The Open UniversitySkip to content
 

Molards as an indicator of permafrost degradation and landslide processes

Morino, Costanza; Conway, Susan J.; Sæmundsson, Þorsteinn; Kristinn Helgason, Jón; Hillier, John; Butcher, Frances E.G.; Balme, Matthew R.; Jordan, Colm and Argles, Tom (2019). Molards as an indicator of permafrost degradation and landslide processes. Earth and Planetary Science Letters, 516 pp. 136–147.

Full text available as:
[img]
Preview
PDF (Version of Record) - Requires a PDF viewer such as GSview, Xpdf or Adobe Acrobat Reader
Download (6MB) | Preview
DOI (Digital Object Identifier) Link: https://doi.org/10.1016/j.epsl.2019.03.040
Google Scholar: Look up in Google Scholar

Abstract

Molards have been defined in the past as conical mounds of debris that can form part of a landslide's deposits. We present the first conclusive evidence that molards in permafrost terrains are cones of loose debris that result from thawing of frozen blocks of ice-rich sediments mobilised by a landslide, and hence propose a rigorous definition of this landform in permafrost environments. We show that molards can be used as an indicator of permafrost degradation, and that their morphometry and spatial distribution give valuable insights into landslide dynamics in permafrost environments. We demonstrate that molards are readily recognisable not only in the field, but also in remote sensing data; surveys of historic aerial imagery allow the recognition of relict molards, which can be used as an indicator of current and past permafrost conditions. The triggering of landslides as a result of permafrost degradation will arguably occur more often as global atmospheric temperatures increase, so molards should be added to our armoury for tracking climate change, as well as helping us to understand landslide-related hazards. Finally, we have also identified candidate molards on Mars, so molards can inform about landscape evolution on Earth and other planetary bodies.

Item Type: Journal Item
Copyright Holders: 2019 Elsevier B.V.
ISSN: 0012-821X
Project Funding Details:
Funded Project NameProject IDFunding Body
CENTA 2017 intakeNE/L002493/1NERC (Natural Environment Research Council)
BUFI CASE StudentshipGA/14S/024 Ref: 284British Geological Survey
Keywords: molards; permafrost; landslide; Iceland; Mars
Academic Unit/School: Faculty of Science, Technology, Engineering and Mathematics (STEM) > Environment, Earth and Ecosystem Sciences
Faculty of Science, Technology, Engineering and Mathematics (STEM)
Faculty of Science, Technology, Engineering and Mathematics (STEM) > Physical Sciences
Item ID: 60530
Depositing User: Matthew Balme
Date Deposited: 24 Apr 2019 09:07
Last Modified: 15 Oct 2019 15:26
URI: http://oro.open.ac.uk/id/eprint/60530
Share this page:

Metrics

Altmetrics from Altmetric

Citations from Dimensions

Download history for this item

These details should be considered as only a guide to the number of downloads performed manually. Algorithmic methods have been applied in an attempt to remove automated downloads from the displayed statistics but no guarantee can be made as to the accuracy of the figures.

Actions (login may be required)

Policies | Disclaimer

© The Open University   contact the OU