The Open UniversitySkip to content

Precise generation of selective surface-confined glycoprotein recognition sites

Mitchell, Philippa; Tommasone, Stefano; Angioletti-Uberti, Stefano; Bowen, James and Mendes, Paula M (2019). Precise generation of selective surface-confined glycoprotein recognition sites. ACS Applied Bio Materials, 2(6) pp. 2617–2623.

Full text available as:
PDF (Version of Record) - Requires a PDF viewer such as GSview, Xpdf or Adobe Acrobat Reader
Download (1MB) | Preview
DOI (Digital Object Identifier) Link:
Google Scholar: Look up in Google Scholar


Since glycoproteins have become increasingly recognized as key players in a wide variety of disease processes, there is an increasing need for advanced affinity materials for highly selective glycoprotein binding. Herein, for the first time, a surface-initiated controlled radical polymerization is integrated with supramolecular templating and molecular imprinting to yield highly reproducible synthetic recognition sites on surfaces with dissociation constants (KDs) in the low micromolar range for target glycoproteins and minimal binding to non-target glycoproteins. Importantly, it is shown that the synthetic strategy has remarkable ability to distinguish the glycosylated and non-glycosylated forms of the same glycoprotein, with >5-fold difference in binding affinity. The precise control over the polymer film thickness and positioning of multiple carbohydrate receptors plays a crucial role in achieving enhanced affinity and selectivity. The generated functional materials of unprecedented glycoprotein recognition performance open up a wealth of opportunities in the biotechnological and biomedical fields.

Item Type: Journal Item
Copyright Holders: 2019 American Chemical Society
Keywords: glycoprotein recognition; selectivity; molecular imprinting; radical polymerization
Academic Unit/School: Faculty of Science, Technology, Engineering and Mathematics (STEM) > Engineering and Innovation
Faculty of Science, Technology, Engineering and Mathematics (STEM)
Research Group: Smart Materials
Item ID: 61254
Depositing User: James Bowen
Date Deposited: 17 May 2019 09:53
Last Modified: 07 Apr 2020 05:55
Share this page:


Altmetrics from Altmetric

Citations from Dimensions

Download history for this item

These details should be considered as only a guide to the number of downloads performed manually. Algorithmic methods have been applied in an attempt to remove automated downloads from the displayed statistics but no guarantee can be made as to the accuracy of the figures.

Actions (login may be required)

Policies | Disclaimer

© The Open University   contact the OU