Widespread tephra dispersal and ignimbrite emplacement from a subglacial volcano (Torfajökull, Iceland)

How to cite:

For guidance on citations see FAQs.

© 2019 The Authors

Version: Version of Record

Link(s) to article on publisher’s website:
http://dx.doi.org/doi:10.1130/G46004.1

Copyright and Moral Rights for the articles on this site are retained by the individual authors and/or other copyright owners. For more information on Open Research Online’s data policy on reuse of materials please consult the policies page.
Widespread tephra dispersal and ignimbrite emplacement from a subglacial volcano (Torfajökull, Iceland)

Jonathan D. Moles1, Dave McGarvie2, John A. Stevenson3, Sarah C. Sherlock1, Peter M. Abbott4,5,6, Frances E. Jenner1, and Alison M. Halton1

1Faculty of Science, Technology, Engineering and Mathematics, The Open University, Walton Hall, Milton Keynes MK7 6AA, UK
2Lancaster Environment Centre, Lancaster University, Lancaster LA1 4YQ, UK
3British Geological Survey, The Lyell Centre, Research Avenue South, Edinburgh EH14 4AP, UK
4Department of Geography, College of Science, Swansea University, Singleton Park, Swansea SA2 8PP, UK
5Institute of Geological Sciences, University of Bern, Baitzerstrasse 1, 3012 Bern, Switzerland
6School of Earth and Ocean Sciences, Cardiff University, Main Building, Park Place, Cardiff CF10 3AT, UK

ABSTRACT

The tephra dispersal mechanisms of rhyolitic glaciovolcanic eruptions are little known, but can be investigated through the correlation of eruptive products across multiple depositional settings. Using geochemistry and geochronology, we correlate a regionally important Pleistocene tephra horizon—the rhyolitic component of North Atlantic Ash Zone II (II-RHY-1)—and the Thórmörk Ignimbrite with rhyolitic tuyas at Torfajökull volcano, Iceland. The eruption breached an ice mass >400 m thick, leading to the widespread dispersal of II-RHY-1 across the North Atlantic and the Greenland ice sheet. Locally, pyroclastic density currents traveled across the ice surface, depositing the variably welded Thórmörk Ignimbrite beyond the ice margin and ~30 km from source. The widely dispersed products of this eruption represent a valuable isochronous tephra line between terrestrial, marine, and ice-core palaeoenvironmental records. Using the tephra horizon, estimates of ice thickness and extent derived from the eruption deposits can be directly linked to the regional climate archive, which records the eruption at the onset of Greenland Stadial 15.2.

INTRODUCTION

The stratigraphic correlation of volcanic products, particularly tephra, is a powerful means of studying the past eruptive behavior of volcanoes and linking together disparate palaeoenvironmental records (Lowe, 2011). The more depositional settings in which an eruption is identified, the more information can be pooled together to understand the eruption and the prevailing environmental conditions. However, it can be challenging to find correlative volcanic products across multiple realms, especially terrestrial settings that are subjected to periodic glaciation (Larsen and Eiriksson, 2008). In this paper, we use correlation methods to (1) assess the tephra dispersal mechanisms of rhyolitic glaciovolcanic eruptions, and (2) precisely integrate glaciovolcanic–palaeoenvironmental data with the regional climate record.

Rhyolitic glaciovolcanism is an abundant feature of the active volcanic zones of Iceland (McGarvie, 2009) and is also reported in the Cascades volcanic arc, northwestern USA (Lescoinsky and Fink, 2000), and the Hallett Volcanic Province, Antarctica (Smellie et al., 2011). Current knowledge of the behavior of rhyolitic glaciovolcanic eruptions is drawn from proximal deposits only (e.g., Stevenson et al., 2011; Owen et al., 2013a). Without any established correlations between glaciovolcanic rhyolites and distal tephras, it is not known whether these eruptions have produced widespread tephra deposits (Tuffen et al., 2002, 2007; McGarvie, 2009).

Glaciovolcanic edifices, such as tuyas, are valuable palaeoenvironmental indicators that record the presence of ice at the time of their eruption, and can preserve evidence of the coeval ice thickness and basal thermal regime (Jones, 1968; Smellie and Skilling, 1994; Smellie et al., 2011). Integration of this information with climate records has been restricted by the large uncertainties in eruption ages (e.g., 40Ar/39Ar ages, with typical uncertainties of thousands of years) relative to the time scales of climate variability (e.g., the decadal to centennial scale climate shifts during the last glacial period; Svensson et al., 2008).

Alternatively, a direct link to the regional paleo-climate archive could be established through the identification of tephra from the same eruptions within ice cores and marine sediments.

The distal tephra in this study is II-RHY-1, the rhyolitic component of North Atlantic Ash Zone II, which is dated to the last glacial period at 55,380 ± 2367 yr b2k (before A.D. 2000; 2σ) (Greenland Ice Core Chronology 2005 [GICC05]; Svensson et al., 2008). II-RHY-1 is an important part of the tephrostratigraphy of the North Atlantic region due to its widespread distribution and occurrence at a time of abrupt climatic change: the onset of Greenland Stadial (GS) 15.2 (Bramlette and Bradley, 1941; Zielinski et al., 1997; Austin et al., 2004; Austin and Abbott, 2010). Atmospheric transport of the tephra resulted in distal fallout onto the Greenland ice sheet and sea ice (Ruddiman and Glover, 1972; Ram and Gaylen, 1991), leading to sea-ice rafting of the tephra as far as 2300 km to the south and southwest of Iceland (Ruddiman and Glover, 1972; Wastegård et al., 2006). The volume of airfall tephra, ice-rafted tephra, and redeposited tephra in the marine stratigraphy is substantial, but poorly constrained (Ruddiman and Glover, 1972; Lackschewitz and Wallrabe-Adams, 1997; Brendryen et al., 2011; Voelker and Hafldason, 2015).

The II-RHY-1 tephra has been identified in a terrestrial setting as the Thórmörk Ignimbrite, a variably welded ignimbrite in southern Iceland (Sigurðsson, 1982; Lacasse et al., 1996; Tomlinson et al., 2010; Guíllou et al., 2019). It has been suggested that Tindfjallajökull volcano was the source of the ignimbrite (Jørgensen, 1980); however, recent observations on the physical volcanology of this deposit by Moles et al.
(2018) suggest that this is not the case. Furthermore, Grönvold et al. (1995) noted a geochemical similarity between II-RHY-1 and rhyolites at Torfajökull volcano, particularly the “Ring Fracture Rhyolites”. These suggested sources, as well as nearby volcanoes Eyjafjallajökull and Katla, are considered here.

METHODS
Potential correlations between samples from distal, medial, and proximal settings were investigated using both geochemistry and geochronology. II-RHY-1 tephra shards were extracted from four North Atlantic marine sediment cores (Table DR1 and Fig. DR1 in the GSA Data Repository1). The occurrence and stratigraphic position of II-RHY-1 in the cores were determined by Abbott et al. (2018). Ash and glassy fiamme samples were collected from the Thórmörk Ignimbrite (Fig. 1A; Table DR2). Proximal rhyolite lavas were sampled at Tindfjallajökull (four samples; Table DR3) and Torfajökull (16 samples; Table DR4). The selected Torfajökull lavas include those known to have erupted during the last glacial period (i.e., Ring Fracture Rhyolites, Bláhnúkur, and “unnamed ridge”; McGarvie, 1984; McGarvie et al., 2006; Clay et al., 2015; Table DR5). These deposits contain a significant proportion of fragmental material (e.g., hyaloclastite, ash), though samples were sourced from fresh lavas to minimize alteration effects.

The geochemistry of the samples was determined using electron probe microanalysis (EPMA; major elements) and laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS; trace elements). A glassy fiamma from the Thórmörk Ignimbrite, glass shards from II-RHY-1, and five lava samples from the Torfajökull Ring Fracture Rhyolites were selected for groundmass 40Ar/39Ar dating. Full methods are supplied in the Data Repository.

RESULTS AND INTERPRETATION
The geochemical data confirm that II-RHY-1 and the Thórmörk Ignimbrite have highly similar compositions, overlapping on all bivariate plots (Figs. 1B–IC; Figs. DR3–DR5), though both deposits have variable trace element compositions (e.g., the trend to more evolved compositions seen in Fig. 1C). A glassy fiamma from the Thórmörk Ignimbrite yielded an 40Ar/39Ar plateau age of 51.3 ± 4.2 ka (2σ), supporting the observation of Guíllo et al. (2019) that the age of the ignimbrite (55.6 ± 4.8 ka [2σ] in their study) is concurrent with the ice core chronology (GICC05) age of II-RHY-1 (Fig. 1D. Fig. DR6). Thus, our new geochemical and geochronological data strengthen the previously recognized correlation between II-RHY-1 and the Thórmörk Ignimbrite.

Tephra from II-RHY-1 and the Thórmörk Ignimbrite have compositions that overlap with the Ring Fracture Rhyolites of Torfajökull volcano on all geochemical plots (Figs. 1B–IC; Figs. DR3–DR5), indicating a strong geochemical similarity between these groups. In contrast, known compositions from Tindfjallajökull, Katla, and Eyjafjallajökull volcanoes, and from other Torfajökull rhyolites, are dissimilar to those of these tephra (Fig. 1B; Fig. DR3).

Groundmass 40Ar/39Ar inverse isochron ages of the Ring Fracture Rhyolites overlap with the ages of II-RHY-1 and the Thórmörk Ignimbrite (Fig. 1D; Table DR8; Fig. DR6). Inverse isochrons are the preferred method of age calculation for these samples due to their non-atmospheric initial 40Ar/39Ar contents (Table DR8). Dating of groundmass arguably achieves a more representative eruption age than dating of feldspar crystals, which yield older apparent ages for the Ring Fracture Rhyolites (Guíllo et al. [2019] feldspar 40Ar/39Ar age: 77 ± 6 ka [2σ]; see discussion in the Data Repository, section 7). None of the other Torfajökull rhyolites dated in previous studies (McGarvie et al., 2006; Clay et al., 2015) have similar ages to the tephra. Thus, our new geochemical and geochronological evidence strongly suggests that II-RHY-1, the Thórmörk Ignimbrite, and the Torfajökull Ring Fracture Rhyolites are the products of the same eruptive event (full results data set in Tables DR9–DR16).

DISCUSSION
The Source of II-RHY-1 and the Thórmörk Ignimbrite
Our new work resolves the long-standing ambiguity regarding the origin of II-RHY-1 and the Thórmörk Ignimbrite by recognizing Torfajökull, not Tindfjallajökull, as the source of the rhyolites.
The eruption studied here, variably welded ignimbrite (Thórsmörk Ignimbrite) is preserved ~30 km from source, and major tephra horizon (II-RHY-1) is reported as far as 2300 km from source. Our new correlation provides the first documentation of this eruption plume dispersal and ignimbrite emplacement. During explosive phase (A), breaching of ice leads to development of subaerial eruption plume and propagation of pyroclastic density currents (PDCs) across ice surface. Proximal deposits are confined by ice to form steep-sided tuya, while tephra is deposited on ice surface and beyond (B). In example of Ring Fracture Rhyolites eruption studied here, variably welded ignimbrite (Thórsmörk Ignimbrite) is preserved ~30 km from source, and major tephra horizon (II-RHY-1) is reported as far as 2300 km from source.

CONCLUSIONS
Our data identify the Ring Fracture Rhyolites of Torfajökull volcano, southern Iceland, as the source of the Thórsmörk Ignimbrite and the distal tephra II-RHY-1. This correlation demonstrates that explosive rhyolitic eruptions at subglacial volcanoes can result in widespread tephra dispersal. Additionally, our work shows that pyroclastic density currents can propagate across and beyond an ice mass for ~30 km to emplace a variably welded ignimbrite. Rhyolitic glaciovolcanic eruptions preserve a record of ice cover at the vent and can also deposit an isochronous tephra horizon in a variety of depositional settings. Tephra from these eruptions can thus be used to precisely date glaciovolcanism-derived palaeoenvironmental information relative to the regional climate archive.

REFERENCES CITED