSV A (n=42) or RSV B (n=44) was isolated

Association between cytokine/chemokine responses and severe or very severe pneumonia

The role of different cytokines/chemokines in modifying the clinical phenotype of RSV associated severe pneumonia was explored by comparing cytokine/chemokine concentrations between infants admitted with WHO defined severe (n=49) or very severe (n=29) pneumonia. Only 8 infants had mild pneumonia and were not included in the analysis. The levels of IL-1β, IL-6, IL-8, IL-8, TNF-α, MCP-4, MDC, MIP-1β,
IFN-γ, IL-10, and IL-17 did not vary irrespective of the clinical phenotype of disease. These data are graphically presented in figure 8.12.

![Graph of cytokine/chemokine concentrations](image)

Figure 8.12 Comparison of mean cytokine/chemokine concentrations in nasal secretions obtained from infants admitted with severe (n=49) or very severe (n=29) pneumonia.

Discussion

This study investigated the natural history of the cytokine/chemokine response over the course of natural RSV infection in infants. Analysis of cytokine/chemokine responses in the presence of RSV or rhinovirus infection showed that in general,
rhinovirus infection was associated with higher concentrations of a number of cytokines/chemokines relative to RSV. The levels of IL-1β, TNF-α, IL-8, MIP-1β and MDC were all significantly higher in the presence of rhinovirus infection. One possible reason for the discrepancy between RSV and rhinovirus specific cytokine/chemokine responses may be differential abilities to antagonise the host antiviral response. RSV has evolved mechanisms such as interferon antagonism by non-structural proteins NS1 and NS2 (Schlender et al., 2000, Lo et al., 2005), that are thought to subvert the host antiviral response and consequently delay viral clearance. Comparison of cytokine/chemokine concentrations produced following natural influenza and RSV infection shows that RSV infection generally induces significantly lower cytokine/chemokine concentrations relative to influenza (Welliver et al., 2007). The fact that both rhinovirus and influenza infection (both associated with reduced clinical pathology in infants relative to RSV) generally induce cytokine/chemokine responses at higher levels relative to RSV, suggests that antagonism of cytokine/chemokine responses may be a mechanism that is related to development of severe RSV disease in infants. Recent work has shown that this interferon antagonism has profound downstream effects on multiple host immune functions such as the suppression of dendritic cell maturation (Munir et al., 2008) and decreased activation of T cells (Munir et al., 2011). It is possible that the observed results could be explained by the ability of RSV to antagonise host cytokine/chemokine responses, with the ultimate goal of prolonging viral replication.

The role of viral load in driving RSV pathogenesis has been the subject of many controversial studies. While some investigators have found that viral titres at the acute stage of illness are significantly associated with disease severity (DeVincenzo et al.,
2005), others have failed to find such an association (Wright et al., 2002). In many studies, this association is often evaluated at the time of clinical presentation, which often coincides with the peak of illness, meaning that variations in viral titre prior to development of symptoms cannot be accounted for. In this study, samples were collected shortly before infection, during infection and shortly afterwards, thus allowing for the estimation of viral loads over the entire course of infection. Samples collected in the presence of URTI in this study, had significantly greater RSV viral titres relative to samples collected in the absence of URTI. These results are in agreement with observations in adult challenge studies, which have reported that viral load over the entire course of illness correlates with clinical symptoms (DeVincenzo et al., 2010). These data therefore provide some evidence to suggest that mild RSV infection in infants may be driven by viral load. Evaluation of the association between viral load and different cytokine/chemokine concentrations showed evidence of a positive association between some cytokines/chemokines and viral titre.

Analysis of the kinetics of different cytokine/chemokine responses in the course of natural RSV infection showed that temporal rises in viral load generally corresponded with rises in the levels of certain mediators. The kinetics of the pro-inflammatory response in particular appeared to correlate strongly with virus titre over the course of infection. Peak viral load was in some instances associated with peak concentrations of IL-6, TNF-α and IL-1β as well as presence of URTI. In infants where there was a clear association between virus titre, pro-inflammatory cytokine/chemokine concentration and illness, it can be speculated that illness resulted from both virus mediated necrotic damage of the respiratory epithelia as well as by an increase in the level of pro-inflammatory mediators. This association between rises in the pro-
inflammatory response and illness accords with previous work that has shown that the peripheral production of IL-1β, IL-6 and TNF-α, is linked to activation of neurological pathways that induce physiological changes such as fever and fatigue (Watkins et al., 1995), that are sometimes associated with URTI. For some infants however, although peak cytokine/chemokine levels and peak viral titres coincided with development of URTI, clinical symptoms could not be reliably attributed to RSV infection. For instance in some infants, URTI symptoms were recorded over extended periods that spanned duration of RSV infection, reducing the likelihood that those symptoms occurred exclusively as a result of RSV infection. In some infants, peak viral load and cytokine/chemokine levels occurred in the presence of co-infection with different respiratory pathogens, and therefore confounding the ability to associate symptoms to RSV infection alone.

An interesting association was observed in the kinetic profiles of IFN-γ and IL-10. The dynamics of these cytokines/chemokines appeared to track closely with viral load, despite their clearly antagonistic roles in the host immune response. IFN-γ is a pro-inflammatory Th1 cytokine that has been associated with direct antiviral activity, stimulation of antigen presentation through induction of MHC expression and induction of NK and T cell Cytotoxic activity (Boehm et al., 1997). In the mouse model, RSV infection is dominated by NK cell IFN-γ production, suggesting that this is a key feature of RSV infection in vivo (Hussell and Openshaw, 1998, Spender et al., 1998). On the other hand, IL-10 is a potent regulatory molecule, with broad anti-inflammatory properties and plays a role in the regulation of NK cells, T cells and B cells (Moore et al., 2001). Studies in the murine model of RSV have shown that levels of both IFN-γ and IL-10 peak at day 5 post primary infection (Sun et al., 2011).
and that abrogation of IL-10 signalling in this model leads to a substantial increase in disease, manifested as weigh loss (Sun et al., 2011, Loebbermann et al., 2012). The results presented in this chapter are therefore generally consistent with observations in the murine model of co-ordinated IL-10/IFN-γ production at the acute stage of infection. These data provide grounds to suggest that the production of IL-10 in concert with IFN-γ, similarly acts to moderate the effects of host inflammatory responses and thereby limit immune mediated pathology in infants.

An attempt to construct a generic model describing the kinetics of different cytokines/chemokines following natural infection was undertaken by comparing the mean concentrations of different cytokines/chemokines at different time points pre- and post-infection. Mean pre-infection cytokine/chemokine concentrations were compared to cytokine/chemokine concentrations at different time points post infection in order to determine whether natural infection leads to a significant upregulation of certain cytokines/chemokines and also to determine the mean duration of these upregulated responses. In these analyses, only IL-6 and IL-1β were found to be significantly upregulated after infection. The increase in these cytokine/chemokine levels shortly after infection corresponded with an increase in the mean RSV viral load and also corresponded initially with an increase in the proportion of infants who developed URTI. However, later on in the infection, when both viral load and mean IL-6 and IL-1β concentrations were on the decline, the proportion of infants with URTI increased. This suggests that the initial rise in the concentration of these cytokines/chemokines was insufficient to account for the increase symptoms at the initial stages of infection. Unexpectedly, these analyses did not show statistically significant increases in any other cytokine/chemokine following infection. It is likely...
that this lack of difference is an analytical artefact arising from the combination of responses from different infants with varying baseline cytokine/chemokine levels.

The effect of virus specific factors on the cytokine/chemokine response to RSV was evaluated by comparing cytokine/chemokine concentrations in the nasal secretions of infants infected with RSV A to those of infants infected with RSV B. With the exception of MCP-4, there was no significant difference between the cytokine/chemokine concentrations produced during RSV A or RSV B infection. The mechanism through which MCP-4 levels were significantly upregulated in the presence of RSV A relative to RSV B was not explored in this study. Despite this differential MCP-4 response, it can be concluded that in general, the two antigenic groups of RSV do not appear to induce broadly variable cytokine/chemokine responses. It has been shown in a previous study that severity of disease as well as viral load does not vary between the two RSV groups (Devincenzo, 2004). The results presented in this chapter suggest that the lack of difference in disease severity following infection with RSV A or B could be related to the failure to induce differential cytokine/chemokine responses.
Summary of key findings

The work presented in this thesis had the primary aim of describing the role of RSV antigenic variation on the infant serum neutralising response following natural RSV infection. Two secondary goals for this work were to describe the kinetics of the serum neutralising response in infants and to investigate cytokine/chemokine responses in nasal samples obtained from infants with acute RSV infection. The work described in this thesis is the first to comprehensively characterise the group-specificity of the RSV neutralising response in the sera of RSV A infected and RSV B infected infants. A number of studies have previously been undertaken to describe the group-specificity of the infant neutralising response. These studies failed to demonstrate significantly greater homologous responses to both RSV A and B, relative to the respective heterologous responses. For example, Hendry *et al.* (Hendry *et al.*, 1988) and Muelenaer *et al.* (Muelenaer *et al.*, 1991) both sought to describe the group-specificity of the infant serum neutralising response to RSV. However both studies were only able to demonstrate a significantly greater homologous response to RSV B, but failed to show the same relationship in regard to RSV A. On the other hand Roca *et al.* (Roca *et al.*, 2003) showed that infants naturally infected with RSV A generated significantly greater homologous responses against RSV A test strains relative to an RSV B test strain. In addition to the above studies, seminal cross-neutralisation studies carried out in the 1960s failed to demonstrate significant group-specificity to the infant serum neutralising response to both RSV A and B (Coates *et al.*, 1963, Wulff *et al.*, 1964).
The work presented in this thesis is the first to show that the RSV neutralising response to both RSV A and B is significantly group-specific. The work presented further shows that despite 40-50 years of genetic evolution, there was no difference in neutralisation of contemporary and historical strains of both RSV A and B by antibodies generated following natural infection with contemporary virus strains. Further, sera from infants infected with previous strains of RSV neutralised the novel BA variant as effectively as a representative RSV B strain that did not contain the BA duplication.

The duration of the serum neutralising response after primary infection in infants has not been reported. The total serum IgA, IgM and IgG responses to primary infection measured by enzyme immunoassay have been reported to decline to pre-infection levels within one year of infection (Welliver et al., 1980), while the secretory IgA, IgM and IgG responses in infant nasal secretions appear to decline to pre-infection levels by 3 months post infection (Kaul et al., 1981). The temporal dynamics of the neutralising antibody response following primary infection have so far not been reported. The data presented in this thesis show that the infant neutralising response to natural infection is short-lived. Neutralising antibody titres declined to pre-infection levels with 3-4 months post primary infection. Mean neutralising antibody titres in a birth cohort showed mean population level neutralising titres were elevated during epidemics and declined rapidly with a decline in transmission.

Evaluation of cytokine/chemokine responses in nasal samples obtained from infants with acute RSV infection revealed a complex relationship between the kinetics of
cytokine/chemokine concentrations on the one hand and both viral load and disease on the other. There appeared to be some correlation between viral load and the pro-inflammatory response and to a lesser extent the chemokine response. The data showed some evidence of co-ordinated IFN-γ/IL-10 responses in the nasal secretions collected successively from RSV infected infants. In general, there was little evidence of T cell specific responses in the acute stage of mild RSV illness, since, T cell associated cytokines were either undetected or were detected in minimal amounts in infant nasal secretions.

Significance of the findings

Group-specific neutralising antibody immunity

The results presented in this thesis will contribute significantly to the understanding of the transmission dynamics of RSV. In this thesis it was hypothesised that the alternating transmission of RSV A and B is driven by alternation in population level group-specific immunity. The data presented strongly suggest that transient group-specific neutralising antibody immunity at the population level sets the stage for preferential selection for transmission of one group relative to the alternative group. It is likely that following transmission of strains from one group in a particular epidemic, there is a build-up of group-specific neutralising antibody immunity to that group reducing the likelihood of its transmission in the next epidemic. On the other hand as a result of a decline in population level neutralising antibody immunity to the alternative group, there would be a greater likelihood of its transmission in the subsequent epidemic. On the basis of cross neutralisation estimates reported in this thesis the observed alternate transmission patterns of the two groups of RSV in Kilifi Kenya, Turku Finland and in England & Wales have been reproduced in a
mathematical model (White L. Sande CJ et al. in preparation). Figure 9.1 is a representation of the model fit, showing that alternating dominance patterns in the different locations can be accounted for by the group-specific immunity estimates obtained in this study. The results presented suggest that vaccines based on only one of the two antigenic groups may provide insufficient coverage against infection with strains from the alternative group. For example, vaccination with a live attenuated vaccine based on an A2 background, may be only partially protective against wild-type group B strains. The implication of this partial protection on population level transmission of RSV may be the continued transmission of strains from the alternative group against a decline in transmission of the vaccine group. This could result in a reduction in the expected indirect protective effect of the vaccine for the vulnerable naïve early infant. To maximize the likelihood of reduced transmission of all RSV strains, it would be beneficial to include representative strains from both RSV A and B in future vaccines.
Figure 9.1 Hospitalisations with RSV (top row) and group A dominance dynamics (bottom row) for three geographic locations: England and Wales; Turku, Finland; Kilifi, Kenya. Graphs of the model fit to the time-series data on RSV hospitalizations for three country locations. The weekly hospitalizations (shown as crosses) in England & Wales (a), Turku (b) and (c) Kilifi with the model predictions (solid line). The proportion of typed samples that were group A in England & Wales (d), Turku (e) and Kilifi (f), shown as solid diamonds (with exact binomial 95% confidence interval) and the corresponding predicted proportion from the model (solid line).
Duration of neutralising antibody immunity

The estimates of the duration of neutralising antibody immunity following natural exposure reported in this thesis provide grounds to suggest that the ability of RSV to repeatedly infect is related to short-lived serum neutralising antibodies. The estimates reported further provide the basis upon which an attempt to predict the potential success of future RSV vaccines in reducing the burden of RSV transmission can be undertaken. Many of the viral infections of infancy against which successful vaccines have been developed induce long lived neutralising antibody immunity upon natural infection. On the basis of long-lived protective neutralising antibodies induced by natural infection, it can be argued that the success of vaccination in reducing the transmission burden of these viral infections could have been predicted, assuming that the kinetics of vaccine induced immunity were no different from those of natural infection. For example the introduction of the inactivated polio vaccine in the United States in the mid 1950s and subsequently the oral polio vaccine in the 1960s resulted in a significant and sustained reduction in morbidity and mortality attributed to poliomyelitis (Strebel et al., 1992). Studies done in the late 1940s prior to the introduction of vaccination, demonstrated that natural infection with poliovirus induced neutralising antibody responses that were maintained at protective levels for several decades in the absence of natural re-exposure (Paul and Riordan, 1950). It can therefore be reasonably argued that the success of the poliovirus vaccines could have been anticipated on the basis of the longevity of neutralising antibodies induced by natural infection. Analysis of the duration of acquired neutralising antibodies to RSV show that these antibodies decline to pre-infection levels shortly after natural infection. Further, analysis of mean population level neutralising antibodies in the birth cohort, showed that in the absence of population level virus transmission, mean
population level neutralising titres decline rapidly. These data suggest if future RSV vaccines mediate protection through induction of neutralising antibodies (whose longevity is no different from that produced by natural infection), then it can be assumed that such vaccines are likely to yield only modest reductions in population level virus transmission, since susceptibility to re-infection would be re-established shortly after vaccination. Despite this, such vaccines could still result in significant clinical protection as a result of the priming of immunological memory thereby reducing the potential of subsequent natural challenge resulting in severe illness. These conclusions are based on the assumption that neutralising antibodies are the key correlate of functional immunity. Previous work has shown that protection in animal models can be mediated by antibodies that do not induce in-vitro neutralisation of the virus (Plotnicky-Gilquin et al., 1999, Meksepralard et al., 2006). It is important to note that in the event that antibodies with similar mechanisms of protection play a significant role in human infection, the interpretation of the data presented may be altered by the dynamics of such responses.

The relationship between genetic and antigenic variation of RSV

Genetic studies have produced strong evidence that the attachment protein gene undergoes progressive genetic change with time (Cane and Pringle, 1995, Zlateva et al., 2005, Zlateva et al., 2004). Some studies have shown compelling evidence that suggests that immune selection may underlie the observed changes (Woelk and Holmes, 2001). There has, however, been a lack of data demonstrating the antigenic consequences of these genetic changes, and in particular their effect in mediating the loss of protective antibody responses. The emergence and global distribution of the BA strain of RSV B within a within the last 14 years has brought the role of immune
selection in virus transmission into sharp focus. In this study, no evidence was found to suggest that the BA genetic change resulted in the loss of neutralising ability by serum antibody. Further, evaluation of neutralising responses against virus strains (from the same antigenic group) isolated between 40-50 years apart, showed that temporal genetic evolution was similarly not associated with loss in the neutralising capacity of serum antibody. The data presented suggest that while inter-group genetic differences result in antigenic variation, intra-group genetic differences do not result in antigenic changes that result in differential neutralising responses. There is strong evidence that the infant IgG response to variable parts of the G protein is strain-specific (Cane et al., 1996, Scott et al., 2007), suggesting that the neutralising response to this protein is potentially strain-specific. In this thesis analysis of previously identified neutralising antibody epitopes on the F proteins of infecting wild-type viruses, showed that these epitopes were conserved within or across the group structure of RSV. Weighed against evidence that shows that the F protein contributes more significantly to development of the neutralising response relative to the G protein (Anderson et al., 1988, Olmsted et al., 1986), it is possible that strain-specific neutralising responses targeted at the G protein could have been masked by cross-reactive responses targeted at relatively more conserved epitopes on the F protein. In this study, no attempt was made to study the strain-specificity of neutralising antibodies directed at the G protein exclusive of F-specific responses. It remains to be seen whether in the absence of F-specific neutralising antibodies (removed by absorbing out F-specific antibodies from infant sera), the G-specific neutralising response will be strain-specific. It is also possible that despite the failure to detect genotype-specific RSV serum neutralising antibodies, such antibodies may nonetheless provide protection as suggested by the results of some studies.
(Meksepralard *et al.*, 2006). Therefore while neither the BA genetic change nor temporal evolution was associated with differential *in vitro* neutralising responses, it still remains to be seen whether these genetic variants induce differential *in vivo* protection.

The natural history of the cytokine/chemokine response to RSV

Despite availability of data on the early cytokine/chemokine response in animal models, not much is known on the course of the early cytokine/chemokine response in humans. A key challenge in conducting informative studies in the infant is the inherent limitation in the frequency with which young infants who often have potentially life threatening illness can be sampled. In addition, safety and practical concerns related to sampling of human lung tissue preclude invasive sampling procedures. Due to these concerns, most studies designed to look at the early markers of infant immune response have been based on samples obtained from the upper respiratory tract and presumed to reflect responses in the lower respiratory tract. Many such studies are also conducted at the peak of illness, when infants present to hospital with symptoms of respiratory infection. The key limitation with this approach is that such single time point sampling insufficiently accounts for variations in both viral load and cytokine/chemokine response that may have occurred prior to development of symptoms. In the studies presented in this thesis, infants were sampled at regular intervals during the entire course of infection in order to track the kinetics of both RSV viral load as well as host mediators. These are the first data to describe the infant cytokine/chemokine response to RSV over the entire course of RSV infection and the results reported suggest that RSV viral load drives key cytokine/chemokine responses at the early stages of infection. The pro-inflammatory
response appeared to be particularly strongly linked to viral load while the chemokine response showed moderate correlation with viral load. There was further evidence to suggest that both inflammatory and regulatory responses at the early phases of infection are produced in a co-ordinated fashion in order to modulate the potential pathological effects of unchecked inflammatory responses. Due to limitations in sample volume, no attempt was made in this study to identify the cellular sources of these mediators. While for many infants, peak cytokine/chemokine and viral load responses appeared to be linked with development of URTI, this relationship was not firmly established since in some instances disease was present in the absence of these factors. This unexpected result may be attributable to potential infection by undetected pathogens that resulted in symptoms that were comparable to those produced by RSV infection. Evaluation of virus-specific factors on the cytokine/chemokine response showed that genetic variability between virus strains did not appear to result in differential cytokine/chemokine responses. Most cytokines/chemokines were produced at comparable levels irrespective of whether the infecting strain was RSV A or B.

Limitations of the study and suggestions for future work

The role of G-specific responses on the neutralising response

The work presented in this thesis was based on an in vitro neutralisation assay that detected both G- and F-specific neutralising responses. Although previous studies have demonstrated that the anti G-response is strongly genotype-specific (Cane et al., 1996, McGill et al., 2004), in the studies presented in this thesis, a genotype-specific neutralising response was not found. Previous studies have shown that G-specific
antibodies that do not induce *in vitro* neutralisation can confer protection in animal models (Meksepralard *et al.*, 2006, Plotnicky-Gilquin *et al.*, 1999). In this thesis, the role of strain-specific G protein antibodies in functional protection was not evaluated. Future studies should seek to address the role of antibodies to the G proteins of BA and non-BA strains on *in vitro* protection against experimental challenge with representative BA and non-BA variants.

Group and genotype-specificity of secretory IgA response

The work presented in this thesis, was solely based on serum anti-RSV responses. It can be argued that the key correlate of functional resistance from natural challenge is secretory IgA present on the respiratory mucosa, rather that serum antibody, which is passively transudated to the mucosal surfaces (Wagner *et al.*, 1987a). It is possible that secretory IgA neutralising responses may be slightly different from serum responses in terms of group and genotype-specificity. Future studies should investigate the group and genotype-specificity of the secretory IgA response in order to complement the findings presented in this thesis.

Kinetics of the secondary neutralising response

The ability to detect the temporal dynamics of the neutralising response upon secondary infection was limited by the lack of an adequate number of samples after secondary infection. A comprehensive study of the kinetics of the secondary neutralising response and its relation with the primary response kinetics would advance the understanding of how individuals become resistant to severe infection with age. It is known that most immunocompetent adults have a high titre of anti-RSV
antibodies, relative to infants. The maintenance of these high titres irrespective of recent infection history is likely to be related to resistance against severe disease. Future studies could seek to look at the dynamics of the neutralising response in a birth cohort recruited and followed up for a number of years in order to determine the mechanisms through which older individuals maintain high titres of antibodies. Such studies may help to define antibody titres that are associated with protection from severe disease.

Relative fitness of BA and non-BA strains

Studies on the effect of the BA genetic change on the neutralising response found that this change did not correlate with changes in the neutralising response. This study did not undertake a comparison of the relative fitness of BA and non-BA strains in order to explain variations in transmissibility. Future studies should address the question of whether there is a fitness difference between BA and non-BA strains. This could be achieved by comparing relative replication efficiencies of these strains both in vivo (in animal models) and in vitro in the presence or absence neutralising antibody. Also, BA and non-BA variants in this thesis were characterised only by limited sequencing of the G gene in order to confirm the presence or absence of the duplication. Since it is possible variations in other parts of the genome could potentially explain the observed variation in transmissibility, future studies should undertake full genome sequencing of these strains in order to determine whether other changes in the genome correlate with differences in viral fitness and therefore differences in transmission.
Relevance of upper respiratory tract sampling to lower respiratory tract disease

Studies on the cytokine/chemokine response to natural RSV infection were conducted on the basis of samples collected from the upper respiratory tract. It is possible that cytokine/chemokine responses in the upper part of the respiratory tract could be different from those in the lower respiratory tract, meaning that conclusions derived from data obtained from upper respiratory tract sampling, would be of limited use in inferring the mechanisms of illness in the lower respiratory tract. A further limitation in this study was the lack of evaluation of the cellular sources of these mediators. In order to definitively characterise these sources it would have been necessary to undertake relatively invasive sampling procedures which are not ethically permissible in infants.

Mathematical modelling of the transmission dynamics of RSV

The group cross-neutralisation estimates obtained in this thesis have been used to model the group replacement dynamics of RSV in three countries (Finland, Kenya and the UK) (White et al., In preparation). The work undertaken so far does not comprehensively address the complex group replacement dynamics seen in other parts of the world, where the pattern of group recurrence is less obvious. The work does not fully address the factors underlying the fact that RSV A is transmitted at a greater frequency relative to RSV B in most parts of the world. Future studies should seek to model the transmission dynamics in countries with diverse population structures, birth rates, and diverse patterns of group recurrence using the estimates provided in this
thesis, in order to further clarify the role of differential immune responses in virus transmission.
References

16. BECKER, Y. 2006. Respiratory syncytial virus (RSV) evades the human adaptive immune system by skewing the Th1/Th2 cytokine balance toward increased levels of Th2 cytokines and IgE, markers of allergy—a review. *Virus Genes*, 33, 235-52.

helper type 2 cytokines) is associated with severe forms of respiratory syncytial virus bronchiolitis. *J Infect Dis*, 184, 393-9.

115. JOHNSON, P. R. & COLLINS, P. L. 1989. The IB (NS2), 1C (NS1) and N proteins of human respiratory syncytial virus (RSV) of antigenic subgroups A and B: sequence conservation and divergence within RSV genomic RNA. *J Gen Virol*, 70 (Pt 6), 1539-47.

immunopathology during acute respiratory syncytial virus infection in mice.

Differential immune responses and pulmonary pathophysiology are induced by two different strains of respiratory syncytial virus. *Am J Pathol*, 169, 977-86.

164. MOGHADDAM, A., OLSZEWSKA, W., WANG, B., TREGONING, J. S., HELSON, R., SATTENTAU, Q. J. & OPENSHAW, P. J. 2006. A
potential molecular mechanism for hypersensitivity caused by formalin-

267

infecting strains of RSV are not antigenically different from those causing primary infection (Beem, 1967), the strain replacement patterns observed in successive RSV epidemics (Cane, 2001), suggests that antigenic variation is an important mechanism through which re-infection occurs. Also recent data shows that a vast majority of re-infecting strains are genetically different from previously infecting strains (Agoti et al., 2012). It may be that natural re-infection is facilitated by both antigenic variation and a short duration of neutralising antibody immunity in young infants. Strain-specific neutralising antibody responses to RSV will be discussed in depth in chapter 7.

The reasons for the short duration of the RSV antibody response following primary infection are not well understood. A number of other viral infections, including paramyxoviruses such as measles and mumps, have been shown to induce antibody responses that are maintained for many years without the need for antigenic stimulation (Amanna et al., 2007). A number of studies have shown the existence of long-lived plasma cells which produce antibody for extended periods without the need for antigenic re-stimulation (Slifka et al., 1998). These data provide the basis to assert that long-lived antibody responses following infection with some pathogens may be the result of long lived plasma cells specific for those pathogens. However a number of studies have also shown than certain plasma cells have a short lived phenotype (Schooley, 1961), suggesting that antibodies produced by these cells are similarly short-lived. Evidence from the murine model suggests that RSV-specific plasma cells after challenge with RSV are not maintained at high levels even after boosting (Singleton et al., 2003). These data suggest that the failure to maintain long-
lived neutralising antibody responses after natural exposure in humans may be related to the short duration of RSV-specific antibody secreting plasma cells.

The memory response to RSV re-infection was explored by looking at the rate of development of neutralising antibodies during primary and secondary infection. Comparison of the mean primary and secondary infection neutralising antibody titres in serum collected within 10 days of identification of virus in nasal samples, showed that while the primary antibody titre was no greater than that of a pre-infection control, it was significantly lower than that of secondary infection. These data suggest that following secondary exposure an immunological memory response is activated and rapidly generates high titres of neutralising antibodies shortly after infection. These data suggest that despite the short duration of primary neutralising antibody responses, protection from severe disease during secondary exposure may be the result of an anamnestic response that acts to rapidly curtail further spread of virus infectivity.

Maternal neutralising antibody protection was analysed by estimating the age prevalence of maternally-derived neutralising antibodies that were above a threshold titre that has been associated with protection from severe disease (Glezen et al., 1981a). The data presented show that there is a rapid decline of protective antibodies shortly after birth. The mean duration of protection of maternally-derived antibodies was found to be of the order of 2.8 months. The proportion of infants who had neutralising antibody titres above this putative protective threshold declined steadily with age and by 3 months of age, none of the infants in this study had maternal neutralising antibodies above this threshold. The results presented have implications
for vaccine design. As previously discussed, there are currently no safe and immunogenic RSV vaccines for use in the early infant population (0-3 months), however live attenuated vaccines that induce protection and that are sufficiently attenuated for older age groups have been reported (Wright et al., 2000). It has been suggested that a realistic vaccination goal under these circumstances might be maternal vaccination, with the ultimate aim of boosting the titre of maternal antibodies that will be eventually transferred into foetal circulation (Englund, 1999). The data presented here suggest that this approach could potentially provide protection in the first few months of life when infants are most susceptible to severe illness. This approach could be of potential benefit among the most vulnerable infant populations such as premature infants - in whom maternally-derived antibody titres are likely to be relatively low at birth. This approach would in such cases boost the titres of maternally-derived antibody and consequently slightly delay the age at which infants first become susceptible to infection and disease.
Chapter 7 - RSV genotype-specific neutralising antibody responses

Introduction

One of the targets of neutralising antibody immunity, the G protein, accumulates genetic changes in the course of viral evolution. This protein has been shown to undergo a rate of molecular evolution of 1.83×10^{-3} and 1.95×10^{-3} nucleotide substitutions/site/year for RSV A (Zlateva et al., 2004) and B (Zlateva et al., 2005) respectively. Other reports have shown that there is a progressive accumulation of amino acid changes at an average rate of approximately 0.25% per year estimated over the length of the G protein (Cane and Pringle, 1995). This rate of change is comparable to that of the influenza haemagglutinin gene (Cane and Pringle, 1995), which is a main target of protective responses against the influenza virus, and in which temporal molecular evolution correlates with loss of protective immunity (Kilbourne et al., 2002).

The higher rate of non-synonymous to synonymous amino acid substitution observed on the G protein suggests that the changes seen on this protein may be immune driven (Cane and Pringle, 1995). This notion is supported by reports that show the existence of positively selected sites within known antibody epitopes on the G protein (Woelk and Holmes, 2001, Zlateva et al., 2004)). There is indirect evidence that the F protein may also be subject to positive selection pressure, under particular circumstances. Administration of the immunoprophylactic monoclonal antibody Palivizumab, which is specific for the F protein, has been shown to lead to the in vivo selection of escape
mutants that contain mutations on the F protein which confer a palivizumab neutralization resistance phenotype (Zhu et al., 2011, Papenburg et al., 2012). In vitro studies of 2 palivizumab resistant mutants have shown that one of these mutants rapidly out-competed the prototype A2 genotype in replication competition assays (Zhao et al., 2006), suggesting that immune-selected viruses may be of comparable fitness to other viruses.

Molecular epidemiological studies have produced further indirect evidence that the virus may be subject to positive evolutionary pressure. A number of studies have shown striking similarity between the genotypes of the virus circulating in different parts of world at the same time (Cane et al., 1992). However, these dominant genotypes are often replaced by alternative genotypes in later outbreaks (Choi and Lee, 2000, Seki et al., 2001, Kuroiwa et al., 2005). The molecular evolution of RSV has been characterised as consisting of emergence, decline and sometimes extinction of once dominant genotypes. For example, certain genotypes that were prevalent in the 1970s in Northern Europe but that have not been identified since suggest that they have became extinct (Cane and Pringle, 1995). Viewed together, these data suggest that the genotype structure of RSV is dynamic and is likely to be subject to selection pressures that drive its temporal evolution. Immune pressure is probably key among these selection pressures.

In recent years, a new genotype of RSV B has been reported. This genotype, commonly referred to as the BA genotype, was first isolated in Buenos Aires Argentina in 1998 and has since spread throughout the world and is currently the predominant RSV B genotype in global circulation (Trento et al., 2003, Trento et al.,
Its key distinguishing feature is the incorporation of a 60 nucleotide duplication in the variable part of the G protein (Trento et al., 2003). The nature of this mutation as well as the fact that it had not hitherto been identified in any previous circulating genotype, suggests that it is unlikely to have arisen from more than one infection event in a single individual and accordingly the dynamics of its global spread can be used as a model of the transmission dynamics of other genotypes of RSV. The remarkable transmission success of BA strains relative to previous RSV B genotypes can be hypothesized to have been the result of an immune selection advantage that conferred upon it the ability to out-compete other group B genotypes in a natural transmission setting. To date there have been no studies published that explore this phenomenon. In 2012, a wild-type variant of RSV A was identified which incorporates a 72 nucleotide duplication in the variable part of the G gene, reminiscent of the BA genotype (Eshaghi et al., 2012). It is yet to be seen whether this new variant will achieve comparable epidemiological success to the BA genotype.

This chapter will explore the effect of genotype-specific variation in RSV on the neutralising antibody response to natural RSV infection as well the effect of the BA genetic change on the neutralising responses of infants infected with different RSV B genotypes.

Chapter Aims

This chapter will describe the genotype-specificity of the RSV neutralising response. Responses to two strains of RSV A and two strains of RSV B will be evaluated in the serum of infants infected with wild-type genotypes of RSV A and B. The genetic characteristics of both infecting and test genotypes will be related to genotype homologous and heterologous neutralising antibody responses. The results will be
discussed in terms of the effect of molecular evolution on the neutralising response and its implications on the development of live attenuated vaccines. The chapter will also evaluate infant serum responses to group conserved regions on the attachment protein. These results will be discussed in the context of development of bivalent live attenuated vaccines comprising representative genotypes from the two RSV groups.

Materials and methods

Study population, sampling and molecular characterisation of test and infecting viruses

Nasal washings were obtained from children less than 60 months of age admitted to KDH with RSV-associated severe or very severe pneumonia. Laboratory diagnostic techniques used in this study are the same as those described in chapter 5. The test viruses used in these studies were: the A2 (RSV A; isolated in Australia in 1961), Kil/A/2006 (RSV A; Kenya, 2006), 8/60 (RSV B; Sweden, 1960) and Kil/B/2008 (RSV B; Kenya, 2008). The attachment and fusion protein genes of all the test viruses as well as a number of infecting strains were sequenced as described in Chapter 3. The neutralisation assays used in this study are described in chapter 4. Complement specific neutralisation assays were conducted by addition of 10% guinea pig complement (Sigma) to infant sera. Comparison of nucleotide and amino acid sequence identity was done using Openoffice.org calc software (Apache software foundation, Forest Hill, Maryland USA).
Enzyme Linked Immunosorbent Assays (ELISA) using synthetic peptides

Infant serum IgG responses to conserved regions on the central portion of the G genes of RSV A and B were measured using ELISA. The synthetic peptides spanned amino acid 170-189 of the RSV attachment protein. The RSV A constant region comprised the following amino acids: FVPCSICSNPPTCWAICKRI while the RSV B constant region comprised the following amino acids: FVPCSICGNQLCKSICKTI. Synthetic peptides matching these sequences were diluted in dimethyl sulphoxide (DMSO) to a working concentration of 10 μM. A checkerboard titration assay was carried out using pooled convalescent sera to determine the optimal serum and synthetic peptide concentrations for the assays. The results of this assay are shown in Figure 7.1. On the basis of these results it was decided that a serum dilution of 1:100 and a synthetic peptide concentration of 3.1x10^-6 M were optimal for the assay. The ELISA was carried by first coating 96 well polystyrene plates (Nunc MaxiSorp, Nunc Corporation) overnight at 37°C in a humidified CO₂ incubator with the appropriate concentration of peptide diluted in phosphate buffered saline. Plates were then blocked for an hour, using a blocking buffer consisting of 5% powdered milk (Marvel) in PBS. 100 μl of infant sera diluted 1:100 in the blocking buffer, was then added to the wells of the 96 well plates and incubated for one and a half hours at 37°C. The plates were then washed 3 times in PBS containing 0.05% Tween 20, followed by addition of 100 μl per well of a 1:1000 dilution of horseradish peroxidase (HRP) tagged rabbit anti human IgG (Dako corporation) diluted in blocking buffer. After incubation for 1 hour at 37°C, the plates were washed 3 times as before and developed. The development solution was prepared by adding 10 μg orthophenylenediamine (OPD) tablets into 10 ml of PBS and aliquoting 100 μl of this solution to the appropriate wells of the 96 well reaction plate. This reaction was
incubated for 10 minutes in the dark and stopped by the addition of 50 μl of 2.5 M H₂SO₄ into the appropriate wells of a 96 well plate. The plates were then read on a standard microplate reader at 495nm.

![Graph showing OD values against synthetic peptide concentration](image)

Figure 7.1 The results of a checkerboard titration assay in which varying dilutions of sera were titrated against decreasing concentrations of synthetic peptides in order to determine the optimum concentration of either parameter.

Data Analysis

Inference of the genetic relationship between different infecting and test genotypes was carried out using Multi Dimensional Scaling (MDS) and phylogenetic analysis. Pairwise distance matrices containing the level of variation between different sequences in terms of nucleotide substitutions per site were generated using MEGA software (Build 5110426) using the maximum composite likelihood model. These distance matrices were then subjected to classical MDS analysis using Matlab (release R2008b, MathWorks Inc). MDS analysis resulted in the generation of two dimensional plots graphically depicting the genetic relationship between different
genotypes based on their relative pairwise distances from each other. The genetic relationship between different genotypes was also assessed by comparing the level of amino acid conservation by identification of conserved amino acid residues as well as by the use of phylogenetic techniques. Phylogenetic analysis was carried out by generation of maximum likelihood phylogenetic trees consisting of G gene sequences from different genotypes.

Comparison of the strain homologous and heterologous responses was done by analysing differences in fold rise in titre to homologous and heterologous virus as well as by differences in the ability to seroconvert. A multiple regression model was used to determine whether the magnitude of the neutralising response to the homologous virus was statistically different from that to the heterologous response. McNemar’s chi square test was used to compare the proportions seroconverting to homologous or heterologous virus. Responses to group conserved synthetic peptides in acute and convalescent phase sera in terms of optical density changes were compared using paired student t tests. The analytical output for the data presented in this chapter is presented in appendix 3.

Results

Comparison of sequence data between different genotypes of RSV B

Comparison of F and G gene amino acid sequences of infecting BA (n=20) and non-BA (n=20) strains was done in terms of nucleotide and amino acid identity. There was 95.1% and 97.1 % nucleotide and amino acid identity, respectively, shared between F proteins of all RSV B strains in the study, irrespective of whether they
were BA or non-BA. On the other hand there was 79.7% and 73.8% nucleotide and amino acid identity, respectively, shared by the G proteins of all infecting RSV B strains in the study. Analysis of the BA strains alone showed that they shared 98% and 98.6% nucleotide and amino acid identity respectively at the F gene level and 95.2% and 93.8% nucleotide and amino acid identity, respectively, at the G gene level. Analysis of the non-BA strains showed that they shared 99.5% and 98.6% nucleotide and amino acid sequence identity, respectively, at the F protein level and 97.6% and 94.3% nucleotide and amino acid sequence identity, respectively, on the G protein. These data are presented in tabular form in Table 7.1. Analysis of the variation between the 2 RSV B test strains, Ken/B/2008 (BA) and Swe/B/1960 (non-BA) showed that they shared 77% amino acid identity on the G protein.

<table>
<thead>
<tr>
<th>Comparison groups (n)</th>
<th>Amino acid identity (%)</th>
<th>Nucleotide identity (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>F protein</td>
<td>G protein</td>
</tr>
<tr>
<td>RSV B only (BA & non-BA) (40)</td>
<td>97.1</td>
<td>73.8</td>
</tr>
<tr>
<td>BA only (20)</td>
<td>98.6</td>
<td>93.8</td>
</tr>
<tr>
<td>Non-BA only (20)</td>
<td>98.6</td>
<td>94.3</td>
</tr>
</tbody>
</table>

Table 7.1 Analysis of the level of nucleotide and amino acid identity among different genotypes of RSV A and B

Analysis of level of genetic conservation on some neutralising antibody epitopes on the F and G proteins of different RSV B genotypes

The level of amino acid conservation on selected neutralising epitopes was compared between BA and non-BA strains of RSV B. The F protein epitopes that were analysed
were obtained from published literature and are illustrated in figure 5.12 in Chapter 5. The four neutralising epitopes were located between the following amino acid positions on the primary sequence of the F protein: (i) amino acids 205-225 (Bourgeois et al., 1991), (ii) amino acids 221-236 (Trudel et al., 1987b), (iii) amino acids 262-268 (Lopez et al., 1990) and (iv) amino acids 289-298 (Martin-Gallardo et al., 1991). All the neutralising epitopes on the F protein were found to be perfectly conserved on wild-type BA and non-BA strains in this study (shown in Figure 5.12).

Analysis of the level of amino acid conservation on the G proteins of infecting BA and non-BA strains was carried out next. Two neutralising epitopes that occurred between amino acids 151 - 172 (Murata et al., 2010) and amino acids 201 - 213 (Garcia-Barreno et al., 1992) were evaluated. There were two genotype-specific amino acid differences between wild-type BA and non-BA viruses on the epitope spanning amino acids 151 and 172, while there was only one amino acid difference in the epitope spanning amino acids 201 and 213. There were, however intra-genotype variations identified on this epitope. One of the BA sequences varied from other BA sequences by containing a Proline to Leucine substitution at position 207. Also, two other BA sequences varied from all other group B sequences since they contained a Leucine to Isoleucine substitution at position 201 of this epitope. These differences are illustrated in figure 5.12.

Analysis of the genetic and antigenic relationship between infecting RSV B genotypes

Inference of the genetic relationship between the G genes of BA and non-BA genotypes was carried out using both Multi Dimensional Scaling (MDS) and
phylogenetic analysis. Results of MDS analysis showed that G gene sequences obtained from infants infected with wild-type BA strains clustered together on the two dimensional MDS space, while those obtained from infants infected with non-BA genotypes, similarly clustered together, but on a separate region of the two dimensional space. For comparison, both the Swe/B/1960 and Ken/B/2008 test genotypes were included in the MDS analysis. The Swe/B/1960 genotype was separated from both the BA and non-BA clusters by a considerable genetic distance while the Ken/B/2008 test genotype was located within the cluster of wild-type BA sequences. The genetic relationship between BA, non-BA, Swe/B/1960 and Ken/B/2008 on the two dimensional MDS space is shown in figure 7.2.

![Figure 7.2](image)

Figure 7.2 The results of MDS analysis in which the relationship between the G genes of different infecting (20 BA viruses and 20 non-BA viruses) and test strains of RSV B is depicted on a two dimensional space. Each spot represents one sequence and their coordinates on the cartesian plane are based on their relative pairwise distances. Identical sequences are represented by a single point on the Cartesian plane. The x and y axes...
represent pairwise distances in terms of number of nucleotide substitutions per nucleotide site between different sequences.

For comparison, a maximum likelihood phylogenetic tree showing the genetic relationship between different RSV B genotypes was constructed with 100 bootstrap replications. Results of the phylogenetic analysis showed that wild-type BA and non-BA genotypes were located on separate branches of the phylogenetic tree while the Swe/B/1960 genotype was distantly separated from both BA and non-BA infecting virus clusters. On the other hand, the Ken/B/2008 genotype was located within the branch on which wild-type BA genotypes were located. The phylogenetic tree is graphically presented in figure 7.3.
Figure 7.3 The phylogenetic relationship of partial G gene sequences (between nucleotide 284 of the G gene and nucleotide 9 on the F gene) obtained from both infecting and test viruses are shown in this maximum likelihood tree. The notational convention for the wild-type genotypes is as follows: patient ID/Infecting group/RSV B genotype. Notation for test genotypes follows the following order: Place of isolation (Swe=Sweden; Ken=Kenya)/Infecting group/Year of isolation.

To assess whether the genetic differences between BA and non-BA genotypes were reflected in terms of differential neutralisation, inference of the antigenic relationship between the infecting BA and non-BA genotypes was done using classical MDS. This
analysis utilized cross neutralisation data obtained from genotype homologous and heterologous reactivity. The test viruses in these experiments were 8/60 (non-BA) and Ken/B/2008 (BA). Titres to either test strain were measured using the plaque reduction neutralisation assay. Neutralising responses to homologous or heterologous virus were measured in terms of fold rise in titre from the acute to convalescent phases of infection. The results of these analyses, shown in figure 7.4, show no evidence of differential clustering of antibody responses to the BA or non-BA genotypes. Stronger homologous to heterologous to either test genotype neutralisation would have resulted in separate clustering of BA and non-BA specific responses on the 2 dimensional MDS space, indicating differential patterns of recognition of the two genotypes.

Figure 7.4 Multidimensional scaling (MDS) plot showing the antigenic relationship between BA and non-BA strains of RSV B. Sera from infants infected with BA (n=20) or non-BA (n=20) viruses were used to neutralise representative non-BA (8/60 virus) and BA (Ken/B/2008 virus) strains. The resulting cross neutralisation matrix data (expressed as fold rise in titre from the acute to convalescent phase of infection) was used to construct a two dimensional MDS plot depicting the antigenic relationship between BA and non-BA strains of RSV B.
Homologous and heterologous neutralising responses to representative BA (Kil/B/2008) and non-BA (Swe/B/1960) test strains were next compared for evidence of statistically significant differences. There was no significant difference between the magnitude of the neutralising response mounted by infants infected with non-BA strains (n=20) to the Swe/B/1960 virus (3.7 fold rise in titre) and the Kil/B/2008 virus (3.42-fold rise in titre; p=0.78). There was also no significant difference between the magnitude of the neutralising response mounted by infants infected with BA strains (n=20) to the Swe/B/1960 virus (5.13 fold rise in titre) and the Kil/B/2008 virus (3.54-fold rise in titre; p=0.1). These data are presented graphically in figure 7.5.
Figure 7.5 Acute and convalescent phase responses to representative BA (Ken/B/2008) and non-BA (8/60) test viruses among infants naturally infected with wild-type BA (n=20) and non-BA (n=20) viruses. The numbers above each acute/convalescent serum pair denote the fold rise in titre from the acute to convalescent phases of infection. The p value bars traversing the panels indicate the level of statistical significance between genotype homologous and heterologous responses.

Serum neutralising responses from infants infected with BA or non-BA strains were compared in terms of their ability to seroconvert to the Kil/B/2008 and Swe/B/1960 test viruses. Out of 20 individuals infected with wild-type non-BA strains, the proportion that seroconverted to the BA test virus Kil/B/2008 (35%) was not statistically different from the proportion that seroconverted to the non-BA test virus, Swe/B/1960 (50%; McNemar's \(\chi^2 = 1.8 \), p=0.4). Among the 20 individuals infected with wild-type BA strains in the study there was no difference between the proportion
that seroconverted to the BA test virus (50%) and the proportion that seroconverted to the non-BA test virus (65%; McNemar’s $\chi^2=1.8$, $p=0.4$).

The effect of complement on genotype-specific neutralisation of the group B genotypes was evaluated using sera from 20 infants; 10 who had wild-type infections with BA strains and 10 who had wild-type infections with non-BA strains. Seroconversion rates to both the Kil/B/2008 virus and the Swe/B/1960 virus were compared in the presence and absence of complement. The proportion of infants infected with non-BA genotypes and who seroconverted to the Swe/B/1960 virus in the presence of complement (40%) was no different from the proportion that seroconverted in its absence (40%, McNemar’s $\chi^2=1$, $p=1$). The proportion of infants infected with BA strains in the 2007/2008 epidemic who seroconverted to the Swe/B/1960 virus was also no different in the presence (50%) or absence of complement (60%, McNemar’s $\chi^2=1$, $p=0.16$). There was similarly no difference in the proportion of infants infected with non-BA strains who seroconverted to the Kil/B/2008 virus in the presence (40%) or absence of complement (30%, McNemar’s $\chi^2=1$, $p=0.3173$). Finally, the proportion of infants infected with BA strains that seroconverted to the Kil/B/2008 virus in the presence of complement (50%) was similar to the proportion that seroconverted in its absence (30%, McNemar’s $\chi^2=1$, $p=0.3173$).

Neutralising responses to contemporary and historical genotypes of RSV A

The relationship between 20 infecting RSV A viruses was analysed by identifying conserved nucleotide and amino acid residues along the length of the fusion and
attachment proteins. There was 96.8% and 98.1% nucleotide and amino acid identity respectively on the F proteins of infecting RSV A viruses. On the other hand, there was 94.8% and 91.4% nucleotide and amino acid identity respectively on the G proteins of infecting viruses. These data are shown in table 7.2. Analysis of the level of amino acid conservation on some neutralising antibody epitopes on F and G protein of infecting RSV A viruses (shown on figure 5.12 and figure 5.13) showed that all neutralising antibody epitopes tested on both proteins were perfectly conserved on all infecting RSV A viruses sequenced. Comparison of the level of genetic variation between the 2 group A test viruses, Ken/A/2006 and A2 showed that they shared 88% amino acid identity on the G protein.

<table>
<thead>
<tr>
<th>Comparison groups (n)</th>
<th>Amino acid identity (%)</th>
<th>Nucleotide identity (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>F protein</td>
<td>G protein</td>
</tr>
<tr>
<td>RSV A only (20)</td>
<td>98.1</td>
<td>91.4</td>
</tr>
</tbody>
</table>

Table 7.2 Comparison of genetic relatedness of infecting RSV A genotypes in terms of percent nucleotide and amino acid identity

The genetic relationship between the G genes of RSV A viruses was further inferred using MDS. Pairwise distances between the G genes of infecting RSV A viruses were generated and plotted on a two dimensional MDS plot. The results of these analyses are shown in figure 7.6. The results show a high level of clustering of infecting RSV A G genes. Due to the high level of genetic conservation in the G protein of infecting RSV A viruses, many viruses were located on the same co-ordinates on the two dimensional MDS plot shown in Figure 7.6. The Ken/A/2006 test virus was located within the cluster of contemporary RSV A infecting viruses, while the A2 test genotype was distantly separated from this cluster.
The genetic relationship between the infecting and test viruses of RSV A was confirmed using phylogenetic analysis. A maximum likelihood tree with 100 bootstrap repetitions was constructed using MEGA software. The results of these analyses which are shown in Figure 7.7 show that there was a close genetic relationship between all infecting RSV A viruses. However, the A2 test virus was found to be distantly related to the infecting RSV A viruses.
Figure 7.7 Maximum likelihood phylogenetic tree showing the relationship between the G genes of infecting and test RSV A viruses. The notational convention for the wild-type genotypes is as follows: patient ID/Infecting group/NP genotype/year of isolation. Ken/A/2006 refers to the contemporary RSV A test strain while A2/A/1961 refers to the historical A2 strain.
Comparison of the neutralising antibody response by infants infected with contemporary RSV A genotypes to both the A2 (Aus/A/1961) and Kil/A/2006 test viruses.

Statistical comparison of genotype-specific neutralising responses in the sera of infants infected with contemporary RSV A viruses to the contemporary and historical RSV A test viruses was carried out next. There was a mean 3.42-fold rise in titre against the A2 test virus and a mean 3.15-fold rise in titre to the Kil/A/2006 test virus. Results of regression analysis showed that the difference in these responses was not statistically significant (p=0.8). This comparison is graphically depicted in Figure 7.8.

![Figure 7.8 Comparison of the magnitude of the neutralising response to the A2 and Ken/A/2006 test viruses of RSV A. The light grey bars represent acute stage titres while the dark grey bars denote convalescent phase responses. The numbers shown above each acute/convalescent sera pair denotes the fold rise in titre from the acute to convalescent phases of infection. The p-value shows that the magnitude of the neutralising response to these two viruses was not significantly different.](image)
Responses to the A2 and Kil/A/2006 viruses were also evaluated in terms of ability to seroconvert. Of the 33 RSV A infected individuals tested against both A2 and Kil/A/2006, no significant difference was found between the proportion that seroconverted to the A2 virus (39.4%) and the proportion that seroconverted to the Kil/A/2006 virus (51.5%; McNemar’s $\chi^2 = 4$, $p = 0.13$).

Responses to group conserved regions on the attachment protein

Antibody responses to synthetic peptides matching group conserved regions on the central part of the G molecule were evaluated in the sera of infants with RSV A ($n=57$) and B ($n=34$) infections who had been admitted with severe RSV-associated pneumonia. Acute and convalescent phase titres from the sera of infants admitted with severe RSV were compared using a paired two sided student’s t-test. Comparison of responses to the RSV A constant region showed that the convalescent response in the sera of RSV A infected infants was significantly greater than their acute phase response ($t = -6.4$, $p < 0.0001$). On the other hand, there was no difference between the acute and convalescent phase responses in the sera of RSV B infected infants to the constant region of RSV A ($t = -0.13$, $p = 0.9$). These data are shown graphically in figure 7.9.
This homotypic response pattern was repeated in the infant response to the constant region of RSV B infected individuals. While there was no statistically significant difference between the acute and convalescent phase responses in the sera of RSV A infected individuals against the RSV B constant region \((t=-0.6, \ p=0.6)\), the convalescent phase response of RSV B infected infants to the RSV B constant region was significantly greater than the acute phase response \((t=-10.3, \ p<0.0001)\). These responses are graphically represented in figure 7.10.
Responses to the RSV A and B constant region were further evaluated in terms of seroconversion. Of the 16 infants that seroconverted to the RSV A constant region, 16 (100%) were infected with RSV A while none (0%) were infected with RSV B. This difference was statistically significant ($\chi^2=11.6$, $p=0.001$). Similarly of the 7 individuals who seroconverted to the RSV B constant region, 7 (100%) were infected with RSV B while none (0%) were infected with RSV A. This difference was also statistically significant ($\chi^2=12.7$, $p<0.0001$). These data are shown in table 7.3 and table 7.4.
Infecting group	A	B	Total
Sero-conversion | n (%) | n (%) | n (%)
No | 41 (55) | 34 (45) | 75 (100)
Yes | 16 (100) | 0 (0) | 16 (100)
Total | 57 (63) | 34 (37) | 91 (100)

Table 7.3 Comparison of the proportion seroconverting to the RSV A constant region in the sera of RSV A or RSV B infected infants

Discussion

The first part of the studies presented in this chapter looked at responses to two representative RSV B test viruses among infants who had experienced natural infection with wild-type BA or non-BA strains. One of the two representative test viruses (Kil/B/2008 – isolated in Kilifi in 2008) contained the 60 nucleotide duplication while the other (Swe/B/1960 – isolated in Sweden in 1960) did not.
Direct comparison of the infecting F and G gene sequences showed there was a high degree of relatedness in terms of nucleotide and amino acid identity. The F gene was the most highly conserved molecule with over 90% nucleotide and amino acid identity within and between the two infecting RSV B genotypes. The G protein was less conserved with 73.8% and 79.7% amino acid and nucleotide sequence identity respectively shared between infecting BA and non-BA genotypes of RSV B. Analysis of four neutralising epitopes on the F proteins of infecting viruses showed that they were perfectly conserved both within and between the two infecting group B genotypes. Since the F protein, is the major target of neutralising antibody responses (Olmsted et al., 1986, Anderson et al., 1988), these data strongly suggested that neutralising responses directed at one genotype were likely to be effective against the alternative genotype. Extension of these analyses to neutralising epitopes on the G protein found evidence of genotype-specific amino acid differences within neutralising epitopes. Of the two G protein epitopes evaluated, the first, spanning amino acids 151 and 172, contained two genotype-specific amino acid differences, while the other, which spanned amino acids 201 and 213, contained one genotype-specific amino acid difference.

Analysis of the genetic relatedness of infecting BA and non-BA genotypes carried out by Multidimensional Scaling (MDS), showed evidence of inter-genotype genetic variation but little evidence of intra-genotype variation. In general, infecting BA viruses tended to cluster closely together on the two dimensional MDS space while non-BA viruses clustered together in a similar manner to BA viruses, but were separated from the BA cluster by a considerable genetic distance. While the BA test virus (Ken/B/2008) was located within the cluster of infecting BA viruses, the non-
BA test virus (Swe/B/1960) was located distantly from both infecting virus clusters. This suggests that the Swe/B/1960 virus has undergone considerable genetic evolution relative to the contemporary BA and non-BA infecting genotypes. Non-BA viruses in this study were isolated in the 2002/2003 RSV epidemic in Kilifi while the BA viruses were collected in the 2007/2008 epidemic, meaning that between 43 and 48 years respectively of temporal evolution separated the Swe/B/1960 test virus from the contemporary group B infecting viruses. This relationship was confirmed by phylogenetic analysis, which showed differential clustering of BA and non-BA infecting viruses and marked separation of the Swe/B/1960 genotypes from both clusters.

The effect of these genetic differences on the serum neutralising antibody response was evaluated by measuring neutralising responses in the acute and convalescent sera of infants infected with either genotype to both test viruses. Analysis of the serum neutralising responses of infants naturally infected by either wild-type BA or non-BA viruses, showed that their respective responses both in terms of fold rise in titre from the acute to convalescent phases of infection as well as their ability to seroconvert to either test virus was not statistically different. MDS analysis confirmed that the neutralising response of infants infected with BA viruses was no different from those of infants infected with non-BA viruses, since there was no evidence of differential clustering of antibody response in the two dimensional MDS space.

The data showing strong genetic variation on the G genes of contemporary and historical strains support previous work that showed the existence of strong molecular evolution acting on the G protein. There was indirect support for the idea that the
observed changes on the G protein could have been driven by immune pressure since a number of amino acid changes were identified on neutralising antibody epitopes located on the G protein. However, the lack of variation on F protein neutralising epitopes (thought to be more important targets of protective immunity) runs counter to the notion of immune driven virus evolution. The lack of difference between homologous and heterologous genotype responses suggests that G-specific neutralising responses may have been masked by cross-reactive responses to the more conserved F protein. F-specific responses have been shown to be up to 6-fold greater than G-specific neutralising responses (Olmsted et al., 1986). The greater role of the F protein in development of neutralising responses is further supported by previous work that showed that only F-specific antibodies are capable of mediating complete virus neutralisation, while G-specific antibodies mediate only partial neutralisation of the virus (Anderson et al., 1988, Walsh et al., 1989). The lack of a genotype-specific component to the RSV neutralising response contrasts with previous work that showed that the G protein evokes genotype-specific antibody responses (Cane et al., 1996, McGill et al., 2004). Previous work has shown protection in the mouse model can be conferred by monoclonal antibodies with minimal in vitro neutralization activity (Plotnicky-Gilquin et al., 1999), suggesting that failure to induce in vitro neutralisation, does not necessarily correlate with lack of protection. Previous studies have also shown that one such antibody (1C2) mediates in vitro neutralisation in the presence of complement, through Fc-dependent pathways (Meksepralard et al., 2006). However, even with the abrogation of Fc binding, this antibody provided significant protection against experimental challenge relative to controls (Meksepralard et al., 2006). These data suggest that some G-specific antibodies may be capable of inducing functional protection from natural challenge and that the
absence of neutralising ability in vitro does not suggest the lack of protection. A possible source of confounding in this study may be related to the use the lab-adapted strain A2. As a result of serial passaging over many years in different cell lines, it is possible that this strain has significantly deviated from wild-type strains, as has been suggested by some studies (McGill et al., 2004).

The results of this study suggest that the BA genetic change that has been associated with the remarkable epidemiological success of BA variants of RSV B is not associated with loss of neutralising ability by the sera of infants infected with non-BA viruses. Although the BA genetic change is clearly associated with increased transmissibility, the data presented here show that it was not accompanied by changes on selected key neutralising epitopes on the F protein. Viewed together, these observations support the assertion that the selective advantage conferred by the BA genetic change is not associated with escape from serum neutralising responses mounted in response to infection with non-BA viruses. As mentioned above, the in vitro neutralisation assay used in this study is not an incontrovertible marker of protection and as such the failure to detect a differential neutralising response, does not necessarily mean that the BA genetic change did not confer an immune selection advantage. Further studies using animal models are required to clarify the role of the BA genetic change to functional protection.

It is also possible that an alternative genetic change in another part of the RSV genome occurred in tandem with the BA mutation, and may be responsible for the transmission success of the BA variants. While the transmission advantage conferred by either the BA or alternative genetic change are not associated with loss of
neutralising ability by serum antibody, it is possible that these changes may have conferred an intrinsic biological fitness advantage to BA variants relative to previous group B viruses.

Analysis of the neutralising responses of RSV A infected individuals to two RSV A test viruses A2 and Kil/A/2006 showed a similar pattern of homologous to heterologous reactivity. The infecting RSV A viruses were remarkably similar in terms of both nucleotide and amino acid identity on both the G and F proteins. Analysis of the level of variation between the G genes of RSV A test viruses by MDS showed evidence of variation between the A2 and Kil/A/2006 G genes. The Kil/A/2006 test virus was located within the cluster of RSV A infecting strains, while the A2 virus occurred on a separate region of the two dimensional MDS space. The relationship between these viruses was confirmed by phylogenetic analysis of G gene sequences. The phylogenetic tree depicting these relationships showed that while the Kil/A/2006 G gene clustered together with G gene sequences derived from infecting viruses, the A2 G gene was located on a separate branch. Viewed together, these data suggested that both the contemporary RSV A infecting viruses as well as the Kil/A/2006 test virus had evolved away from the A2 virus which had been isolated about 45 years earlier.

Despite evidence of G gene variation between the two RSV A test viruses, there was no difference in the ability of infant sera to neutralise either virus. The neutralising response to the two RSV A test viruses by sera from infants with contemporary RSV A infections both in terms of both fold rise in titre as well as the ability to seroconvert was not statistically different. These data suggest that temporal evolution of RSV does
not lead to loss of neutralising ability by serum antibody that is detectable by the neutralisation method employed. These data further suggest that RSV molecular evolution is not associated with loss of neutralisation by serum antibody. These results have implications for vaccine design. It is possible that future vaccines could act by the induction of neutralising antibody. The results presented here suggest that such vaccines are likely to retain effectiveness over a long period time without the need for recurrent antigenic updates. This might result in substantial cost benefits and potentially increase both coverage and effectiveness of future vaccine programmes in reducing the burden of illness attributable to RSV infection.

Finally, this study looked at total antibody responses to group conserved regions on the G proteins of RSV A and B. The results presented show that antibody responses directed at these regions are strongly group-specific. The data presented support the results of previous studies that showed that immunisation of mice with similar peptides resulted in group-specific protection (Simard et al., 1997). These results also provide further support to the idea that the RSV neutralising response is strongly group-specific, suggesting the need to consider the parallel development of live attenuated vaccines based on an RSV B backbone in order to ensure that protective immunity that is induced through vaccination is effective against genotypes from both groups of RSV.
Chapter 8 - Cytokine/chemokine responses following natural infection in infants

Introduction

RSV is the most important viral cause of severe pneumonia in infancy (Nair et al., 2010). Despite this, the mechanisms of pathogenesis among infants who are naturally infected are not fully understood. The first point of contact between RSV and the host is the epithelium of the upper respiratory tract. Since RSV replication occurs mainly in airway columnar epithelial cells, cytokine/chemokine responses generated at this site are likely to significantly influence the balance between virus clearance and pathology.

RSV infection of epithelial cells leads to significant up-regulation of innate immune receptors such as Toll Like Receptor 4 (TLR-4) within 24 hours of infection (Xie et al., 2009). TLR-4 and CD14 on human monocytes have been shown to bind to the F protein leading to the production of pro-inflammatory cytokines TNF-α, IL-6 and IL-12 (Kurt-Jones et al., 2000). In human infants, TLR4 is up-regulated at the acute phase of RSV infection and down-regulated at the convalescent stage, underpinning its central role in the recognition of RSV and in the initiation of host antiviral responses (Gagro et al., 2004). RSV infection also promotes the secretion if TNF-α, IL-6, MCP1 and RANTES through interaction with TLR-2 and TLR 6 expressed on leukocytes (Murawski et al., 2009). Human alveolar macrophages have also been shown to be a potent source of pro-inflammatory cytokines/chemokines TNF-α, IL6 and IL8 (Becker and Soukup, 1999).
Peripheral production of pro-inflammatory cytokines/chemokines has been linked to initiation of clinical symptoms such as fever and malaise through activation of neurological pathways (Watkins et al., 1995), providing grounds to suggest that rises in pro-inflammatory cytokine/chemokine responses may be related to illness following natural RSV infection.

Once within human epithelial cells, RSV induces further production of IL-8 (Harrison et al., 1999, Arnold et al., 1994) as well as the C-C chemokines RANTES, MCP1 and MIP-1α in a dose dependent manner (Olszewska-Pazdrak et al., 1998). RANTES has been shown to induce the migration of CD4+ T cells and monocytes (Schall et al., 1990) to the site of infection. MIP-1α is thought to induce the chemotaxis of B cells, CD8+ T cells and CD4+ T cells (Schall et al., 1993) and has further been suggested to have a role in eosinophil degranulation (Harrison et al., 1999). MCP1 on the other hand induces the migration of both CD8+ and CD4+ T cells (Loetscher et al., 1994).

The factors that promote the development of severe disease in infants have not been clearly defined. Among RSV-infected infants admitted to hospital with severe illness, the levels of RANTES, MIP-1α, IL-6, IL-8 and IL-10 are significantly higher compared to non-RSV controls (Sheeran et al., 1999), suggesting that these cytokines/chemokines have a role to play in RSV pathogenesis in infancy. There is evidence in the murine model that shows that RSV infection induces simultaneous production of both inflammatory (IFN-γ) and regulatory (IL-10) cytokines in the acute phase of infection (Sun et al., 2011). It has been suggested that the simultaneous production of these antagonistic cytokines is important in achieving a
balance between virus clearance and prevention of immune mediated pathogenesis (Sun et al., 2011, Loebbermann et al., 2012).

The role of virus-specific factors on the early host response to RSV has not been exhaustively investigated. Murine studies have shown that some strains of the virus tend to induce more severe pathology than others. For example, comparison of the pathogenesis induced by infection of BALB/c mice with either the A2 or line 19 strains, showed that line 19 induced airway hyper-reactivity and mucus overproduction while A2 did not (Lukacs et al., 2006). In this model, disease severity correlated with levels of IL-13 since infection of IL13/-/- mice with line 19, abrogated airway hyperreactivity (Lukacs et al., 2006). Later studies showed that certain mutations in the F protein are strongly associated with the ability of line 19 to induce airway hyperresponsiveness and enhanced mucus production (Moore et al., 2009), raising the possibility that natural variation within this protein in wild-type isolates may similarly play a role in differential disease outcome in infants.

In this chapter, cytokine/chemokine responses following natural RSV infection in infants were explored. Cytokine/chemokine responses over the entire course of mild RSV infection as well as among infants admitted with severe RSV related pneumonia were related to disease outcome, viral load and different strains of RSV.

Chapter Aims

This chapter will explore the relationship between mild RSV infection and different cytokine/chemokine concentrations with a view to identifying cytokines/chemokines that are associated with development of disease following natural infection. The effect
of viral load on the expression levels of different cytokines/chemokines will also be investigated. To evaluate whether other respiratory viruses induce cytokine/chemokine responses that vary from those induced by RSV infection, the levels of different cytokines/chemokines during RSV and rhinovirus infection will be compared. This chapter will also explore the kinetics of different cytokine/chemokine responses following natural infection in the household. Cytokine/chemokine responses in the nasal secretions of seven infants from whom nasal samples were collected at least twice weekly over the course of infection will be investigated. The relationship between peaks in cytokine/chemokine response, presence or absence of Upper Respiratory Tract Infection (URTI) symptoms (i.e. cough, sore throat, runny nose and nasal congestion) and viral load will be explored. The effect of virus specific factors on the infant cytokine/chemokine response will be investigated by comparing cytokine/chemokine responses in the nasal secretions of infants infected with either RSV A or B. Finally, the effect of different cytokine/chemokine concentrations on different clinical phenotypes of severe pneumonia will be investigated.

Methods

The samples used in this study were derived from two studies of natural RSV infection in infancy and early childhood. The first set of samples were derived from a longitudinal household study in which nasal flocked swab samples were prospectively obtained from infants during an RSV epidemic at twice weekly intervals. Diagnosis of RSV (both A and B) along with 14 other respiratory pathogens was carried out on each sample using a multiplex real time PCR. In the studies whose results are reported in this chapter, only samples obtained a few days prior to, during and shortly after cessation of RSV shedding are included for analysis, and not the entire sample set
collected over the six month period during which active surveillance was undertaken. Further details on the household study design can be found in chapter 4.

The second set of samples was derived from paediatric hospital inpatients admitted with WHO syndromically defined severe or very severe pneumonia and a laboratory confirmed RSV diagnosis. Nasal wash and nasopharyngeal aspirate samples were collected from these infants and were used in the detection of different cytokines/chemokines in this study. Further details on the design of the clinical surveillance study from which these samples were obtained can be found in chapter 4.

A total of 100 samples collected from seven infants from the household study are included in the analysis described in this chapter. Each of the infants in this study was less than 1 year of age at the time of entry into the study. Furthermore, 86 samples from infants and young children admitted to KDH with RSV-associated severe or very severe pneumonia were included in the study. Viral load was approximated by calculating the inverse of cycle threshold (ct) values obtained from real-time PCR diagnostic assays. The laboratory assays used in the measurement of cytokine/chemokine concentrations are described in detail in chapter 4.

Comparison of cytokine/chemokine concentrations between different groups of was done using a two sided student t test based on log_{10} normalised concentrations. Samples whose cytokine/chemokine concentrations were below the lower limit of detection, were assigned the value 0.0001 pg/ml to enable log transformation and statistical analyses. In almost all samples tested, the levels of IL-5, IL-13, IL-4, IL-2 and IL-12p70 were below the lower limit of detection and as a result, these
cytokines/chemokines were not subjected to statistical analyses. To describe the kinetics of different cytokine/chemokine responses, differences between mean cytokine/chemokine concentrations at different time points pre/post infection were measured using multiple regression. In these analyses, cytokine/chemokine concentrations were the dependent variable while the different time points pre/post infection were the independent variable.

Results

Cytokine/chemokine Responses in the Longitudinal Household study

Diversity of respiratory pathogens detected

In total, cytokine/chemokine levels were evaluated in 100 samples derived from different infants in the household study. Figure 8.1 shows the distribution of different respiratory pathogens in the study samples that were evaluated. Of the 16 pathogens that were included in the detection panel, only 8 were found to be present in the samples included in this study. The pathogens that were present at the highest proportions were RSV A (14%), rhinovirus (21%) and RSV B (22%).
Discussion

In this chapter, the neutralising antibody responses in the acute and convalescent phase sera of children with a positive RSV diagnosis and who were admitted with severe pneumonia are presented. The infants and young children in this study were recruited over the course of 3 RSV epidemics in Kilifi. The group designations of each infecting strain was characterised using previously described molecular techniques (Scott et al., 2004) in addition to F and G gene sequencing of a number of infecting viruses. In addition to molecular sequencing and genotyping of infecting strains, comprehensive clinical phenotyping of clinical pneumonia was also carried out for each of the paediatric pneumonia admission cases recruited in this study.

The availability of comprehensive clinical and molecular diagnostic data in this study is an improvement over previous studies that have sought to look at the infant neutralising response. Studies done in the 1960s failed to show a difference between homologous and heterologous antibody responses in the sera of acutely infected infants (Coates et al., 1963, Wulff et al., 1964). These studies were done on the presumption that there was homotypic strain exposure in any single epidemic, a premise that has since been rendered invalid by studies that show evidence of co-dominance of RSV A and B strains in some epidemics (Hendry et al., 1989, Freymuth et al., 1991). Subsequent studies that looked at the group-specificity of the neutralising response failed to show a statistically significant difference between the homologous and heterologous response to both RSV A and B (Muelenaer et al., 1991, Hendry et al., 1988).
In order to assess the magnitude of the serum neutralising response following infection, mean acute and convalescent antibody titres to RSV test strains were compared. An overlay of the acute and convalescent phase neutralising antibody titre distributions (shown in figure 5.4) showed that in general, the acute antibody titre was lower than the convalescent antibody titre, suggesting that infants and children generally mount a strong neutralising antibody response following natural infection. When the acute and convalescent phase distributions in three age classes (0-5, 6-11 and 12 months of age and above) were compared there was evidence that age plays an important role in the development of the neutralising antibody response. Whilst there was a modest difference between the acute and convalescent phase titres in the 0-5 month age class, in the older age classes (6-11 and 12+ months of age) there was evidence of a robust neutralising response at convalescent phase of infection relative to the acute phase (figure 5.5). These data suggest that in general infants mount neutralising responses to natural infection and this response tends to increase with age.

It has been suggested that the inability of very young infants to mount a strong neutralising response to infection is related to high titres of maternally-derived antibody present in very young infants (Murphy et al., 1986b). To explore the relationship between pre-existing antibody and the ability to mount a robust response to infection, correlation analysis was carried out between the magnitude of the neutralising response and the titre of pre-existing antibody. The results of Spearman’s rank correlation analysis showed that there was a strong and statistically significant negative association between the magnitude of the neutralising response (measured as fold rise in titre) and the titre of acute phase antibodies. A similar pattern was seen
when acute phase titres were stratified into four quartiles and the proportion of infants seroconverting in each quartile determined. Over 90% of the infants in the first quartile seroconverted, relative to 59.6%, 13.5% and 0% who seroconverted in the 2nd, 3rd and 4th quartiles respectively. These data strongly suggest that high titres of pre-existing antibody interfere with the infants' native response to infection. These data accord with a previous report by Parrot \textit{et al.} who showed that the convalescent phase neutralising response to infection was negatively associated with the acute phase titre (Parrott \textit{et al.}, 1973).

In addition to the interfering effect of pre-existing antibody on the natural infant response to infection, it has also been suggested that young age may independently account for the relatively poor neutralising antibody response mounted by very young infants. A study by Murphy \textit{et al.} found that age primarily affects the response to the F protein while pre-existing antibodies affect the response to the G protein (Murphy \textit{et al.}, 1986a). Since neutralising responses are mainly targeted at the F protein this age related reduction in response to the F protein could possibly be reflected in the overall neutralising response. The data presented in this study shows that there was a moderate but statistically significant positive association between age and the magnitude of the neutralising response. However, analysis of the proportion of infants who seroconverted within different age classes (Figure 5.8) showed that a small proportion of even the youngest infants mounted a seroconverting response to infection, suggesting that even very young infants are capable of mounting a strong neutralising response to natural infection. This suggests that the key driver of the poor infant neutralising response is likely to be the presence of pre-existing maternal antibodies and not age. This idea is supported by the work of Shinoff \textit{et al.} who found
that pre-existing antibody and not age is the key determinant of the infant neutralising response (Shinoff et al., 2008).

A number of studies have looked at the protective effect of neutralising antibodies against severe disease in young infants. Although some studies have shown evidence of protection from severe disease by antibodies (Glezen et al., 1981a), some studies have reported that maternally-derived neutralising antibodies are not associated with protection from severe disease (Bulkow et al., 2002). The data presented in this chapter show a protective association between neutralising antibodies and some clinical features of severe pneumonia. Out of seven clinical feature that were analysed, neutralising antibodies were found to be associated with a lower risk of developing shock, flaring, hypoxia and crackles, although statistical significance was only reached in the case of shock. These data generally suggest that neutralising antibodies, even in this group of severely ill children are associated with protection from some features of clinical pneumonia.

A number of studies have looked at the sequence characteristics of different strains of RSV both at the F and G gene levels. Comparison of the G protein genes of two RSV A strains, A2 and Long found 94% amino acid sequence identity between these two strains (Johnson, 1987). However the A2 G protein gene only shared 53% amino acid identity with the G protein of the group B strain, 18537 (Johnson, 1987). Sullender et al. found that another group B strain, 8/60 shared 98% amino acid identity with the 18537 strain, but only shared 56% amino acid identity with the A2 strain (Sullender et al., 1990). These results strongly suggested that in general, the G protein is highly variable between the two groups but is relatively conserved within each group. In
contrast, comparison of the deduced amino acid sequences of the 18537 and A2 F proteins showed that they shared 91% amino acid identity (Johnson and Collins, 1988), suggesting that the F protein is highly conserved between groups. The data presented in this chapter shows that there was 87% amino acid identity in the deduced F protein amino acid sequences of infecting RSV A and B isolates and only 28.6% amino acid identity at the G protein level. These data are therefore in general agreement with previous findings and reinforce the idea that the F protein is highly conserved between the 2 groups while the G protein is highly variable. Despite the high level of sequence conservation of the F proteins of wild-type isolates, neutralising responses to this protein do not appear to correlate with protection from natural (Glezen et al., 1986) or experimental (Hall et al., 1991) re-infection. It is possible that despite its relatively greater level of conservation, neutralising antibody epitopes on the F protein may be located on a small but variable part of the protein.

To explore this possibility, four neutralising antibody epitopes on the F protein were identified in the literature (West et al., 1994, Martin-Gallardo et al., 1991, Lopez et al., 1990, Trudel et al., 1987a) and mapped on the deduced amino acid sequences of infecting RSV A and B strains. The data presented in figure 5.12 show that two of these epitopes; aa205-225 (Bourgeois et al., 1991) and aa221-236 (Trudel et al., 1987a) were located on a region of the F protein that contained a number of group-specific amino acids. In other words some amino acid residues within these epitopes were perfectly conserved within but not between the two groups. There are studies that have shown that such differences could substantially influence the group-specificity of the neutralising antibody response. West et al. for example, demonstrated that one monoclonal antibody, RS348 that was generated against the A2
strain (RSV A) (West et al., 1994) and whose target is aa205-225 on the F protein (Bourgeois et al., 1991) mediated a 782-fold greater neutralisation of homologous virus (RSV A) relative to heterologous virus (RSV B) (West et al., 1994). Analysis of the amino acids of this epitope among the infecting strains presented in this study (figure 5.12) showed that it contained two amino acids that were conserved within but not between the two RSV groups. This strongly suggests that if the infant response similarly targets this neutralising epitope, it is likely that such a neutralising response would be highly group-specific.

A similar pattern of group-specific neutralisation has been observed using a neutralising monoclonal antibody, 7C2 (West et al., 1994) whose target is aa221-236 (Trudel et al., 1987a) on the F protein. Analysis of the patient isolates in this study showed that aa221-236 contained one amino acid that was conserved within but not between the two RSV groups. The 7C2 monoclonal antibody targeting this region has been shown to mediate a 2.5 fold greater homologous vs. heterologous neutralisation at group level (West et al., 1994), supporting the idea that infant responses targeted at this region would be similarly group-specific.

The final two neutralising epitopes that were mapped on the deduced F protein amino acid sequence alignments of infecting strains were perfectly conserved in all infecting strains irrespective of whether they belonged to group A or B. Previous studies using a neutralising monoclonal antibody targeting one of these epitopes (aa262-268) have shown that it mediates a 1.4-fold greater homologous to heterologous neutralisation (West et al., 1994), suggesting that neutralising responses directed at this region are largely cross-reactive.
In summary, these data suggest that neutralising responses to the F protein are a mixture of both group-specific and group cross-reactive responses and that amino acids that are conserved within but not between groups could potentially lead to an overall greater homologous to heterologous neutralising response.

This study finally looked at the group-specificity of the neutralising antibody response. Responses to contemporary strains of RSV A and B were used using acute and convalescent sera obtained from infants whose infecting strains were well characterised by molecular techniques. The results of these analyses show that the proportion of homologous seroconversion was greater than that of heterologous seroconversion irrespective of whether the infecting strain was RSV A or B. The effect of age on the ability to mount a strong homologous vs. heterologous response was also investigated. Infant responses were stratified into 3 age classes, 0-5, 6-11 and 12+ months of age and their ability to neutralise homologous virus was compared to their ability to neutralise heterologous virus. The results of these analyses showed that in all three age classes the mean response to homologous virus (in terms of fold rise in titre) was significantly greater than the mean response to heterologous virus.

The weakest homologous responses to RSV A and B occurred in 0-5 month age class. It is possible that the inability to mount a strong neutralising response within this age class may be related to the presence of pre-existing maternal antibody as discussed earlier. On the other hand, the strongest neutralising responses to either homologous or heterologous virus were seen in the 6-11 month age class. This robust response might be attributed to the absence of pre-existing maternally-derived antibody at the
time if infection. Analysis of the dynamics of the acute phase neutralising response in this study showed that maternally-derived antibodies had declined to minimal levels by 3 months of age suggesting that infants exposed to primary infection in the 6-11 month age class would have largely been free of maternal antibody. Analysis of the heterologous responses in this age class showed that although the mean heterologous responses (in terms of log fold rise in titre) to both RSV A and B were high relative to the 0-5 month age class, they were nonetheless below the 4-fold threshold that has traditionally been used as a measure of a significant serological response.

It was further observed that although the homologous responses to RSV A and B in the 12+ month age class were above the 4-fold threshold, they were nonetheless lower than the homologous responses in the 6-11 month age class. A possible explanation for this could be that at this age (12 months and above), young children in their second year of life are likely to be undergoing secondary infection. The inability to detect a homologous response in the 12+ month age class that was of comparable magnitude to that in the 6-11 month age class may be attributed to the presence of relatively high levels of pre-existing antibody brought about by either (i) maintenance of high antibody levels following primary infection or (ii) an extremely rapid rise of secondary antibody shortly after exposure. This would imply that the acute sample – which is collected after the onset of symptoms and therefore a few days after actual infection – would be partly reflective of the antibody response to the current infection. The dynamics of the primary and secondary neutralising antibody responses are considered in greater detail in chapter 6.
In summary, the data presented in this chapter explore the neutralising response to RSV and more specifically, the group-specificity of the neutralising response in a group of severely infected infants. The data show that the neutralising antibody response is strongly group-specific and that group-specific amino acid differences in the neutralising epitopes on both the F and G proteins of the infecting strains may be associated with this specificity. The data presented in this chapter supports the assertion that population level group-specific immunity may underlie the observed group replacement dynamics of RSV.
Chapter 6 - Kinetics of the neutralising antibody response

Introduction

RSV re-infects throughout life (Henderson et al., 1979, Glezen et al., 1986). The ability to repeatedly infect may be related to antigenic variation or short-lived protective immunity or both. Studies of the antigenic characteristics of RSV strains that cause repeat infections suggest that antigenic variation does not play a central role in the ability of RSV to re-infect (Beem, 1967) although there is evidence that shows that re-infection with genetically variant strains is a common phenomenon (Agoti et al., 2012). The duration of protective immunity post natural infection has not been clearly defined, although human experimental challenge studies show that re-infection can be induced within 2 months of the primary challenge (Hall et al., 1991). The correlates of protective immunity in terms of both the duration and strain-specificity of the immune responses induced by natural infection are an important subject of research since they will provide insights on the likely effectiveness of future RSV vaccines.

The mechanisms of antibody-mediated protection have been studied for a number of other acute viral infections. Infection with viruses such as the measles virus, poliovirus and the mumps virus induce extremely long lived antibody responses whose respective half lives are estimated to be over 200 years (Amanna et al., 2007). Infections such as poliovirus induce strain-specific antibodies that are maintained for a number of years in the absence of natural re-exposure (Paul and Riordan, 1950, Paul et al., 1951). On the other hand, natural influenza A infection has been shown to
induce neutralising antibodies that decline to pre-infection levels within one year of infection (Buchy et al., 2010). Studies of the duration of the total antibody response to natural primary RSV infection suggest that RSV-specific antibodies are short-lived. Welliver et al. showed that the serum antibody response to RSV declined to pre-infection levels by one year after primary infection (Welliver et al., 1980), while the secretory IgA response declined to pre-infection levels by 3 months post infection (Kaul et al., 1981). There are currently no data available that show the duration of neutralising antibody responses in the serum of infants with natural primary RSV infection.

The determinants of the variation in the duration of antibody induced protection between different viral infections are not fully understood. A number of murine based studies have shown that antibody producing plasma cells can be maintained for long periods of time in the absence of antigenic re-stimulation (Slifka and Ahmed, 1998), suggesting that that these cells may be a key source of long lived antibody responses. However not all plasma cells are long lived (Slifka and Ahmed, 1996). There is some evidence that suggests that the longevity phenotype of specific plasma cell populations is associated with their cognate epitopes (Slifka and Ahmed, 1998), meaning that the long term maintenance of antibody responses through this mechanism is epitope - and by extension - virus specific. These observations agree with the ability of some viral infections to induce short-lived antibody responses while others such as those mentioned above appear to induce responses that are maintained for many years.
Despite the evidence of short-lived primary antibody responses, it is well recognised that severity of RSV disease declines significantly upon secondary infection (Glezen et al., 1986, Nokes et al., 2008). While it is likely that the maturation of the respiratory system with age plays a crucial role in moderating disease severity, a number of studies have provided indirect evidence that maturation of the respiratory system alone is not sufficient to protect from severe disease. RSV is known to be a major cause of severe respiratory illness among the elderly and adult organ transplant recipients who are under immunosuppressive therapy to reduce the likelihood of organ rejection (Falsey et al., 2005, Krinzman et al., 1998). Since severe disease frequently occurs in these adult populations, physiological maturity of the airways alone cannot account for protection from severe disease. These data therefore suggest that protection from severe disease in healthy, immuno-competent individuals may be associated with the ability to generate a rapid, protective neutralising response shortly after re-infection.

The role of maternal antibodies in protecting from severe infection has been extensively studied. Although there are some contradicting data (Bulkow et al., 2002), it is generally agreed that maternal neutralising antibodies provide protection from severe disease in early infancy (Glezen et al., 1981b). It has previously been shown that the total maternal antibody response is relatively short-lived with a half life of less than three months (Ochola et al., 2009). It has also been suggested that the duration of protection by maternal antibodies is related to the titre at birth, and that higher cord titres are associated with a longer duration of protection from natural infection while lower cord titres protect for a shorter duration (Ogilvie et al., 1981).
There is a paucity of data however on the mean duration of protective neutralising antibodies above thresholds that are commonly associated with protection from severe disease.

Chapter Aims.

This chapter explores the serum neutralising antibody responses in a birth cohort that was followed for approximately 30 months or until three RSV epidemics had been experienced. The cohort was recruited in two phases, which are referred to in this chapter as cohort 1 and cohort 2. The chapter aims to explore the relationship between exposure to infection, inferred through incidence data obtained from inpatient diagnostic records and temporal variations in the mean neutralising antibody titres in the two cohorts. The chapter also aims to define the duration of neutralising antibody response following primary infection. The mean neutralising responses at different time points post infection will be compared to that of a pre-exposure control group. The chapter further aims to define the mean duration of protective neutralising antibodies of maternal origin using a putative protective threshold obtained from the literature. Using this threshold, the mean duration of protective maternal antibodies as well as the age prevalence of protective maternal neutralising antibodies will be calculated. Finally the dynamics of the primary and secondary neutralising responses will be evaluated, by comparing neutralising titres in sera collected within 10 days of identification of primary and secondary infection to a pre exposure control group.
Materials and methods

Study population and design

The study used archived serum and nasal wash samples collected from a birth cohort of children recruited between 2002 and 2003 in the rural District of Kilifi on the Kenyan Coast. The birth cohort was recruited in 2 phases: phase 1 was recruited between January and May 2002 while phase 2 was recruited between December 2002 and July 2003. At delivery, a cord blood sample was taken, followed by routine blood samples scheduled at 3-monthly intervals until each child had experienced three RSV epidemics or was lost to follow-up. Through home or clinic surveillance nasal washes were collected from children that displayed symptoms of acute respiratory infection and detection of RSV done using IFAT. For positive samples the RSV group was determined by Reverse Transcriptase (RT)-PCR (Stockton, 1998). An acute blood sample was collected as soon as possible after RSV diagnosis and a convalescent blood sample was collected about one month later. 28 individuals from the birth cohort from whom at least eight serum samples had been collected over the course of follow-up were included this study. All had a virus confirmed primary infection during the course of the study, while 9 had virus confirmed secondary infections. Of the 28 primary infections, 16 were group A infections while 12 were group B. Of the 9 virus confirmed secondary infections, 3 were RSV A infections while 6 were RSV B. Out of the 3 individuals who had RSV A secondary infections, 1 had a primary RSV A infection while 2 had RSV B primary infections. Similarly, out of the 6 individuals who had RSV B re-infections, 3 had primary RSV A infections while 3 had primary RSV B infections. In all the studies outlined in this chapter, serum neutralising antibodies were measured to local RSV A and B strains (Ken/A/2006
and Ken/B/208) and a mean titre calculated. Antibodies were measured in acute and convalescent sera as well as in the cord and routine 3 monthly sera. A pre exposure control group consisting of sera collected up to six months before infection from children who were older than 5 months of age at the time of collection (pre-exposure control group) was defined for comparison. Exposure in the presence study was estimated using paediatric inpatient RSV surveillance data. The study population, design and diagnostic techniques have been described elsewhere (Nokes et al., 2009).

RSV epidemic start and end dates during the period of surveillance were adopted from the work of Okiro (E. Okiro PhD Thesis) and are shown in table 6.1.

<table>
<thead>
<tr>
<th>Year</th>
<th>epidemic</th>
<th>start week</th>
<th>finish week</th>
</tr>
</thead>
<tbody>
<tr>
<td>2002</td>
<td>1</td>
<td>11</td>
<td>26</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>49</td>
<td>52</td>
</tr>
<tr>
<td>2003</td>
<td>2</td>
<td>1</td>
<td>15</td>
</tr>
<tr>
<td>2004</td>
<td>3</td>
<td>2</td>
<td>22</td>
</tr>
</tbody>
</table>

Table 6.1 Epidemic start and end weeks over the period of follow up of the 2 birth cohorts. These definitions are adopted from the work of Okiro (Emelda Okiro thesis, 2007).

Statistical analyses

Data were analysed using Stata (version 11, Statacorp, College station Texas). For the purpose of calculating the duration of the neutralising response, the start of the host immune response to RSV was assumed to coincide with the date of collection of nasal samples that turned out to be positive for RSV antigen by IFAT. It was further assumed that antibody responses had declined to pre-infection levels if they were
similar to or fell below the mean pre-exposure control titre. The duration of the neutralising antibody response following primary infection was determined using a multiple linear regression model. In this model the neutralising antibody titres were the dependant variable while the number of months before or after infection and age were the independent variables. Acute and convalescent phase responses during primary and secondary infection were also compared using a multiple linear regression model. The rate of decay of maternal neutralising antibody was analysed by comparing infant titres to a neutralising antibody titre of $2.48 \log_{10}\text{ND}_{50}$ that has previously been associated with protection against severe disease (Glezen et al., 1981a). Time to failure survival analysis was used to determine the average duration of protective maternal antibodies. Failure was defined as a decline of maternal titres below the titre associated with clinical protection. The average duration of neutralising antibody protection by maternal antibodies was obtained by calculating the reciprocal of the average rate of decline of maternal titres obtained from survival analysis. The analytical output for the data presented in this chapter is presented in appendix 2.

Results

General age dynamics of the neutralising response

To describe the age dynamics of the neutralising response in the first two years of life, serum neutralising antibodies from the 2 birth cohorts were combined and the mean neutralising response calculated in different age classes. Ten age classes were defined for these analyses; 0-2 (n=49), 3-5 (n=31), 6-8 (n=22), 9-11 (n=32), 12-14 (n=36), 15-17 (n=29), 18-20 (n=21), 21-23 (n=22), 24-26 (n=28) and 27+ (n=10) months of age. There was a sustained decline of neutralising antibodies in the first 8 months...
of life, followed by an increase in mean neutralising titres between the ages of 11 and 20 months. There was a sustained increase in titre between the ages of 21 to 26 months. This was followed by a slight decline among children who were above 27 months of age. These data are graphically represented in figure 6.1.

Figure 6.1 The age dynamics of the neutralising antibody titre in the RSV birth cohort. Infant neutralising antibody titres are stratified into 10 age classes (x-axis) and mean neutralising titres (y-axis) compared in successive age classes. The grey circles indicate the distribution of actual titres within respective age classes while the lines cutting across the mean values (open circles) indicate 95% confidence intervals. The p values cutting across different age classes indicate whether the differences between the means of the groups being compared are statistically significant.

The relationship between exposure and the neutralising antibody response

RSV inpatient surveillance data were used to estimate the periods when RSV epidemics were occurring within the community. Infants were considered to be exposed to and at risk of infection during epidemic periods and at lower or no risk of infection during inter-epidemic periods. To explore the relationship between the
neutralising response and exposure, neutralising antibody titres from 19 infants in cohort 1 and 9 infants in cohort 2 whose sera were collected serially over approximately 30 months of follow up were plotted against RSV incidence data obtained from inpatient surveillance. The data in figure 6.2 shows the result of this comparison.

Figure 6.2 The dynamics of the neutralising antibody response relative to population level transmission of RSV. The blue bars show the number of paediatric (<5 yrs old) RSV cases in severe and very severe pneumonia admissions to Kilifi District Hospital over the follow up period. The dashed grey and dashed red lines indicate temporal dynamics of the neutralising response in cohort 1 and 2 respectively. 19 individuals from cohort 1 and 9 individuals from cohort 2 were included in this analysis.

To further explore the relationship between population level virus transmission and variation in the mean neutralising response, serum samples from cohort 1 and 2 were stratified by date of collection into 11 and 10 strata respectively of 3 calendar months each. 19 and 9 individuals from cohorts 1 and 2 respectively were included in these analyses. The mean neutralising titre within each stratum was then calculated and
compared to that of the subsequent stratum. Figure 6.3 is a summary of the mean neutralising response within each stratum in cohort 1 relative to population level transmission. Table 6.2 contains the mean age, dates of sample collection as well as total number of samples in each stratum. As an estimate of the level of exposure, the proportion of samples that were collected within and outside epidemics are provided for each stratum. The mean neutralising antibody titre in stratum 1 (2.8 log\textsubscript{10} PRNT) was significantly greater than the mean neutralising titre in stratum 2 (2.27 log\textsubscript{10} PRNT, p<0.0001). 36% and 71% of the samples in strata 1 and 2 respectively were collected during epidemic 1 while the remaining samples were collected during inter-epidemic periods. The mean neutralising response in stratum 2 was on the other hand significantly greater than the mean response in stratum 3 (1.92 log\textsubscript{10} PRNT, p=0.012), where all the samples were collected in the inter-epidemic period between epidemics 1 and 2. There was no significant difference between the mean titre in stratum 3 and 4 (1.92 log\textsubscript{10} PRNT vs. 1.86 log\textsubscript{10} PRNT; p=0.74). There was a statistically significant difference between the mean neutralising titre in strata 4 and 5 (1.92 log\textsubscript{10} PRNT vs. 2.34 log\textsubscript{10} PRNT; p=0.002). 31% and 96% of the samples in strata 4 and 5 respectively were collected in the course of epidemic 2. There was no statistically significant difference between the mean neutralising responses in strata 5 and 6 (2.34 log\textsubscript{10} PRNT vs. 2.33 log\textsubscript{10} PRNT; p=0.9). All the samples in stratum 6 were collected in the inter-epidemic period between epidemics 2 and 3. The mean neutralising response in stratum 7 was borderline significantly lower than the mean neutralising response in stratum 6 (2.33 log\textsubscript{10} PRNT vs. 2.03 log\textsubscript{10} PRNT; p=0.06). All the samples collected in stratum 7 were collected in the inter-epidemic period between epidemics 2 and 3. The mean neutralising response in stratum 8, where 22% of the samples were collected in the course of epidemic 3, was not significantly
different from the mean neutralising response in stratum 7 (1.97 log_{10} PRNT vs. 2.03 log_{10} PRNT; p=0.73). However the mean neutralising titre in stratum 9 where all the samples were collected during epidemic 3 was significantly greater than that of stratum 8 (2.66 log_{10} PRNT vs. 2.03 log_{10} PRNT; p<0.0001). There was no statistically significant difference between the neutralising responses of strata 9 and 10 (2.66 log_{10} PRNT vs. 2.92 log_{10} PRNT; p=0.07) and 10 and 11 (2.92 log_{10} PRNT vs. 2.78 log_{10} PRNT; p=0.5). These data are summarised in figure 6.3.
Figure 6.3 The dynamics of the neutralising response in cohort 1 relative to incidence of RSV. Sera from 19 individuals who were prospectively recruited and followed up for approximately 30 months are included in this analysis. Eleven strata consisting of 3 calendar months each were generated and the mean neutralising titre in each stratum calculated. The mean titre in each stratum was compared to that of the subsequent stratum. The p values shown indicate whether there was a significant difference between the mean titres of the different strata being compared. The titres used in this analysis were mean titres obtained using two local test viruses (Ken/A/2006 and Ken/B/2008). The numbers within each stratum are shown in table 6.2
<table>
<thead>
<tr>
<th>Stratum</th>
<th>First date</th>
<th>Last Date</th>
<th>Mean age - Months (range)</th>
<th>n</th>
<th>% within epidemic</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>01-Feb-02</td>
<td>18-Apr-02</td>
<td>0.2 (0-1.3)</td>
<td>14</td>
<td>36</td>
</tr>
<tr>
<td>2</td>
<td>02-May-02</td>
<td>30-Jul-02</td>
<td>3.3 (2.3-5.7)</td>
<td>24</td>
<td>71</td>
</tr>
<tr>
<td>3</td>
<td>02-Aug-02</td>
<td>28-Oct-02</td>
<td>6 (5.5-8.3)</td>
<td>17</td>
<td>0</td>
</tr>
<tr>
<td>4</td>
<td>30-Oct-02</td>
<td>22-Jan-03</td>
<td>8.6 (8.3-10.2)</td>
<td>13</td>
<td>31</td>
</tr>
<tr>
<td>5</td>
<td>29-Jan-03</td>
<td>23-Apr-03</td>
<td>11.8 (10-14.1)</td>
<td>23</td>
<td>96</td>
</tr>
<tr>
<td>6</td>
<td>06-May-03</td>
<td>23-Jul-03</td>
<td>15 (14.3-17.3)</td>
<td>14</td>
<td>0</td>
</tr>
<tr>
<td>7</td>
<td>31-Jul-03</td>
<td>14-Oct-03</td>
<td>17.9 (17.1-20.3)</td>
<td>15</td>
<td>0</td>
</tr>
<tr>
<td>8</td>
<td>29-Oct-03</td>
<td>15-Jan-04</td>
<td>20.8 (20.1-23.2)</td>
<td>9</td>
<td>22</td>
</tr>
<tr>
<td>9</td>
<td>23-Jan-04</td>
<td>19-Apr-04</td>
<td>24 (23.1-26.3)</td>
<td>18</td>
<td>100</td>
</tr>
<tr>
<td>10</td>
<td>23-Apr-04</td>
<td>14-Jul-04</td>
<td>26.7 (25.3-29.3)</td>
<td>19</td>
<td>74</td>
</tr>
<tr>
<td>11</td>
<td>27-Jul-04</td>
<td>20-Aug-04</td>
<td>29.4 (29.1-29.9)</td>
<td>5</td>
<td>0</td>
</tr>
</tbody>
</table>

Table 6.2 The beginning and end dates of each stratum shown in figure 6.3 as well as the mean age and total number of samples for each stratum are shown in this table. As a measure of the level of exposure in each stratum, the proportion of samples that were collected during an epidemic are also indicated.

Figure 6.4 contains a summary of the mean neutralising response relative to transmission within cohort 2, while table 6.3 contains the mean age, dates of sample collection as well as total number of samples in each stratum. The mean neutralising response in stratum 1 was significantly greater than that in stratum 2 (2.95 log_{10} PRNT vs. 2.45 log_{10} PRNT; p=0.02). All the samples in strata 1 and 2 were collected during epidemic 2. There was no significant difference between the mean neutralising responses in strata 2 and 3 (2.45 log_{10} PRNT vs. 2.25 log_{10} PRNT; p=0.3). However there was a significant difference between the mean titres in strata 3 and 4 (2.25 log_{10} PRNT vs. 1.84 log_{10} PRNT; p=0.026). All samples in strata 3 and 4 were collected in
the inter-epidemic period between epidemics 2 and 3. There was no statistically significant difference between the mean neutralising titres in strata 4 and 5 (1.84 log_{10} PRNT vs. 1.81 log_{10} PRNT; p=0.88), nor was there a difference between the mean titres of strata 5 and 6 (1.81 log_{10} PRNT vs. 1.93 log_{10} PRNT; p=0.46). 17% and 100% of the samples in strata 5 and 6 were collected in the course of epidemic 3. There was however a statistically significant difference between the mean neutralising titres in strata 6 and 7 (1.93 log_{10} PRNT vs. 2.53 log_{10} PRNT; p<0.0001). 67% of the samples in stratum 7 were obtained during epidemic 3. There was similarly a significant difference between the mean responses of strata 7 and 8 (2.53 log_{10} PRNT vs. 1.91 log_{10} PRNT; p=0.001). All samples in stratum 8 were collected in the inter-epidemic period between epidemics 3 and 4. There was no significant difference between the mean responses in strata 8 and 9 (1.91 log_{10} PRNT vs. 2.22 log_{10} PRNT; p=0.12), but there was a significant difference between the mean responses in strata 9 and 10 (2.22 log_{10} PRNT vs. 3.05 log_{10} PRNT; p<0.0001). 30% of the samples in stratum 9 were collected in the course of epidemic 4 while 71% of the samples in stratum 10 were collected in epidemic 4. These data are graphically presented in figure 6.4.
Figure 6.4 The temporal dynamics of the neutralising response in cohort 2 relative to RSV occurrence as defined through hospital admissions surveillance. Sera from 9 individuals who were prospectively recruited and followed up for approximately 30 months are included in this analysis. Ten strata of 3 months were defined and the mean neutralising titre in each stratum compared to that of the subsequent stratum. The titres used in this analysis were mean titres obtained using two local test viruses (Ken/A/2006 and Ken/B/2008). The numbers within each stratum are shown in table 6.3.
<table>
<thead>
<tr>
<th>Stratum</th>
<th>First date</th>
<th>Last Date</th>
<th>Mean age - Months (range)</th>
<th>n</th>
<th>% within epidemic</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>12-Dec-02</td>
<td>24-Jan-03</td>
<td>0 (0-0)</td>
<td>5</td>
<td>100</td>
</tr>
<tr>
<td>2</td>
<td>29-Jan-03</td>
<td>14-Apr-03</td>
<td>1.4 (0-2.9)</td>
<td>6</td>
<td>100</td>
</tr>
<tr>
<td>3</td>
<td>07-May-03</td>
<td>18-Jul-03</td>
<td>3.9 (0-6.9)</td>
<td>8</td>
<td>0</td>
</tr>
<tr>
<td>4</td>
<td>05-Aug-03</td>
<td>15-Oct-03</td>
<td>7.1 (3-9.8)</td>
<td>7</td>
<td>0</td>
</tr>
<tr>
<td>5</td>
<td>03-Nov-03</td>
<td>19-Jan-04</td>
<td>9.3 (5.8-11)</td>
<td>6</td>
<td>17</td>
</tr>
<tr>
<td>6</td>
<td>23-Jan-04</td>
<td>19-Apr-04</td>
<td>13.3 (9.1-15.8)</td>
<td>14</td>
<td>100</td>
</tr>
<tr>
<td>7</td>
<td>21-Apr-04</td>
<td>16-Jul-04</td>
<td>15 (11.1-18.1)</td>
<td>15</td>
<td>67</td>
</tr>
<tr>
<td>8</td>
<td>27-Jul-04</td>
<td>15-Sep-04</td>
<td>18.1 (15-20.2)</td>
<td>5</td>
<td>0</td>
</tr>
<tr>
<td>9</td>
<td>25-Oct-04</td>
<td>07-Jan-05</td>
<td>21.2 (18.1-24.8)</td>
<td>10</td>
<td>30</td>
</tr>
<tr>
<td>10</td>
<td>18-Jan-05</td>
<td>26-Feb-05</td>
<td>24.6 (21.1-26.5)</td>
<td>7</td>
<td>71</td>
</tr>
</tbody>
</table>

Table 6.3 The start and end dates, mean age in months, total number of samples and proportion of samples collected during an epidemic for each cohort 2 stratum shown in figure 6.4.

The ability to maintain high neutralising antibody titres after infection was evaluated by comparing mean neutralising responses during epidemics to mean neutralising responses during inter-epidemic periods among infants who had experienced a primary infection. These analyses only included samples collected from infants who were three months or older to reduce the effect of maternal antibody titres on the calculated estimates. The results of multiple regression analysis showed that the mean neutralising antibody titres during epidemics \((1.9 \log_{10} \text{PRNT})\) was significantly greater than the mean neutralising titres during inter-epidemic periods \((1.6 \log_{10} \text{PRNT}, p=0.001)\). These data are graphically presented in figure 6.5.
The duration of the primary neutralising response

In order to calculate the duration of the primary neutralising antibody response, antibody titres at different time points post-infection were compared to the pre-exposure control (figure 6.6). Results from multiple linear regression analysis showed that there was no difference between neutralising titres in the pre-exposure control group (1.8 log_{10} PRNT) and in sera collected between 0-0.4 months after infection (1.9 log_{10} PRNT, p=0.146). There was however a significant difference between neutralising titres in the pre-exposure control and at 0.5–0.9 months post infection (2.8 log_{10} PRNT, p<0.0001), 1.0-1.9 months post infection (2.5 log_{10} PRNT, p<0.0001) and at 2.0 - 2.9 months post infection (2.3 log_{10} PRNT, p<0.0001).
There was no difference between neutralising titres in the pre-exposure control and neutralising titres at 3.0-3.9 months post infection (2.0 log₁₀ PRNT, p=0.052). These data are graphically shown in figure 6.6.

Figure 6.6 The duration of the primary neutralising antibody response. The mean neutralising titres at various time points post infection were compared to the mean titre of a pre-exposure control group. The p values indicate whether there is a significant difference between post infection titres at different time points post infection and the pre-exposure control. The number of samples within each time point are shown above each respective distribution.
Duration of protective, maternally-derived neutralising antibodies

Neutralising antibody titres measured in sera obtained prior to the identification of a primary infection were classified into 2 levels: high and low using a threshold titre (2.48 log_{10} PRNT) that has been associated with protection from severe disease in infants (Glezen et al., 1981a). Age specific prevalence estimates of maternal neutralising antibody titres above this threshold were then determined. At between 0 and 0.9 months of age 100% (95% CI 86%-100%) of infants had titres above the protective threshold. This proportion dropped to 37% (95% CI 16%-62%) at between 2 and 2.9 months of age. No infants between 3 and 4.9 months of age had maternal neutralising antibodies above the protective threshold. These data are graphically presented in figure 6.7. Using survival analysis, it was estimated that mean duration of protective maternal neutralising antibodies is 2.8 months (95% CI 2.5 – 3.1 months).
Figure 6.7 The proportion of infants in different age classes with mean neutralising titres that are above a putative protective threshold (Glezen et al., 1981a). The bars indicate the proportion of samples that were above the putative protective threshold, while the lines traversing the bars indicate 95% confidence intervals. No data were available for the 1-1.9 month age class. The number of infants within each age class is shown above the proportion bars.

The rate of development of neutralising antibodies following primary and secondary infection

Neutralising titres measured in sera collected within 10 days of identification of primary and secondary infection by IFAT were compared. There was no difference between the mean neutralising antibody titre of the pre exposure control and the mean neutralising titre in the sera of primary infected infants collected with 10 days of identification of the infection (1.9 log_{10} PRNT, p=0.448). However, the mean neutralising titre in the sera collected within 10 days of identification of secondary
infection (3.02 log_{10} PRNT) was significantly greater than the mean response in the pre exposure control (p<0.0001) and the mean response in the sera of primary infected infants (p<0.0001). These data are graphically presented in figure 6.8. Mean convalescent responses to both primary and secondary infection were also compared.

Figure 6.8 Neutralising titres in sera collected within 10 days of identification of RSV during primary and secondary infection are compared to a pre-exposure control. The dark boxes indicate the mean titre within each group while the whiskers indicate 95% confidence intervals. The p values indicate differences in mean titre between the comparison groups are statistically significant. The number of samples within each group is indicated above the mean and 95% confidence interval symbols.
Discussion

This chapter looked at the kinetics of the RSV neutralising response following natural infection. The data presented in this study was obtained by measuring the serum neutralising antibody responses in 2 RSV birth cohorts, which were prospectively followed up for up to 30 months or until infants had experienced at least 3 epidemics.

In the first epidemic experienced by either cohort, there was a general decline of neutralising antibody, despite indirect evidence of exposure. This lack of response is most likely related to the presence of maternally-derived neutralising antibodies that are typically present in relatively high titres in the first few months of life. It is possible that these antibodies provided some level of protection from natural infection, or masked the infants’ native response to infection. This masking of infant responses early in life by maternally-derived antibodies has been demonstrated in earlier studies (Parrott et al., 1973). The second epidemic occurred at a time when most infants within both cohorts were at an age in which maternal antibodies had declined to very low levels. The data show that at the time infants in both cohorts were experiencing the second RSV epidemic of their lives, mean neutralising antibodies within both cohorts rose in tandem with community level transmission of RSV and declined with the waning of population level transmission. These data strongly suggest that community level exposure in the form of RSV epidemics, triggers herd neutralising responses among infants in whom maternally-derived antibody has declined to minimal levels and that these responses are short-lived. Analysis of the duration of the primary neutralising response showed that it declined to pre-infection levels within 3-4 months post infection. Taken together, these data suggest that susceptibility to secondary may be established in part as a result of the
rapid decline of primary neutralising antibodies. Glezen et al. showed that up to 76% of infants who experience primary infection in their first year of life, go on to experience secondary infection in their second year of life (Glezen et al., 1986), suggesting that immunity generated following primary infection is not sufficient to protect from natural challenge in the subsequent RSV epidemic.

The study by Glezen et al. showed that the risk of re-infection was inversely related to the titre of pre-existing neutralising antibody, suggesting that neutralising antibodies are associated with protection from infection and disease. This idea has been supported by studies of experimental adult infection (Hall et al., 1991, Lee et al., 2004), in which the level of pre-inoculation neutralising titres have been found to be negatively associated with susceptibility to experimental infection. The data presented in this study suggests that future RSV vaccines may have to be repeatedly administered to boost waning protective antibodies among young infants if the goal is the prevention of RSV infection and subsequent spread. The data presented in this study support previous suggestions of the transient nature of antibody-mediated immunity to primary RSV infection. Previous studies have found that the total infant serum IgG, IgM and IgA antibody response to primary RSV infection, declined to pre-infection levels within one year (Welliver et al., 1981) while the secretory IgA response declined to pre-infection levels within 3 months post infection (Kaul et al., 1981). Among adults, serum neutralising responses have been found to decline significantly within the one year after natural infection (Falsey et al., 2006). The data presented in this study support the notion that primary immune responses to RSV are short-lived and may be related to susceptibility for secondary infection. The role of strain variation in facilitating re-infection is not yet clear. Despite evidence that re-

decade after the last reported case of indigenous wild virus-associated disease.

Clin Infect Dis, 14, 568-79.

260. WAGNER, D. K., GRAHAM, B. S., WRIGHT, P. F., WALSH, E. E.,
MURPHY, B. R. 1986. Serum immunoglobulin G antibody subclass responses
to respiratory syncytial virus F and G glycoproteins after primary infection. *J

261. WAGNER, D. K., NELSON, D. L., WALSH, E. E., REIMER, C. B.,
immunoglobulin G subclass antibody titers to respiratory syncytial virus F and

Immunological differences between the envelope glycoproteins of two strains
of human respiratory syncytial virus. *J Gen Virol*, 68 (Pt 8), 2169-76.

immunity in protection from natural respiratory syncytial virus infection in

Monoclonal antibody neutralization escape mutants of respiratory syncytial

265. WALSH, E. E., HALL, C. B., SCHLESINGER, J. J., BRANDRISS,
sites of subtype-specific respiratory syncytial virus attachment proteins. *J Gen
Virol*, 70 (Pt 11), 2953-61.

286. WRIGHT, P. F., KARRON, R. A., BELSHE, R. B., THOMPSON, J., CROWE, J. E., JR., BOYCE, T. G., HALBURNT, L. L., REED, G. W.,
WHITEHEAD, S. S., ANDERSON, E. L., WITTEK, A. E., CASEY, R.,
EICHELBERGER, M., THUMAR, B., RANDOLPH, V. B., UDEM, S. A.,
CHANOCK, R. M. & MURPHY, B. R. 2000. Evaluation of a live, cold-
passaged, temperature-sensitive, respiratory syncytial virus vaccine candidate

288. XIE, X. H., LAW, H. K., WANG, L. J., LI, X., YANG, X. Q. & LIU,
E. M. 2009. Lipopolysaccharide induces IL-6 production in respiratory
syncytial virus-infected airway epithelial cells through the toll-like receptor 4

289. YAMAZAKI, H., TSUTSUMI, H., MATSUDA, K., NAGAI, K.,
antibody response in nasopharyngeal secretions from infants and children after

290. YONEYAMA, M., KIKUCHI, M., NATSUUKAWA, T., SHINOBU,
N., IMAIZUMI, T., MIYAGISHI, M., TAIRA, K., AKIRA, S. & FUJITA, T.
2004. The RNA helicase RIG-I has an essential function in double-stranded

291. ZHANG, Z. Y., DU, L. N., CHEN, X., ZHAO, Y., LIU, E. M.,
syncytial viruses (RSV) prevalent in Southwestern China from 2006 to 2009:
emergence of subgroup B and A RSV as dominant strains. J Clin Microbiol,
48, 1201-7.

APPENDIX 1

. //CHAPTER 5
.
.
> // This code compares mean acute phase antibodies at different ages using
> // a logistic regression model
>
> egen ag6=cut(age_m),at(0,1,2,3,4,5,6,12,99)
(7 missing values generated)

.xiregress logioacute ib0.ag6

<table>
<thead>
<tr>
<th>Source</th>
<th>SS</th>
<th>df</th>
<th>MS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Model</td>
<td>9.24905608</td>
<td>7</td>
<td>1.32129373</td>
</tr>
<tr>
<td>Residual</td>
<td>21.7776358</td>
<td>278</td>
<td>.078336819</td>
</tr>
<tr>
<td>Total</td>
<td>31.0266919</td>
<td>285</td>
<td>.108865586</td>
</tr>
</tbody>
</table>

| logioacute | Coef. | Std. Err. | t | P>|t| | [95% Conf. Interval] |
|------------|-------|-----------|---|-----|------------------------|
| ag6 | | |
| 1 | -1.358141 | .0711284 | -1.91 | 0.057 | -.2756328 | .0042046 |
| 2 | -2.234678 | .0675665 | -3.31 | 0.001 | -.3564748 | -.0904607 |
| 3 | -3.3156109 | .0896856 | -3.52 | 0.001 | -.4921602 | -.1390617 |
| 4 | -5.225759 | .0731395 | -7.14 | 0.000 | -.6665535 | -.3758983 |
| 5 | -3.920144 | .0786025 | -4.99 | 0.000 | -.546746 | -.2372827 |
| 6 | -5.562053 | .061267 | -9.08 | 0.000 | -.6768114 | -.4355992 |
| 12 | -3.621963 | .0604418 | -5.99 | 0.000 | -.481178 | -.2432146 |
| _cons | 2.660786 | .0494775 | 53.78 | 0.000 | 2.563387 | 2.758184 |

.xiregress logioacute ib1.ag6

<table>
<thead>
<tr>
<th>Source</th>
<th>SS</th>
<th>df</th>
<th>MS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Model</td>
<td>9.24905608</td>
<td>7</td>
<td>1.32129373</td>
</tr>
<tr>
<td>Residual</td>
<td>21.7776358</td>
<td>278</td>
<td>.078336819</td>
</tr>
<tr>
<td>Total</td>
<td>31.0266919</td>
<td>285</td>
<td>.108865586</td>
</tr>
</tbody>
</table>

| logioacute | Coef. | Std. Err. | t | P>|t| | [95% Conf. Interval] |
|------------|-------|-----------|---|-----|------------------------|
| ag6 | | |
```
0 | .1358141  .0711284  1.91   0.057  -.0042046  .2758328
2 | -.0876537  .0687636 -1.27   0.203  -.2230172  .0477099
3 | -.1797968  .0905909 -1.98   0.048  -.3581281  .2758328
4 | -.3867618  .0742468 -5.21   0.000  -.5329192  .2406044
5 | -.2562003  .0796339 -3.22   0.001  -.4129622  .0994383
6 | -.4203912  .0742468 -5.69   0.000  -.5329192  .2406044
12 | -.2263822  .0675636 -3.31   0.001  -.3581281  .0994383
_cons |  2.524971  .0511002  49.41  0.000   2.424379  2.625564

.xiregress logioacute ib2.ag6

Source | SS   df    MS
---------+--------+--------+
Model    | 9.24905608  7  1.32129373
Residual | 21.7776358  278  .078336819
Total    | 31.0266919  285  .108865586

logioacute | Coef.  Std. Err.     t     P>|t|  [95% Conf. Interval]
ag6
0 | .2234678  .0675665  3.31   0.001  .0904607  .3564748
1 | .0876537  .0687636  1.27   0.203  -.0477099  .2230172
3 | -.0921432  .087822 -1.05   0.295  -.2650237  .0807374
4 | -.2991081  .0708419 -4.22   0.000  -.4385628  -.1596534
5 | -.1685466  .0764692 -2.20   0.028  -.3190788  -.0180144
6 | -.3327375  .0585049 -5.69   0.000  -.4479065  -.2175668
12 | -.1387285  .0576402 -2.41   0.017  -.2521952  -.0252618
_cons |  2.437318  .0460132  52.97  0.000   2.346739  2.527896

.xiregress logioacute ib3.ag6

Source | SS   df    MS
---------+--------+--------+
Model    | 9.24905608  7  1.32129373
Residual | 21.7776358  278  .078336819
Total    | 31.0266919  285  .108865586

logioacute | Coef.  Std. Err.     t     P>|t|  [95% Conf. Interval]
ag6
0 | .3156109  .0896856  3.52   0.001  .1390617  .4921602
1 | .1797968  .0905909  1.98   0.048  .0014655  .3581281
2 | .0921432  .087822  1.05   0.295  -.0807374  .2650237
```

.xi:regress log10acute ib4.ag6

<table>
<thead>
<tr>
<th>Source</th>
<th>SS</th>
<th>df</th>
<th>MS</th>
<th>Number of obs = 286</th>
</tr>
</thead>
<tbody>
<tr>
<td>Model</td>
<td>9.24905608</td>
<td>7</td>
<td>1.32129373</td>
<td>F (7, 278) = 16.87</td>
</tr>
<tr>
<td>Residual</td>
<td>21.7776358</td>
<td>278</td>
<td>.078336819</td>
<td>Prob > F = 0.0000</td>
</tr>
<tr>
<td>Total</td>
<td>31.0266919</td>
<td>285</td>
<td>.108865586</td>
<td>R-squared = 0.2981</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Adj R-squared = 0.2804</td>
</tr>
</tbody>
</table>

| log10acute | Coef. | Std. Err. | t | P>|t| | [95% Conf. Interval] |
|------------|-------|-----------|-------|------|----------------------|
| ag6 | | | | | |
| 0 | .5225759 | .0731395 | 7.14 | 0.000 | .3785983 .665535 |
| 1 | .3867618 | .0742468 | 5.21 | 0.000 | .2406044 .5329192 |
| 2 | .2991081 | .0708419 | 4.22 | 0.000 | .1956534 .4385628 |
| 3 | .206965 | .0921754 | 2.25 | 0.026 | .0255087 .384212 |
| 4 | .1305615 | .0814352 | 1.60 | 0.110 | -.0297464 .2908694 |
| 5 | -.0336294| .0648612 | -0.52 | 0.605 | -.1613109 .0940521 |
| 6 | .1603796 | .0640823 | 2.50 | 0.013 | .0342314 .2865279 |
| _cons | 2.13821 | .0538643 | 39.70 | 0.000 | 2.032176 2.244243 |

.xi:regress log10acute ib5.ag6

<table>
<thead>
<tr>
<th>Source</th>
<th>SS</th>
<th>df</th>
<th>MS</th>
<th>Number of obs = 286</th>
</tr>
</thead>
<tbody>
<tr>
<td>Model</td>
<td>9.24905608</td>
<td>7</td>
<td>1.32129373</td>
<td>F (7, 278) = 16.87</td>
</tr>
<tr>
<td>Residual</td>
<td>21.7776358</td>
<td>278</td>
<td>.078336819</td>
<td>Prob > F = 0.0000</td>
</tr>
<tr>
<td>Total</td>
<td>31.0266919</td>
<td>285</td>
<td>.108865586</td>
<td>R-squared = 0.2981</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Adj R-squared = 0.2804</td>
</tr>
</tbody>
</table>

| log10acute | Coef. | Std. Err. | t | P>|t| | [95% Conf. Interval] |
|------------|-------|-----------|-------|------|----------------------|
| ag6 | | | | | |
| 0 | .3920144 | .0786025 | 4.99 | 0.000 | .2372827 .546746 |
| 1 | .2562003 | .0796339 | 3.22 | 0.001 | .0994383 .4129622 |
| 2 | .1685466 | .0764692 | 2.20 | 0.028 | .0180144 .3190788 |
| 3 | .0764034 | .0965702 | 0.79 | 0.430 | -.1136984 .2665052 |
| 4 | -.1305615| .0814352 | -1.60 | 0.110 | -.2908694 .0297464 |
| 5 | .1641909 | .0709643 | -2.31 | 0.021 | -.3038867 -.0244952 |
. xi: regress logioacute ib6.ag6

Source | SS df MS
----------+--
Model | 9.24905608 7 1.32129373
Residual | 21.7776358 278 .078336819
Total | 31.0266919 285 .108865586

F (7, 278) = 16.87 Prob > F = 0.0000
R-squared = 0.2981
Adj R-squared = 0.2804

Number of obs = 286

Coef. Std. Err. t P > |t| [95% Conf. Interval]
ag6 | 0 | .5562053 .061267 9.08 0.000 .4355992 .6768114
1 | .4203912 .0625847 6.72 0.000 .2971912 .5435913
2 | .3327375 .0585049 5.69 0.000 .2175686 .4479065
3 | .2405944 .0830729 2.90 0.004 .0770626 .4041261
4 | .0336294 .0648612 0.52 0.605 -.0940521 .1613109
5 | .1641909 .0709643 2.31 0.021 .0244952 .3038867
12 | .194009 .0501078 3.87 0.000 .09537 .292648
_cons | 2.10458 .0361333 58.24 0.000 2.033451 2.17571

. // This code compares mean acute and convalescent phase titres using a
. // student t test
. // analysis of diff between acute and conv in diff age classes
. ttest logioacute==logioconv if ag6==0

Paired t test

Variable | Obs Mean Std. Err. Std. Dev. [95% Conf. Interval]
----------+--
logioacute | 28 2.665101 .0388957 .2058165 2.585293 2.744908
logioconv | 28 2.543671 .0535186 .2831937 2.43386 2.653482

diff | 28 .1214302 .069361 .3670239 -.0208869 .2637472

mean (diff) = mean (logioacute - logioconv) t = 1.7507
Ho: mean (diff) = 0
degrees of freedom = 27
Ha: mean (diff) < 0
Ha: mean (diff) != 0
Ha: mean (diff) > 0

283
Pr (T < t) = 0.9543 Pr (|T| > |t|) = 0.0914 Pr (T > t) = 0.0457
.
test log10acute= log10conv if ag6=1

Paired t test

<table>
<thead>
<tr>
<th>Variable</th>
<th>Obs</th>
<th>Mean</th>
<th>Std. Err.</th>
<th>Std. Dev.</th>
<th>[95% Conf. Interval]</th>
</tr>
</thead>
<tbody>
<tr>
<td>log10acute</td>
<td>25</td>
<td>2.572685</td>
<td>.0481229</td>
<td>.2406144</td>
<td>2.473365 - 2.672006</td>
</tr>
<tr>
<td>log10conv</td>
<td>25</td>
<td>2.473255</td>
<td>.0739728</td>
<td>.3698642</td>
<td>2.320583 - 2.625928</td>
</tr>
<tr>
<td>diff</td>
<td>25</td>
<td>.0994304</td>
<td>.0958033</td>
<td>.4790166</td>
<td>-.0982979 - .2971587</td>
</tr>
</tbody>
</table>

mean (diff) = mean (log10acute - log10conv) t = 1.0379
Ho: mean (diff) = 0 degrees of freedom = 24
Ha: mean (diff) < 0 Ha: mean (diff) != 0 Ha: mean (diff) > 0
Pr (T < t) = 0.8452 Pr (|T| > |t|) = 0.3097 Pr (T > t) = 0.1548
.
test log10acute= log10conv if ag6=2

Paired t test

<table>
<thead>
<tr>
<th>Variable</th>
<th>Obs</th>
<th>Mean</th>
<th>Std. Err.</th>
<th>Std. Dev.</th>
<th>[95% Conf. Interval]</th>
</tr>
</thead>
<tbody>
<tr>
<td>log10acute</td>
<td>34</td>
<td>2.456123</td>
<td>.032705</td>
<td>.1907012</td>
<td>2.389585 - 2.522662</td>
</tr>
<tr>
<td>log10conv</td>
<td>34</td>
<td>2.566452</td>
<td>.062091</td>
<td>.3620494</td>
<td>2.440127 - 2.692777</td>
</tr>
<tr>
<td>diff</td>
<td>34</td>
<td>-.1103288</td>
<td>.0813282</td>
<td>.474221</td>
<td>-.2757924 - .0551347</td>
</tr>
</tbody>
</table>

mean (diff) = mean (log10acute - log10conv) t = -1.3566
Ho: mean (diff) = 0 degrees of freedom = 33
Ha: mean (diff) < 0 Ha: mean (diff) != 0 Ha: mean (diff) > 0
Pr (T < t) = 0.0921 Pr (|T| > |t|) = 0.1841 Pr (T > t) = 0.9079
.
test log10acute= log10conv if ag6=3

Paired t test

<table>
<thead>
<tr>
<th>Variable</th>
<th>Obs</th>
<th>Mean</th>
<th>Std. Err.</th>
<th>Std. Dev.</th>
<th>[95% Conf. Interval]</th>
</tr>
</thead>
<tbody>
<tr>
<td>log10acute</td>
<td>11</td>
<td>2.437465</td>
<td>.0599942</td>
<td>.1989782</td>
<td>2.303789 - 2.57114</td>
</tr>
<tr>
<td>log10conv</td>
<td>11</td>
<td>2.492986</td>
<td>.1130327</td>
<td>.3748871</td>
<td>2.241133 - 2.748938</td>
</tr>
<tr>
<td>diff</td>
<td>11</td>
<td>-.055521</td>
<td>.1439012</td>
<td>.4772663</td>
<td>-.3761528 - .2651109</td>
</tr>
</tbody>
</table>

mean (diff) = mean (log10acute - log10conv) t = -0.3858
Ho: mean (diff) = 0 degrees of freedom = 10
Ha: mean (diff) < 0 Ha: mean (diff) != 0 Ha: mean (diff) > 0
<table>
<thead>
<tr>
<th>Variable</th>
<th>Obs</th>
<th>Mean</th>
<th>Std. Err.</th>
<th>Std. Dev.</th>
<th>95% Conf. Interval</th>
</tr>
</thead>
<tbody>
<tr>
<td>log10 a-e</td>
<td>19</td>
<td>2.198126</td>
<td>0.0545468</td>
<td>0.2377641</td>
<td>2.083528 to 2.312725</td>
</tr>
<tr>
<td>log10 c-v</td>
<td>19</td>
<td>2.502542</td>
<td>0.0827452</td>
<td>0.3606781</td>
<td>2.328701 to 2.676363</td>
</tr>
<tr>
<td>diff</td>
<td>19</td>
<td>-0.3044157</td>
<td>0.114603</td>
<td>0.4995428</td>
<td>-0.5451876 to -0.0636438</td>
</tr>
</tbody>
</table>

Paired t test

Variable | Obs | Mean | Std. Err. | Std. Dev. | 95% Conf. Interval |
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>log10 a-e</td>
<td>19</td>
<td>2.292477</td>
<td>0.0639136</td>
<td>0.2785929</td>
<td>2.158199 to 2.426794</td>
</tr>
<tr>
<td>log10 c-v</td>
<td>19</td>
<td>2.647895</td>
<td>0.1004128</td>
<td>0.4376893</td>
<td>2.436935 to 2.858854</td>
</tr>
<tr>
<td>diff</td>
<td>19</td>
<td>-0.3554184</td>
<td>0.1279322</td>
<td>0.5576434</td>
<td>-0.6241939 to -0.0866429</td>
</tr>
</tbody>
</table>

Paired t test

Variable | Obs | Mean | Std. Err. | Std. Dev. | 95% Conf. Interval |
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>log10 a-e</td>
<td>58</td>
<td>2.125542</td>
<td>0.0329551</td>
<td>0.2509785</td>
<td>2.05955 to 2.191533</td>
</tr>
<tr>
<td>log10 c-v</td>
<td>58</td>
<td>2.767628</td>
<td>0.0386969</td>
<td>0.2947069</td>
<td>2.690139 to 2.845117</td>
</tr>
<tr>
<td>diff</td>
<td>58</td>
<td>-0.6420865</td>
<td>0.0519842</td>
<td>0.3959001</td>
<td>-0.7461831 to -0.5379899</td>
</tr>
</tbody>
</table>

Paired t test

Variable | Obs | Mean | Std. Err. | Std. Dev. | 95% Conf. Interval |
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>log10 a-e</td>
<td>58</td>
<td>2.125542</td>
<td>0.0329551</td>
<td>0.2509785</td>
<td>2.05955 to 2.191533</td>
</tr>
<tr>
<td>log10 c-v</td>
<td>58</td>
<td>2.767628</td>
<td>0.0386969</td>
<td>0.2947069</td>
<td>2.690139 to 2.845117</td>
</tr>
<tr>
<td>diff</td>
<td>58</td>
<td>-0.6420865</td>
<td>0.0519842</td>
<td>0.3959001</td>
<td>-0.7461831 to -0.5379899</td>
</tr>
</tbody>
</table>

Paired t test

Variable | Obs | Mean | Std. Err. | Std. Dev. | 95% Conf. Interval |
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>log10 a-e</td>
<td>58</td>
<td>2.125542</td>
<td>0.0329551</td>
<td>0.2509785</td>
<td>2.05955 to 2.191533</td>
</tr>
<tr>
<td>log10 c-v</td>
<td>58</td>
<td>2.767628</td>
<td>0.0386969</td>
<td>0.2947069</td>
<td>2.690139 to 2.845117</td>
</tr>
<tr>
<td>diff</td>
<td>58</td>
<td>-0.6420865</td>
<td>0.0519842</td>
<td>0.3959001</td>
<td>-0.7461831 to -0.5379899</td>
</tr>
</tbody>
</table>

Paired t test

Variable | Obs | Mean | Std. Err. | Std. Dev. | 95% Conf. Interval |
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>log10 a-e</td>
<td>58</td>
<td>2.125542</td>
<td>0.0329551</td>
<td>0.2509785</td>
<td>2.05955 to 2.191533</td>
</tr>
<tr>
<td>log10 c-v</td>
<td>58</td>
<td>2.767628</td>
<td>0.0386969</td>
<td>0.2947069</td>
<td>2.690139 to 2.845117</td>
</tr>
<tr>
<td>diff</td>
<td>58</td>
<td>-0.6420865</td>
<td>0.0519842</td>
<td>0.3959001</td>
<td>-0.7461831 to -0.5379899</td>
</tr>
</tbody>
</table>
. ttest logioacute = logioconv if age6==12

Paired t test

<table>
<thead>
<tr>
<th>Variable</th>
<th>Obs</th>
<th>Mean</th>
<th>Std. Err.</th>
<th>Std. Dev.</th>
<th>[95% Conf. Interval]</th>
</tr>
</thead>
<tbody>
<tr>
<td>logioa-e</td>
<td>60</td>
<td>2.304789</td>
<td>0.0461592</td>
<td>0.3575475</td>
<td>2.212425 2.397154</td>
</tr>
<tr>
<td>logioc-v</td>
<td>60</td>
<td>2.814946</td>
<td>0.0454438</td>
<td>0.3520061</td>
<td>2.724013 2.905879</td>
</tr>
</tbody>
</table>

| diff | 60 | -0.5101565 | 0.0591738 | 0.4583585 | -0.6285631 -0.3917499 |

<table>
<thead>
<tr>
<th>mean (diff)</th>
<th>= mean (logioacute - logioconv)</th>
<th>t = -8.6213</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ho: mean (diff) = 0</td>
<td>degrees of freedom = 59</td>
<td></td>
</tr>
<tr>
<td>Ha: mean (diff) < 0</td>
<td>Ha: mean (diff) != 0</td>
<td>Ha: mean (diff) > 0</td>
</tr>
</tbody>
</table>

Pr (T < t) = 0.0000 Pr (|T| > |t|) = 0.0000 Pr (T > t) = 1.0000

\[Pr (T < t) = 0.0000 \quad Pr (|T| > |t|) = 0.0000 \quad Pr (T > t) = 1.0000\]

This code conducts spearman correlation analysis between log fold rise in titre and (i) acute phase titres and (ii) age in months.

```
spearman logioacute logiofoldrise
```

Number of obs = 254
Spearman's rho = -0.7451

Test of Ho: logioacute and logiofoldrise are independent
Prob > |t| = 0.0000

```
spearman logiofoldrise age_m if age_m<=12
```

Number of obs = 194
Spearman's rho = 0.5511

Test of Ho: logiofoldrise and age_m are independent
Prob > |t| = 0.0000

This code calculates the proportion seroconverting at different acute stage.
. // titres stratified by quartile
. // This code calculates the odds ratios of developing different features of
. // clinical pneumonia among infants with titres above and below the 2.5log10PNT
. // threshold
. // This code calculates the odds ratios of developing different features of
clinical pneumonia among infants with titres above and below the 2.5log10PNT threshold
> tab fold4 acute_quartiles if i_gp==t_gp, col

+-------------------------------+
| Key | frequency | column percentage |
+-------------------------------+
| acute_quartiles fold4 | 1 2 3 4 | Total |
+-------------------------------+
0	4 19 32 26	81
	9.76 40.43 86.49 100.00	53.64
1	37 28 5 0	70
	90.24 59.57 13.51 0.00	46.36
Total	41 47 37 26	151
	100.00 100.00 100.00 100.00	100.00

. // titres stratified by quartile
. // This code calculates the odds ratios of developing different features of
. // clinical pneumonia among infants with titres above and below the 2.5log10PNT threshold
> preserve
use "C:\Documents and Settings\csande.KWTRP\Desktop\paper1\IP_clinical severity data.d"
> ta", clear
.

capture: drop prot_acute
.
gen prot_acute = .
(322 missing values generated)
.
replace prot_acute = 1 if log10(acute) > 2.5 & log10(acute) != .
(85 real changes made)
```stata
replace prot_acute=0 if log10acute<2.5 & log10acute!=.
(201 real changes made)

xi:logistic prot_acute i.flaring i.wheeze i.indrawing i.shock i.hypoxia i.cra
> ckles i.ag6 ,or
i.flaring _Iflaring_0-1 (naturally coded; _Iflaring_0 omitted)
i.wheeze _Iwheeze_0-1 (naturally coded; _Iwheeze_0 omitted)
i.indrawing _Iindrawing_0-1 (naturally coded; _Iindrawing_0 omitted)
i.shock _Ishock_0-1 (naturally coded; _Ishock_0 omitted)
i.hypoxia _Ihypoxia_0-1 (naturally coded; _Ihypoxia_0 omitted)
i.crackles _Icrackles_0-1 (naturally coded; _Icrackles_0 omitted)
i.ag6 _Iag6_0-24 (naturally coded; _Iag6_0 omitted)

note: _Iag6_9 != 0 predicts failure perfectly
    _Iag6_9 dropped and 22 obs not used

Logistic regression
Number of obs = 232
LR chi2 (15) 53.46
Prob > chi2 = 0.0000
Log likelihood = -120.00178 Pseudo R2 = 0.1822

| prot_acute | Odds Ratio | Std. Err. | z | P>|z| | 95% Conf. Interval |
|------------|------------|-----------|---|-----|---------------------|
| _Iflaring_1 | .6577176  | .2501528  | -1.10 | 0.271 | .312103  | 1.386056 |
| _Iwheeze_1 | .966315  | .4581894  | -0.07 | 0.942 | .3815151  | 2.447517 |
| _Iindrawing_1 | .820654  | .6201792  | -0.26 | 0.794 | .1865931  | 3.609313 |
| _Ishock_1 | .2656081  | .1461305  | -2.41 | 0.016 | .090351  | .7808177 |
| _Ihypoxia_1 | .7422788  | .4326905  | -0.51 | 0.609 | .2368008  | 2.326757 |
| _Icrackles_1 | .8086687  | .2992585  | -0.57 | 0.566 | .3917036  | 1.670316 |
| _Iag6_1 | .2940198  | .1737413  | -2.07 | 0.038 | .0923394  | .9361944 |
| _Iag6_2 | .2933712  | .173697 | -2.07 | 0.038 | .0919273  | .9362472 |
| _Iag6_3 | .1183904  | .091972  | -2.75 | 0.006 | .025826  | .5427197 |
| _Iag6_4 | .0109983  | .0126067  | -3.93 | 0.000 | .0011632  | .1039937 |
| _Iag6_5 | .070147  | .0653201  | -3.05 | 0.002 | .0151851  | .4021607 |
| _Iag6_6 | .0312443  | .0246607  | -4.39 | 0.000 | .0066516  | .1467614 |
| _Iag6_9 (omitted) |          |          |     |   |         |                 |
| _Iag6_12 | .1313523  | .1138732  | -2.34 | 0.019 | .0240163  | .7184055 |
| _Iag6_18 | .1291534  | .0859975  | -3.07 | 0.002 | .035021  | .4763028 |
| _Iag6_24 | .1164771  | .0803751  | -3.12 | 0.002 | .0301209  | .4504148 |
```

parmest, norestore eform

drop if parm=="_cons"

(1 observation deleted)
drop if parm=="age_months"
(0 observations deleted)
drop if parm== "_Iag6_1"
(1 observation deleted)
drop if parm== "_Iag6_2"
(1 observation deleted)
drop if parm== "_Iag6_3"
(1 observation deleted)
drop if parm== "_Iag6_4"
(1 observation deleted)
drop if parm== "_Iag6_5"
(1 observation deleted)
drop if parm== "_Iag6_6"
(1 observation deleted)
drop if parm== "_Iag6_9"
(0 observations deleted)
drop if parm== "_Iag6_12"
(1 observation deleted)
drop if parm== "_Iag6_18"
(1 observation deleted)
drop if parm== "_Iag6_24"
(1 observation deleted)
drop if parm== "o._Iag6_9"
(1 observation deleted)

egen axis= axis (estimate), label (parm)
twoway scatter axis estimate, xline (1) ylab (, valuelabel angle (0)) || rcap min9 > 5 max95 axis, horizontal legend (order (1 "point estimate" 2 "95% conf. int.") pos (6)) xtitle ("odds > ratio") ytitle ("")

graph play "OR_2"

restore
This code compares the proportions seroconverting to different virus.

Comparison between no infected with RSV A seroconverting against Kil/A/2006 & Kil/B/2008.

```
. keep if a_match==2 & foldrise!=. | a_match==1 & i_gp==1 & foldrise!=.
   (258 observations deleted)
.
. keep serial_no t_virus_desc fold4
.
. sort serial_no t_virus_desc
.
. reshape wide fold4, i (serial_no) j (t_virus_desc)
   (note: j = 2 4)
```

Data

<table>
<thead>
<tr>
<th></th>
<th>long</th>
<th>wide</th>
</tr>
</thead>
<tbody>
<tr>
<td>Number of obs.</td>
<td>64</td>
<td>32</td>
</tr>
<tr>
<td>Number of variables</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>j variable (2 values)</td>
<td>t_virus_desc</td>
<td>(dropped)</td>
</tr>
<tr>
<td>xij variables:</td>
<td>fold4</td>
<td>fold42 fold44</td>
</tr>
</tbody>
</table>

```
. mcc fold42 fold44
```

<table>
<thead>
<tr>
<th></th>
<th>Controls</th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Cases</td>
<td>Exposed</td>
<td>Unexposed</td>
<td>Total</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Exposed</td>
<td>4</td>
<td>12</td>
<td>16</td>
</tr>
<tr>
<td>Unexposed</td>
<td>0</td>
<td>16</td>
<td>16</td>
</tr>
<tr>
<td>Total</td>
<td>4</td>
<td>28</td>
<td>32</td>
</tr>
</tbody>
</table>

McNemar's chi2 (1) = 12.00 Prob > chi2 = 0.0005

Proportion with factor

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Cases</td>
<td>0.5</td>
</tr>
<tr>
<td>Controls</td>
<td>0.125</td>
</tr>
<tr>
<td>[95% Conf. Interval]</td>
<td>-------</td>
</tr>
<tr>
<td>difference</td>
<td>0.375</td>
</tr>
<tr>
<td></td>
<td>0.176013</td>
</tr>
<tr>
<td>ratio</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>1.711902</td>
</tr>
<tr>
<td>rel. diff</td>
<td>0.4265714</td>
</tr>
<tr>
<td></td>
<td>0.2452718</td>
</tr>
<tr>
<td>odds ratio</td>
<td></td>
</tr>
<tr>
<td></td>
<td>2.778597</td>
</tr>
</tbody>
</table>

290
```stata
. restore

. // comparison between no infected with RSV B seroconverting against Kil/A/2006 & Kil/B/2008
. preserve

. keep if b_match==2 & foldrise!=. | b_match==1 & i_gp==2 & foldrise!=.
   (272 observations deleted)

. keep serial_no t_virus_desc fold4

. sort serial_no t_virus_desc

. reshape wide fold4, i (serial_no) j (t_virus_desc)
   (note: j = 2 4)

Data
long    ->   wide
Number of obs.  50    ->   25
Number of variables  3    ->   3
j variable (2 values) t_virus_desc    ->   (dropped)
xij variables:
   fold4    ->   fold42   fold44

. mcc fold42 fold44

| Controls |   
Cases | Exposed | Unexposed | Total
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Exposed</td>
<td>2</td>
<td>0</td>
<td>2</td>
</tr>
<tr>
<td>Unexposed</td>
<td>8</td>
<td>15</td>
<td>23</td>
</tr>
<tr>
<td>Total</td>
<td>10</td>
<td>15</td>
<td>25</td>
</tr>
</tbody>
</table>

McNemar's chi2 (1) =  8.00  Prob > chi2 = 0.0047
Exact McNemar significance probability = 0.0078

Proportion with factor

|      |         |         |
Cases | .08     | .4 [95% Conf. Interval]
|      |         |         | |
| difference | -.32 | -.5428553 | -.0971447 |
| ratio   | .2    | .0579006  | .6908394  |
| rel. diff. | -.5333333 | -.9909693 | -.0756974 |
| odds ratio | 0   | 0 .5058332 (exact) |
```

291
. restore

. // comparison between no infected with RSV A seroconverting against A2 & 8/60
. preserve

. keep if a_oldrsvs_match==2 | a_oldrsvs_match==1 & i_gp==1
(286 observations deleted)

. keep serial_no t_virus_desc fold4

. sort serial_no t_virus_desc

. reshape wide fold4, i (serial_no) j (t_virus_desc)
 (note: j = 1 3)

Data

<table>
<thead>
<tr>
<th></th>
<th>long</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>36</td>
<td>18</td>
</tr>
<tr>
<td>Number of obs.</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>Number of variables</td>
<td>3 (dropped)</td>
<td>3</td>
</tr>
<tr>
<td>j variable (2 values)</td>
<td>t_virus_desc</td>
<td>(dropped)</td>
</tr>
<tr>
<td>xij variables:</td>
<td>fold4</td>
<td>fold41 fold43</td>
</tr>
</tbody>
</table>

. mcc fold4 fold43

<table>
<thead>
<tr>
<th>Cases</th>
<th>Controls</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Exposed</td>
<td>Unexposed</td>
</tr>
<tr>
<td>-------</td>
<td>----------</td>
<td>-----------</td>
</tr>
<tr>
<td>Exposed</td>
<td>0</td>
<td>5</td>
</tr>
<tr>
<td>Unexposed</td>
<td>0</td>
<td>13</td>
</tr>
<tr>
<td>Total</td>
<td>0</td>
<td>18</td>
</tr>
</tbody>
</table>

McNemar's chi2 (1) = 5.00 Prob > chi2 = 0.0253
Exact McNemar significance probability = 0.0625

Proportion with factor
<table>
<thead>
<tr>
<th>Cases</th>
<th>.277777</th>
</tr>
</thead>
<tbody>
<tr>
<td>Controls</td>
<td>0 [95% Conf. Interval]</td>
</tr>
<tr>
<td>difference</td>
<td>.277777</td>
</tr>
<tr>
<td>ratio</td>
<td>.</td>
</tr>
<tr>
<td>rel. diff.</td>
<td>.277777</td>
</tr>
<tr>
<td>odds ratio</td>
<td>.9163559 (exact)</td>
</tr>
</tbody>
</table>

. restore
// comparison between no infected with RSV B seroconverting against A2 & 8/60
preserve

keep if b_oldrsvs_match==2 | b_oldrsvs_match==1 & i_gp==2
(282 observations deleted)

keep serial_no t_virus_desc fold4

sort serial_no t_virus_desc

reshape wide fold4, i (serial_no) j (t_virus_desc)
(note: j = 1 3)

Data

<table>
<thead>
<tr>
<th></th>
<th>long -> wide</th>
</tr>
</thead>
<tbody>
<tr>
<td>Number of obs.</td>
<td>40 -> 20</td>
</tr>
<tr>
<td>Number of variables</td>
<td>3 -> 3</td>
</tr>
<tr>
<td>j variable (2 values)</td>
<td>t_virus_desc -> (dropped)</td>
</tr>
<tr>
<td>xij variables:</td>
<td>fold4 -> fold41 fold43</td>
</tr>
</tbody>
</table>

mcc fold41 fold43

<table>
<thead>
<tr>
<th></th>
<th>Controls</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cases</td>
<td>Exposed</td>
</tr>
<tr>
<td>Exposed</td>
<td>2</td>
</tr>
<tr>
<td>Unexposed</td>
<td>11</td>
</tr>
<tr>
<td>Total</td>
<td>13</td>
</tr>
</tbody>
</table>

McNemar's chi2 (1) = 11.00 Prob > chi2 = 0.0009
Exact McNemar significance probability = 0.0010

Proportion with factor

<table>
<thead>
<tr>
<th></th>
<th>Cases</th>
</tr>
</thead>
<tbody>
<tr>
<td>Controls</td>
<td>.65 [95% Conf. Interval]</td>
</tr>
<tr>
<td>difference</td>
<td>-.55 -.8180322 -.2819678</td>
</tr>
<tr>
<td>ratio</td>
<td>.1538462 .042996 .5504847</td>
</tr>
<tr>
<td>rel. diff.</td>
<td>-1.571429 -3.060562 -.0822951</td>
</tr>
<tr>
<td>odds ratio</td>
<td>0 0 .3984335 (exact)</td>
</tr>
</tbody>
</table>

restore
This code compares the magnitude of the homologous response to the magnitude of the heterologous response (in terms of fold rise in titre) among different age classes using regression models.

To calculate fold rises for different matrix categories, the table means to get the real fold rises.

```
tab i_gp t_gp if ag5==0, summ (log2foldrise) means

Means of log2foldrise

<table>
<thead>
<tr>
<th>Infecting_</th>
<th>Test_virus_group</th>
</tr>
</thead>
<tbody>
<tr>
<td>RSV_Group</td>
<td>A</td>
</tr>
<tr>
<td>------------</td>
<td>------</td>
</tr>
<tr>
<td>A</td>
<td>0.25803744</td>
</tr>
<tr>
<td>B</td>
<td>-0.16332743</td>
</tr>
<tr>
<td>Total</td>
<td>0.10852088</td>
</tr>
</tbody>
</table>

tab i_gp t_gp if ag5==6, summ (log2foldrise) means

Means of log2foldrise

<table>
<thead>
<tr>
<th>Infecting_</th>
<th>Test_virus_group</th>
</tr>
</thead>
<tbody>
<tr>
<td>RSV_Group</td>
<td>A</td>
</tr>
<tr>
<td>------------</td>
<td>------</td>
</tr>
<tr>
<td>A</td>
<td>1.0473335</td>
</tr>
<tr>
<td>B</td>
<td>0.23170187</td>
</tr>
<tr>
<td>Total</td>
<td>0.50357909</td>
</tr>
</tbody>
</table>

tab i_gp t_gp if ag5==12, summ (log2foldrise) means

Means of log2foldrise

<table>
<thead>
<tr>
<th>Infecting_</th>
<th>Test_virus_group</th>
</tr>
</thead>
<tbody>
<tr>
<td>RSV_Group</td>
<td>A</td>
</tr>
<tr>
<td>------------</td>
<td>------</td>
</tr>
<tr>
<td>A</td>
<td>0.85391161</td>
</tr>
<tr>
<td>B</td>
<td>-0.02538991</td>
</tr>
<tr>
<td>Total</td>
<td>0.502191</td>
</tr>
</tbody>
</table>

/tid1 below contains matrix AA (tid1==1) and AB (tid1==2)  
/tid2 below contains matrix BB (tid2==1) and BA (tid2==2)  
capture: drop tid1 tid2
. gen tid1=.
   (322 missing values generated)

. gen tid2=.
   (322 missing values generated)

. replace tid1 =1 if i_gp==1 & t_gp==1
   (90 real changes made)

. replace tid1 =2 if i_gp==1 & t_gp==2
   (97 real changes made)

. replace tid2 =1 if i_gp==2 & t_gp==2
   (85 real changes made)

. replace tid2 =2 if i_gp==2 & t_gp==1
   (50 real changes made)

. // compare the fold rises between different horn het age classes

. xi: regress logiofoldrise i.tid1 if ag5==0
   i.tid1      _Itid1_1-2 (naturally coded; _Itid1_1 omitted)

Source       | SS       | df    | MS
-------------+----------+-------+--------
Model        | 6.61443638 | 1     | 6.61443638
Residual     | 10.7219889  | 74    | .144891742
-------------+----------+-------+--------
Total        | 17.3364253  | 75    | .231152337

Number of obs = 76  
F (  1,  74) = 45.65
Prob > F = 0.0000
R-squared = 0.3815
Adj R-squared = 0.3732
Root MSE = .38065

-----------------------------------------------------------------------------------
logiofoldrise | Coef.  | Std. Err.  | t     | P>|t|   [95% Conf. Interval]
---------------+--------+------------+-------+--------+-----------------------------------
 _Itid1_2      | -.5908428  | .0874475  | -6.76 | 0.000   | -.765085894-.4165999
 _cons         | .2580374  | .0601855  | 4.29  | 0.000   | .138115296 .3779597
-----------------------------------------------------------------------------------

. xi: regress logiofoldrise i.tid1 if ag5==6
   i.tid1      _Itid1_1-2 (naturally coded; _Itid1_1 omitted)

Source       | SS       | df    | MS
-------------+----------+-------+--------
Model        | .68419411  | 1     | .68419411
Residual     | 1.00972921  | 11    | .091793565
-------------+----------+-------+--------
Total        | 1.69392332  | 12    | .141160277

Number of obs = 13  
F (  1,  11) = 7.45
Prob > F = 0.0196
R-squared = 0.4039
Adj R-squared = 0.3497
Root MSE = .30297
### Model 1: \( \text{logi0foldrise} \) with \( \text{If} \text{ag5==12} \)

<table>
<thead>
<tr>
<th>Source</th>
<th>SS</th>
<th>df</th>
<th>MS</th>
<th>Number of obs = 30</th>
</tr>
</thead>
<tbody>
<tr>
<td>Model</td>
<td>1.84966588</td>
<td>1</td>
<td>1.84966588</td>
<td>F ( 1, 28) = 14.95</td>
</tr>
<tr>
<td>Residual</td>
<td>3.46522804</td>
<td>28</td>
<td>.123758144</td>
<td>Prob &gt; F = 0.0006</td>
</tr>
<tr>
<td>Total</td>
<td>5.31489393</td>
<td>29</td>
<td>.183272204</td>
<td>Adjusted R-squared = 0.3247</td>
</tr>
</tbody>
</table>

### Model 2: \( \text{logi0foldrise} \) with \( \text{If} \text{ag5==0} \)

<table>
<thead>
<tr>
<th>Source</th>
<th>SS</th>
<th>df</th>
<th>MS</th>
<th>Number of obs = 60</th>
</tr>
</thead>
<tbody>
<tr>
<td>Model</td>
<td>4.87275985</td>
<td>1</td>
<td>4.87275985</td>
<td>F ( 1, 58) = 30.46</td>
</tr>
<tr>
<td>Residual</td>
<td>9.27895563</td>
<td>58</td>
<td>.159837308</td>
<td>Prob &gt; F = 0.0000</td>
</tr>
<tr>
<td>Total</td>
<td>14.1517155</td>
<td>59</td>
<td>.239859584</td>
<td>Adjusted R-squared = 0.3330</td>
</tr>
</tbody>
</table>

### Model 3: \( \text{logi0foldrise} \) with \( \text{If} \text{ag5==6} \)

<table>
<thead>
<tr>
<th>Source</th>
<th>SS</th>
<th>df</th>
<th>MS</th>
<th>Number of obs = 45</th>
</tr>
</thead>
<tbody>
<tr>
<td>Model</td>
<td>2.96724671</td>
<td>1</td>
<td>2.96724671</td>
<td>F ( 1, 43) = 37.17</td>
</tr>
<tr>
<td>Residual</td>
<td>3.43300424</td>
<td>43</td>
<td>.079837308</td>
<td>Prob &gt; F = 0.0000</td>
</tr>
<tr>
<td>Total</td>
<td>6.40025095</td>
<td>44</td>
<td>.145460249</td>
<td>Adjusted R-squared = 0.4511</td>
</tr>
</tbody>
</table>
```
log10 foldr~e | Coef. Std. Err. t P>|t| [95% Conf. Interval]
-----------------+--
 _Itid2_2 | -.5364436 .0879934 -6.10 0.000 -.7138993 -.358988
 _cons | .7681455 .0524691 14.64 0.000 .6623314 .8739596

.xi: regress log10foldrise i.tid2 if ag5==12
i.tid2
 _Itid2_1-2 (naturally coded; _Itid2_1 omitted)

Source | SS df MS
--------+------------------
Model | 3.11310586 1 3.11310586
Residual| 2.77435258 28 .099084021
 +--
Total | 5.88745844 29 .203015808

F (1, 28) = 31.42 Prob > F = 0.0000
R-squared = 0.5288
Adj R-squared = 0.5119
Root MSE = 0.31478

log10foldr~e | Coef. Std. Err. t P>|t| [95% Conf. Interval]
-----------------+--
 _Itid2_2 | -.6575529 .1173101 -5.61 0.000 -.8978518 -.417254
 _cons | .632163 .0741934 8.52 0.000 .4801846 .7841414

297
```
APPENDIX 2

DATA ANALYSIS - STATA CODE

// Code: This code generates 3 monthly age classes for all the infants in the kinetics study. The mean PRNT in each class is then calculated and compared to that of the next age class.

use "C:\Documents and Settings\csande.KWTRP\Desktop\paper2\Full_COHORT_neut_surveillance overlay.dta",clear

egen agl3=cut (age_m), at (0 (3)30) //generate 3 monthly age classes
      (2046 missing values generated)

collapse (mean) ln10=log,meannt (sd) sd10=log,meannt (count) cnt = log,meannt,by (agl3) //calculate means, SDs and Ns for different age classes

generate hi = ln10+ invttail (cnt-1,0.025)* (sd10 / sqrt (cnt)) // calculate upper CI
      (1 missing value generated)

generate lo = ln10- invttail (cnt-1,0.025)* (sd10 / sqrt (cnt)) // calculate lower CI
      (1 missing value generated)

capture: rename cohort cohort2
append using "C:\Documents and Settings\csande.KWTRP\Desktop\paper2\Full_COHORT_neut_surveillance overlay.dta"
//merge with master file

// comparison of PRNTs in different age classes

xi: regress log,meannt ib0.agl3 // Base class --> 0-2 months of age

Source | SS    df      MS
--------+--------+------------------
Model    | 26.678699 9  2.96429989
Residual | 52.3688042 270 .193958534
Number of obs = 280
F ( 9, 270) = 15.28
Prob > F    = 0.0000
R-squared   = 0.3375
Adj R-squared = 0.3154
### Table: Logistic Regression Results for glogiomeannt

| Coef. | Std. Err. | t     | P>|t| | [95% Conf. Interval] |
|-------|-----------|-------|------|----------------------|
| **agl3** |           |       |      |                      |
| 3     | -.5683188 | .1010696 | -5.62 | 0.000 | -.7673036 -.3693341 |
| 6     | -.6753875 | .1130249 | -5.98 | 0.000 | -.8997097 -.4528652 |
| 9     | -.4303978 | .1000977 | -4.30 | 0.000 | -.627469 -.2333266 |
| 12    | -.3694693 | .0966751 | -3.82 | 0.000 | -.5598021 -.1791364 |
| 15    | -.3983873 | .1031822 | -3.86 | 0.000 | -.6015313 -.1952434 |
| 18    | -.5677476 | .1146671 | -4.94 | 0.000 | -.7938967 -.3415984 |
| 21    | -.3110327 | .1130249 | -2.75 | 0.006 | -.5335549 -.0885105 |
| 24    | .3375905  | .1043333 | 3.24  | 0.001 | .1321804 .5430007 |
| 27    | .2644401  | .1528208 | 1.73  | 0.085 | -.0364317 .5653132 |
| _cons | 2.607188  | .0629153 | 41.44 | 0.000 | 2.483321 2.731055 |

#### Model Summary

- **Number of obs = 279**
- **Root MSE = .44041**

#### Source of Variation

<table>
<thead>
<tr>
<th>Source</th>
<th>SS</th>
<th>df</th>
<th>MS</th>
<th>Number of obs = 280</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Model</strong></td>
<td>26.678699</td>
<td>9</td>
<td>2.96429989</td>
<td>F (9, 270) = 15.28</td>
</tr>
<tr>
<td><strong>Residual</strong></td>
<td>52.3688042</td>
<td>270</td>
<td>.193958534</td>
<td>Prob &gt; F = 0.0000</td>
</tr>
<tr>
<td><strong>Total</strong></td>
<td>79.0475032</td>
<td>279</td>
<td>.283324384</td>
<td>R-squared = 0.3375</td>
</tr>
</tbody>
</table>

#### logiomeannt Regression Results for ib3.agl3

**Base class --> 3-5 months of age**

### Table: Logistic Regression Results for glogiomeannt

| Coef. | Std. Err. | t     | P>|t| | [95% Conf. Interval] |
|-------|-----------|-------|------|----------------------|
| **agl3** |           |       |      |                      |
| 0     | .5683188  | .1010696 | 5.62  | 0.000 | .3693341 .7673036 |
| 6     | -.1070686 | .1227722 | -0.87 | 0.384 | -.3408783 .134644 |
| 9     | .1379211  | .1109862 | 1.24  | 0.215 | -.0805873 .3564294 |
| 12    | .1988496  | .1079095 | 1.84  | 0.066 | -.0136015 .4113007 |
| 15    | .1699315  | .1137759 | 1.49  | 0.136 | -.0540692 .3939322 |
| 18    | .0005713  | .1244703 | 0.00  | 0.996 | -.2444844 .245627 |
| 21    | .2572861  | .1227722 | 2.10  | 0.037 | .0155735 .498998 |
| 24    | .9059094  | .1148208 | 7.89  | 0.000 | .6798514 1.131967 |
| 27    | .832759   | .1601642 | 5.20  | 0.000 | .5174294 1.148089 |
| _cons | 2.03887   | .0790995 | 25.78 | 0.000 | 1.883139 2.1946 |

#### Model Summary

- **Number of obs = 280**
- **Root MSE = .44041**

#### Source of Variation

<table>
<thead>
<tr>
<th>Source</th>
<th>SS</th>
<th>df</th>
<th>MS</th>
<th>Number of obs = 280</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Model</strong></td>
<td>26.678699</td>
<td>9</td>
<td>2.96429989</td>
<td>F (9, 270) = 15.28</td>
</tr>
<tr>
<td><strong>Residual</strong></td>
<td>52.3688042</td>
<td>270</td>
<td>.193958534</td>
<td>Prob &gt; F = 0.0000</td>
</tr>
<tr>
<td><strong>Total</strong></td>
<td>79.0475032</td>
<td>279</td>
<td>.283324384</td>
<td>R-squared = 0.3375</td>
</tr>
</tbody>
</table>

#### logiomeannt Regression Results for ib6.agl3

**Base class --> 6-8 months of age**

### Table: Logistic Regression Results for glogiomeannt

| Coef. | Std. Err. | t     | P>|t| | [95% Conf. Interval] |
|-------|-----------|-------|------|----------------------|
| **agl3** |           |       |      |                      |
| 0     | .5683188  | .1010696 | 5.62  | 0.000 | .3693341 .7673036 |
| 6     | -.1070686 | .1227722 | -0.87 | 0.384 | -.3408783 .134644 |
| 9     | .1379211  | .1109862 | 1.24  | 0.215 | -.0805873 .3564294 |
| 12    | .1988496  | .1079095 | 1.84  | 0.066 | -.0136015 .4113007 |
| 15    | .1699315  | .1137759 | 1.49  | 0.136 | -.0540692 .3939322 |
| 18    | .0005713  | .1244703 | 0.00  | 0.996 | -.2444844 .245627 |
| 21    | .2572861  | .1227722 | 2.10  | 0.037 | .0155735 .498998 |
| 24    | .9059094  | .1148208 | 7.89  | 0.000 | .6798514 1.131967 |
| 27    | .832759   | .1601642 | 5.20  | 0.000 | .5174294 1.148089 |
| _cons | 2.03887   | .0790995 | 25.78 | 0.000 | 1.883139 2.1946 |

#### Model Summary

- **Number of obs = 280**
- **Root MSE = .44041**

#### Source of Variation

<table>
<thead>
<tr>
<th>Source</th>
<th>SS</th>
<th>df</th>
<th>MS</th>
<th>Number of obs = 280</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Model</strong></td>
<td>26.678699</td>
<td>9</td>
<td>2.96429989</td>
<td>F (9, 270) = 15.28</td>
</tr>
<tr>
<td><strong>Residual</strong></td>
<td>52.3688042</td>
<td>270</td>
<td>.193958534</td>
<td>Prob &gt; F = 0.0000</td>
</tr>
<tr>
<td><strong>Total</strong></td>
<td>79.0475032</td>
<td>279</td>
<td>.283324384</td>
<td>R-squared = 0.3375</td>
</tr>
</tbody>
</table>
### Model Summary

<table>
<thead>
<tr>
<th>Source</th>
<th>SS</th>
<th>df</th>
<th>MS</th>
<th>Number of obs = 280</th>
</tr>
</thead>
<tbody>
<tr>
<td>Model</td>
<td>26.678699</td>
<td>9</td>
<td>2.96429989</td>
<td>Prob &gt; F = 0.0000</td>
</tr>
<tr>
<td>Residual</td>
<td>52.3688042</td>
<td>270</td>
<td>.193958534</td>
<td>R-squared = 0.3375</td>
</tr>
<tr>
<td>Total</td>
<td>79.0475032</td>
<td>279</td>
<td>.283324384</td>
<td>Root MSE = .44041</td>
</tr>
</tbody>
</table>

### Coefficient Table

| agl3 | Coef. | Std. Err. | t     | P>|t| | [95% Conf. Interval] |
|------|-------|-----------|-------|------|----------------------|
| 0    | .6753875 | .1130249  | 5.98  | 0.000 | .4528652 .8979097    |
| 3    | .1070686 | .1227722  | 0.87  | 0.384 | -.134644 .3487813   |
| 9    | .2449897 | .1219734  | 2.01  | 0.046 | .0046499 .4851295   |
| 12   | .3059182 | .1191807  | 2.57  | 0.011 | .0712766 .5405987   |
| 15   | .2770001 | .1245172  | 2.22  | 0.027 | .0318521 .5221811   |
| 18   | .1076399 | .1343593  | 0.80  | 0.424 | -.1568852 .372165   |
| 21   | .3643548 | .1327878  | 2.74  | 0.006 | .1029236 .6257859   |
| 24   | 1.012978 | .1254727  | 8.07  | 0.000 | .7659488 1.260007   |
| 27   | .9398276 | .1679647  | 5.60  | 0.000 | .6091405 1.270515   |
| _cons | 1.931801 | .0938951  | 20.57 | 0.000 | 1.746941 2.116661   |

### Regression with Base Class 9-11 Months of Age

```
.xi:regress logiomeannt ib9.agl3 / Base class --> 9-11 months of age
```

### Model Summary

<table>
<thead>
<tr>
<th>Source</th>
<th>SS</th>
<th>df</th>
<th>MS</th>
<th>Number of obs = 280</th>
</tr>
</thead>
<tbody>
<tr>
<td>Model</td>
<td>26.678699</td>
<td>9</td>
<td>2.96429989</td>
<td>Prob &gt; F = 0.0000</td>
</tr>
<tr>
<td>Residual</td>
<td>52.3688042</td>
<td>270</td>
<td>.193958534</td>
<td>R-squared = 0.3375</td>
</tr>
<tr>
<td>Total</td>
<td>79.0475032</td>
<td>279</td>
<td>.283324384</td>
<td>Root MSE = .44041</td>
</tr>
</tbody>
</table>

### Coefficient Table

| agl3 | Coef. | Std. Err. | t     | P>|t| | [95% Conf. Interval] |
|------|-------|-----------|-------|------|----------------------|
| 0    | -.1379211 | .1109862  | -1.24 | 0.215 | -.3564294 .0805873  |
| 3    | -.2449897 | .1219734  | -2.01 | 0.046 | -.4851295 -.0048499 |
| 6    | .0609285  | .1069997  | 0.57  | 0.570 | -.1497314 .2715884 |
| 12   | .0320104  | .1129134  | 0.28  | 0.777 | -.1902922 .254331  |
| 15   | -.1373498 | .1236824  | -1.11 | 0.268 | -.3808542 .1051547 |
| 18   | .1193651  | .1219734  | 0.98  | 0.329 | -.1207747 .3595049 |
| 21   | .7679883  | .1139662  | 6.74  | 0.000 | .5436129 .9923637  |
| 24   | .6948379  | .1555527  | 4.35  | 0.000 | .3807124 1.008963  |
| _cons | 2.176791  | .0778537  | 27.96 | 0.000 | 2.023513 2.330068   |

### Regression with Base Class 12-14 Months of Age

```
.xi:regress logiomeannt ib12.agl3 / Base class --> 12-14 months of age
```
**log_{10}meannt** | Coef. | Std. Err. | t | P>|t| | [95% Conf. Interval]
---|---|---|---|---|---
agl3 | | | | | |
0 | 0.3694693 | 0.0966751 | 3.82 | 0.000 | 0.1791364 | 0.5598021
3 | -0.1988496 | 0.1079095 | -1.84 | 0.066 | -0.4113007 | 0.0136013
6 | -0.3059182 | 0.1191807 | -2.57 | 0.011 | -0.5405598 | -0.0712766
9 | -0.0609285 | 0.1069997 | -0.57 | 0.570 | -0.2715884 | 0.1497314
12 | -0.0289181 | 0.1098907 | -0.26 | 0.793 | -0.2452697 | 0.1874335
15 | -0.1982783 | 0.1209291 | -1.64 | 0.102 | -0.4363623 | 0.0398057
18 | 0.0584366 | 0.1191807 | 0.49 | 0.624 | -0.1762051 | 0.2930782
21 | 0.7070594 | 0.1191807 | 6.37 | 0.000 | 0.4885789 | 0.9255406
24 | 0.6339094 | 0.1574284 | 4.03 | 0.000 | 0.3239668 | 0.943852
27 | 2.237719 | 0.0734012 | 30.49 | 0.000 | 2.093208 | 2.382231

_cons | 2.208801 | 0.0817816 | 27.01 | 0.000 | 2.047797 | 2.369812

---

**log_{10}meannt** | Coef. | Std. Err. | t | P>|t| | [95% Conf. Interval]
---|---|---|---|---|---
agl3 | | | | | |
0 | 0.3983873 | 0.1031822 | 3.86 | 0.000 | 0.1952434 | 0.6015313
3 | -0.1699315 | 0.1137759 | -1.49 | 0.136 | -0.3939322 | 0.0540692
6 | -0.2770001 | 0.1245172 | -2.22 | 0.027 | -0.5221481 | -0.0318521
9 | -0.0320104 | 0.1129134 | -0.28 | 0.777 | -0.254313 | -0.1902922
12 | 0.0289181 | 0.1089097 | 0.26 | 0.793 | -0.1874335 | 0.2452697
15 | -0.1693602 | 0.1261917 | -1.34 | 0.181 | -0.4178051 | 0.0790846
18 | 0.0873546 | 0.1245172 | 0.70 | 0.484 | -0.1577934 | 0.3325027
21 | 0.7359779 | 0.1166867 | 6.31 | 0.000 | 0.5062503 | 0.9657054
24 | 0.6628275 | 0.1615057 | 4.10 | 0.000 | 0.3448569 | 0.9807981
27 | 2.208801 | 0.0817816 | 27.01 | 0.000 | 2.047797 | 2.369812

---

Model | 26.678699 | 9 | 2.96429989 | Prob > F = 0.0000
Residual | 52.368804 | 270 | 0.193958534 | R-squared = 0.3375
Total | 79.047503 | 279 | 0.283324384 | Root MSE = 0.44041

---

Model | 26.678699 | 9 | 2.96429989 | Prob > F = 0.0000
Residual | 52.368804 | 270 | 0.193958534 | R-squared = 0.3375
Total | 79.047503 | 279 | 0.283324384 | Root MSE = 0.44041
. xi: regress log10meannt ib18.agl3 // Base class --> 18-20 months of age

<table>
<thead>
<tr>
<th>Source</th>
<th>SS</th>
<th>df</th>
<th>MS</th>
<th>Number of obs = 280</th>
</tr>
</thead>
<tbody>
<tr>
<td>Model</td>
<td>26.678699</td>
<td>9</td>
<td>2.96429989</td>
<td>F (9, 270) = 15.28</td>
</tr>
<tr>
<td>Residual</td>
<td>52.3688042</td>
<td>270</td>
<td>.193958534</td>
<td>Prob &gt; F = 0.0000</td>
</tr>
<tr>
<td>Total</td>
<td>79.0475032</td>
<td>279</td>
<td>.283324384</td>
<td>R-squared = 0.3375</td>
</tr>
</tbody>
</table>

Adj R-squared = 0.3154
Root MSE = .44041

| log10meannt | Coef. | Std. Err. | t    | P>|t| | [95% Conf. Interval] |
|-------------|-------|-----------|------|-----|----------------------|
| agl3        |       |           |      |     |                      |
| 0           | .5677476 | .1148671 | 4.94 | 0.000 | .3415984 .7938967 |
| 3           | -.0005713 | .1244703 | -0.00 | 0.996 | -.245627 .2444844 |
| 6           | -.1076399 | .1343593 | -0.80 | 0.424 | -.372165 .1568852 |
| 9           | .1373498  | .1236824 | 1.11 | 0.266 | -.1061547 .3808542 |
| 12          | .1982783  | .1209291 | 1.64 | 0.102 | -.0398057 .4363623 |
| 15          | .1693602  | .1261917 | 1.34 | 0.181 | -.0790846 .4178051 |
| 21          | .2567149  | .1343593 | 1.91 | 0.057 | -.0078102 .5212399 |
| 24          | .9053381  | .1271346 | 7.12 | 0.000 | .6550368 1.155639 |
| 27          | .8321877  | .1692099 | 4.92 | 0.000 | .4990492 1.165326 |
| _cons       | 2.039441 | .0961047 | 21.22| 0.000 | 1.850231 2.228651 |

. xi: regress log10meannt ib21.agl3 // Base class --> 21-23 months of age

<table>
<thead>
<tr>
<th>Source</th>
<th>SS</th>
<th>df</th>
<th>MS</th>
<th>Number of obs = 280</th>
</tr>
</thead>
<tbody>
<tr>
<td>Model</td>
<td>26.678699</td>
<td>9</td>
<td>2.96429989</td>
<td>F (9, 270) = 15.28</td>
</tr>
<tr>
<td>Residual</td>
<td>52.3688042</td>
<td>270</td>
<td>.193958534</td>
<td>Prob &gt; F = 0.0000</td>
</tr>
<tr>
<td>Total</td>
<td>79.0475032</td>
<td>279</td>
<td>.283324384</td>
<td>R-squared = 0.3375</td>
</tr>
</tbody>
</table>

Adj R-squared = 0.3154
Root MSE = .44041

| log10meannt | Coef. | Std. Err. | t    | P>|t| | [95% Conf. Interval] |
|-------------|-------|-----------|------|-----|----------------------|
| agl3        |       |           |      |     |                      |
| 0           | .3110327 | .1130249 | 2.75 | 0.006 | .0885105 .5335549 |
| 3           | -.2572861 | .1227722 | -2.10 | 0.037 | -.4989988 -.0155735 |
| 6           | -.3643548 | .1327878 | -2.74 | 0.006 | -.6257859 -.1029236 |
| 9           | -.1193651 | .1219734 | -0.98 | 0.329 | -.3595049 .1207747 |
| 12          | -.0584366 | .1191807 | -0.49 | 0.624 | -.2930782 .1762051 |
| 15          | -.0873546 | .1245172 | -0.70 | 0.484 | -.3325027 .1577934 |
| 18          | -.2567149 | .1343593 | -1.91 | 0.057 | -.5212399 .0078102 |
| 24          | .6486232  | .1254727 | 5.17 | 0.000 | .401594 .8956524 |
| 27          | .5754728  | .1679647 | 3.43 | 0.001 | .2447857 .90616 |
\[ \text{Model: } \text{SS} \ 26.678699 \quad \text{df} \ 9 \quad \text{MS} \ 2.96429989 \quad \text{Prob} > \text{F} = 0.0000 \]
\[ \text{Residual: } \text{SS} \ 52.3688042 \quad \text{df} \ 270 \quad \text{MS} \ 0.193958534 \quad \text{R-squared} = 0.3375 \]
\[ \text{Total: } \text{SS} \ 79.0475032 \quad \text{df} \ 279 \quad \text{MS} \ 0.283324384 \quad \text{Root MSE} = 0.44041 \]

\[ \log_{10}\text{meannt} \]

| Coef.  | Std. Err. | t     | P>|t| | [95% Conf. Interval] |
|--------|-----------|-------|-----|---------------------|
| agl3   |           |       |     |                     |
| 0      | -0.3375905 | .1043333 | -3.24 | 0.001 | -0.5430007 | -0.1321804 |
| 3      | -0.905994  | .1148208 | -7.89 | 0.000 | -1.131967 | -0.6798514 |
| 6      | -1.012978  | .1254727 | -8.07 | 0.000 | -1.260007 | -0.7659488 |
| 9      | -0.7679883 | .1139662 | -6.74 | 0.000 | -0.9923637 | -0.5436129 |
| 12     | -0.7070598 | .1109722 | -6.37 | 0.000 | -0.9255406 | -0.4885789 |
| 15     | -0.7359779 | .1166047 | -6.31 | 0.000 | -0.9657054 | -0.5062503 |
| 18     | -0.9053381 | .1271346 | -7.12 | 0.000 | -1.155639 | -0.6550368 |
| 21     | -0.6486232 | .1254727 | -5.17 | 0.000 | -0.8956524 | -0.401594 |
| 27     | -0.731504  | .1622435 | -0.45 | 0.652 | -0.3925736 | 0.2462728 |

// Code: This code generates a binary variable based on a putative neutralising antibody protective threshold obtained from Glezen et al. (1981). On the basis of this variable, survival analysis is carried out to determine the mean duration of protection by maternal antibodies and the age prevalence of these protective titres.

```
use "C:\Documents and Settings\csande.KWTRP\Desktop\paper2\Full_C0H0RT_neut.dta", clear

. gen prot_sev=.
. replace prot_sev=1 if log10(meannt)>=2.40
```
. replace prot_sev=0 if log10(meannt)<2.48

. gen fail=1

. replace fail=0 if prot_sev==1
(106 real changes made)

. replace fail=1 if sample_d>=infl_d
(80 real changes made)

. bysort sample: egen mx=max(sample_d)

. format mx %d

. stset sample_d, id(sample) f(fail) ex(d_birth) or(d_birth) ex(mx) sc(30.5)

    id: sample
    failure event: fail != 0 & fail < .
    obs. time interval: (sample_d[_n-l], sample_d]
    exit on or before: time mx
t for analysis: (time-origin)/30.5
    origin: time d_birth

---------------------------------------------------------------
 280  total obs.
  24  obs. end on or before enter ()
---------------------------------------------------------------
 256  obs. remaining, representing
   28  subjects
 251  failures in multiple failure-per-subject data
696.1311  total analysis time at risk, at risk from t = 0
  earliest observed entry t = 0
  last observed exit t = 29.93443

. strate

    failure _d: fail
    analysis time _t: (sample_d-origin)/30.5
    origin: time d_birth
    exit on or before: time mx
    id: sample

Estimated rates and lower/upper bounds of 95% confidence intervals
(256 records included in the analysis)

+---------------------------------------------+-----+-----+----------+-----+-----+----+
|     | D   | Y   | Rate  | Lower | Upper |   |
+---------------------------------------------+-----+-----+----------+-----+-----+----+
| 251 | 696.1311 | 0.36056 | 0.31861 | 0.40805 |   |
+---------------------------------------------+-----+-----+----------+-----+-----+----+
```
.di 1/0.36056
2.7734635

//age prevalence of protective antibodies

.di prot_sev if sample_d<= infl_d,by (ag6) binomial //calculate binomial proportions

-> ag6 = 0

<table>
<thead>
<tr>
<th>Variable</th>
<th>Obs</th>
<th>Mean</th>
<th>Std. Err.</th>
<th>[95% Conf. Interval]</th>
</tr>
</thead>
<tbody>
<tr>
<td>prot_sev</td>
<td>24</td>
<td>1</td>
<td>0</td>
<td>.8575264 1*</td>
</tr>
</tbody>
</table>

(*) one-sided, 97.5% confidence interval

-> ag6 = 1

<table>
<thead>
<tr>
<th>Variable</th>
<th>Obs</th>
<th>Mean</th>
<th>Std. Err.</th>
<th>[95% Conf. Interval]</th>
</tr>
</thead>
<tbody>
<tr>
<td>prot_sev</td>
<td>0</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

-> ag6 = 2

<table>
<thead>
<tr>
<th>Variable</th>
<th>Obs</th>
<th>Mean</th>
<th>Std. Err.</th>
<th>[95% Conf. Interval]</th>
</tr>
</thead>
<tbody>
<tr>
<td>prot_sev</td>
<td>19</td>
<td>.3684211</td>
<td>.1106647</td>
<td>.1628859 .6164221</td>
</tr>
</tbody>
</table>

-> ag6 = 3

<table>
<thead>
<tr>
<th>Variable</th>
<th>Obs</th>
<th>Mean</th>
<th>Std. Err.</th>
<th>[95% Conf. Interval]</th>
</tr>
</thead>
<tbody>
<tr>
<td>prot_sev</td>
<td>16</td>
<td>0</td>
<td>0</td>
<td>0 .2059072*</td>
</tr>
</tbody>
</table>

(*) one-sided, 97.5% confidence interval
```
-> ag6 = 6

<table>
<thead>
<tr>
<th>Variable</th>
<th>Obs</th>
<th>Mean</th>
<th>Std. Err.</th>
<th>95% Conf. Interval</th>
</tr>
</thead>
<tbody>
<tr>
<td>prot_sev</td>
<td>22</td>
<td>0</td>
<td>0</td>
<td>0 .1543725*</td>
</tr>
</tbody>
</table>

(*) one-sided, 97.5% confidence interval

-> ag6 = 12

<table>
<thead>
<tr>
<th>Variable</th>
<th>Obs</th>
<th>Mean</th>
<th>Std. Err.</th>
<th>95% Conf. Interval</th>
</tr>
</thead>
<tbody>
<tr>
<td>prot_sev</td>
<td>9</td>
<td>.1111111</td>
<td>.1047566</td>
<td>.0028091 .4824965</td>
</tr>
</tbody>
</table>

瑆 Code: This code calculates the duration of neutralising antibodies following primary infection. It calculates the mean neutralising antibody titre at different time points pre and post infection. A pre-infection control which encompasses neutralising titres up to six months prior to primary infection is defined.

. gen days_post_infl=sample_d-infl_d //days pre/post RSV Positive sample for first identified infection

. gen months_post_inf1=days_post_infl/30.5 // the number of months before or after the date of the first identified infection

. //egen months_post_inf1_classes=cut (months_post_inf1),at (-6,0,1,2,3,4,5,6)  
. egen months_post_inf1_classes=cut (months_post_inf1),at (-6,0,0.5,1,2,3,4,5,6)

. replace months_post_inf1_classes=. if age_m<5 & months_post_inf1_classes==-6 //get rid maternal antibodies in pre exposure control
   (8 real changes made, 8 to missing)

. graph box logiomeannt if sample_d>=infl_d-90 & sample_d<=date_respl_end,over (months_post_inf1_classes) // box plot
. xi: regress log10meant i.months_post_infl_classes age_m, cluster (sample) // means compared using regression model with clustered sandwich estimation for repeated measurements

i.months_post-s _Imonths_po_l-8 (_Imonths_po_l for months_s==6 omitted)

Linear regression

|                | Coef. | Std. Err. | t     | P>|t| |  [95% Conf. Interval] |
|----------------|-------|-----------|-------|-----|-----------------------|
| _Imonths_p-2   | 0.0977815 | 0.0653437 | 1.50  | 0.146 | -0.0362927 .2318556  |
| _Imonths_p-3   | 0.9803547 | 0.0586526 | 16.71 | 0.000 | .8600095 1.1007     |
| _Imonths_p-4   | 0.7657186 | 0.0627076 | 12.21 | 0.000 | .6370532  .8943839   |
| _Imonths_p-5   | 0.4809447 | 0.0799101 | 6.02  | 0.000 | .3169828  .6449066   |
| _Imonths_p-6   | 0.214715 | 0.1056726 | 2.03  | 0.052 | -.0021073 .4315373   |
| _Imonths_p-7   | 0.2072252 | 0.1112533 | 1.86  | 0.073 | -.0210477 .4354981   |
| _Imonths_p-8   | 0.0963621 | 0.0801376 | 1.20  | 0.240 | -.0680667 .2607908   |
| age_m          | 0.0043244 | 0.0061555 | 0.70  | 0.488 | -.0083057 .0169544   |
| _cons          | 1.77324  | 0.0569952 | 31.11 | 0.000 | 1.656295 1.890184    |

(Std. Err. adjusted for 28 clusters in sample)

// Code: This code compares the mean neutralising titres at the acute stage of primary and secondary infection using a linear regression model

. gen epid=. //generate epidemic start and end boundaries
   (280 missing values generated)

. replace epid=1 if sample_d >td (01/03/2002) & sample_d <td (01/08/2002) & epid==.
   (35 real changes made)

. replace epid=2 if sample_d >td (01/12/2002) & sample_d <td (01/05/2003) & epid==.
   (45 real changes made)

   (71 real changes made)
(15 real changes made)

(0 real changes made)

. replace epid=6 if sample_d >td (01/12/2006) & sample_d <td (01/05/2007) & epid==.
(0 real changes made)

. replace epid=7 if sample_d >td (01/11/2007) & sample_d <td (01/06/2008) & epid==.
(0 real changes made)

. replace epid=8 if sample_d >td (01/11/2008) & sample_d <td (01/06/2009) & epid==.
(0 real changes made)

(0 real changes made)

. replace epid=0 if epid==. //define inter-epidemic period
(114 real changes made)

gen displ_dl=sample_d-infl_d //displacement in days between sample date and positive
ifat sample date in primary infection
gen displ_d2=sample_d-inf2_d //displacement in days between sample date and positive
ifat sample date in secondary infection
gen d1= displ_dl if displ_dl >=0 & displ_dl<=10 //pick only the samples collected
within 10 days of infection and assume these are "acute" samples
gen d2= displ_d2 if displ_d2 >=0 & displ_d2<=10

gen dis // contains 1 or 2 if sample fulfills the "acute" sample criteria (collected
<=10 days after IFAT pos sample)
// for primary & secondary infection respectively

replace dis=1 if d1!=.
replace dis=2 if d2!=.

gen dis2=. //initially copy of dis
(280 missing values generated)

.replace dis2=1 if dis==1
(24 real changes made)

.replace dis2=2 if dis==2
(9 real changes made)
. replace dis2=0 if months_post_infl_classes==-6 //pre-infection control group
(28 real changes made)

. xi: regress log10meantn i.dis2 //comparison of primary and secondary and intra epid
ab at first 10 days. Base class is the pre-infection control
i.dis2
  _Idis2_0-2 (naturally coded; _Idis2_0 omitted)

<table>
<thead>
<tr>
<th>Source</th>
<th>SS</th>
<th>df</th>
<th>MS</th>
<th>Number of obs = 61</th>
</tr>
</thead>
<tbody>
<tr>
<td>Model</td>
<td>10.5272816</td>
<td>2</td>
<td>5.26364081</td>
<td>F ( 2, 58) = 62.45</td>
</tr>
<tr>
<td>Residual</td>
<td>4.88882252</td>
<td>58</td>
<td>.084290043</td>
<td>R-squared = .6829</td>
</tr>
<tr>
<td>Total</td>
<td>15.4161041</td>
<td>60</td>
<td>.258930569</td>
<td>Adj R-squared = .6719</td>
</tr>
</tbody>
</table>

| log10meantn | Coef. | Std. Err. | t   | P>|t| | [95% Conf. Interval] |
|--------------|-------|-----------|-----|-----|----------------------|
| _Idis2_1     | .099774 | .0807616 | 1.24 | 0.222 | -.061888 -.261436 |
| _Idis2_2     | 1.210256 | .1112471 | 10.88 | 0.000 | .975711 1.432942 |
| _cons        | 1.815324 | .0546667 | 33.09 | 0.000 | 1.705496 1.925152 |

. xi: regress log10meantn ibl.dis2 //base class -> primary infection acute samples

<table>
<thead>
<tr>
<th>Source</th>
<th>SS</th>
<th>df</th>
<th>MS</th>
<th>Number of obs = 61</th>
</tr>
</thead>
<tbody>
<tr>
<td>Model</td>
<td>10.5272816</td>
<td>2</td>
<td>5.26364081</td>
<td>F ( 2, 58) = 62.45</td>
</tr>
<tr>
<td>Residual</td>
<td>4.88882252</td>
<td>58</td>
<td>.084290043</td>
<td>R-squared = .6829</td>
</tr>
<tr>
<td>Total</td>
<td>15.4161041</td>
<td>60</td>
<td>.258930569</td>
<td>Adj R-squared = .6719</td>
</tr>
</tbody>
</table>

| log10meantn | Coef. | Std. Err. | t   | P>|t| | [95% Conf. Interval] |
|--------------|-------|-----------|-----|-----|----------------------|
| dis2         | -.099774 | .0807616 | -1.24 | 0.222 | -.261436 .061888 |
| 2            | 1.110482 | .1134797 | 9.79 | 0.000 | .883328 1.337637 |
| _cons        | 1.915098 | .0592628 | 32.32 | 0.000 | 1.79647 2.03725 |

. ciplot log10meantn,by (dis2)

// Code: This code generates summary plots of the mean PRNTs in 3 calendar month
strata for cohort 1 and 2 and compares the mean PRNTs at one time point to
the next time point in the series using a regression model. The plots are
generated relative to temporal population level transmission estimates
obtained from inpatient surveillance data

// use this module to plot compare the kinetics of the neut response in the 2
cohorts to seasonal rsv transmission
. use "C:\Documents and
Settings\csande.KWTRP\Desktop\paper2\Full_COHORT_neut_surveillance overlay.dta",clear
// dataset contains a merge of kinetics data and inpatient surveillance data

. summ sample_d,d // get the range of sample dates for all infant samples in order to
generate appropriate calendar strata

<table>
<thead>
<tr>
<th>Percentiles</th>
<th>Smallest</th>
</tr>
</thead>
<tbody>
<tr>
<td>1%</td>
<td>15387</td>
</tr>
<tr>
<td>5%</td>
<td>15455</td>
</tr>
<tr>
<td>10%</td>
<td>15491</td>
</tr>
<tr>
<td>25%</td>
<td>15667</td>
</tr>
<tr>
<td>50%</td>
<td>15906.5</td>
</tr>
<tr>
<td>75%</td>
<td>16162.5</td>
</tr>
<tr>
<td>90%</td>
<td>16273.5</td>
</tr>
<tr>
<td>95%</td>
<td>16367</td>
</tr>
<tr>
<td>99%</td>
<td>16490</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Percentiles</th>
<th>Largest</th>
</tr>
</thead>
<tbody>
<tr>
<td>1%</td>
<td>15372</td>
</tr>
<tr>
<td>5%</td>
<td>15381</td>
</tr>
<tr>
<td>10%</td>
<td>15387</td>
</tr>
<tr>
<td>25%</td>
<td>15389</td>
</tr>
<tr>
<td>50%</td>
<td>Mean</td>
</tr>
<tr>
<td>75%</td>
<td>15908.95</td>
</tr>
<tr>
<td>90%</td>
<td>16162.5</td>
</tr>
<tr>
<td>95%</td>
<td>16273.5</td>
</tr>
<tr>
<td>99%</td>
<td>16490</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Percentiles</th>
<th>Std. Dev.</th>
</tr>
</thead>
<tbody>
<tr>
<td>1%</td>
<td>15372</td>
</tr>
<tr>
<td>5%</td>
<td>15381</td>
</tr>
<tr>
<td>10%</td>
<td>15387</td>
</tr>
<tr>
<td>25%</td>
<td>15389</td>
</tr>
<tr>
<td>50%</td>
<td>Mean</td>
</tr>
<tr>
<td>75%</td>
<td>294.4396</td>
</tr>
<tr>
<td>90%</td>
<td>86694.7</td>
</tr>
<tr>
<td>95%</td>
<td>0.020477</td>
</tr>
<tr>
<td>99%</td>
<td>1.989988</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Percentiles</th>
<th>Kurtosis</th>
</tr>
</thead>
<tbody>
<tr>
<td>1%</td>
<td>15372</td>
</tr>
<tr>
<td>5%</td>
<td>15381</td>
</tr>
<tr>
<td>10%</td>
<td>15387</td>
</tr>
<tr>
<td>25%</td>
<td>15389</td>
</tr>
<tr>
<td>50%</td>
<td>Mean</td>
</tr>
<tr>
<td>75%</td>
<td>15908.95</td>
</tr>
<tr>
<td>90%</td>
<td>16162.5</td>
</tr>
<tr>
<td>95%</td>
<td>16273.5</td>
</tr>
<tr>
<td>99%</td>
<td>16490</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Percentiles</th>
<th>Variance</th>
</tr>
</thead>
<tbody>
<tr>
<td>1%</td>
<td>15372</td>
</tr>
<tr>
<td>5%</td>
<td>15381</td>
</tr>
<tr>
<td>10%</td>
<td>15387</td>
</tr>
<tr>
<td>25%</td>
<td>15389</td>
</tr>
<tr>
<td>50%</td>
<td>Mean</td>
</tr>
<tr>
<td>75%</td>
<td>294.4396</td>
</tr>
<tr>
<td>90%</td>
<td>86694.7</td>
</tr>
<tr>
<td>95%</td>
<td>0.020477</td>
</tr>
<tr>
<td>99%</td>
<td>1.989988</td>
</tr>
</tbody>
</table>

. egen sample_d_class=cut (sample_d),at (15372 (90)16572) // generate 3 calendar
month strata of all samples in both cohort 1 and 2
(2047 missing values generated)

. collapse (mean) 110=logio meannt (sd) sd10=logio meannt (count) cnt = logio meannt,by
(sample_d_class cohort) // calculate mean, SDs and Ns for each stratum

. generate hi = 110+ invttail (cnt=1,0.025)* (sd10 / sqrt (cnt)) // calculate
upper confidence limit

. generate lo = 110- invttail (cnt=1,0.025)* (sd10 / sqrt (cnt)) // calculate
lower confidence limit

. capture: rename cohort cohort2

310
append using "C:\Documents and Settings\csande.KWTRP\Desktop\paper2\Full_COHORT_neut_surveillance overlay.dta"
//append to kinetics/IP dataset
(label ab already defined)

// generate log normalised confidence estimates for cohort 1 and 2

capture: gen 110a=110 if cohort2==1

capture: gen 110b=110 if cohort2==2

capture: gen hia=hi if cohort2==1

capture: gen hib=hi if cohort2==2

capture: gen loa=lo if cohort2==1

capture: gen lob=lo if cohort2==2

gen sc=cut (sample_d), at ( 15372 (90)16572) // re-generate 3 monthly strata

//neut kinetics/transmission plots
// cohort 1

twoway (scatter 110a sample_d_class, connect (direct) yaxis (1)) (reap hia loa sample_d_cla
> ss, yaxis (1)) (bar weekly_adm_tot weekly_adm if d_admin<=td (01jan2006) & serial_n=1,yaxi
> s (2))

.xiregress log10meannt ib15372.sc if cohort==1 // compare the mean titre of stratum
1 to that of stratum 2 for cohort 1

<table>
<thead>
<tr>
<th>Source</th>
<th>SS</th>
<th>df</th>
<th>MS</th>
<th>Number of obs = 171</th>
</tr>
</thead>
<tbody>
<tr>
<td>Model</td>
<td>21.5204857</td>
<td>10</td>
<td>2.15204857</td>
<td>F (10,160) = 11.56</td>
</tr>
<tr>
<td>Residual</td>
<td>29.7801855</td>
<td>160</td>
<td>.18612616</td>
<td>Prob &gt; F = 0.0000</td>
</tr>
<tr>
<td>Total</td>
<td>51.3006712</td>
<td>170</td>
<td>.301768654</td>
<td>R-squared = 0.4195</td>
</tr>
</tbody>
</table>

| log10meannt | Coef. | Std. Err. | t     | P>|t|   | [95% Conf. Interval] |
|-------------|-------|-----------|-------|-------|------------------|
| sc          | 15462 | -.5725675 | .1450861 | -3.95  | 0.000 | -.8590983 -.2860367 |
|             | 15552 | -.9220406 | .1557027 | -5.92  | 0.000 | -.9229538 -.6145431 |
|             | 15642 | -.9755165 | .166169  | -5.87  | 0.000 | -.1303684 -.6473491 |
```
. xi:regress logioanteennt ib15462.sc if cohort==1 // compare the mean titre of stratum 2 to that of stratum 3 for cohort 1

Source | SS df MS
Number of obs = 171

Model | 21.5204857 10 2.15204857 Prob > F = 0.0000
Residual | 29.7801855 160 .18612616 R-squared = 0.4195

Total | 51.3006712 170 .301768654 Root MSE = .43142

logioanteennt | Coef. Std. Err. t P>|t| [95% Conf. Interval]

<table>
<thead>
<tr>
<th>sc</th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>.5725675 .1450861 3.95 0.000 .2860367 .8590983</td>
<td></td>
</tr>
<tr>
<td></td>
<td>-.3494731 .136762 -2.56 0.012 -.6195647 -.0793816</td>
<td></td>
</tr>
<tr>
<td></td>
<td>-.402949 .1485687 -2.71 0.007 -.6983575 -.1095405</td>
<td></td>
</tr>
<tr>
<td></td>
<td>.0899449 .125876 0.55 0.584 -.1796208 .3176106</td>
<td></td>
</tr>
<tr>
<td></td>
<td>.0641342 .1450861 0.44 0.659 -.2223966 .350665</td>
<td></td>
</tr>
<tr>
<td></td>
<td>-.2381936 .1419988 -1.68 0.095 -.5186273 .0422402</td>
<td></td>
</tr>
<tr>
<td></td>
<td>-.3003333 .1686296 -1.78 0.077 -.6336002 .0326935</td>
<td></td>
</tr>
<tr>
<td></td>
<td>.3932907 .1345199 2.92 0.004 .1276272 .6509542</td>
<td></td>
</tr>
<tr>
<td></td>
<td>.6548232 .1324816 4.94 0.000 .3931851 .9164613</td>
<td></td>
</tr>
<tr>
<td></td>
<td>.5143386 .212086 2.43 0.016 .0954895 .9331876</td>
<td></td>
</tr>
</tbody>
</table>
| _cons | 2.267807 .0880639 25.75 0.000 2.09389 2.441725

. xi:regress logioanteennt ib15552.sc if cohort==1 // compare the mean titre of stratum 3 to that of stratum 4 for cohort 1

Source | SS df MS
Number of obs = 171

Model | 21.5204857 10 2.15204857 Prob > F = 0.0000
Residual | 29.7801855 160 .18612616 R-squared = 0.4195

Total | 51.3006712 170 .301768654 Root MSE = .43142

logioanteennt | Coef. Std. Err. t P>|t| [95% Conf. Interval]

<p>| | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

312
```
### Table 1: Comparison of Mean Titers

<table>
<thead>
<tr>
<th>Source</th>
<th>SS</th>
<th>df</th>
<th>MS</th>
<th>Number of obs = 171</th>
</tr>
</thead>
<tbody>
<tr>
<td>Model</td>
<td>21.5204857</td>
<td>10</td>
<td>2.15204857</td>
<td>F (10, 160) = 11.56</td>
</tr>
<tr>
<td>Residual</td>
<td>29.7801855</td>
<td>160</td>
<td>.18612616</td>
<td>R-squared = 0.4195</td>
</tr>
<tr>
<td>Total</td>
<td>51.3006712</td>
<td>170</td>
<td>.301768654</td>
<td>Adj R-squared = 0.3832</td>
</tr>
</tbody>
</table>

### Table 2: Comparison of Mean Titers

<table>
<thead>
<tr>
<th>Source</th>
<th>SS</th>
<th>df</th>
<th>MS</th>
<th>Number of obs = 171</th>
</tr>
</thead>
<tbody>
<tr>
<td>Model</td>
<td>21.5204857</td>
<td>10</td>
<td>2.15204857</td>
<td>F (10, 160) = 11.56</td>
</tr>
<tr>
<td>Residual</td>
<td>29.7801855</td>
<td>160</td>
<td>.18612616</td>
<td>R-squared = 0.4195</td>
</tr>
</tbody>
</table>

### Table 3: Comparison of Mean Titers

<table>
<thead>
<tr>
<th>Source</th>
<th>SS</th>
<th>df</th>
<th>MS</th>
<th>Number of obs = 171</th>
</tr>
</thead>
<tbody>
<tr>
<td>Model</td>
<td>21.5204857</td>
<td>10</td>
<td>2.15204857</td>
<td>F (10, 160) = 11.56</td>
</tr>
<tr>
<td>Residual</td>
<td>29.7801855</td>
<td>160</td>
<td>.18612616</td>
<td>R-squared = 0.4195</td>
</tr>
</tbody>
</table>

---

**Use with caution**

1. The comparisons are based on the mean titers of strata 4 and 5 for cohort 1, and strata 5 and 6 for cohort 1. The F-statistic and P-values are used to determine if there is a significant difference in the mean titers between the strata and cohorts.
2. The R-squared values indicate the proportion of variance explained by the model.
3. The 95% confidence intervals provide a range within which the true mean titer is expected to lie with 95% confidence.
### Regression Output

#### log(mean) | Coef. Std. Err. t P>|t| [95% Conf. Interval]

| sc | 15372 | 0.5035725 | 0.1462435 | 3.44 | 0.001 | 0.214756 | 0.792391 |
| 15462 | -0.0689949 | 0.1258876 | -0.55 | 0.584 | -0.3176106 | 0.1796208 |
| 15552 | -0.4184681 | 0.1379893 | -3.03 | 0.003 | -0.6909833 | -0.1459528 |
| 15642 | -0.471944 | 0.1496992 | -3.15 | 0.002 | -0.7675851 | -0.1763028 |
| 15822 | -0.0046068 | 0.1462435 | -0.03 | 0.974 | -0.2936773 | 0.2839558 |
| 15912 | -0.3071885 | 0.1431812 | 3.44 | 0.002 | -0.6909833 | -0.1459528 |
| 16002 | -0.3693283 | 0.1357674 | 2.39 | 0.018 | -0.7043238 | -0.0343238 |
| 16092 | -0.3242958 | 0.1337481 | 4.38 | 0.000 | -0.6909833 | -0.1459528 |
| 16272 | 0.4453436 | 0.128795 | 2.09 | 0.038 | -0.2936773 | 0.2839558 |
| cons | 2.336802 | 0.089958 | 25.98 | 0.000 | 2.159144 | 2.51446 |

#### Logit Output

```
xi: regress log(mean) iib15822.sc i f cohort==1
// compare the mean titre of stratum 6 to that of stratum 7 for cohort 1
```

#### ANOVA Output

<table>
<thead>
<tr>
<th>Source</th>
<th>SS</th>
<th>df</th>
<th>MS</th>
<th>Number of obs = 171</th>
</tr>
</thead>
<tbody>
<tr>
<td>Model</td>
<td>21.5204857</td>
<td>10</td>
<td>2.15204857</td>
<td>F (10, 160) = 11.56</td>
</tr>
<tr>
<td>Residual</td>
<td>29.7801855</td>
<td>160</td>
<td>0.18612616</td>
<td>Prob &gt; F = 0.0000</td>
</tr>
<tr>
<td>Total</td>
<td>51.3006712</td>
<td>170</td>
<td>0.301768654</td>
<td>Root MSE = 0.43142</td>
</tr>
</tbody>
</table>

#### Logit Mean Output

```
xi: regress log(mean) iib15912.sc if cohort==1
// compare the mean titre of stratum 7 to that of stratum 8 for cohort 1
```

---

314
### ANOVA Table

<table>
<thead>
<tr>
<th>Source</th>
<th>SS</th>
<th>df</th>
<th>MS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Model</td>
<td>21.5204857</td>
<td>10</td>
<td>2.15204857</td>
</tr>
<tr>
<td>Residual</td>
<td>29.7801855</td>
<td>160</td>
<td>.18612616</td>
</tr>
<tr>
<td>Total</td>
<td>51.3006712</td>
<td>170</td>
<td>.301768654</td>
</tr>
</tbody>
</table>

- Number of obs = 171
- F (10, 160) = 11.56
- Prob > F = 0.0000
- R-squared = 0.4195
- Adj R-squared = 0.3832
- Root MSE = .43142

### Coefficients Table

| log(meannt) | Coef. | Std. Err. | t       | P>|t| | [95% Conf. Interval] |
|-------------|-------|-----------|---------|-----|----------------------|
| sc | | | | | |
| 15372 | .810761 | .160322 | 5.06 | 0.000 | .4941409 | 1.127381 |
| 15462 | .2381936 | .1419988 | 1.68 | 0.095 | -.0422402 | .5186273 |
| 15552 | -.1112796 | .15283 | -0.73 | 0.468 | -.4131038 | .1905446 |
| 15642 | -.1647555 | .1634803 | -1.01 | 0.315 | -.487613 | .158102 |
| 15732 | .3071865 | .1431812 | 2.15 | 0.033 | .0244197 | .5899572 |
| 15822 | .3023777 | .160322 | 1.89 | 0.061 | -.0142924 | .6189478 |
| 16002 | -.0621398 | .1819041 | -0.34 | 0.733 | -.4213824 | .2971029 |
| 16092 | .6314843 | .1508269 | 4.19 | 0.000 | .333616 | .9293525 |
| 16182 | .8930168 | .1490118 | 5.99 | 0.000 | .5987331 | 1.1873 |
| 16272 | .7525321 | .2227861 | 3.38 | 0.001 | .3125515 | 1.192513 |
| _cons | 2.029614 | .111393 | 18.22 | 0.000 | 1.809623 | 2.249604 |

### Additional Command

```
.xiregress log(meannt) ib(16002.sc if cohort==1) stratum 8 to that of stratum 9 for cohort 1
```

### ANOVA Table

<table>
<thead>
<tr>
<th>Source</th>
<th>SS</th>
<th>df</th>
<th>MS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Model</td>
<td>21.5204857</td>
<td>10</td>
<td>2.15204857</td>
</tr>
<tr>
<td>Residual</td>
<td>29.7801855</td>
<td>160</td>
<td>.18612616</td>
</tr>
<tr>
<td>Total</td>
<td>51.3006712</td>
<td>170</td>
<td>.301768654</td>
</tr>
</tbody>
</table>

- Number of obs = 171
- F (10, 160) = 11.56
- Prob > F = 0.0000
- R-squared = 0.4195
- Adj R-squared = 0.3832
- Root MSE = .43142

### Coefficients Table

| log(meannt) | Coef. | Std. Err. | t | P>|t| | [95% Conf. Interval] |
|-------------|-------|-----------|---|-----|----------------------|
| sc | | | | | |
| 15372 | .8729008 | .1603242 | 4.74 | 0.000 | .5087877 | 1.236923 |
| 15462 | .3003333 | .1686296 | 1.78 | 0.077 | -.0326935 | .633602 |
| 15552 | - .0491398 | .1778462 | -0.28 | 0.783 | -.4003668 | .302089 |
| 15642 | - .1026157 | .1870777 | -0.55 | 0.584 | -.4702756 | .2668444 |
| 15732 | .3693283 | .1666264 | 2.18 | 0.031 | .0343328 | .7043238 |
| 15822 | .3644675 | .1843242 | 1.98 | 0.050 | .0004454 | .7284996 |
| 15912 | .0621398 | .1819041 | 0.34 | 0.733 | -.2971029 | .4213824 |
| 16092 | .6936241 | .1761279 | 3.94 | 0.000 | .3457988 | 1.041459 |
| 16182 | .9551566 | .1745761 | 5.47 | 0.000 | .6103661 | 1.299927 |
| 16272 | .8146719 | .2406365 | 3.39 | 0.001 | .3394385 | 1.289905 |

---

315
. xi: regress log10(meannt) ibl6092.sc if cohort==1 // compare the mean titre of stratum 9 to that of stratum 10 for cohort 1

<table>
<thead>
<tr>
<th>Source</th>
<th>SS</th>
<th>df</th>
<th>MS</th>
<th>Number of obs = 171</th>
</tr>
</thead>
<tbody>
<tr>
<td>Model</td>
<td>21.5204857</td>
<td>10</td>
<td>2.15204857</td>
<td>F (10, 160) = 11.56</td>
</tr>
<tr>
<td>Residual</td>
<td>29.7801855</td>
<td>160</td>
<td>.18612616</td>
<td>R-squared = 0.4195</td>
</tr>
<tr>
<td>Total</td>
<td>51.3006712</td>
<td>170</td>
<td>.301768654</td>
<td>Root MSE = .43142</td>
</tr>
</tbody>
</table>

| log10(meannt) | Coef.       | Std. Err. | t     | P>|t| [95% Conf. Interval] |
|----------------|-------------|------------|-------|-----------------------|
| sc             |             |            |       |                       |
| 15372          | .1792767    | .153737    | 1.17  | 0.245                 | -.1243387 .4828922 |
| 15462          | -.3932907   | .1345199   | -2.92 | 0.004                 | -.6589542 -.1276272 |
| 15552          | -.7427639   | .1459073   | -5.09 | 0.000                 | -.1030916 -.4546113 |
| 15642          | -.7962397   | .1570278   | -5.07 | 0.000                 | -.1106354 -.4861252 |
| 15732          | -.3242958   | .1357674   | -2.39 | 0.018                 | -.592423 -.0561685 |
| 15822          | -.3291566   | .153737    | -2.14 | 0.034                 | -.632772 -.0255411 |
| 15912          | -.6314843   | .1508269   | -4.19 | 0.000                 | -.9293525 -.33616 |
| 16002          | -.6936241   | .1761279   | -3.94 | 0.000                 | -.1041459 -.3457888 |
| 16182          | .2615325    | .141903    | 1.84  | 0.067                 | -.0187119 .5417769 |
| 16272          | .1210478    | .2180953   | 0.56  | 0.580                 | -.309669 .5517647 |
| _cons          | 2.661098    | .1016875   | 26.17 | 0.000                 | 2.460275 2.861921 |

. xi: regress log10(meannt) ibl6182.sc if cohort==1 // compare the mean titre of stratum 10 to that of stratum 11 for cohort 1

<table>
<thead>
<tr>
<th>Source</th>
<th>SS</th>
<th>df</th>
<th>MS</th>
<th>Number of obs = 171</th>
</tr>
</thead>
<tbody>
<tr>
<td>Model</td>
<td>21.5204857</td>
<td>10</td>
<td>2.15204857</td>
<td>F (10, 160) = 11.56</td>
</tr>
<tr>
<td>Residual</td>
<td>29.7801855</td>
<td>160</td>
<td>.18612616</td>
<td>R-squared = 0.4195</td>
</tr>
<tr>
<td>Total</td>
<td>51.3006712</td>
<td>170</td>
<td>.301768654</td>
<td>Root MSE = .43142</td>
</tr>
</tbody>
</table>

| log10(meannt) | Coef.       | Std. Err. | t     | P>|t| [95% Conf. Interval] |
|----------------|-------------|------------|-------|-----------------------|
| sc             |             |            |       |                       |
| 15372          | -.0822558   | .1519567   | -0.54 | 0.589                 | -.3823553 .2178438 |
| 15462          | -.6548232   | .1324816   | -4.94 | 0.000                 | -.9164613 -.3931851 |
| 15552          | -.1004296   | .1440302   | -6.97 | 0.000                 | -.1.288742 -.7198508 |
| 15642          | -.1.057772  | .1552285   | -6.81 | 0.000                 | -.1.364945 -.7510992 |
| 15732          | -.5858293   | .1337481   | -4.38 | 0.000                 | -.8499676 -.321689 |
| 15822          | -.5906891   | .1519567   | -3.89 | 0.000                 | -.8907086 -.2905895 |
15912 | -.8930168 .1490118  -5.99   0.000  -1.1873  -.5987331
16002 | -.9551566 .1745761  -5.47   0.000  -1.299927  -.6103861
16092 | -.2615325 .141903   -1.84  0.067  -.5417769   .0187119
16272 | -.1404847 .2168441  -0.65  0.518  -.5687303  .2877611
| _cons | 2.92263 .0989753  29.53   0.000  2.727164  3.118097

//cohort 2

twoway (scatter 110b sample_d_class, connect (direct) yaxis (1)) (rcap hib lob sample_d_cl
> ass, yaxis (1)) (bar weekly_adm_tot weekly_adm if d_admin<td (01jan2006) &
> serial_n==l, yaxis (2)

.xi:regress logiomeannt ib15642.sc if cohort==2 //compare the mean titre of stratum 1
to that of stratum 2 for cohort 2 - note stratum 1 for cohort 2 is stratum 2 for cohort 1 since
cohort 2 does not have data for the very first stratum as it had not
//been recruited yet

| Source | SS       | df | MS         | Number of obs = 83
|--------|----------|----|------------|---------------------
| Model  | 12.6901049 | 9  | 1.41001165 | F (9, 73) = 11.50
| Residual | 8.95164222 | 73 | .122625236 | Prob > F = 0.0000
| Total   | 21.6417471 | 82 | .263923745 | R-squared = 0.5864
                      |          |    |            | Adj R-squared = 0.5354
                      |          |    |            | Root MSE = .35018

---------------------------------------------------------------------
logiomeannt | Coef.    Std. Err.    t    P>|t|     [95% Conf. Interval]
            |          |          |     |          |
| sc       |          |          |     |          |
| 15732 | -.4948644 | .2120438 | -2.33 | 0.022  -.9174672 -.0722617
| 15822 | -.6964777 | .1996327 | -3.49 | 0.001  -1.094345 -.2986104
| 15912 | -.1109311 | .2050437 | -5.41 | 0.000  -1.517963 -.7006598
| 16002 | -.1339115 | .2120438 | -5.37 | 0.000  -1.561718 -.7165125
| 16092 | -.1013428 | .182439  | -5.55 | 0.000  -1.377028 -.6492722
| 16182 | -.4115317 | .1808316 | -2.28 | 0.026  -.7719286 -.0511349
| 16272 | -.1036245 | .2214726 | -4.68 | 0.000  -1.477639 -.5948511
| 16362 | -.7302438 | .1918009 | -3.81 | 0.000  -1.112502 -.3479852
| 16452 | .1069916  | .2050437 |  0.52 | 0.603  -.30166  .5156432
| _cons | 2.945961  | .1566047 | 18.81 | 0.000  2.633848  3.258074
---------------------------------------------------------------------
```plaintext
.mod: regress logt, meanant ib15732.sc i f cohort==2 //compare the mean titre of stratum 2 to that of stratum 3 for cohort 2

<table>
<thead>
<tr>
<th>Source</th>
<th>SS</th>
<th>df</th>
<th>MS</th>
<th>Number of obs = 83</th>
</tr>
</thead>
<tbody>
<tr>
<td>Model</td>
<td>12.6901049</td>
<td>9</td>
<td>1.41001165</td>
<td>F (9, 73) = 11.50</td>
</tr>
<tr>
<td>Residual</td>
<td>8.95164222</td>
<td>73</td>
<td>.122625236</td>
<td>Prob > F = 0.0000</td>
</tr>
<tr>
<td>Total</td>
<td>21.6417471</td>
<td>82</td>
<td>.263923745</td>
<td>R-squared = 0.5864</td>
</tr>
</tbody>
</table>

| logt, meanant | Coef. | Std. Err. | t | P > |t| [95% Conf. Interval] |
|---------------|-------|-----------|-------|-----|----------------------|
| sc | | | | | |
| 15642 | .4948644 | .2120438 | 2.33 | 0.022 | 0.722617 .9174672 |
| 15822 | -.2016133 | .1891182 | -1.07 | 0.290 | -.5785253 .1752987 |
| 15912 | -.614447 | .1948215 | -3.15 | 0.002 | -1.002726 -.2261682 |
| 16002 | -.6482508 | .2021759 | -3.19 | 0.002 | -1.047187 -.2413149 |
| 16092 | -.5185631 | .1708698 | -3.03 | 0.003 | -.8591061 -.1780201 |
| 16182 | .0833237 | .1691525 | 0.49 | 0.624 | -.2537877 .4204531 |
| 16272 | -.5413808 | .2120438 | -2.55 | 0.013 | -.9639835 -.1187781 |
| 16362 | -.2353794 | .1808316 | -1.30 | 0.197 | -.5957762 .1250175 |
| 16452 | .601856 | .1948215 | 3.09 | 0.003 | .2135773 .9901348 |
| _cons | 2.451096 | .1429599 | 17.15 | 0.000 | 2.166178 2.736015 |

.mod: regress logt, meanant ib15822.sc i f cohort==2 //compare the mean titre of stratum 3 to that of stratum 4 for cohort 2

<table>
<thead>
<tr>
<th>Source</th>
<th>SS</th>
<th>df</th>
<th>MS</th>
<th>Number of obs = 83</th>
</tr>
</thead>
<tbody>
<tr>
<td>Model</td>
<td>12.6901049</td>
<td>9</td>
<td>1.41001165</td>
<td>F (9, 73) = 11.50</td>
</tr>
<tr>
<td>Residual</td>
<td>8.95164222</td>
<td>73</td>
<td>.122625236</td>
<td>Prob > F = 0.0000</td>
</tr>
<tr>
<td>Total</td>
<td>21.6417471</td>
<td>82</td>
<td>.263923745</td>
<td>R-squared = 0.5864</td>
</tr>
</tbody>
</table>

| logt, meanant | Coef. | Std. Err. | t | P > |t| [95% Conf. Interval] |
|---------------|-------|-----------|-------|-----|----------------------|
| sc | | | | | |
| 15642 | .6964777 | .1996327 | 3.49 | 0.001 | .2986104 1.094345 |
| 15732 | .2016133 | .1891182 | 1.07 | 0.290 | -.1752987 .5785253 |
| 15912 | -.4128337 | .1812348 | -2.28 | 0.026 | -.7740341 -.0516333 |
| 16002 | -.4426375 | .1891182 | -2.34 | 0.022 | -.8195495 -.0657255 |
| 16092 | -.3169498 | .1552002 | -2.04 | 0.045 | -.6262634 -.0076363 |
| 16182 | .2849464 | .1533074 | 1.86 | 0.067 | -.0205953 .5904873 |
| 16272 | -.3397675 | .1996327 | -1.70 | 0.093 | -.7376348 .0580998 |
| 16362 | -.0337661 | .1661044 | -0.20 | 0.039 | -.3648117 .2972796 |
| 16452 | .8034693 | .1812348 | 4.43 | 0.000 | .4422689 1.16467 |
```

318
. xi: regress logiomeannt ib15912.sc i f cohort==2 //compare the mean titre of stratum 4 to that of stratum 5 for cohort 2

Source | SS  df  MS  Number of obs =  83
-------------+---------------------------------------------
Model | 12.6901049   9  1.41001165  Prob > F = 0.0000
Residual | 8.95164222  73  .122625236  R-squared = 0.5864
-------------+---------------------------------------------
Total | 21.6417471  82  .263923745  Root MSE =  .35018

logiomeannt | Coef.  Std. Err.  t  P>|t|  [95% Conf. Interval]
-----------+--------------------------------------------------
   sc |                                                      
  15642 |  1.109311   .2050437  5.41 0.000   .7006598  1.517963
  15732 |   .614447   .1948215  3.15 0.002   .2261682  1.002726
  15822 |   .4128337   .1812348  2.28 0.026   .0516333  .7740341
  16002 |  -.0298038  .1948215  -.15 0.879  -.4180826  .358475
  16092 |  .0958639   .1602901  0.59 0.566  -.2271836  .4189513
  16182 |   .6977979  .1602901  4.35 0.000   .3783221  1.017237
  16272 |  .0730662   .2050437  0.36 0.723  -.3355826  .4817178
  16362 |  .3790676   .17257  2.20 0.031   .0351361  .7229992
  16452 |  1.216303  .1871785  6.50 0.000   .8432569  1.589349
  _cons |   1.836649   .1323552 13.88 0.000   1.572866  2.100433

. xi: regress logiomeannt ib16002.sc i f cohort==2 //compare the mean titre of stratum 5 to that of stratum 6 for cohort 2

Source | SS  df  MS  Number of obs =  83
-------------+---------------------------------------------
Model | 12.6901049   9  1.41001165  Prob > F = 0.0000
Residual | 8.95164222  73  .122625236  R-squared = 0.5864
-------------+---------------------------------------------
Total | 21.6417471  82  .263923745  Root MSE =  .35018

logiomeannt | Coef.  Std. Err.  t  P>|t|  [95% Conf. Interval]
-----------+--------------------------------------------------
   sc |                                                      
  15642 |  1.139115   .2120438  5.37 0.000   .7165125  1.561718
  15732 |   .6442508  .2021759  3.19 0.002   .2413149  1.047187
  15822 |  .4426375   .1891182  2.34 0.022   .0657255  .8195495
  15912 |  .0298038   .1948215  0.15 0.879  -.358475   .4180826
  16092 |  .1256677  .1708698  0.74 0.464  -.2148553  .4662307
  16182 |  .7275635   .1691525  4.30 0.000   .3904631  1.064704
  16272 |   .10287  .2120438  0.49 0.629  -.3197328   .5254727

319
\[
\begin{align*}
| \text{Model} | & \text{SS} & | \text{df} | & | \text{MS} | & | \text{F} (9, 73) | & | \text{Prob > F} | & | \text{R-squared} | & | \text{Adj R-squared} | \\
| \text{Model} | 12.6901049 & 9 & 1.41001165 & & & & 0.0000 & & 0.5864 & 0.5354 \\
| \text{Residual} | 8.95164222 & 73 & 0.122625236 & & & & & & & .35018 \\
| \text{Total} | 21.6417471 & 82 & 0.263923745 & & & & & & & \\
\end{align*}
\]

\[
\begin{align*}
| \text{log10 meannt} | & | \text{Coeff.} | & | \text{Std. Err.} | & | t | & | P>|t| | & | [95\% \text{ Conf. Interval}] | \\
| sc | 15642 & 1.013428 & .182439 & 5.55 & 0.000 & .6498272 & 1.377028 \\
| 15732 & .5185631 & .1708698 & 3.03 & 0.003 & .1780201 & .8591061 \\
| 15822 & .3169498 & .1552002 & 2.04 & 0.045 & .0076363 & .626234 \\
| 15912 & -.0958839 & .1621013 & -0.59 & 0.556 & -.4189513 & .227136 \\
| 16002 & -.1256877 & .1708698 & -0.74 & 0.464 & -.4662307 & .214853 \\
| 16182 & .6018958 & .1301306 & 4.63 & 0.000 & .342546 & .8612457 \\
| 16272 & -.0228177 & .182439 & -0.13 & 0.901 & -.3864181 & .340782 \\
| 16362 & .2631838 & .1449987 & 1.95 & 0.055 & -.0057766 & .5721441 \\
| 16452 & 1.120419 & .1621013 & 6.91 & 0.000 & .7973517 & 1.443487 \\
| _cons | 1.932533 & .0935892 & 20.65 & 0.000 & 1.74601 & 2.119056 \\
\end{align*}
\]

\[
\begin{align*}
| \text{log10 meannt} | & | \text{Coeff.} | & | \text{Std. Err.} | & | t | & | P>|t| | & | [95\% \text{ Conf. Interval}] | \\
| sc | 15642 & .4115317 & .1808316 & 2.26 & 0.026 & .0511349 & .7719286 \\
| 15732 & -.0833327 & .1691525 & -0.49 & 0.624 & -.4204531 & .2537877 \\
| 15822 & -.284946 & .1533074 & -1.86 & 0.067 & -.5904873 & .0205953 \\
| 15912 & -.6977797 & .1602901 & -4.35 & 0.000 & -.1017237 & .3783221 \\
\end{align*}
\]
### Table 1: Regression Results for Cohort 2

|     | Coef.  | Std. Err. | t     | P>|t| | [95% Conf. Interval] |
|-----|--------|-----------|-------|-----|----------------------|
| sc  |        |           |       |     |                      |
| 15642 | 1.036245 | .2214726 | 4.68 | 0.000 | .5948511 1.477639 |
| 15732 | .5413808 | .2120438 | 2.55 | 0.013 | .1187781 .9639835 |
| 15822 | .3397675 | .1996327 | 1.70 | 0.093 | -.0580998 .7376348 |
| 15912 | -.0730662 | .2050437 | -0.36 | 0.723 | -.4817178 .3358545 |
| 16002 | -.10287 | .2120438 | -0.49 | 0.629 | -.5254727 .3197328 |
| 16092 | .0228177 | .182439 | 0.13 | 0.901 | -.3407828 .3864181 |
| 16182 | .6247135 | .1808316 | 3.45 | 0.001 | .2643167 .9851103 |
| 16362 | .3060014 | .1918009 | 1.60 | 0.115 | -.0762571 .68826 |
| 16452 | 1.143237 | .2050437 | 5.58 | 0.000 | .7345852 1.551888 |

### Table 2: Regression Results for Cohort 2

<p>|     | Coef.  | Std. Err. | t     | P&gt;|t| | [95% Conf. Interval] |
|-----|--------|-----------|-------|-----|----------------------|
| sc  |        |           |       |     |                      |
| 15642 | .7302438 | .1918009 | 3.81 | 0.000 | .3479852 1.112502 |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>15732</td>
<td>.2353794</td>
<td>.1808316</td>
<td>1.30</td>
<td>0.197</td>
<td>-.1250175</td>
<td>.5957762</td>
</tr>
<tr>
<td>15822</td>
<td>.0337661</td>
<td>.1661044</td>
<td>0.20</td>
<td>0.839</td>
<td>-.2972796</td>
<td>.3648117</td>
</tr>
<tr>
<td>15912</td>
<td>-.3790676</td>
<td>.17257</td>
<td>-2.20</td>
<td>0.031</td>
<td>-.7229992</td>
<td>-.0351361</td>
</tr>
<tr>
<td>16002</td>
<td>-.4088714</td>
<td>.1808316</td>
<td>-2.26</td>
<td>0.027</td>
<td>-.7692683</td>
<td>-.0484746</td>
</tr>
<tr>
<td>16092</td>
<td>-.2831838</td>
<td>.1449878</td>
<td>-1.95</td>
<td>0.055</td>
<td>-.5721441</td>
<td>.0057766</td>
</tr>
<tr>
<td>16182</td>
<td>.3187121</td>
<td>.1429599</td>
<td>2.23</td>
<td>0.029</td>
<td>.0337934</td>
<td>.6036308</td>
</tr>
<tr>
<td>16272</td>
<td>-.3060014</td>
<td>.1918009</td>
<td>-1.60</td>
<td>0.115</td>
<td>-.60826</td>
<td>.0762571</td>
</tr>
<tr>
<td>16452</td>
<td>.8372354</td>
<td>.17257</td>
<td>4.85</td>
<td>0.000</td>
<td>.4933038</td>
<td>1.181167</td>
</tr>
<tr>
<td>_cons</td>
<td>2.215717</td>
<td>.1107363</td>
<td>20.01</td>
<td>0.000</td>
<td>1.99502</td>
<td>2.436414</td>
</tr>
</tbody>
</table>

---------------------------------------------------------------
APPENDIX 3

Matlab Code: Multi Dimensional Scaling of RSV B genetic relationships
Pairwise distances generated using MEGA software

% This code performs multi dimensional scaling analysis using distance data
% obtained from MEGA using RSV B G gene sequences obtained from infants
% infected with different RSV B strains. Also different test strains are included for comparison

clear
clc
% change working directory
chdir 'C:\Documents and Settings\csande.KWTRP\Desktop\paper1\thesis chapter 7'\

%load data
RSVB_data = textread ('C:\Documents and Settings\csande.KWTRP\Desktop\paper1\thesis chapter 7\distance matrix - RSV Bs-matlab-pded.csv', ',', 'delimiter', ',', 'emptyvalue', NaN)

%run classical mds
[ya,e]=cmdscale (RSVB_data)

%truncate the mds matrix to strain components
ken_ba_2008=ya (1:1,:)
BA=ya (2:21,:)
swe_b_1960=ya (22:22,:)
SAB=ya (23:42,:) %A2=ya (41:41,:)
%plot the data - 2d

%SAB infant samples
plot (SAB (:,1),SAB (:,2),'bo',
'MarkerEdgeColor','b','Markersize',12,'MarkerFaceColor','y')
%text (SAB (:,1),SAB (:,2),'SAB')
hold on

%ba infant samples
plot (BA (:,1),BA (:,2),'bo',
'MarkerEdgeColor','b','Markersize',12,'MarkerFaceColor','g')
%text (BA (:,1),BA (:,2),'BA')
hold on

%swe_b test strain
plot (swe_b_1960 (:,1),swe_b_1960 (:,2),'bo',
'MarkerEdgeColor','b','Markersize',12,'MarkerFaceColor','b')
%text (swe_b_1960 (:,1),swe_b_1960 (:,2),'Swe/B/1960')
hold on

%ken_ba test strain
plot (ken_ba_2008 (:,1),ken_ba_2008 (:,2),'bo',
'MarkerEdgeColor','b','Markersize',12,'MarkerFaceColor','r')
%text (ken_ba_2008 (:,1),ken_ba_2008 (:,2),'Ken/BA/2008')
hold on

legend ('Contemporary non-BA strains (SAB)','Contemporary BA strains','Swe/B/1960','Ken/BA/2008')
grid on

% This code performs multi dimensional scaling analysis using cross
% reactive neutralising antibody data against representative BA and non-BA
% strains of RSV B. Test sera was obtained from infants who underwent
% natural infection with BA and non-BA strains. Reactivity is expressed in
% terms of fold rise in titre from the acute to convalescent phases of
% infection

% change working directory
chdir 'C:\Documents and Settings\csande.KWTRP\Desktop\paper1\thesis chapter 7\'

% load data
RSVB_data = textread ('C:\Documents and Settings\csande.KWTRP\Desktop\paper1\thesis chapter 7\RSV_B_mds_data.matlab matrix.csv', '', 'delimiter', ',', 'emptyvalue', NaN)

% generate p distances and reformat the matrix to square form
a=pdist (RSVB_data)
b=squareform (a)

% perform classical mds
[ya,e]=cmdscale (b)

% truncate mds matrix to individual parts - sera of individuals infected
% with different strains
sab=ya (1:20,:)
ba=ya (21:40,:)

% plot the graphs
figure
%sab infected children
plot (sab(:,1), sab(:,2), 'bo',
'MarkerEdgeColor', 'b', 'MarkerSize', 12, 'MarkerFaceColor', 'g')
%text (sab(:,1), sab(:,2), 'SAB')
hold on

% ba infected children
plot (ba (:,1), ba (:,2), 'bo',
'MarkerEdgeColor', 'b', 'MarkerSize', 12, 'MarkerFaceColor', 'r')
%text (ba(:,1), ba(:,2), 'BA')
grid on
legend ('Contemporary BA strains', 'Contemporary Non-BA strains')
axis ([ -50 55 -20 28])

% This code performs multi dimensional scaling analysis using distance data
% obtained from MEGA using RSV A G gene sequences obtained from infants
% infected with RSV A.

clear clc
% change working directory
chdir 'C:\Documents and Settings\csande.KWTRP\Desktop\paper1\thesis chapter 7'

% load data
RSVA_data = textread ('C:\Documents and Settings\csande.KWTRP\Desktop\paper1\thesis chapter 7\distance matrix - RSV As-matlab-pded.csv', '', 'delimiter', ',', 'emptyvalue', NaN)

% run classical mds
[y, e] = cmdscale (RSVA_data)

% truncate the mds matrix to strain components
Ken_A_2006 = ya (1:1,:)
RSVA_NP12=ya (2:20,:) 
A2=ya (21:21,:) 

%plot the data - 2d 

%NP12 infant samples 
plot (RSVA_NP12 (:,1),RSVA_NP12 (:,2),'bo',
'MarkerEdgeColor','b','Markersize',12,'MarkerFaceColor','y') 
%text (SAB (:,1),SAB (:,2),'SAB') 
hold on 

%A2 test strain 
plot (A2 (:,1),A2 (:,2),'bo',
'MarkerEdgeColor','b','Markersize',12,'MarkerFaceColor','g') 
%text (A2 (:,1),A2 (:,2),'A2') 
hold on 

%Ken/A/2006 test strain 
plot (Ken_A_2006 (:,1),Ken_A_2006 (:,2),'bo',
'MarkerEdgeColor','b','Markersize',12,'MarkerFaceColor','b') 
%text (Ken_A_2006 (:,1),Ken_A_2006 (:,2),'Ken_A_2006') 
hold on 

grid on 

axis ([ -0.0105 0.035 -0.0065 0.0085]) 

STATA CODE:

```
capture: drop gid

capture: label drop gid

gen gid=. // contains 1 if sera from RSV A infected kids was tested against A2 (329 missing values generated)

// and 2 if it was tested against Ken/A/2006
.label define gid 1 "A2 (Aus/A/1961)" 2 "Ken/A/2006"

.label values gid gid

.replace gid=1 if i_gp==1 & t_virus_desc==1 //A2 (45 real changes made)
.replace gid=2 if i_gp==1 & t_virus_desc==2 // ken/a/2006 (45 real changes made)

.xi: regress logiofoldrise i.gid
i.gid _Igid_1-2 (naturally coded; _Igid_1 omitted)

Source | SS df MS
-------------+---------+---------+---------+------------------
Model | 0.020741024 1 .020741024
Residual | 13.6820939 64 .213782718
Total | 13.702835 65 .210812846
-------------+---------+---------+---------+------------------
Number of obs = 66
F (1, 64) = 0.10
Prob > F = 0.7564
R-squared = 0.0015
Adj R-squared = -0.0141
Root MSE = 0.46237

logiofoldrise | Coef. Std. Err. t P>|t| [95% Conf. Interval]
-------------+----------------------------------
_Igid_2 | -.0354546 .1138267 -0.31 0.756 -.2628497 .1919404
 _cons | .5339482 .0804877 6.63 0.000 .3731556 .6947407
-------------+----------------------------------
```

```
.di 10^-.5339482 //fold rise to A2
3.4193866

.di 10^ (.5339482 -.0354546) //fold rise to ken/a/2006
3.1513279
```

This code compares antibody responses to the RSV A and B constant regions.
of the G protein in acute and convalescent sera obtained from infants with RSV A and B infections.

Responses to constant region of RSV A G protein

```
ttest od_a_ag_acute ==od_a_ag_conv if i_gp==1 // acute/conv responses by RSV A infecteds
```

Paired t test

<table>
<thead>
<tr>
<th>Variable</th>
<th>Obs</th>
<th>Mean</th>
<th>Std. Err.</th>
<th>Std. Dev.</th>
<th>[95% Conf. Interval]</th>
</tr>
</thead>
<tbody>
<tr>
<td>od_a_a-e</td>
<td>57</td>
<td>1.040544</td>
<td>0.0907856</td>
<td>0.6854161</td>
<td>0.8586785 - 1.222409</td>
</tr>
<tr>
<td>od_a_a-v</td>
<td>57</td>
<td>1.800292</td>
<td>0.0893282</td>
<td>0.6744131</td>
<td>1.621347 - 1.979238</td>
</tr>
</tbody>
</table>

```
ttest od_a_ag_acute ==od_a_ag_conv if i_gp==2 // acute/conv responses by RSV B infecteds
```

Paired t test

<table>
<thead>
<tr>
<th>Variable</th>
<th>Obs</th>
<th>Mean</th>
<th>Std. Err.</th>
<th>Std. Dev.</th>
<th>[95% Conf. Interval]</th>
</tr>
</thead>
<tbody>
<tr>
<td>od_a_a-e</td>
<td>34</td>
<td>1.226078</td>
<td>0.0798425</td>
<td>0.465581</td>
<td>1.063638 - 1.388519</td>
</tr>
<tr>
<td>od_a_a-v</td>
<td>34</td>
<td>1.242216</td>
<td>0.1139764</td>
<td>0.6645908</td>
<td>1.010329 - 1.474102</td>
</tr>
</tbody>
</table>

```
ttest od_a_ag_acute ==od_a_ag_conv if i_gp==1 // acute/conv responses by RSV A infecteds
```

Paired t test

<table>
<thead>
<tr>
<th>Variable</th>
<th>Obs</th>
<th>Mean</th>
<th>Std. Err.</th>
<th>Std. Dev.</th>
<th>[95% Conf. Interval]</th>
</tr>
</thead>
<tbody>
<tr>
<td>od_b_a-e</td>
<td>329</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Responses to constant region of B G protein

```
ttest od_b_ag_acute ==od_b_ag_conv if i_gp==1 // acute/conv responses by RSV A infecteds
```

Paired t test

<table>
<thead>
<tr>
<th>Variable</th>
<th>Obs</th>
<th>Mean</th>
<th>Std. Err.</th>
<th>Std. Dev.</th>
<th>[95% Conf. Interval]</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
od_b_a-e | 57  1.639544  .107474  .8114109  1.424248  1.85484
od_b_a-v | 57  1.692901  .121133  .9145344  1.450242  1.935559

| diff | 57  -.0533567  .0895749  .6762757  -.2327968  .1260834

---

**Variable**	**Obs**	**Mean**	**Std. Err.**	**Std. Dev.**	**[95% Conf. Interval]**

od_b_a-e | 34  1.389804  .1284202  .7488118  1.128531  1.651077
od_b_a-v | 34  3.153794  .1052459  .6136835  2.93967  3.367918

diff | 34  -1.76399  .1717826  1.001656  -2.113485  -1.414496

---

**mean (diff) = mean (od_b_ag_acute - od_b_ag_conv)**  
**t = -0.5957**

**Ho: mean (diff) = 0**  
**degrees of freedom = 56**

**Ha: mean (diff) < 0**  
**Pr (T < t) = 0.2769**  
**Pr (|T| > |t|) = 0.5538**  
**Pr (T > t) = 0.7231**

---

**. ttest od_b_ag_acute ==od_b_ag_conv if i_gp==2 // acute/conv responses by RSV B infected**

---

**Paired t test**

---

**Variable**	**Obs**	**Mean**	**Std. Err.**	**Std. Dev.**	**[95% Conf. Interval]**

od_b_a-e | 34  1.389804  .1284202  .7488118  1.128531  1.651077
od_b_a-v | 34  3.153794  .1052459  .6136835  2.93967  3.367918

diff | 34  -1.76399  .1717826  1.001656  -2.113485  -1.414496

---

**mean (diff) = mean (od_b_ag_acute - od_b_ag_conv)**  
**t = -10.2687**

**Ho: mean (diff) = 0**  
**degrees of freedom = 33**

**Ha: mean (diff) < 0**  
**Pr (T < t) = 0.0000**  
**Pr (|T| > |t|) = 0.0000**  
**Pr (T > t) = 1.0000**

---

**. //comparison of seroconversion rates**

**. tab aserocon i_gp,chi2 //seroconversion rates to RSV A constant region by RSV A/B infected**

> s

i_gp	A	B	Total

**No** | 41 | 34 | 75

**Yes** | 16 | 0 | 16

**Total** | 57 | 34 | 91

Pearson chi2 (1) = 11.5799  Pr = 0.001

---

**. tab bserocon i_gp,chi2 //seroconversion rates to RSV B constant region by RSV A/B infected**

> s

i_gp	A	B	Total

---

330
<table>
<thead>
<tr>
<th></th>
<th>No</th>
<th>Yes</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>57</td>
<td>0</td>
<td>57</td>
</tr>
<tr>
<td></td>
<td>27</td>
<td>7</td>
<td>34</td>
</tr>
<tr>
<td></td>
<td>84</td>
<td>7</td>
<td>91</td>
</tr>
</tbody>
</table>

Pearson chi2 (1) = 12.7132  Pr = 0.000