Widespread tephra dispersal and ignimbrite emplacement from a subglacial volcano (Torfajökull, Iceland)

How to cite:

For guidance on citations see FAQs.

© 2019 The Authors

Version: Version of Record

Link(s) to article on publisher’s website:
http://dx.doi.org/doi:10.1130/G46004.1

Copyright and Moral Rights for the articles on this site are retained by the individual authors and/or other copyright owners. For more information on Open Research Online’s data policy on reuse of materials please consult the policies page.
Widespread tephra dispersal and ignimbrite emplacement from a subglacial volcano (Torfajökull, Iceland)

Jonathan D. Moles¹, Dave McGarvie², John A. Stevenson³, Sarah C. Sherlock¹, Peter M. Abbott⁴,⁵,⁶, Frances E. Jenner¹, and Alison M. Halton¹

¹Faculty of Science, Technology, Engineering and Mathematics, The Open University, Walton Hall, Milton Keynes MK7 6AA, UK
²Lancaster Environment Centre, Lancaster University, Lancaster LA1 4YQ, UK
³British Geological Survey, The Lyell Centre, Research Avenue South, Edinburgh EH14 4AP, UK
⁴Department of Geography, College of Science, Swansea University, Singleton Park, Swansea SA2 8PP, UK
⁵Institute of Geological Sciences, University of Bern, Baltzerstrasse 1, 3012 Bern, Switzerland
⁶School of Earth and Ocean Sciences, Cardiff University, Main Building, Park Place, Cardiff CF10 3AT, UK

ABSTRACT

The tephra dispersal mechanisms of rhyolitic glaciovolcanic eruptions are little known, but can be investigated through the correlation of eruptive products across multiple depositional settings. Using geochemistry and geochronology, we correlate a regionally important Pleistocene tephra horizon—the rhyolitic component of North Atlantic Ash Zone II (II-RHY-1)—and the Thórsmörk Ignimbrite with rhyolitic tuyas at Torfajökull volcano, Iceland. The eruption breached an ice mass >400 m thick, leading to the widespread dispersal of II-RHY-1 across the North Atlantic and the Greenland ice sheet. Locally, pyroclastic density currents traveled across the ice surface, depositing the variably welded Thorsmörk Ignimbrite beyond the ice margin and ~30 km from source. The widely dispersed products of this eruption represent a valuable isochronous tie line between terrestrial, marine, and ice-core paleoenvironmental records. Using the tephra horizon, estimates of ice thickness and extent derived from the eruption deposits can be directly linked to the regional climate archive, which records the eruption at the onset of Greenland Stadial 15.2.

INTRODUCTION

The stratigraphic correlation of volcanic products, particularly tephra, is a powerful means of studying the past eruptive behavior of volcanoes and linking together disparate paleoenvironmental records (Lowe, 2011). The more depositional settings in which an eruption is identified, the more information can be pooled together to understand the eruption and the prevailing environmental conditions. However, it can be challenging to find correlatable volcanic products across multiple realms, especially terrestrial settings that are subjected to periodic glaciation (Larsen and Eiríksson, 2008). In this paper, we use correlation methods to (1) assess the tephra dispersal mechanisms of rhyolitic glaciovolcanic eruptions, and (2) precisely integrate glaciovolcanogenic-derived paleoenvironmental data with the regional climate record. Rhyolitic glaciovolcanism is an abundant feature of the active volcanic zones of Iceland (McGarvie, 2009) and is also reported in the Cascades volcanic arc, northwestern USA (Les-
(2018) suggest that this is not the case. Furthermore, Grönvold et al. (1995) noted a geochemical similarity between II-RHY-1 and rhyolites at Torfajökull volcano, particularly the “Ring Fracture Rhyolites”. These suggested sources, as well as nearby volcanoes Eyjafjallajökull and Katla, are considered here.

METHODS
Potential correlations between samples from distal, medial, and proximal settings were investigated using both geochemistry and geochronology. II-RHY-1 tepha shards were extracted from four North Atlantic marine sediment cores (Table DR1 and Fig. DR1 in the GSA Data Repository1). The occurrence and stratigraphic position of II-RHY-1 in the cores were determined by Abbott et al. (2018). Ash and glassy fiamme samples were collected from the Thórmörk Ignimbrite (Fig. 1A; Table DR2). Proximal fiamme lavas were sampled at Tindfjallajökull (four samples; Table DR3) and Torfajökull (16 samples; Table DR4). The selected Torfajökull lavas include those known to have erupted during the last glacial period (i.e., Ring Fracture Rhyolites, Bláhnúkur, and “unnamed ridge”); McGarvie, 1984; McGarvie et al., 2006; Clay et al., 2015; Table DR5). These deposits contain a significant proportion of fragmental material (e.g., hyaloclastite, ash), though samples were sourced from fresh lavas to minimize alteration effects.

The geochemistry of the samples was determined using electron probe microanalysis (EPMA; major elements) and laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS; trace elements). A glassy fiamma from the Thórmörk Ignimbrite, glass shards from II-RHY-1, and five lava samples from the Torfajökull Ring Fracture Rhyolites were selected for groundmass 40Ar/39Ar dating. Full methods are supplied in the Data Repository.

RESULTS AND INTERPRETATION
The geochemical data confirm that II-RHY-1 and the Thórmörk Ignimbrite have highly similar compositions, overlapping on all bivariate plots (Figs. 1B–1C; Figs. DR3–DR5), though both deposits have variable trace element compositions (e.g., the trend to more evolved compositions seen in Fig. 1C). A glassy fiamma from the Thórmörk Ignimbrite yielded an 40Ar/39Ar plateau age of 51.3 ± 4.2 ka (2σ), supporting the observation of Guillou et al. (2019) that the age of the ignimbrite (55.6 ± 4.8 ka [2σ] in their study) is concurrent with the ice core chronology (GICC05) age of II-RHY-1 (Fig. 1D. Fig. DR6). Thus, our new geochemical and geochronological data strengthen the previously recognized correlation between II-RHY-1 and the Thórmörk Ignimbrite.

Tephra from II-RHY-1 and the Thórmörk Ignimbrite have compositions that overlap with the Ring Fracture Rhyolites of Torfajökull volcano on all geochemical plots (Figs. 1B–1C; Figs. DR3–DR5), indicating a strong geochemical similarity between these groups. In contrast, known compositions from Tindfjallajökull, Katla, and Eyjafjallajökull volcanoes, and from other Torfajökull rhyolites, are dissimilar to those of these tephas (Fig. 1B; Fig. DR3).

Groundmass 40Ar/39Ar inverse isochron ages of the Ring Fracture Rhyolites overlap with the ages of II-RHY-1 and the Thórmörk Ignimbrite (Fig. 1D; Table DR8; Fig. DR6). Inverse isochrons are the preferred method of age calculation for these samples due to their non-atmospheric initial 40Ar/39Ar contents (Table DR8). Dating of groundmass arguably achieves a more representative eruption age than dating of feldspar crystals, which yield older apparent ages for the Ring Fracture Rhyolites (Guillou et al. [2019] feldspar 40Ar/39Ar age: 77 ± 6 ka [2σ]; see discussion in the Data Repository, section 7). None of the other Torfajökull rhyolites dated in previous studies (McGarvie et al., 2006; Clay et al., 2015) have similar ages to the tephas. Thus, our new geochemical and geochronological evidence strongly suggests that II-RHY-1, the Thórmörk Ignimbrite, and the Torfajökull Ring Fracture Rhyolites are the products of the same eruptive event (full results data set in Tables DR9–DR16).

DISCUSSION
The Source of II-RHY-1 and the Thórmörk Ignimbrite
Our new work resolves the long-standing ambiguity regarding the origin of II-RHY-1 and the Thórmörk Ignimbrite by recognizing Torfajökull, not Tindfjallajökull, as the source

1GSA Data Repository item 2019213, additional sample information and locations, sample preparation and analysis methods, full results dataset, additional geochemistry plots, 40Ar/39Ar geochronology plots, and tables of new and published 40Ar/39Ar ages, is available online at http://www.geosociety.org/datarepository/2019/, or on request from editing@geosociety.org.
Figure 2. Model of rhyolite tuya formation modified from Tuffen et al. (2002) to show tephra dispersal and ignimbrite emplacement. During explosive phase (A), breaching of ice leads to development of subaerial eruption plume and propagation of pyroclastic density currents (PDCs) across ice surface. Proximal deposits are confined by ice to form steep-sided tuya, while tephra is deposited on ice surface and beyond (B). In example of Ring Fracture Rhyolite eruption studied here, variably welded ignimbrite (Thórsmörk ignimbrite) is preserved ~30 km from source, and major tephra horizon (II-RHY-1) is reported as far as 2300 km from source.

CONCLUSIONS

Our data identify the Ring Fracture Rhyolites of Torfajökull volcano, southern Iceland, as the source of the Thórsmörk Ignimbrite and the distal tephra II-RHY-1. This correlation demonstrates that explosive rhyolitic eruptions at subglacial volcanoes can result in widespread tephra dispersal. Additionally, our work shows that pyroclastic density currents can propagate across and beyond an ice mass for ~30 km to emplace a variably welded ignimbrite. Rhyolitic glaciovolcanic eruptions preserve a record of ice cover at the vent and can also deposit an isochronous tephra horizon in a variety of depositional settings. Tephra from these eruptions can thus be used to precisely date glaciovolcanism-derived paleoenvironmental information relative to the regional climate archive.

ACKNOWLEDGMENTS

This work was supported by the Natural Environment Research Council (grant NE/L002493/1). JAS was funded by a Royal Society of Edinburgh Personal Research Fellowship held at the University of Edinburgh. PMA was financially supported by the European Research Council (TRACE project) under the European Union’s Seventh Framework Programme (FP7/2007–2013)–ERC grant agreement 259253. We thank Mark Chapman, Frederique Eynaud, James Scourse, and Mara Weinelt for providing samples or access to marine cores. For analytical assistance, we thank Sam Hammond, James Malley, and Andy Tindle. Thanks to Siwan Davies for advice and support. We are grateful for the valuable comments provided by Emma Tomlinson, David Pyle, Ben Edwards, John Smellie, and an anonymous reviewer.

REFERENCES CITED

This is supported by the observation that ignimbrite deposits on the flanks of Tindfjallajökull lack proximal facies; in fact, lithic clasts decrease in size and abundance toward the volcano (Moles et al., 2018). Additionally, there was no significant change in local sediment deposition regimes at Tindfjallajökull, as would be expected following a major eruption (Moles et al., 2018).

The identified proximal products of the eruption—the Ring Fracture Rhyolites of Torfajökull volcano—are considered to be the largest rhyolitic eruption deposit in Iceland, with a preserved volume of ~18 km3 (dense-rock equivalent; McGarvie, 2009). A ring of tuyas was emplaced during the eruption, confined by an ice mass >400 m thick (Tuffen et al., 2002; McGarvie et al., 2006). Explosive activity formed steep-sided tephra piles before the effusive emplacement of intrusions and lava caps (Tuffen et al., 2002, 2008; Owen et al., 2013b).

Tephra Dispersal during Rhyolitic Glaciovolcanic Eruptions

Our new correlation provides the first documented link between rhyolite tuyas and distal tephra deposits, indicating that a subglacial rhyolitic eruption breached the ice to produce a subaerial eruption plume (Fig. 2). This confirms that widespread and voluminous tephra dispersal can be an important feature, and hazard, of rhyolitic glaciovolcanism (as hypothesized by Tuffen et al. [2002] and Stevenson et al. [2011]). Although magma fragmentation during the eruption was initially enhanced by meltwater (Tuffen et al., 2008, 2002), investigations of these and other rhyolite tuyas show that the influence of meltwater rapidly declines with time and explosivity is principally driven by magmatic volatiles (Owen et al., 2013a; Stevenson et al., 2011). The development of volatile-driven subaerial eruption plumes after the ice is breached suggests that rhyolite glaciovolcanism can disperse tephra in the same style as rhyolite volcanism in ice-free settings.

The correlation of rhyolite tuyas with an ignimbrite demonstrates another previously undocumented phenomenon and hazard: pyroclastic density currents (PDCs) can occur during rhyolite tuya-forming eruptions and can travel tens of kilometers across an ice mass (Fig. 2). Welded ignimbrite deposits are present ~30 km from Torfajökull (Jørgensen, 1980), indicating that the PDCs were still hot after traveling over ice or tephra-covered ice. A significant volume of tephra was likely deposited on the ice surface proximal to the eruption, and is now lost from the terrestrial record (Tuffen et al., 2002; Stevenson et al., 2011). The preserved ignimbrite (estimated volume: 1.5–2 km3 dense-rock equivalent; Thorarinsson, 1969) is interpreted to have been deposited in a largely or wholly ice-free environment (i.e., outside the ice margin), and its outcrop thus defines the minimum extent of this environment at the time of the eruption.

Linking Glaciovolcanism-Derived Paleoenvironmental Information with Other Records

Tephra II-RHY-1 is a widespread isochronous horizon that marks the eruption of the Ring Fracture Rhyolites directly within an array of high-resolution proxy records, such as ice-core δ18O profiles, which document the climate and the associated environmental conditions (Rudimann and Glover, 1972; Grönvold et al., 1995; Zielinski et al., 1997; Austin et al., 2004; Abbott et al., 2018). Reconstructions of coeval ice conditions in south Iceland (i.e., ice >400 m thick at Torfajökull; absent in Thórsmörk) can now be directly linked to this vast archive of paleoenvironmental information and can act as boundary conditions for models of the Icelandic ice sheet during the last glacial period. Based on the North Greenland Ice Core Project (NGRIP) ice core record, II-RHY-1 was deposited 40 ± 5 yr after the start of GS 15.2 (Svensson et al., 2008; Rasmussen et al., 2014). The use of tephra to integrate glaciovolcanism-derived data with the regional climate record provides a significant advance in precision compared to absolute dating alone (e.g., Clay et al., 2015), and can be applied to any glaciovolcanic eruption that produced an identifiable distal tephra horizon.