Amyloid Beta Transport and Effects on Permeability in a Human Brain Endothelial Cell Line

Thesis

How to cite:

For guidance on citations see FAQs.

© 2009 The Author

Version: Version of Record
Amyloid Beta Transport and Effects on Permeability in a Human Brain Endothelial Cell Line

Leon M. Tai

A thesis submitted for the degree of Doctor of philosophy

Supervised by Dr Ignacio A. Romero and Dr A. Jane Loughlin

Department of Life Sciences

The Open University

Walton Hall

Milton Keynes

MK7 6AA

England

November 2008

Date of award: 26 January 2009
Acknowledgements

Firstly, I would like to thank my supervisors Dr Ignacio Romero and Dr Jane Loughlin for giving me this opportunity to study for a PhD. I would also like to thank you both for helping me to develop many skills that will help me through out my career and life in general! Thanks to the immunology and cell biology group, in particular Dr Hilary Macqueen and Professor David Male who have supported me during my time at The Open University. I would also like to acknowledge Dr Karen Logan, Hadassah Sade and Heather Davies who have provided me with laboratory support and all the other Open University staff who have helped my PhD run smoothly.

A big thank you to my family; Mum, Grandparents, Ian, Janet, James, Dad, Merlot and to Nicola who have always been there with support and love.

‘Out, out, brief candle! Life's but a walking shadow, a poor player that struts and frets his hour upon the stage and then is heard no more: it is a tale told by an idiot, full of sound and fury, signifying nothing.’ Macbeth Act 5, scene 5, 19-28.
Abstract

The clearance of neurotoxic amyloid beta (A\(\beta\)) from the brain represents a novel therapeutic target for Alzheimer's disease (AD). The ability of two blood-brain barrier (BBB) drug transporters, P-glycoprotein (P-gp) and the breast cancer resistance protein (BCRP), to transport A\(\beta\) was investigated using a human brain endothelial cell (BEC) line, hCMEC/D3. P-gp expression by hCMEC/D3 cells was stable over a high passage number, polarised on the apical membrane, consistent with the blood side in vivo, and comparable, albeit slightly reduced, to primary isolated human BECs. The P-gp inhibitors tariquidar and vinblastine prevented the efflux of rhodamine 123 from hCMEC/D3 cells, indicative of functional P-gp expression. hCMEC/D3 cells therefore constituted a suitable model to investigate P-gp substrate interactions in vitro. P-gp, and to a lesser extent BCRP, inhibition, increased the net influx and decreased the efflux of 0.1 nM \(^{125}\text{I}\) A\(\beta\) 1-40 in hCMEC/D3 cells. Both P-gp and BCRP inhibition increased the apical-to-basolateral but not the basolateral-to-apical permeability of hCMEC/D3 cells to \(^{125}\text{I}\) A\(\beta\) 1-40. This data is consistent with P-gp and BCRP, acting in vivo to prevent blood-borne A\(\beta\) peptides entering the brain but not to clear A\(\beta\) load from the brain.

Vascular dysfunction is emerging as a key pathological hallmark in AD, including increased BBB permeability. The effect of A\(\beta\) on the permeability of hCMEC/D3 cells was therefore investigated. A\(\beta\) 1-40 induced a marked increase in hCMEC/D3 cell permeability to the paracellular tracer 70 kDa FITC-dextran. Increased permeability was associated with a specific decrease in the tight junction protein occludin, but not claudin-5 or ZO-1, both at the protein and mRNA levels. JNK and p38MAPK inhibition prevented A\(\beta\) 1-40-mediated occludin down-regulation and increased paracellular permeability of hCMEC/D3 cells. Our findings suggest that the JNK and p38MAPK pathways might represent attractive therapeutic targets for preventing vascular dysfunction in AD.
Publication list

Poster

Oral presentation

Research articles

Chapter 2. Characterisation of functional P-gp and BCRP expression by hCMEC/D3 cells

2.1 Introduction .. 74
2.2 Methods ... 79
 2.2.1 Culture medium ... 79
 2.2.2 Growth surface preparation .. 79
 2.2.3 hCMEC/D3 and primary human brain endothelial cell (hBEC) culture maintenance .. 80
 2.2.4 Isolation of primary hBECs ... 80
 2.2.5 SDS-PAGE and western blotting .. 82
 2.2.6 Flow cytometry analysis .. 85
 2.2.7 Differential detergent fractionation .. 86
 2.2.8 Immunocytochemistry .. 87
 2.2.9 Methylthiazolyl diphenyl-tetrazolium (MTT) bromide cytotoxicity assay 90
 2.2.10 Rhodamine 123 (rh123) efflux assay .. 91
 2.2.11 Rhodamine 123 permeability .. 92
 2.2.13 Statistical analysis ... 93
2.3 Results ... 95
 2.3.1 Morphology of hCMEC/D3 and primary hBECs .. 95
 2.3.2 Expression of P-gp by hCMEC/D3 cells over passage as assessed by western blotting ... 95
 2.3.4 The expression of P-gp by hCMEC/D3 cells as assessed by immunocytochemistry ... 97
 2.3.5 Sub-cellular localisation of P-gp as assessed by differential detergent fractionation .. 97
 2.3.6 Localisation of P-gp at the ultrastructural level .. 98
 2.3.7 Cytotoxicity of P-gp and BCRP inhibitors ... 98
 2.3.8 P-gp-mediated efflux of rh123 by hCMEC/D3 cells 99
 2.3.9 The permeability of hCMEC/D3 cells to rh123 ... 101
2.4 Discussion .. 114
 2.4.1 P-gp expression by hCMEC/D3 cells ... 114
 2.4.2 P-gp cellular distribution in the CNS ... 115
 2.4.3 Sub-cellular P-gp localisation by hBEC .. 116
 2.4.2 Cytotoxicity of P-gp and BCRP substrates and inhibitors 117
 2.4.3 P-gp activity in hCMEC/D3 cells ... 119
 2.4.4 Permeability of hCMEC/D3 cells to rh123 .. 120
2.5 Conclusions ... 121

Chapter 3. Role of P-gp and BCRP in Aβ transport across hCMEC/D3 cells

3.1 Introduction ... 124
3.2 Methods ... 125
 3.2.1 MTT cytotoxicity assay .. 128
 3.2.2 Influx of fluorescein-conjugated Aβ (fAβ) peptides 128
 3.2.3 Efflux of fAβ 1-40 and fAβ 1-42 ... 129
 3.2.4 Intracellular detection of fAβ by confocal microscopy 129
 3.2.5 Influx of 125I Aβ 1-40 .. 130
 3.2.6 Efflux of 125I Aβ 1-40 ... 130
 3.2.7 The permeability of hCMEC/D3 cells to 125I Aβ 1-40 131
3.2.8 Statistical analysis .. 132
3.3 Results .. 133
3.3.1 Cytotoxicity of Aβ 1-40 and Aβ 1-42 peptides to hCMEC/D3 cells 133
3.3.2 Sub-cellular localisation of fAβ peptides as assessed by confocal microscopy 133
3.3.3 Influx of fAβ peptides into hCMEC/D3 cells ... 134
3.3.4 Role of P-gp, BCRP and LRP-1 in fAβ influx into hCMEC/D3 cells 135
3.3.5 Role of P-gp and BCRP in fAβ efflux from hCMEC/D3 cells 135
3.3.6 Effects of P-gp or BCRP inhibition on the influx of 125I Aβ 1-40 into hCMEC/D3 cells ... 136
3.3.7 The role of P-gp or BCRP on 125I Aβ 1-40 efflux from hCMEC/D3 cells 137
3.3.8 The permeability of hCMEC/D3 cells to 125I Aβ 1-40 .. 137
3.4 Discussion .. 150
3.4.1 Mechanism of Aβ influx and efflux in hCMEC/D3 cells 150
3.4.1.1 Role of LRP-1 and RAGE on Aβ influx in hBECs ... 150
3.4.1.2 Role of P-gp and BCRP on Aβ influx and efflux in hBECs 153
3.4.2 The permeability of 125I Aβ 1-40 to hCMEC/D3 cells .. 156
3.5 Conclusions .. 159

Chapter 4. Effect of Aβ on tight junction and transporter protein expression by hCMEC/D3 cells .. 160
4.1 Introduction ... 161
4.2 Methods .. 163
4.2.1 Cell culture conditions ... 163
4.2.2 MTT cytotoxicity assay ... 163
4.2.3 SDS PAGE and Western blotting .. 163
4.2.4 Flow cytometry .. 164
4.2.5 Immunocytochemistry ... 164
4.2.6 Quantitative RT-PCR ... 165
4.2.6 Permeability of hCMEC/D3 cells to 4 kDa and 70 kDa FITC-dextran 167
4.2.7 Statistical analysis ... 167
4.3 Results .. 168
4.3.1 Cytotoxicity of Aβ 1-40 and Aβ 1-42 to hCMEC/D3 cells 168
4.3.2 The effect of Aβ on the expression of transporter proteins by hCMEC/D3 cells ... 168
4.3.3 The effect of Aβ on the expression of tight junction proteins by hCMEC/D3 cells ... 168
4.3.4 The effect of Aβ on the expression of occludin and claudin-5 by hCMEC/D3 cells as assessed by flow cytometry ... 169
4.3.5 The effect of Aβ 1-40 on the expression of occludin by hCMEC/D3 cells as assessed by immunocytochemistry ... 170
4.3.6 The effect of Aβ on the expression of tight junction mRNA levels by hCMEC/D3 cells ... 171
4.3.7 The effect of Aβ on the permeability of hCMEC/D3 cells to 4 and 70 kDa FITC-dextran .. 171
4.4 Discussion ... 186
4.4.1 Cytotoxicity of Aβ to hCMEC/D3 cells .. 186
4.4.2 Effects of Aβ on the expression of transporter proteins by hCMEC/D3 cells 187
4.4.3 Effect on Aβ tight junction protein expression by hCMEC/D3 cells 189
4.4.4 BBB permeability in AD ... 190
4.5 Conclusions .. 193

Chapter 5. Molecular mechanisms mediating Aβ 1-40-induced occludin down-regulation and increased hCMEC/D3 cell permeability .. 195
5.1 Introduction .. 196
5.2 Methods .. 198
<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>5.2.1 Signalling pathway inhibitors</td>
<td>198</td>
</tr>
<tr>
<td>5.2.2 Flow cytometry</td>
<td>198</td>
</tr>
<tr>
<td>5.2.3 Permeability of hCMEC/D3 cells to 70 kDa FITC-dextran</td>
<td>200</td>
</tr>
<tr>
<td>5.2.4 SDS-PAGE and Western blotting</td>
<td>200</td>
</tr>
<tr>
<td>5.2.5 Aβ peptide in whole cell lysates and culture supernatants as assessed by SDS-PAGE and western blotting</td>
<td>201</td>
</tr>
<tr>
<td>5.2.5 Statistical analysis</td>
<td>202</td>
</tr>
<tr>
<td>5.3 Results</td>
<td>203</td>
</tr>
<tr>
<td>5.3.1 Signalling pathways involved in Aβ 1-40- mediated occludin down-regulation by hCMEC/D3 cells</td>
<td>203</td>
</tr>
<tr>
<td>5.3.2 Time-dependent activation of JNK, ERK and p38MAPK as assessed by western blotting</td>
<td>204</td>
</tr>
<tr>
<td>5.3.3 The effect of soluble cytokine receptors on Aβ 1-40-mediated occludin down-regulation by hCMEC/D3 cells</td>
<td>205</td>
</tr>
<tr>
<td>5.3.4 The effect of JNK and p38MAPK inhibition on Aβ 1-40-mediated increased hCMEC/D3 cell paracellular permeability</td>
<td>206</td>
</tr>
<tr>
<td>5.3.5 Aβ peptide in whole cell lysates and culture supernatants as assessed by SDS-PAGE and western blotting</td>
<td>207</td>
</tr>
<tr>
<td>5.4 Discussion</td>
<td>222</td>
</tr>
<tr>
<td>5.4.1 Role of intracellular signalling pathways involved in Aβ 1-40- mediated occludin down-regulation</td>
<td>222</td>
</tr>
<tr>
<td>5.4.2 Role of extracellular soluble factors in Aβ 1-40- mediated occludin down-regulation by hCMEC/D3 cells</td>
<td>226</td>
</tr>
<tr>
<td>5.4.3 JNK as a therapeutic target in AD</td>
<td>227</td>
</tr>
<tr>
<td>5.4.3 Role of peptide aggregation in Aβ 1-40-mediated occludin down-regulation by hCMEC/D3 cells</td>
<td>228</td>
</tr>
<tr>
<td>5.5 Conclusions</td>
<td>230</td>
</tr>
<tr>
<td>Chapter 6. General discussion</td>
<td>231</td>
</tr>
<tr>
<td>6.1 The role of P-gp in Aβ transport across the BBB</td>
<td>231</td>
</tr>
<tr>
<td>6.2 Aβ mediated down-regulation of Glut-1 at the BBB</td>
<td>234</td>
</tr>
<tr>
<td>6.3 Role of JNK in Aβ-mediated increased BBB permeability</td>
<td>235</td>
</tr>
<tr>
<td>References</td>
<td>242</td>
</tr>
</tbody>
</table>
List of figures

Figure 1.1 Schematic representation of the cellular components of the BBB 19
Figure 1.2 The tight junctional complex at the BBB ... 25
Figure 1.3. Transport mechanisms at the BBB .. 32
Figure 1.4. Structure of P-gp.. 37
Figure 1.5. Structure of BCRP ... 42
Figure 1.6 Aβ cascade hypothesis .. 51
Figure 1.7. Production of Aβ from its precursor APP .. 53
Figure 1.8. Proposed BBB transport routes for Aβ ... 60
Figure 1.9. Critically attained threshold of cerebral hypoperfusion hypothesis in AD 65
Figure 1.10. Aβ synergistic endothelial and neuronal toxicity hypothesis 68

Figure 2.1. Principles underlying rh123 efflux experiments ... 94
Figure 2.2. In vitro BBB model used to investigate hCMEC/D3 cell permeability 94
Figure 2.3. Morphology of hCMEC/D3 cells and primary hBECs viewed by phase contrast microscopy .. 102
Figure 2.4. The expression of P-gp by hCMEC/D3 cells over passage 103
Figure 2.5. The expression of P-gp and BCRP by hCMEC/D3 cells as assessed by flow cytometry ... 104
Figure 2.6. The expression of P-gp by hCMEC/D3 cells and primary hBECs as assessed by flow cytometry ... 105
Figure 2.7. Expression of P-gp and BCRP by hCMEC/D3 cells as viewed by fluorescence microscopy ... 106
Figure 2.8. Expression of P-gp by hCMEC/D3 cells as viewed by confocal microscopy 107
Figure 2.9. The sub-cellular localisation of P-gp, BCRP, Sp3 and actin in hCMEC/D3 cells as determined by western blotting after differential detergent fractionation ... 108
Figure 2.10. Expression of P-gp by hCMEC/D3 cells as assessed by TEM and immunogold staining ... 109
Figure 2.11. Cytotoxicity of vinblastine, tariquidar and FTC to hCMEC/D3 cells as assessed by an MTT assay ... 110
Figure 2.12. Time-dependent efflux of rh123 by hCMEC/D3 cells 111
Figure 2.13. rh123 efflux inhibition by tariquidar and vinblastine from hCMEC/D3 cells ... 112
Figure 2.14. The permeability of hCMEC/D3 cells to rh123 in the presence or absence of tariquidar and vinblastine ... 113

Figure 3.1. Cytotoxicity of Aβ 1-40 to hCMEC/D3 cells as assessed by an MTT assay 139
Figure 3.2. Cytotoxicity of Aβ 1-42 to hCMEC/D3 cells as assessed by an MTT assay 140
Figure 3.3. Sub-cellular localisation of fAβ 1-42 in hCMEC/D3 cells as viewed by confocal microscopy ... 141
Figure 3.4. Sub-cellular localisation of fAβ 1-40 in hCMEC/D3 cells as viewed by confocal microscopy ... 142
Figure 3.5. The effects of time and concentration on the influx of fAβ peptides into hCMEC/D3 cells ... 143
Figure 3.6. The effects of P-gp, BCRP or LRP-1 inhibition on the influx of fAβ peptides into hCMEC/D3 cells ... 144
Figure 3.7. The effects of P-gp or BCRP inhibition on the efflux of Aβ peptides from hCMEC/D3 cells .. 145
Figure 3.8. The effects of P-gp or BCRP inhibition on the influx of [125I]Aβ 1-40 into hCMEC/D3 cells .. 146
Figure 3.9. The effects of P-gp or BCRP inhibition on the efflux of [125I]Aβ 1-40 from hCMEC/D3 cells .. 147
Figure 3.10. The permeability of hCMEC/D3 cells to [125I]Aβ 1-40 and [14C]inulin 148

Figure 4.1. Cytotoxicity of Aβ 1-40 and Aβ 1-42 to hCMEC/D3 cells after 48 h incubation as assessed by an MTT assay .. 173
Figure 4.2. The effects of Aβ 1-40 and Aβ 1-42 on the expression of P-gp by hCMEC/D3 cells .. 174
Figure 4.3. The effects of Aβ 1-40 and Aβ 1-42 on the expression of Glut-1 by hCMEC/D3 cells .. 175
Figure 4.4. The effects of Aβ 1-40 and Aβ 1-42 on the expression of the transferrin receptor by hCMEC/D3 cells .. 176
Figure 4.5. The effects of Aβ 1-40 and Aβ 1-42 on the expression of ZO-1 by hCMEC/D3 cells .. 177
Figure 4.6. The effects of Aβ 1-40 and Aβ 1-42 on the expression of Cl-5 by hCMEC/D3 cells .. 178
Figure 4.7. The effects of Aβ 1-40 and Aβ 1-42 on the expression of occludin by hCMEC/D3 cells .. 179
Figure 4.8. The concentration-dependent effects of Aβ 1-40 and Aβ 1-42 on occludin expression in hCMEC/D3 cells after a 48 h incubation period .. 180
Figure 4.9. The effects of Aβ 1-40 and Aβ 1-42 on the expression of occludin and Cl-5 by hCMEC/D3 cells after a 48 h incubation period as assessed by flow cytometry 181
Figure 4.10. The expression of occludin by hCMEC/D3 cells after 48 h Aβ 1-40 incubation as assessed by immunocytochemistry .. 182
Figure 4.11. The effects of Aβ peptides on the mRNA levels of occludin, ZO-1 and Cl-5 after 24 and 48 h incubation in hCMEC/D3 cells .. 183
Figure 4.12. Permeability coefficient of hCMEC/D3 cells to 4 and 70 kDa FITC-dextran after 48 h Aβ 1-40 or Aβ 1-42 incubation .. 184
Figure 4.13. The trans-endothelial electrical resistance of hCMEC/D3 cells after 48 h incubation with Aβ .. 185

Figure 5.1. The toxicity of N-(3-Cyano-4,5,6,7-tetrahydro-1-benzothien-2-yl)-1-naphthamide to hCMEC/D3 cells .. 208
Figure 5.2. The role of signalling pathway inhibition on occludin expression by hCMEC/D3 cells following Aβ 1-40 incubation for 48 h .. 209
Figure 5.3. The effect of Aβ 1-40 treatment on the activation of JNK and p38MAPK by hCMEC/D3 cells over 60 min .. 210
Figure 5.4. The effect of Aβ 1-40 treatment on the activation of JNK, ERK, p38MAPK by hCMEC/D3 cells over 48 h .. 211
Figure 5.5. The activation of JNK, ERK and p38MAPK over 48 h after treatment with Aβ 1-40 as assessed by optical density analysis of western blots .. 212
Figure 5.6. The role of signalling pathway inhibition on the activation of JNK, ERK and p38MAPK by hCMEC/D3 cells following Aβ 1-40 incubation for 48 h .. 213
Figure 5.7. The role of signalling pathway inhibition on the relative activation of JNK, ERK and p38MAPK by hCMEC/D3 cells following Aβ incubation for 48 h as assessed by optical density analysis of western blots .. 214
Figure 5.8. The activation of JNK, p38MAPK and ERK2 after Aβ 1-40 incubation with N-(3-Cyano-4,5,6,7-tetrahydro-1-benzothien-2-yl)-1-naphthamide as assessed via optical density analysis by hCMEC/D3 cells ... 215
Figure 5.9. The effect of soluble cytokine receptors on Aβ 1-40-mediated occludin down-regulation by hCMEC/D3 cells ... 216
Figure 5.10. The trans-endothelial electrical resistance (TEER) of hCMEC/D3 cells after 48 h Aβ 1-40 incubation with JNK and p38MAPK inhibitors .. 217
Figure 5.11. The effect of JNK and p38MAPK inhibition on Aβ 1-40-mediated increased hCMEC/D3 cell permeability to 70 kDa FITC-dextran ... 218
Figure 5.12. Aβ 1-40 in cells and supernatants after 48 h incubation with hCMEC/D3 cells or collagen coated plastic ... 219
Figure 5.13. Aβ 1-40 in cells after 48 h incubation with hCMEC/D3 or collagen coated plastic .. 220
Figure 5.14. Aβ 1-40 in supernatants after 48 h incubation with hCMEC/D3 or collagen coated plastic .. 221

Figure 6.1. The transport of Aβ at the BBB mediated via LRP-1, P-gp and RAGE 240
Figure 6.2. Potential mechanisms of Aβ-mediated increased permeability in hCMEC/D3 cells .. 241
List of tables

Table 1.1 P-gp substrate list ... 40
Table 1.2. A selection of P-gp inhibitors .. 41
Table 1.3. BCRP substrates and inhibitors ... 43
Table 1.4. A selection of modulators of P-pg expression and/or function by BECs 45
Table 1.5. Symptomatic stages of AD ... 49
Table 1.6. Risk factors for AD .. 64

Table 2.1. Summary of cell lines used for investigation of P-gp function 78
Table 2.2. Protocol for progressive lowing of temperature for electromicroscopy and immunogold staining .. 90
Table 2.3. rh123 assays used to investigate P-gp function in brain endothelial cells and epithelial cells ... 123

Table 4.1. Selected references on the toxicity of Aβ to ECs 194

Table 5.1. Signalling pathway modulators and soluble cytokine receptors used to investigate Aβ 1-40 - mediated occludin down-regulation in hCMEC/D3 cells 199
Table 5.2. List of antibodies used for western blotting 201
<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>ACh</td>
<td>Acetylcholine</td>
</tr>
<tr>
<td>ATP</td>
<td>Adenosine triphosphate</td>
</tr>
<tr>
<td>AChEI</td>
<td>ACh esterase inhibitors</td>
</tr>
<tr>
<td>AJ</td>
<td>Adherens junctions</td>
</tr>
<tr>
<td>AD</td>
<td>Alzheimer's disease</td>
</tr>
<tr>
<td>Aβ</td>
<td>Amyloid beta</td>
</tr>
<tr>
<td>ADDL</td>
<td>Aβ derived diffusible ligands</td>
</tr>
<tr>
<td>Absent</td>
<td>Amyloid beta Synergistic endothelial and neuronal toxicity</td>
</tr>
<tr>
<td>APLP</td>
<td>Amyloid precursor like protein</td>
</tr>
<tr>
<td>APP</td>
<td>Amyloid precursor protein</td>
</tr>
<tr>
<td>Ang1</td>
<td>Angiopoietin-1</td>
</tr>
<tr>
<td>ABC</td>
<td>ATP-binding cassette transporter</td>
</tr>
<tr>
<td>BACE</td>
<td>β-site APP cleaving enzyme</td>
</tr>
<tr>
<td>BEC</td>
<td>Brain endothelial cell</td>
</tr>
<tr>
<td>BCRP</td>
<td>Breast cancer resistance protein</td>
</tr>
<tr>
<td>BBB</td>
<td>Blood brain barrier</td>
</tr>
<tr>
<td>BSA</td>
<td>Bovine serum albumin</td>
</tr>
<tr>
<td>CAA</td>
<td>Cerebral amyloid angiopathy</td>
</tr>
<tr>
<td>CNS</td>
<td>Central nervous system</td>
</tr>
<tr>
<td>CSF</td>
<td>Cerebrospinal fluid</td>
</tr>
<tr>
<td>CVOs</td>
<td>Circumventricular organs</td>
</tr>
<tr>
<td>Cl</td>
<td>Claudin family members</td>
</tr>
<tr>
<td>CATCH</td>
<td>Critically attained threshold of cerebral hypoperfusion</td>
</tr>
<tr>
<td>CT</td>
<td>Cycle threshold</td>
</tr>
<tr>
<td>DC</td>
<td>Detergent compatible</td>
</tr>
<tr>
<td>DMT1</td>
<td>Divalent metal transporter 1</td>
</tr>
<tr>
<td>DTT</td>
<td>D,L- dithiothreitol</td>
</tr>
<tr>
<td>EAE</td>
<td>Experimental autoimmune encephalomyelitis</td>
</tr>
<tr>
<td>EC</td>
<td>Endothelial cell</td>
</tr>
<tr>
<td>EM</td>
<td>Electron microscopy</td>
</tr>
<tr>
<td>EGF</td>
<td>Epidermal growth factor</td>
</tr>
<tr>
<td>EDTA</td>
<td>Ethylene diamine tetraacetic acid</td>
</tr>
<tr>
<td>Abbreviation</td>
<td>Description</td>
</tr>
<tr>
<td>--------------</td>
<td>-------------</td>
</tr>
<tr>
<td>ERK</td>
<td>Extracellular signal regulated kinases</td>
</tr>
<tr>
<td>EB</td>
<td>Extraction buffer</td>
</tr>
<tr>
<td>XG</td>
<td>Facilitative transporter of acidic amino acids</td>
</tr>
<tr>
<td>Y*</td>
<td>Facilitative transporter of cationic amino acids</td>
</tr>
<tr>
<td>n</td>
<td>Facilitative transporter of glutamine</td>
</tr>
<tr>
<td>L1</td>
<td>Facilitative transporter of large essential amino acids</td>
</tr>
<tr>
<td>FBS</td>
<td>Foetal bovine serum</td>
</tr>
<tr>
<td>FITC</td>
<td>Fluoresceine-isothiocyanate</td>
</tr>
<tr>
<td>FGF</td>
<td>Fibroblast growth factor beta</td>
</tr>
<tr>
<td>FTC</td>
<td>Fumitremorgin C</td>
</tr>
<tr>
<td>GLUT-1</td>
<td>Glucose transporter 1</td>
</tr>
<tr>
<td>GSK-3β</td>
<td>Glycogen synthase kinase-3</td>
</tr>
<tr>
<td>GuK</td>
<td>Guanyl kinase like</td>
</tr>
<tr>
<td>HBSS</td>
<td>Hank’s balanced salts solution</td>
</tr>
<tr>
<td>hTERT</td>
<td>Human telomerase</td>
</tr>
<tr>
<td>hBEC</td>
<td>Human Brain Endothelial cell</td>
</tr>
<tr>
<td>HRP</td>
<td>Horse radish peroxidase</td>
</tr>
<tr>
<td>IDE</td>
<td>Insulin degrading enzyme</td>
</tr>
<tr>
<td>IGF-1</td>
<td>Insulin-like growth factor 1</td>
</tr>
<tr>
<td>IL-1 α/β</td>
<td>Interleukin-1</td>
</tr>
<tr>
<td>IL-6</td>
<td>Interleukin-6</td>
</tr>
<tr>
<td>ISF</td>
<td>Interstitial fluid</td>
</tr>
<tr>
<td>JAM</td>
<td>Junctional adhesion molecules</td>
</tr>
<tr>
<td>JNK</td>
<td>c-Jun N-terminal kinases</td>
</tr>
<tr>
<td>LTP</td>
<td>Long term potentiation</td>
</tr>
<tr>
<td>Lrp-1</td>
<td>Low-density lipoprotein receptor related protein</td>
</tr>
<tr>
<td>P-gp</td>
<td>P-glycoprotein</td>
</tr>
<tr>
<td>MAGUK</td>
<td>Membrane-associated guanylate kinase</td>
</tr>
<tr>
<td>MDCK</td>
<td>Madin Darby canine kidney epithelial cells</td>
</tr>
<tr>
<td>MTT</td>
<td>Methylthiazolyl diphenyl-tetrazolium bromide</td>
</tr>
<tr>
<td>MCI</td>
<td>Mild cognitive impairment</td>
</tr>
<tr>
<td>MS</td>
<td>Multiple sclerosis</td>
</tr>
<tr>
<td>NaCl</td>
<td>Sodium chloride</td>
</tr>
<tr>
<td>NFT</td>
<td>Neurofibrillary tangles</td>
</tr>
<tr>
<td>NF-KB</td>
<td>Nuclear factor NF-KB</td>
</tr>
<tr>
<td>Abbreviation</td>
<td>Description</td>
</tr>
<tr>
<td>--------------</td>
<td>--</td>
</tr>
<tr>
<td>NBD</td>
<td>Nucleotide-binding domain</td>
</tr>
<tr>
<td>NGS</td>
<td>Normal goat serum</td>
</tr>
<tr>
<td>PLP</td>
<td>Paraformaldehyde-lysine-periodate fixative</td>
</tr>
<tr>
<td>p</td>
<td>Passage</td>
</tr>
<tr>
<td>PMSF</td>
<td>Phenylmethylsulphonyl fluoride</td>
</tr>
<tr>
<td>PBS</td>
<td>Phosphate buffered saline</td>
</tr>
<tr>
<td>PDGF</td>
<td>Platelet derived growth factor</td>
</tr>
<tr>
<td>p38MAPK</td>
<td>p38 mitogen activated protein kinases</td>
</tr>
<tr>
<td>PET</td>
<td>Positron emission tomography</td>
</tr>
<tr>
<td>PKA</td>
<td>Protein kinase A</td>
</tr>
<tr>
<td>PKC</td>
<td>Protein kinase C</td>
</tr>
<tr>
<td>PDZ</td>
<td>PSD95-DLG-ZO</td>
</tr>
<tr>
<td>RAGE</td>
<td>Receptor for advanced glycation end products</td>
</tr>
<tr>
<td>rh123</td>
<td>Rhodamine 123</td>
</tr>
<tr>
<td>A</td>
<td>Sodium- dependent transporter alanine preferring</td>
</tr>
<tr>
<td>ASC</td>
<td>Sodium- dependent transporter alanine-, serine- and histidine- preferring</td>
</tr>
<tr>
<td>EAAT</td>
<td>Sodium- dependent transporter of the excitatory acidic amino acid family</td>
</tr>
<tr>
<td>LNAA</td>
<td>Sodium- dependent transporter of large neutral amino acids</td>
</tr>
<tr>
<td>N</td>
<td>Sodium- dependent transporter of nitrogen rich amino acids</td>
</tr>
<tr>
<td>SDS</td>
<td>Sodium dodecyl sulphate</td>
</tr>
<tr>
<td>TGF-β</td>
<td>Transforming growth factor-β</td>
</tr>
<tr>
<td>TJ</td>
<td>Tight junctions</td>
</tr>
<tr>
<td>TNF-α</td>
<td>Tumor necrosis factor α</td>
</tr>
<tr>
<td>TMD</td>
<td>Transmembrane domain</td>
</tr>
<tr>
<td>TBS</td>
<td>Tris buffered saline</td>
</tr>
<tr>
<td>VEGF</td>
<td>Vascular endothelial growth factor</td>
</tr>
<tr>
<td>ZO-</td>
<td>Zonula occludens</td>
</tr>
</tbody>
</table>
Chapter 1

General introduction

1.1 The blood-brain barrier (BBB)

The blood-brain barrier (BBB) is a term used to describe the restricted permeability of brain tissue capillaries, compared to capillaries of other organs, especially with regard to hydrophilic molecules. The BBB prevents the passage of molecules from the blood into the brain, maintaining a homeostatic neuronal extracellular fluid. It is important that the interstitial fluid (ISF) of the central nervous system (CNS) is regulated in terms of ion concentrations and signalling molecules, to allow efficient neuronal firing and brain function. Neuronal action potentials are dependent on the concentration of ions in both the ISF and within the neuron (e.g. Na+, K+ and Ca^{2+}). The ion concentrations must be maintained within a narrow range to allow efficient neuronal firing and neurotransmitter release, which in turn are vital for CNS activity. The relative impermeability of the BBB to ions means that any acute fluctuations in the circulating blood do not affect the brain ISF levels.

The BBB also protects the neuronal tissue from a range of substances that, although relatively non-toxic to peripheral organs, could interfere with neuronal functions and damage neurons if allowed to enter the brain. These agents could come from the diet (e.g. plant toxins) or drug therapies, and their exclusion is achieved not only by allowing limited movement from the blood to the brain, but also by specific transporters e.g. P-glycoprotein (P-gp) expressed by cerebral brain endothelial cells (BECs), which actively efflux a broad range of substances back into the blood. In addition to functioning as a barrier to certain molecules, the BBB also supplies nutrients and removes the waste products to and from the CNS, processes which are conducted by specific transporters [e.g. glucose transporter -1 (Glut-1)].
Increased BBB permeability can give rise to neuronal damage by allowing toxins or endogenous molecules to penetrate the BBB and also by the loss of cerebral homeostasis. Indeed, BBB malfunction is implicated in many disease states including Alzheimer’s disease (AD). There are two aims to this thesis, both centred on the neurotoxic polypeptide amyloid beta (Aβ), believed to be at the root cause of AD pathogenesis. The first aim is to study the role of BEC efflux transporter proteins in the transport of Aβ across an in vitro human BBB model. The second aim is to investigate the effects of Aβ on the expression of proteins which regulate the permeability of BECs, and other transporter proteins associated with BEC phenotype. This introductory chapter will describe the unique properties of BECs and the potential role of the BBB in AD pathogenesis.

1.1.1 The history of the BBB

The concept of the BBB was first proposed as an explanation for the exclusion from the brain of hydrophilic dyes administered to the peripheral vasculature. Ehrlich in 1885 [1], whilst comparing the oxygen consumption of different organs using ‘intravital dyes’, observed for the first time, that some aniline derivatives stained many organs but did not penetrate the brain. The term BBB is reported to originate from the work of Lewandoski [2], who found that intrathecal application of potassium ferrocyanate was lethal in dogs and rabbits at 1 % (w/v) of the dose required by the subcutaneous route. Allegedly, Lewandoski first used the term bluthirnschranke, or BBB to describe this barrier function, although it is debated as to the exact date [3]. Goldman, Ehrlich’s student, added further evidence for a barrier function protecting the brain, with the observation that trypan blue injected directly into the cerebral spinal fluid (CSF) stained all brain tissue cell types, whereas intravenous application did not [4]. These findings sparked a search for the cellular structure(s) of the BBB, and it was not until the advent of electron microscopy
that BECs emerged as a central component of the BBB. During the 1960's, horseradish peroxidase (HRP) had been employed as an enzymatic tracer for vascular transport studies due to its relatively high sensitivity and low molecular weight (MW 43,000). HRP had been demonstrated to pass from the circulation to extravascular spaces by diffusion through gaps between endothelial cells (ECs) and also via pinocytotic vesicles in cardiac and skeletal muscle [5]. In 1967, Reese and Karnovsky [5] demonstrated that HRP administered via the tail veins of mice was undetectable in the brain tissue, since HRP appeared not to cross the cerebral vascular endothelium. Critically, Reese and Karnovsky established that neighbouring BECs overlap and are linked together by tight junctions (TJs), which prevented the intercellular/paracellular passage of HRP. The authors also found that BECs contained fewer micropinocytotic vesicles than peripheral ECs, which reduced (relatively) the intracellular transport of HRP. This type of experiment was possible due to high resolution EM, which could distinguish between the fine structures of cerebral capillaries. Subsequent experiments have yielded a detailed understanding of the BBB. However, these first investigations were vital to the identification of BECs as key components of the BBB.

1.1.2 The BBB as a neurovascular unit

The lumen of the cerebral vessels that penetrate brain tissue are enclosed by BECs, which are interconnected by TJ proteins. Whilst BECs are a key component of the BBB, other cell types are also associated with the development and maintenance of BEC characteristics. Pericytes are sparingly attached to the abluminal (brain side) surface of BECs in capillaries and both cell types are surrounded by a basal lamina. In addition, astrocytic end feet are contiguous with the basal lamina and surround BECs (Figure 1.1). The term neurovascular unit has recently been introduced to describe the interactions between BECs, astrocytes, pericytes and neurons to function as a unit and maintain BBB
properties (although fibres of the white matter and oligodendrocytes are sometimes also included) [6]. Whilst CNS resident cells including oligodendrocytes, glia and neurones can also alter the function of BECs, astrocytes and pericytes lie closest to BECs and form an intimate association. Through this close position, both cell types have been demonstrated to play a role in the maintenance and induction of the BBB.

Figure 1.1 Schematic representation of the cellular components of the BBB. The lumen of cerebral capillaries is enclosed by BECs, which are interconnected by TJ proteins. Pericytes are attached to the abluminal surface of BECs and surrounded by a basal lamina. Astrocytic end feet are contiguous with the basal lamina and BECs.

1.1.2.1 Astrocytes

Astrocytes play a variety of active roles in maintaining neuronal physiology and homeostasis of the extracellular fluid surrounding neurones. Astrocytes are involved in the homeostasis of K⁺ ions [7-9], glutamate and ammonia [10-12], to protect and ensure optimal neuronal function. K⁺ ion concentrations must be tightly regulated in order to allow neuronal action potentials to occur. Astrocytes act as a spatial buffer and also take up
K⁺ ions through carrier and pore-mediated transport [7, 9]. Astrocytes accumulate excess ammonia and convert glutamate to glutamine via glutamine synthase, thereby preventing excess neuronal excitation [11]. Recently, an additional astrocyte function has emerged in the metabolic coupling of neurons to astrocytes [12-15]. The astrocyte-neuron lactate shuttle hypothesis suggests that increased neuronal activity induces lactate production and secretion by astrocytes, and neurones then utilise this lactate as an energy source [12-15].

The close structural proximity of astrocyte foot processes to BECs provided the basis for the view that astrocytes contribute to the development and maintenance of the BBB. Indeed, astrocytes can influence the permeability of BECs (reviewed in [16-18]). In vitro, co-cultures of primary isolated BECs or immortalised BECs with astrocytes [19, 20] or astrocyte-conditioned media [20-23] improves BBB characteristics, such as increased tightness, decreased permeability and the up-regulation of BEC proteins such as Glut-1, P-gp, amino acid carriers, TJ proteins and γ-glutamyl transpeptidase. The exact astrocyte derived-factors responsible for the in vitro effects on BECs are unknown, however, transforming growth factor β (TGF-β) [24], basic fibroblast growth factor β (FGF) [25] and angiopoietin-1 [26], all appear to increase BECs tightness and may be released by astrocytes. It is worth noting that BECs can also influence astrocytic properties, for example increasing astrocytic anti-oxidant activity [27] and astrocyte differentiation [28].

1.1.2.2 Pericytes

The role of pericytes in the induction and maintenance of the BBB has not been as extensively investigated as astrocytes. However, it appears that pericytes may play a critical role in the development of BECs, in the control of capillary diameter and as a scavenger housekeeping cell (reviewed in [29-31]). Pericytes are more prevalent during the early stages of development and at maturation in rat neural capillaries than any other capillary type [32]. In fact, Balabanov and Dore-Duffy [29] have estimated the pericyte to
EC ratio to be 1:5 in rat brain capillaries, compared to 1:100 in skeletal muscle capillaries. This intimate association between BECs and pericytes appears to correlate with greater tightness and TJ protein expression. The recruitment of pericytes to BECs is considered to be a platelet derived growth factor (PDGF)-mediated response [33, 34], and PDGF-deficient mice develop numerous micro-aneurisms [34, 35], possibly due to capillary wall instability. A critical mechanism by which pericytes may influence the development of BECs is via angiopoietin-1 (Ang1) secretion, which acts via TIE2 receptors on BECs. Consistent with this theory is the finding that Ang1 and TIE2 knockouts do not develop mature brain blood vessels [34, 35]. In addition, Ramsauer et al [36] have demonstrated that co-cultured astrocytes, pericytes and BECs form capillary-like structures, which, unlike astrocyte-BEC co-cultures, were resistant to apoptosis induction. Furthermore, in co-cultures, pericytes can increase the expression of TJ components in rat BECs at the mRNA level [37] and reduce the paracellular permeability of immortalised mouse BECs to sodium fluorescein [38].

An early observation on pericyte ultrastructure by Herman and D’Amore [39], was that these cells contain contractile proteins. Oishi et al [40] have demonstrated that mouse pericytes cultured in a three-dimensional collagen gel, contract in response to acetylcholine (ACh) and noradrenaline, neurotransmitters that can be released in the vicinity of capillaries by neuronal fibres. In a novel experiment, Peppiatt et al [31] have shown that stimulation of rat retinal pericytes by superfused noradrenaline application caused capillary constriction in the cerebellum. Additionally, pericytes express receptors for catecholamines, endothelin-1, angiotensin II and vasopressin, which are all potential vasoactive mediators [29].

1.1.3 Characteristic phenotype of brain endothelial cells

BECs are characterised by reduced paracellular and transcellular permeability, and a high mitochondrial content compared to endothelial cells at other organs.
1.1.3.1 Low paracellular permeability

Although pericytes and astrocytes regulate the development of BECs, it is the properties of the BECs themselves that determine BBB function. Blood vessels throughout the human body are lined by ECs, which form the main site for nutrient exchange, leukocyte diapedesis, signalling molecule transport and all blood-tissue contact. In general, ECs fall into three types based on their structure; fenestrated, continuous and discontinuous.

Endocrine and exocrine glands, including the choroid plexus and intestinal villi, display discontinuous endothelia with fenestrae between them, and ECs in the liver, spleen and bone marrow are discontinuous in nature [41-43]. The increased leakiness offered by discontinuous and fenestrated capillaries allows secretory and sensory functions at these sites. Continuous ECs lack intracellular gaps and are found in skeletal muscle, lung and brain. BECs are of a specialised continuous type, as they are much more restrictive than other organs.

Due to this restrictive nature of the BBB, lipid solubility is the primary factor determining the permeability of a substance through the BBB [44]. A substance with a high oil/water partition coefficient can, in principle, diffuse freely through BECs and this is the primary route of entry and exit for small dissolved gasses to/from the CNS e.g. O₂. The permeability of BECs to hydrophilic macromolecules (e.g. albumin, HRP) and small ions is very low. This property is reflected by a high electrical resistance of pial vessels recorded in the frog and rat of 1000-2000 Ω.cm² [45, 46], which is much higher than that in peripheral vessels (2-20 Ω.cm²) [45, 47].

The presence of continual complex TJ in BECs is considered to be the primary reason for the increased electrical resistance and decreased permeability at the BBB compared to discontinuous junctions in peripheral ECs. When BEC membranes containing TJs are freeze fractured and viewed via electron microscopy, fracture planes separate the cytoplasmic leaflet of the inner membrane (P-face) from the extracellular leaflet (E-face).
TJs in BECs appear as strands on the P-face and grooves on the E-face, [48, 49] which allows continuous TJ formation [50-52]. The molecular composition and organisation of TJs is discussed in detail in section 1.1.4.

It should be noted that regions exist within the CNS in which the BECs are fenestrated and lack TJs. The choroid plexus (in cerebral ventricles) consists of a layer of fenestrated ECs surrounded by ependymal epithelium. The function of the choroid plexus is to produce cerebral spinal fluid (CSF), which circulates through ventricular cavities and the subarachnoid space. However, TJs are found at apical regions of the choroid plexus epithelium, which forms a blood-CSF barrier [53]. The other areas of the brain in which BECs are fenestrated are collectively called the circumventricular organs (CVOs) [54, 55]. CVOs are ventricularly located structures which carry out two main functions: 1) neuropeptide secretion (e.g. medial eminence, pineal gland, intermediate lobe of pituitary gland) and 2) to act as a sensor of circulating levels of hormones and neurotransmitters (e.g. subfornical organ, organum vasculosum).

1.1.3.2 High mitochondrial content

In addition to a high electrical resistance and the presence of TJs in most CNS regions, BECs also differ from periphery endothelia in terms of mitochondrial content. Oldendorf et al [56] calculated the mitochondrial content of rat BECs to be between 8 % and 10 % of total cytoplasmic volume, whereas in non-brain EC they represent between 2 % and 5 %. BECs contain numerous enzymes and transporters that are dependent on adenosine triphosphate (ATP). ATP-dependent transporters in BECs function to transport blood-borne harmful agents back into the blood (e.g. P-gp; see section 1.1.6.1), whereas a number of enzymes (e.g. monamine oxidase (A and B), cytochrome p450 monooxgenase, L-amino acid decarboxylase, epoxy hydrolases, aminopeptidase A, superoxide dismutase [57-61]) are capable of degrading various peptides and reactive oxygen species that could
interfere with neuronal function or become neurotoxic. Thus, the high mitochondrial content in BECs may reflect the high energy requirements of these cells and their protective barrier function.

1.1.3.3 Low vesicular transport

In the original EM description of the BBB, Reese and Karnovsky [5] also noted a lower frequency of vesicles within ECs in cerebral vessels compared to other capillaries. Both the proportion and number of vesicles filled with HRP was much lower in BECs compared to cardiac ECs. A decreased vesicular content in BECs is a further indication of the barrier function of these cells in which blood-brain vesicular uptake is restricted.

Thus low transcellular transport, due to decreased vesicular transport, and low paracellular transport, as a result of TJs, together contribute to the barrier function of BECs.

1.1.4 Molecular organisation and regulation of brain endothelial cell tight junctions

BECs in the cerebral vasculature are linked together by both TJ and adherens junctions (AJs). AJs intermingle with TJs [62], and are expressed throughout the vasculature and play a role in EC adhesion, paracellular permeability, vascular growth and contact inhibition during vascular remodelling (reviewed in [63]). Vascular endothelial cell cadherin (VE-cadherin) is the transmembrane component of AJs [64], which is linked to the actin cytoskeleton via β- and α-catenins, although the exact molecular components are under debate [64]. VE-cadherin is expressed by ECs in all tissues and its function is modulated by Ca\(^{2+}\) ions [65]. Abbruscato and Davis [66] have demonstrated using cultured bovine BECs, that hypoxic conditions cause a Ca\(^{2+}\)-mediated decrease in VE-cadherin expression. Although AJs are important for the development and function of BECs, it is the TJs that confer low permeability of BECs, when compared to other ECs. Multiple proteins
comprise TJs including; Junctional adhesion molecules (JAMs), occludin, claudin family members (Cl), zonula occludens 1, 2 and 3 (ZO-1 and 2, 3), cingulin, AF-6 and 7H6, associated directly or indirectly to a peri-cellular ring of actin filaments (reviewed in [6, 63, 67-69]). Generally, occludin, JAMs and the claudins form trans-membrane segments of the TJ complex whereas other TJ proteins serve as cytoplasmic anchors to the actin cytoskeleton (Figure 1.2).

(a)

![Diagram of tight junctional complex](image)

Key

- Occludin
- Claudins
- JAM
- Intracellular scaffolds
- Actin

(b)

![Representations of occludin, claudin and JAM structures](image)

Figure 1.2 The tight junctional complex at the BBB. (a) BECs at the BBB are connected by TJ. Occludin, claudins and JAM form homodimers (claudins also form heterodimers) across the intercellular space and are held anchored to the actin cytoskeleton via scaffold proteins (ZO-1, -2, -3, AF6, 7H6 and cingulin). Actin can also be bound directly to occludin. (b) Representation of occludin, claudin and JAM structures [70].
1.1.4.1 Occludin

Occludin was the first TJ protein to be discovered in BECs. Furuse et al [71] developed rat antibodies directed against an isolated AJ fraction from chick liver, and found staining for a 65 kDa protein at epithelial and BEC TJs. Subsequently, continuous occludin expression was confirmed on rat [72], porcine [73] and human isolated brain capillaries [74, 75], whilst lower discontinuous expression is detected on non-cerebral ECs. Occludin expression is found at sites that display a high degree of tightness and is therefore considered to be actively involved in maintaining BBB permeability or function.

Structurally, occludin comprises four membrane spanning regions, two extracellular loops, a short cytoplasmic N-terminus and a long cytoplasmic C-terminus [71] (Figure 1.2). Human, murine and canine occludin share ~ 90% amino acid similarity with each other but a divergence of ~ 50% compared to chicken and rat-kangaroo occludin [74]. All species however share similarities in the two proposed functional domains: 1) the first extracellular loop of occludin which is rich in tyrosine and glycine content and is hypothesised to mediate cell to cell contact [74]; and 2) the C-terminus, which is responsible for the association with ZO-1 [76, 77].

There is conflicting experimental evidence as to the exact importance of occludin in TJ structure. Saitou et al [78] demonstrated that occludin-null mice develop a range of abnormalities such as chronic inflammation, gastric epithelium hyperplasia, calcification in the brain, testicular atrophy, and loss of cytoplasmic granules in striated duct cells of the salivary gland. However, the TJs of epithelial intestinal cells were unaffected compared to controls. In a follow up study, Schulzke et al [79] found that the barrier properties of epithelial cells in the stomach, bladder and throughout the intestine were unaltered as assessed by resistance measurements. The authors did find reduced acid secretion and morphological alterations in the gastric epithelium, which they attributed to a role for occludin in epithelial cell differentiation. It is of note that the permeability of the BBB was not investigated in either paper. In addition, mouse embryonic stem cells [80] deficient in
occludin, when differentiated into epithelial cells, form TJ structures that are impermeable to biotin.

However, there is considerable evidence that occludin confers increased tightness in TJ containing cells [81]. Many of these investigations have originated from epithelial cells, which also form TJ structures. McCarthy et al [82] have demonstrated that occludin over-expression in Madin Darby canine kidney epithelial cells (MDCK) increases the number of TJs and also the transepithelial resistance. The transfection of a C-terminal truncated mutant form of occludin into MDCK cells [83] or into Xenopus embryo cells [84] resulted in increased permeability to different paracellular tracers. Yu et al [85] used siRNA techniques to knock-down occludin expression in MDCK cells and found the permeability to small ionic cations such as Na⁺, arginine and ethanolamine was increased.

Additional evidence for the role of occludin in the maintenance of TJs comes from observations that occludin down-regulation by different agents is associated with increased permeability. Antonetti et al [86, 87] have demonstrated using a streptozotocin-induced diabetes rat model, a concomitant increase in permeability to BSA and a decrease in occludin levels at the blood-retinal barrier. Other factors including histamine [88], CCL2 [89] and oxidised phospholipids [90] can phosphorylate occludin and induce leaky TJs. Occludin regulation therefore appears to play an important part in the TJ regulation of endothelial and epithelial permeability. Interestingly, occludin down-regulation and increased permeability of BECs has been reported in experimental animal models of neutrophil activation [91] inflammatory-induced pain [92], hypoxia [93] and Alzheimer’s disease [94], further emphasising the importance of this protein in the regulation of BBB permeability.
1.1.4.2 Claudins

Furuse et al [95] upon re-examination of their isolated AJ fraction from chicken liver identified two further TJ proteins, claudin (Cl)-1 and 2. Subsequently, 24 members of the claudin family [96, 97] have been identified through database searches and genomic cloning.

Claudins are 20-27 kDa proteins with four transmembrane domains and one extracellular loop (~ 53 amino acids) much larger than the second (~ 24 amino acids) [95]. The C-terminus, as with occludin, has the ability to bind to ZO-1 and ZO-2 [98], whilst the extracellular loops of claudins can interact with each other via homophilic and heterophilic interactions [99]. The ability of claudins to form TJs has extensively been investigated in mouse L-fibroblast cultures. Cl-1 or Cl-2 expression in mouse L-fibroblasts results in the formation of TJ strands [100]. Furthermore, transfection of L-fibroblasts with paired combinations of Cl-1, 2 or 3 demonstrated that all transfected cells could form TJs, with the exception of those co-transfected with Cl-1 and -3 [99]. Interestingly, Furuse et al [100] also found that L-fibroblasts transfected with occludin do not form in TJs unless Cl-1 is also expressed.

The expression of claudins varies between cell types, and four particular CIs have been identified at the mammalian BBB: Cl-1 [101], 3 [102], 5 [103] and 12 [103]. The expression of Cl-1 by BECs has been brought into question, as the antibody used in many studies has been shown to cross-react with Cl-3 [102]. Nitta et al [103] have recently demonstrated the potential role of Cl-5 in the BBB using Cl-5-deficient mice. These mice die within 24 h of birth, indicating a developmental role for Cl-5. The development of the blood vessels was normal, and there were no signs of oedema, however paracellular tracer experiments revealed increased selective permeability for molecules <800 Da at the BBB. Whilst there was no detection of serum albumin leakage into the brain of Cl-5 deficient mice, the conclusion by these authors that Cl-5 exerts a size selective barrier at the BBB should be approached with caution. The tracer experiments by Nitta et al [103] were
carried out over a relatively short time period of 5 min, and the larger MW tracers used may have required longer to diffuse across the BBB than smaller ones and therefore to be detected in the brain parenchyma of CI-5 deficient mice. The importance of CI-3 at the BBB has recently been highlighted by the work of Wolburg et al [102], who demonstrated a selective loss of CI-3 in autoimmune encephalomyelitis (EAE) mouse models and human glioblastoma multiforme tissue.

1.1.4.3 Junctional adhesion molecules

Members of an additional transmembrane protein family, termed junctional adhesion molecules (JAMs) are also present at TJs in BECs [104, 105]. JAMs are part of the immunoglobulin-like super-family of adhesion molecules and consist of three main members (JAM-1, -2,-3, also referred to as JAM-A, B and C). JAM -1 and -3, but not JAM -2, expression has been noted in rat brain blood vessels [106]. JAMs have been demonstrated to play a role in junction assembly [104, 107] and leukocyte migration [105] at the BBB (reviewed in [104]). Transfection of JAM-1 into Chinese hamster ovary cells (CHO) enhances endogenous ZO-1 expression and co-transfection of JAM-1 and occludin into the same cell type results in redistribution of JAM-1 to junctional areas [108]. JAM-1 can also bind to cytoplasmic accessory proteins such as ZO-1 and cingulin [108, 109]. However, the exact function of JAMs as BBB TJ proteins has not yet fully been explored.

1.1.4.4 Cytoplasmic accessory proteins.

There are several accessory cytoplasmic proteins that associate with the transmembrane components of TJs. However, the function of many of these proteins, e.g. cingulin [110, 111], AF-6 [109, 112, 113] and 7H6 [114, 115], has not been extensively investigated, especially with regards to the BBB. A notable exception is the ZO family of proteins, of which ZO-1 [116] was the first described TJ-associated protein. Stevenson et al [116] observed ZO-1 TJ staining in a variety of epithelia, and subsequently, two further
ZO family members, termed ZO-2 [117] and ZO-3 [118], were identified via co-immunoprecipitation of ZO-1 in MDCK cells.

The ZO proteins are members of the membrane-associated guanylate kinase (MAGUK) family, which generally enable multiple protein-protein interactions as intracellular scaffolds [119, 120]. ZO proteins share three core regions, a src homology 3 (SH3) domain, a guanylate kinase-like (GuK) domain and three PSD95-DLG-ZO (PDZ) domains which allow binding to different proteins. ZO proteins bind to each other [121], to occludin [76, 77, 108, 118, 122, 123] (via the SH3-GuK domains [123]), to claudins [98, 124] (via the PDZ domains), to JAM [109], to AJ proteins [112, 113, 125, 126] and to actin [76, 121] (via the C-terminus). Thus, the ZO proteins anchor transmembrane TJ proteins to the actin cytoskeleton, although it should be noted that occludin can also bind directly to the actin cytoskeleton [121].

Many studies have shown that ZO proteins are important for the stability of TJ architecture. Although epithelial cells lacking ZO-1 expression still form well developed TJs, loss of ZO-1 expression inhibits the Ca\(^{+}\)-induced re-formation of TJs previously disassembled by Ca\(^{2+}\) depletion [127, 128]. McNeil et al. [127] demonstrated that in ZO-1-depleted MDCK cells, formation of TJs is delayed after Ca\(^{2+}\) removal and this effect could be rescued by ectopic expression of the SH3 domain of ZO-1. In addition, Umeda et al [128] have demonstrated that suppression of ZO-1 and ZO-2 expression in a mammary epithelial cell line, Eph4, results in a lack of organisation of occludin, JAM-1 and Cl-3. One study has shown that ZO proteins may also play a role in development. ZO-1 knockout mice embryos are not viable and present with defective yolk sac angiogenesis and apoptosis of embryonic cells [129].
1.1.4.5 Regulation of paracellular permeability

There are multiple extracellular mediators that can induce a leaky BBB including cytokines, nitric oxide, free radicals, prostaglandins and histamine (reviewed in [46, 130]). These extracellular molecules can mediate increased permeability by TJ protein translocation at cell-cell contacts and/or a decreased expression of TJ proteins at the messenger level. Intracellular signalling pathways that have been shown to mediate TJ reorganisation include protein kinase C (PKC), protein kinase A (PKA), the small G-protein rho and the mitogen activated protein kinase family (MAPK) (reviewed in [131, 132]). As an example, when epithelial cells are cultured in low calcium medium, increased permeability and decreased transepithelial resistance is observed, which in some cases is accompanied by a membrane loss of ZO-1, ZO-2 and occludin at the membrane [133]. PKC activation and PKA inhibition have both been demonstrated to preserve the TJs after Ca\(^{2+}\) removal from epithelial cell cultures [134-136]. In contrast, the elevation of intracellular cAMP in BECs increases the TJ tightness and reduces paracellular permeability [46]. Therefore, PKA activation in BECs can enhance the barrier function, whilst in epithelial cultures may increase permeability.

Phosphorylation of TJ proteins is a further way in which permeability can be regulated. Ischemia, oxidative stress, Rho activation, and VEGF can cause phosphorylation of occludin and increased permeability to paracellular tracers in TJ containing cell lines [69, 131].

1.1.5 Nutrient transporters at the BBB

TJ expression and reduced vesicular transport in BECs combine to restrict the passage of hydrophilic molecules into the brain. However, the CNS shows a high metabolic demand, and essential brain substrates and nutrients require specific carriers and receptors to transport them into the brain across BECs. The transporters of glucose, iron, essential amino acids and ions are represented in Figure 1.3.
Figure 1.3. Transport mechanisms at the BBB. BECs contain a number of transport mechanisms to allow homeostatic control of nutrients, ions and signalling molecules. (1) Na$^+$ dependent transporters (A, ASC, LNAA, EAAT) eliminate non-essential, essential and excitatory amino acids from the brain, preventing excess accumulation. (2) Facilitative diffusion allows essential amino acids (L1, Y$^+$) and glucose (Glut-1) into the brain and elimination of excitatory amino acids (N, Xa) into the blood across the luminal and (3) abluminal membranes. (4-5) Ion transporters at the BBB regulate extracellular K$^+$ and Na$^+$ ions (Na$^+$ / K$^+$ ATPase) and intracellular pH. (6) ABC transporters (P-gp, BCRP, MRP) protect the brain from blood circulating toxins. (7) Receptor-mediated transport allows essential proteins and signalling molecules into the brain (e.g. Insulin receptor, transferrin receptor). Adapted from [137] [155].

1.1.5.1 Glucose

Glucose supply to the brain, either as glucose or as its breakdown product, lactate, is essential as an energy source for brain resident cells such as neurons. Glucose transport at the BBB is primarily mediated by facilitative diffusion via glucose transporters (Glut, reviewed in [138]). To date, 13 members of the Glut family have been identified, and amongst these Glut-1 is the major isoform present at the BBB. Pardridge et al [139] have found that over 90% of glucose transport in bovine cortex blood vessels is attributable to Glut-1. Two different molecular weight forms of Glut-1 exist (44 and 55 kDa), which differ only in their extent of glycosylation [140]. At the BBB, the 55 kDa form is primarily present at both the luminal and abluminal membranes in addition to a large intracellular pool, although the exact sub-cellular distribution is not entirely clear [139, 141-147]. Farrell et al [144], using EM techniques on rat BECs, found a distribution of Glut-1 of 12
% luminal, 48 % abluminal and 40 % cytoplasmic and in a study in rabbits, the largest proportion of this transporter was similarly observed in the abluminal membrane [141]. More recently, Simpson et al [138] have suggested a more symmetrical distribution of Glut-1 expression. Lee et al [148] isolated bovine luminal and abluminal membrane vesicles and demonstrated a similar kinetic profile of glucose transport. Later, Simpson et al [147] corroborated this finding in bovine BECs, reporting symmetrical distribution of Glut-1. The intracellular pool of Glut-1, might serve to increase luminal Glut-1 levels in times of increased neuronal demand such as hypoglycaemia [149] and seizures [142]. Although Glut-1 is the most studied glucose transporter at the BBB, there is also evidence for a Na⁺-dependent glucose transporter [148], which could play a role in glucose homeostasis if the glucose content in the neuronal environment is too high.

1.1.5.2 Iron

Iron is an essential trace element required for a plethora of functions including neurotransmission, myelination, as a component of the electron transport chain and cell division [150, 151]. In non-pathological conditions, virtually all iron circulates in the plasma bound to hydrophilic transferrin, which in principle would be excluded from the brain by the TJs at the BBB. However, BECs contain a receptor for iron-bound transferrin, the transferrin receptor [152, 153], which allows iron uptake by the brain. The exact mechanism of iron uptake by BECs is still unknown. Moos et al [151], have recently suggested a model of iron trafficking at the BBB. In this model, iron-transferrin binding to the transferrin receptor results in endosomal internalisation of the complex and abluminal vesicular release. In many cell types, the divalent metal transporter 1 (DMT1) causes the transport of iron into the cytoplasm, however DMT1 has not been detected in BECs [154]. Their theory is therefore, that under the acidic conditions of the endosome and an ATP-
citrate-rich abluminal membrane environment secreted by astrocytes, iron becomes available for cellular uptake.

1.1.5.3 Amino acids

The transport of amino acids at the BBB is complex and carried out by both facilitated diffusion and Na⁺-dependent transport (reviewed in [155]). There are four facilitative amino acid carriers expressed by BECs; an essential neutral amino acids system (L1), a cationic amino acids system (Y+), an acidic amino acids system X₀ and a glutamine system (n). L1 expression was first identified when it was noted that the movement of neutral essential amino acids into the brain was greater than that of non-essential amino acids [156]. L1 is expressed on the luminal and abluminal membrane of BECs and functions to transport essential amino acids (e.g. Leucine, valine, isoleucine, phenylalanine, tryptophan) into BECs and the brain [155, 157]. System Y+ located on the abluminal and luminal membrane, is primarily a cationic amino acid transporter and acts to transport lysine, arginine and ornithine, whilst the presence of Na⁺ allows association of neutral amino acids with this transporter [155, 158-160]. System n, on the luminal membrane, allows the facilitative diffusion of glutamine [161], whilst X₀ (luminal) has affinity for glutamate and arginine [155, 162]. Collectively, L1 and y+ allow access to the brain of all essential amino acids.

Analysis of the CSF composition, a rough indicator of brain extracellular fluid, reveals that, with the exception of glutamate, CSF amino acid levels are ~ 10% of the plasma levels [155]. This led to the identification of five Na⁺-dependent systems on the abluminal membrane of BECs, which allow the elimination of non-essential and/or toxic amino acids as well as maintaining homeostatic control over all amino acids. These five Na⁺-dependent transporters (reviewed in [155]) are A (non-essential amino acid preferring e.g. alanine), ASC (alanine, serine, cysteine preferring), N (glutamine, asparagine and...
histidine preferring), excitatory amino acid transporter family (EAAT, aspartate and glutamate preferring) and a Na\(^+\)-dependent L neutral amino acid transporter system (LNAA).

1.1.5.4 Ions

The free passage of ions through the BBB is limited by the presence of TJs. BECs contain a number of Na\(^+\) and K\(^+\) transporters to regulate their brain concentrations [163-165]. Na\(^+\)-K\(^+\) ATPase is located on the abluminal EC membrane and serves the dual function of maintaining low extracellular K\(^+\) levels to enable optimal neuronal action potentials, and maintaining a high extracellular Na\(^+\) gradient to allow Na\(^+\)-dependent substrate transport to occur. There is also a Na\(^+\)/H\(^+\) exchanger [165, 166] located on the luminal and abluminal membranes at the BBB. Further luminal ion transporters include a Na\(^+\)/Cl\(^-\) co transporter [163], a Na\(^+\)/K\(^+\)/Cl\(^-\) co-transporter [167] and also a Na\(^+\)-Cl\(^-\)/HCO\(_3\)\(^-\) [168] dependent influx transporter.

1.1.6 ATP binding cassette (ABC) transporters

In addition to transporters involved in nutrient supply and homeostasis, BECs express a number of ATP-dependent binding cassette (ABC) transporters which act to prevent blood-to-brain transport of a broad range of substances, including xenobiotics and endogenously produced molecules. ABC transporters are a large family of membrane transporters expressed by a variety of cell types including many mammalian cells and bacteria. These transporters require ATP to transport molecules across plasma and intracellular membranes. To date, at least 48 ABC transporter genes have been identified and are classified into seven subfamilies ABCA to ABCG [169, 170]. At the BBB, ABCB1 (P-gp), ABCG2 (the breast cancer-related protein, BCRP) and ABCC [multidrug resistance proteins, (MRPs)] are the most significant (reviewed in [171]). Whilst the MRP family
members expressed at the BBB have a broad substrate range [172], a lack of specific inhibitors has hindered insight into their exact function at the BBB. P-gp and BCRP shall now be described in more detail, since they are the focus of the work described in this study on amyloid beta (Aβ) transport.

1.1.6.1 P-glycoprotein (P-gp)

Juliano and Ling [173] first discovered P-gp, a 170 kDa protein, which corresponded to the multidrug resistance activity of Chinese hamster ovary cells (CHO). Subsequent work revealed P-gp expression in other mammalian multidrug resistance cancer cell lines [174-176] and established a direct link between the MDR1/ABCB1 gene and P-gp protein expression [175]. In humans, two types of P-gp exist, which are termed class I and class II [172]. Class I P-gp is encoded for by the MDR1/ABCB1 gene, located on the long arm of chromosome 7 [177, 178], whilst class II (MDR2/ABCB4), with a high sequence homology, is located adjacently [179]. Class I P-gp is expressed by the epithelia of many organs including the gastro-intestinal (GI) tract and kidney, and on ECs of the testes and brain (discussed below). Class II P-gp is expressed by canalicular hepatocytes and acts as a bile salt transporter [180, 181] and phosphatidyl flippase [182, 183]. In rodents, class I P-gp is subdivided into mdr1a (expressed at the BBB) and mdr1b (expressed in brain parenchyma) and are the equivalent of human MDR1. The rodent equivalent of human MDR2 is denoted mdr2.

Structurally, both P-gp types are around 1200 amino acids in length, and contain two nucleotide-binding domains and twelve transmembrane segments. P-gp is arranged in two halves, joined by a 75 amino acid linker region [184], with each half consisting of a transmembrane domain (TMD) made of six transmembrane segments, and an intracellular nucleotide-binding (NBD) domain (reviewed in [172, 185-187]). Both the N- and C-termini are located intracellularly (Figure 1.4). The two halves of P-gp are believed to form
a barrel-like configuration with the two NBD arranged to form a dimer. The exact mechanism of transport of substrates by P-gp is unknown. The most recent model involves first the binding of a ligand to the TMD, leading to a conformational change in the NBDs, increasing their affinity for ATP. ATP binding induces the formation of a closed NBD dimer, which in turn results in a conformational change in the TMD to induce ligand translocation [185]. ATP hydrolysis then causes the dissolution of the closed NBD dimer, releasing ADP and allowing P-gp to return to a state of high affinity for the ligand.

![Figure 1.4. Structure of P-gp.](image)

P-gp is a transmembrane efflux transporter consisting of two TMD and two NBD. P-gp uses the energy derived from ATP to actively prevent the blood-to-brain transport of many substances

P-gp has a very large structurally diverse substrate list (Table 1.2), which includes many endogenous molecules (e.g. steroid hormones, cytokines, lipids), natural products and drugs in therapeutic use [172]. Multiple studies attempting to identify characteristics of P-gp substrates have been carried out [188-193]. However, a common feature is their amphipathic and, in some cases, hydrophobic nature. These properties allow for relatively easy diffusion across lipid membranes and have led to the notion that P-gp acts as a flippase transporter [186]. The flippase model states that lipophilic molecules associate with the inner leaflet of the lipid bilayer, and are flipped out by P-gp. In support of this notion, substrate binding sites have been located to the TMD of P-gp [176, 194], and phospholipid flipping is inhibited in vitro by the P-gp inhibitor vinblastine [195].
One of the most widely studied sites of P-gp expression is the GI tract. Canapio et al [196] have recently demonstrated P-gp expression in human tissue samples throughout the ileum, jejunum and stomach, at both the protein and mRNA levels. The majority of investigations into intestinal P-gp function have focused on whether P-gp limits the oral bioavailability of known P-gp substrates and anti-cancer drugs. In vivo and in vitro studies using mdr1a/lb (-/-) mice, caco-2 cell lines (a human carcinoma cell line) and human clinical trials have all been employed to that end. Several groups have suggested that the influence of P-gp on intestinal absorption is limited, since P-gp substrates have relatively higher absorption rates than expected [197-200]. In contrast, Oghira et al [201] have demonstrated that in mdr1a/b/-/- mice, the plasma levels of vinblastine after oral administration were increased, whereas that of verapamil was not, compared to wild type mice. Furthermore, in human volunteers, talinolol significantly increases the availability of digoxin [202], and similar findings have been noted with other agents [203]. Overall, P-gp in the intestine is located on epithelial cells on the luminal membrane (i.e. these cells are polarised with regards to P-gp), and, depending on the substrate, P-gp reduces oral availability.

The localisation and function of P-gp in the kidney, liver, placenta and lung appears to follow a similar theme of substrate efflux. In the kidney, P-gp expression is found on the luminal surface of epithelial cells of the proximal tubules and functions to excrete unwanted molecules into the urine [204]. In the liver, P-gp is found on the canalicular membrane of hepatocytes providing directional transport into the bile [205]. Placental expression of P-gp is localised to syncytiotrophoblasts, cytotrophoblasts and ECs in the trophoblast layer and, in general, P-gp is thought to play a role in protection of the foetus (reviewed in [206]). P-gp is found on ECs in both rat and human testes and Stewart et al [207] found P-gp staining in rat on both the luminal and abluminal membrane of testis EC. This suggests that the role in rat testis is to efflux substrates from the ECs themselves.
P-gp expression at the BBB has been noted in BECs and astrocytes [208, 209]. The expression of P-gp is frequently described as luminal, as P-gp expression has been found mainly on the luminal membrane of isolated capillaries from rat [210], mouse [211] and human [212]. There does exist however, some conflicting evidence with regards to the abluminal vs luminal expression of P-gp. Bendayan et al [213] observed P-gp staining along the nuclear envelope, in caveolae, cytoplasmic vesicles, Golgi complex, and rough endoplasmic reticulum (RER), using EM techniques and rat brain tissue. The presence of intracellular staining is unsurprising and could represent a basal P-gp production, or a pool of P-gp which could translocate to the membrane. However, the authors also demonstrated greater abluminal expression than luminal.

The most convincing indirect evidence for the polarisation of P-gp onto the luminal side of the BBB is found in P-gp knockout mouse models. In rodents, there are three P-gp genes, two encoding for P-gp type I (mdrla and mdr1b) and one encoding for the equivalent of human MDR2 (mdr2). Schinkel et al [214, 215] were the first to describe mdr1a (-/-) mice. Mdr1a(-/-) mice were found to be viable and healthy, but treatment with the anti-parasitic drug ivermectin to treat a mite infection revealed a 100-fold increased neural tissue accumulation over wild-type mice, and resulted in virtually all the mdr1a(-/-) mice dying. Follow up studies on mdr1a(-/-) and mdr1a/b (-/-) mice revealed that after peripheral administration there were increased brain levels of many P-gp substrates, including cyclosporin A, digoxin, verapamil, vinblastine, steroid hormones, morphine, and HIV protease inhibitors, indicative of a brain protective role for P-gp (reviewed in [172, 216]). Further corroborative findings revealed that brain uptake of colchicine, vinblastine and paclitaxel was increased by co-administration of a P-gp inhibitor [217, 218] (see Tables 1.1 and 1.2 for lists of P-gp substrates and inhibitors, respectively).

Overall, P-gp is believed to play a protective role by secreting toxic xenobiotics and unwanted naturally produced molecules into the intestinal lumen, bile and urine as well as protecting specific organs i.e. brain, testes. However, undesirable effects of P-gp include
multidrug resistance of cancerous tissue and the prevention of therapeutic agents reaching their intended target organs e.g. BEC P-gp prevents anti-cancer agents and HIV treatments reaching brain tissue.

<table>
<thead>
<tr>
<th>Substrate class</th>
<th>Examples</th>
</tr>
</thead>
<tbody>
<tr>
<td>Anticancer agents</td>
<td>Actinomycin D, daunorubicin, docetaxel, doxorubicin, etoposide, imatinib, paclitaxel, methotrexate, mitoxantrone, vinblastine, vincristine, mitomycin C, teniposide, taxol,</td>
</tr>
<tr>
<td>Antihypertensive agents</td>
<td>Celiprolol, diltiazem, losartan, talinolol,</td>
</tr>
<tr>
<td>Anti-arrhythmics</td>
<td>Digoxin, digitoxin, quinidine, verapamil</td>
</tr>
<tr>
<td>β-adrenoreceptor antagonists</td>
<td>Bunitrolol, talinol</td>
</tr>
<tr>
<td>Antidepressants</td>
<td>Amitriptyline, nortryptiline, doxepin, paroxetine, venlafaxine</td>
</tr>
<tr>
<td>Antimicrobial agents</td>
<td>Doxycycline, erythromycin, rifampin, tetracyclines, fluoroquinolines</td>
</tr>
<tr>
<td>HIV protease inhibitors</td>
<td>Amprenavir, indinavir, nelfinavir, ritonavir, saquinavir</td>
</tr>
<tr>
<td>Antihypertensive agents</td>
<td></td>
</tr>
<tr>
<td>Anti-emetics</td>
<td>Ondansetron, domperidon</td>
</tr>
<tr>
<td>H2 receptor antagonists</td>
<td>Cimetidine, Ranitidine</td>
</tr>
<tr>
<td>Immunosuppressants</td>
<td>Cyclosporin A, valspodar, tacrolimus</td>
</tr>
<tr>
<td>Anti-epileptics</td>
<td>Phenytoin, carbamazepine, phenobarbital, topiramate</td>
</tr>
<tr>
<td>Steroid hormones</td>
<td>Aldosterone, cortisol, corticosterone, dexamethasone, hydrocortisone.</td>
</tr>
<tr>
<td>Opiods</td>
<td>Morphine, loperamide</td>
</tr>
<tr>
<td>Lipid lowering agents</td>
<td>Lovastatin, cerivastatin</td>
</tr>
<tr>
<td>Fluorescent dyes</td>
<td>Rhodamine 123, calcein-AM, hoechst 3342</td>
</tr>
<tr>
<td>Cytokines</td>
<td>IL-2, IL-4 IFN-γ</td>
</tr>
</tbody>
</table>

Table 1.1 P-gp substrate list. P-gp acts to prevent the blood-to-brain transport of a broad range of xenobiotics and naturally produced signalling molecules [171, 172, 176].
<table>
<thead>
<tr>
<th>Generation</th>
<th>Examples</th>
</tr>
</thead>
<tbody>
<tr>
<td>First generation</td>
<td>Verapamil, cyclosporin A, quinidine, verapamil, vinblastine</td>
</tr>
<tr>
<td>Second generation</td>
<td>Valspodar (PSC-833), biricodar (VX-710)</td>
</tr>
<tr>
<td>Third generation</td>
<td>ONT-093, zosuquidar (LY335979), tariquidar (XR9576), elacridar (GF120918)</td>
</tr>
</tbody>
</table>

Table 1.2. A selection of P-gp inhibitors. First generation P-gp inhibitors are compounds that are in clinical use for other indications e.g. cancer therapies although they also display P-gp inhibitory action. Second and third generation inhibitors are more specific for P-gp. The P-gp inhibitors names given by the drug companies are shown where appropriate, with other synonyms shown in brackets. In this study, the name given by the drug company was used unless otherwise stated. Adapted from [171, 172, 176]

1.1.6.2 The breast cancer resistance protein (BCRP)

Similarly to P-gp, BCRP was discovered in a drug-resistant cancer cell line. Chen et al [219] identified BCRP in a breast carcinoma cell line (MCF-7/AdrV) that was resistant to the cytotoxic effects of anthracyclines, even in the presence of P-gp inhibition. Doyle et al [220, 221] subsequently identified and cloned BCRP cDNA from MCF-7 cells and found that transfection into MCF-7 cells resulted in the efflux of mitoxantrone, doxorubicin and daunorubicin. Two other independent groups also cloned an identical sequence from mitoxantrone-resistant human colon carcinoma cells [222] (MXR) and from human placenta [223] (PABCB). Currently, this transporter is referred to as BCRP/ABCG2 (reviewed in [224, 225]).

BCRP is a 70 kDa protein consisting of one NBD, one TMD containing six transmembrane segments and N- and C- termini located intracellularly (Figure 1.5). Compared to P-gp, BCRP is often referred to as a half transporter, as it is considered to form a homodimer through disulphide bonded cysteine residues in order to function ([224, 225]). In support of this notion, Mitomo et al [226] have demonstrated that BCRP forms homodimers in HEK-293 cells, which can be broken by mercaptoethanol treatment, although the exact position of the cysteine(s) residue(s) within the BCRP sequence that mediate homodimer formation is still under debate.
Figure 1.5. Structure of BCRP. BCRP contains contain one TMD and one NBD, and forms cysteine-dependent homodimers in order to function.

BCRP is found expressed in a large variety of tissues including placenta, liver, small intestine, brain, colon and lung, where, similarly to P-gp, it plays a role in organ protection. At the BBB, BCRP expression has been observed in BECs of porcine [227], mouse [228] and human origin [229]. Using confocal microscopy, Cooray et al [229] observed luminal BCRP expression in BECs of human tissue sections, indicative of barrier function. Sequencing of BCRP from normal tissue in comparison to that originally described from MCF-1 tumour cells, revealed a discrepancy in one amino acid at position 482 [230]. Wild type BCRP has an arginine (R482) where in many antracycline-resistant tumour cell lines there is a glycine or threonine (R482G/T). This difference in the amino acid sequence of BCRP has led to some confusion as to the substrate range. It appears as though both wild type and mutated BCRF can transport common drugs such as methotrexate and mitoxantrone, whilst only the mutated form shows preference for rh123 and enhanced activity towards daunorubicin and doxorubicin.

The transport function of BCRP for endogenous substances has not been extensively investigated, especially with regards to the BBB. mdr1a (-/-) mice have an enhanced BCRP expression of around three-fold in brain microvessels compared to wild type mice [228]. Furthermore, Cisternino et al [228] have shown that BCRP inhibition in mdr1a (-/-) mice results in enhanced prazosin and mitoxantrone accumulation in the brain.
Youdim et al [231] also demonstrated that the brain penetration of the flavanoid quercetin was increased by BCRP inhibition in rat models. The substrate range of BCRP shares an overlap with P-gp (e.g. Hoechst 3342 [232, 233], mitoxantrone [234], reserpine [235, 236]), and both P-gp and BCRP are inhibited by elacridar (GF120918) [237, 238]. Future investigations will yield a more detailed understanding of the role of BCRP at the BBB (see Table 1.3 for substrate list).

<table>
<thead>
<tr>
<th>Substrate class</th>
<th>Examples</th>
</tr>
</thead>
<tbody>
<tr>
<td>Anti-cancer drugs</td>
<td>Antracyclines, mitoxantrone, methotrexate, prazosin, topotecan</td>
</tr>
<tr>
<td>Anti-HIV agents</td>
<td>Lamivudine</td>
</tr>
<tr>
<td>Natural compounds</td>
<td>Flavonoids, porphyrins, sulphated oestrogens</td>
</tr>
<tr>
<td>Fluorescent dyes</td>
<td>Mitoxantrone, Hoechst 3342</td>
</tr>
<tr>
<td>Inhibitors</td>
<td>Fumitremorgin C and analogues e.g. KO143. Elacridar (GF120918), biricodar (VX-710), reserpine, prazosin.</td>
</tr>
</tbody>
</table>

Table 1.3. BCRP substrates and inhibitors. Substrates of BCRP are less well characterised than those of P-gp, however there is a large degree of overlap. The BCRP inhibitor names given by the drug companies are shown where appropriate, with other synonyms shown in brackets. In this study, the name given by the drug company was used unless otherwise stated. Adapted from [221, 225]

1.1.6.3 Regulation of efflux transporter expression

The regulation of P-gp is an area of extensive research, whilst the regulation of BCRP has not been extensively investigated as yet. Many extracellular molecules can alter P-gp function and/or expression by BECs. For example, ligands for PXR (ligand-activated transcription factors) can increase P-gp expression. Dexamethasone has been demonstrated to increase P-gp expression and cyclosporin A transport in isolated rat capillaries via PXR signalling [239]. Interestingly, the anti-nociceptive action of intravenous methadone, a P-gp substrate, was found to be reduced by 70% in transgenic mice expressing human PXR
PXR ligand xenobiotics could therefore act to induce P-gp expression, self-limiting their passage across the BBB.

Inflammatory mediators can also affect the expression of P-gp. Intracranial ventricle injections of LPS reduce P-gp expression [241]. However, peripheral inflammatory pain can increase P-gp expression [242]. Recently, it has been demonstrated that TNF-α and endothelin-1 rapidly decrease P-gp transport activity after 1 h incubation, with no changes in P-gp expression at the protein level in rat brain capillaries [243]. However, this effect was transient and by 6 h P-gp expression and function had increased to double that of control levels. Overall, many agents can induce a decrease and increase in P-gp expression and/or activity (Table 1.4).

1.1.7 The role of the BBB in CNS pathologies

There is increasing evidence of a role for the BBB in the pathogenesis of many diseases affecting the CNS. Indeed, BBB dysfunction is a hallmark of many pathological states including Alzheimer's disease (AD), multiple sclerosis (MS) and cerebral ischemia, amongst others. In addition, the presence of an intact BBB may affect the success of potentially beneficial therapies for many CNS disorders. For example, P-gp and BCRP expressed by BECs hinder access to the brain of many drugs used to treat epilepsy (where increased P-gp expression is also found), brain tumours and depression (reviewed in [172]). Similarly, many drugs that are effective in peripheral infectious diseases are not effective in CNS infections, as is the case of cerebral malaria and HIV-1 encephalopathy. In this section, the role of the BBB in multiple sclerosis and cerebral ischemia will be briefly discussed before we consider in greater detail what is known about BBB dysfunction in AD.
<table>
<thead>
<tr>
<th>Model</th>
<th>Agent</th>
<th>Effect on P-gp expression and/or function</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rat brain capillaries</td>
<td>Dexamethasone, pregnenolone.</td>
<td>Increased protein expression and transport activity.</td>
<td>[239]</td>
</tr>
<tr>
<td>Rat BEC cell line, GPNT</td>
<td>Dexamethasone, PKC activation.</td>
<td>No change in protein expression, increased activity.</td>
<td>[244]</td>
</tr>
<tr>
<td>Rat brain capillaries</td>
<td>TNF-α, ET-1</td>
<td>Biphasic response. After 1 h incubation decreased activity, after 6 h incubation increased protein expression and activity.</td>
<td>[243]</td>
</tr>
<tr>
<td>Human BEC cell line BB19</td>
<td>TNF-α</td>
<td>No change in protein expression, decreased activity.</td>
<td>[245]</td>
</tr>
<tr>
<td>Rat BECs cell line GPNT</td>
<td>TNF-α</td>
<td>Increased mRNA levels, decreased activity.</td>
<td>[246]</td>
</tr>
<tr>
<td>Primary rat BECs</td>
<td>Phenobarbital, phenytoin, carbamazepine</td>
<td>Increased protein expression and activity.</td>
<td>[247]</td>
</tr>
<tr>
<td>Rat in vivo</td>
<td>Kainate induced seizures.</td>
<td>Increased protein expression.</td>
<td>[248]</td>
</tr>
<tr>
<td>Primary rat BECs</td>
<td>Glutamate</td>
<td>Increased mRNA levels, protein expression and activity.</td>
<td>[249]</td>
</tr>
<tr>
<td>Primary rat BECs</td>
<td>Hydrogen peroxide, hypoxia/reperfusion</td>
<td>Increased mRNA levels and activity.</td>
<td>[250]</td>
</tr>
<tr>
<td>Primary rat BECs</td>
<td>Repetitive hypoxia.</td>
<td>Increased protein expression and activity.</td>
<td>[251]</td>
</tr>
<tr>
<td>Mice in vivo, and mice BECs</td>
<td>HIV-Tat</td>
<td>Increased mRNA levels, protein expression and activity.</td>
<td>[252]</td>
</tr>
<tr>
<td>Mouse BECs cell line MBE4</td>
<td>TGF-β</td>
<td>Increased activity.</td>
<td>[253]</td>
</tr>
<tr>
<td>Primary rat BECs</td>
<td>Glutathione depletion.</td>
<td>Increased protein expression and activity.</td>
<td>[254]</td>
</tr>
<tr>
<td>Mice BECs in vivo</td>
<td>Oral rifampin-treated mice overexpressing human PXR.</td>
<td>Increased activity.</td>
<td>[240]</td>
</tr>
<tr>
<td>Rat BECs in vivo</td>
<td>Intracranial LPS injections</td>
<td>Decreased mRNA levels and function.</td>
<td>[241]</td>
</tr>
<tr>
<td>Rat BECs in vivo</td>
<td>Lambda-carrageenan hind paw injection.</td>
<td>Increased protein expression and activity.</td>
<td>[242]</td>
</tr>
</tbody>
</table>

Table 1.4. A selection of modulators of P-gp expression and/or function by BECs
1.1.7.1 Multiple sclerosis

MS is the most common neurological condition affecting young adults, with around 85,000 people in the UK diagnosed with MS [255]. In many cases, MS follows a course of remission and relapse and is characterised by axonal demyelination and microvascular inflammation [256, 257]. Active CNS lesions, (manifested by areas of active demyelination) are characterised by the activation of microglia and macrophages, possibly via a T cell-mediated autoimmune response [256, 257]. Axons and astrocytes may also be affected in MS. Increased BBB permeability is a characteristic of MS [258, 259] and TJ disruption, including alterations in ZO-1 and occludin expression are frequently found in active MS lesions [260-262]. In animal models of MS (allergic encephalomyelitis, EAE), and MS patients, the cytokines interleukin-1, TNF-α and interferon-γ (IFN-γ) are increased (reviewed in [263, 264]). In vitro, all three of these cytokines can alter TJ expression, suggesting a potential mechanism by which BBB leakiness is induced in MS patients [265-270].

1.1.7.2 Cerebral ischemia

Cerebral ischemia is an event whereby parts of the brain do not receive sufficient blood supply to maintain neuronal function. Ischemic events e.g. stroke can lead to increased microvascular permeability and oedema both clinically in vivo and in vitro (reviewed in [271]). TJ disorganisation might play a key role in the increased BBB permeability observed in ischemia. Witt et al [272] have demonstrated a concomitant reduction in occludin expression and increased permeability to sucrose using a low O₂ model of ischemic insult in rats. Fisher et al [273] have demonstrated in vitro using porcine BECs, that hypoxia induces increased permeability and ZO-1 down-regulation via VEGF production. The application of VEGF to in vitro cultures can reduce the expression of occludin and ZO-1 in bovine BECs [274]. Van Bruggen et al [275] have also found that
treatment of mice with a VEGF antagonist can reduce oedema and infarct size in a middle cerebral artery occlusion model of stroke. Nitric oxide (NO) is also considered a possible modulator of BBB permeability. Mark et al [276] have demonstrated in vitro that increased BECs permeability as a result of oxygen deprivation can be attenuated by inhibition of nitric oxide synthase. Thus, the increased BBB permeability that occurs as a consequence of ischemia, potentially exacerbates the symptoms found in stroke.

1.2 Alzheimer’s disease (AD)

Dementia, as defined by the Diagnostic and Statistical Manual of Mental Disorders IV [277], is ‘the development of multiple cognitive deficits (including memory impairment) that are due to the direct physiological effects of a general medical condition, to the persisting effects of a substance, or to multiple aetiologies’. In practise, dementia leads to the loss of skills needed to carry out daily functions. Globally, the direct and indirect costs of dementia were estimated by Winblad and Wimo [278] to be in the region of US $ 248 billion in 2003, which with an ageing population could rise considerably in the coming years. The incidence of dementia doubles every 5 yrs after 65 yrs of age, with around 1 in 5 individuals over 80 years of age affected by dementia [279-281]. As global demographics shift to an aging population, with more countries developed or developing (e.g. China, India), it is more than likely that dementia cases will rise. Indeed, Ferri et al [279] have calculated that dementia cases will double every 20 yrs to 81.1 million by 2040. AD accounts for 40 – 60 % [280, 282] of all dementia cases, and in 2007, in the UK, there were ~ 700,000 people who suffered from dementia, at a cost of over £17 billion [283]. Approximately 90-95 % of AD cases are idiopathic (no established cause) and occur over 65 yr of age, termed late onset/non-familial/sporadic AD (SAD) [284, 285]. The remainder of cases exhibit inherited patterns and occur frequently in patients under 65 yrs of age, termed early onset/familial AD (FAD).
1.2.1 The pathology of AD

Aloys Alzheimer, a German neurologist, was the first to describe a patient with what is currently known as AD. At a conference of psychiatrists in 1906, Alzheimer described [286-289] a deceased patient (D. Augustine), who had a five year history of progressive memory impairment, hallucinations, delusions and severely impaired social functioning, which are hallmarks of AD today. Currently, AD is recognised as a progressive neurodegenerative illness (clinical stages are shown in Table 1.5), whereby initial minor memory lapses develop into severe motor dysfunction, with death occurring 10-15 yrs after diagnosis.

Stage 1: No cognitive decline

No memory problems evident to a health care professional.

Stage 2: Very mild decline

Memory lapses (e.g. forgetting location of keys) not noticeable to friends or during medical examination

Stage 3: Mild cognitive decline

Friends, family and co-workers notice memory alterations. Memory problems can be recognised during medical examination and in some cases diagnosed with early stage AD. Problems include;

- Word/name recall problems
- Decreased name retention
- Losing/misplacing an object
- Decreased ability to plan/organise

Stage 4: Moderate cognitive decline/mild or early stage AD

Clearly noticeable issues in:

- Decreased current event and personal knowledge
- Impaired mental arithmetic ability
- The individual will appear withdrawn and subdued

Stage 5: Severe cognitive decline/mid stage AD

Major cognitive dysfunction emerges and assistance with day-day activities may be required. Symptoms include:
- Unable to recall address, telephone number, education history and can become confused with the date and day
- Require help choosing appropriate clothing and with mental arithmetic
- Usually can recall own name and do not require help eating.

Stage 6: Severe cognitive decline/moderately severe mid stage AD

In addition to worsening memory, personality changes emerge and individuals may;

- Lose awareness of recent experiences and events
- Recollect imperfectly personal history, however can recall own name
- Need help dressing and using the toilet, incontinence
- Hallucinations, delusions, repetitive behaviour

Stage 7: Very severe cognitive decline/late stage AD

In the final stage, AD patients often lose the ability to speak and control movement:

- Individuals lose the ability to form recognisable speech
- Need constant help eating and using the toilet
- Lose the ability to walk, smile and muscle become rigid
- Death 5-15 years post diagnosis

Table 1.5. Symptomatic stages of AD. AD is a chronic neurodegenerative illness, with memory and normal cognitive function loss becoming progressively worse during disease progression. Source [290]

In the context of AD pathology, Alzheimer, using silver impregnation microscopy staining, observed neuronal atrophy, extracellular ‘miliary’ deposits (which are now known as senile plaques) and intraneuronal neurofibrillary tangles (NFT) over the cerebral cortex of Augustine [286-289]. Since this initial description, the core of the plaques was found to consist of the polypeptide Aβ [291-294], whilst the NFT were shown to consist of paired helical filaments of hyperphosphorylated microtubule associated tau protein [295, 296]. Nowadays, complete diagnosis of AD is only fully confirmed by the identification of these findings in post mortem tissue and falls into different staging categories. Braaq and Braaq have investigated the distribution of NFT in the AD brain and describe six stages in AD pathogenesis (BRAAQ stages) [297]. Initially, NFT appear in the trans-enterorhinal region of the basal mediotemporal cortex (stages I and II), then they can be detected in the hippocampus (stages III and IV) and the neocortex (stages V and VI). Thal et al [298-300],
have more recently suggested that the expansion of Aβ deposits correlates with NFT and the development of cognitive deficits. These authors have observed five stages of Aβ deposition in the medial temporal lobe; stage 1 occurs in the neocortex, stage 2 in the entorhinal region, stage 3 in the thalamus, basal ganglia and hypothalamus, stage 4 in the midbrain and medulla oblongata and stage 5 in the brain stem and cerebellum. It should be noted that for both NFT and Aβ progression in AD, the hippocampus is affected throughout the different stages.

A further characteristic of AD is the loss of cholinergic neurones in the basal forebrain of AD patients [301]. ACh is a neurotransmitter involved in the cognitive functions including learning and memory. In addition to the loss of cholinergic neurones, decreased choline acetyl transferase (the enzyme involved in ACh synthesis), choline uptake and ACh release have all been reported in AD patients.

Overall, AD is characterised by neuronal degeneration, NFT and Aβ deposits. Aβ is considered at the centre of AD pathogenesis, the evidence of which shall now be discussed in more detail.

1.2.2 Amyloid β (Aβ) cascade hypothesis

There is no clear defining theory for the underlying cause(s) of AD. The most widely accepted view is described as the Aβ cascade hypothesis [302, 303] (Figure 1.6), although more recently vascular alterations (discussed in section 1.2.4) have come to be considered critical events in AD pathogenesis. Under the Aβ cascade hypothesis, in AD patients, an event(s) occurs that causes increased levels of Aβ in the brain, potentially through increased production by brain resident cells or decreased clearance (section 1.2.3). Aβ has a high tendency to self-aggregate and forms soluble oligomers, fibrils and plaques, either intra or extra-neuronally. These increased Aβ species induce an inflammatory response, neuronal dysfunction and lead to the symptoms of AD disease.
Upstream event(s) such as:
- APP, PS1 or PS2 mutations
- Other risk factors e.g. aging, environmental factors
- Increased Aβ production or increased Aβ 1-42/1-40 ratio
- Decreased Aβ clearance/degradation
- Idiopathic?

Increased Aβ 1-42/40 accumulation in extracellular space and within neurones

Aβ oligomerisation and deposition as plaques

Subtle effects on synapses and serious neuronal injury

Microglial and astrocytic activation and inflammatory response

Altered neuronal ionic homeostasis and oxidative injury

Altered kinase/phosphatase activity leading to NFT

Widespread neuronal/neuritic dysfunction with neurotransmitter deficits

Figure 1.6 Aβ cascade hypothesis. Aβ is believed by many in the field to be the cause of AD. In the Aβ cascade hypothesis, increased Aβ levels in the brain of AD patients lead to widespread neuronal degeneration and inflammation which cause dementia. Adapted from [302-304].
1.2.2.1 Aβ processing

Shortly after the identification of Aβ as the main component of senile plaques, its precursor protein was identified and named as the amyloid precursor protein (APP) [292] (Figure 1.7). APP is part of a family of type 1 membrane glycoproteins, which in mammals includes APP-like protein 1 and 2 (APLP 1 and 2) (reviewed in [305-307]). The human APP gene is located on the long arm of chromosome 21 and codes for three main isoforms of 695, 751 and 770 amino acids in length. APP 751 and 770 contain a domain that is homologous to the kunitz-type serine protease inhibitors (KPI), and are expressed by virtually all cell types. APP695 lacks the KPI domain and is primarily expressed by neurones.

APP is processed by three proteinases termed α-, β- and γ-secretase. Cleavage of APP by α- or β-secretase generates larger soluble APP fragments termed APPsa and APPsb and C-terminal fragments (CTFa and β). Subsequent cleavage of CTFa by γ-secretase produces a 3 kDa product whilst CTFβ cleavage produces Aβ of various amino acids in length, of which Aβ 1-40 and Aβ 1-42 are the most prominent, and the APP intracellular domain (AICD). The main neuronal β-secretase is β-site APP cleaving enzyme (BACE), whilst γ-secretase is a protein complex consisting of at least presenilin 1 and 2 (PS1 and 2), nicastrin, anterior pharynx defective-1 and presenilin enhancer. BACE, APP and the γ-secretase complex are most likely to degrade APP in endosome compartments and thus secrete Aβ via vesicular release. Thinakaran and Koo [306] have suggested that only 10 % of APP is present on the plasma membrane in cultured cells. APP can undergo axonal transport and Cirrito et al [308] have recently demonstrated Aβ vesicular release via synaptic exocytosis.

Aβ has a high tendency to self-aggregate, forming soluble dimers and oligomers and larger insoluble fibrils and plaques high in β-pleated sheet content. The solubility of an
Aβ species is generally defined as its ability to remain in the aqueous phase of a solution after high-speed centrifugation (>100,000 xg, 1 h).

(a) Human APP 770

```
1  mlpglallll aawtaralev ptdgnagllla epqiamfcgr lnmhmnvqng
51  kwdsdpsttk tcidtkegil qycqevypel qitnvveang pvtiqnwckr
101  grkgckthph fvipyrcvlg efvsdallvp dkckflhqer mdvcethlhw
151  htvaketicse kstnhdygm llpcgidkfr gvefvcgppla eesdnvsad
201  aeedddvww ggadtdyadg sedkvvevae eeevaeevee eadedded
251  gdevveeae pyeeatertt siatttttt ttssvevveve cvseqaetgpc
301  ramirsewfd vtegkcapff yggcggznnt fdeeycma cvgsamsqsl
351  kttqeplrd pvkltpttas tpdadkyle tpgeehnqf gqkakerlea
401  khrersqvm reweeaqrga klnpkadkka viqhfgfeke slgeanen
451  qqylevethm veamlnrrr lalenyital qavpprhrv fnmlkkyvra
501  egkdrqhtl kfehhrmvdp kkaaqirsqv mthlrviyv mnqslsly
551  vppavieqg evlqelqeeg nysddvlnn mseprylnf dalmpsitet
601  kttvleppvln gfsldldq whgsfagdsv anteneevp darpaadrq
651  ttrpgslltn ikiteisvek mdeafhdsy yevhghklvf faedvgsnak
701   aiiglmggyv viatvivitl vmlkkkyts ihhgyvevd aetpeerhls
751    kmqqngyenp tykffeqmqn
```

(b) APP is cleaved by the action of α- and γ-secretases to produce Aβ 1-40 and Aβ 1-42. A selection of FAD mutations are also indicated, which increase the net production of Aβ, the ratio of Aβ1-42/1-40 or the aggregation properties of Aβ [309, 310].

Figure 1.7. Production of Aβ from its precursor APP. (a) The amino acid sequence of APP with the Aβ 1-42 sequence in bold [309]. (b) APP is cleaved by the action of α-, β- and γ-secretases to produce Aβ 1-40 and Aβ 1-42. A selection of FAD mutations are also indicated, which increase the net production of Aβ, the ratio of Aβ1-42/1-40 or the aggregation properties of Aβ [309, 310].
1.2.2.2 \(A\beta\) levels in AD

The levels of \(A\beta\) in the plasma, cerebrospinal fluid (CSF) and total brain continue to be an area of intense research with the view to aid the diagnosis and understanding of disease progression (reviewed in [311-313]). Some researchers have argued that \(A\beta\) plaques do not correlate with AD progression, since \(A\beta\) plaques are found in non-dementia patients, and in APP transgenic mice, memory impairment and alterations in neuronal function occur prior to amyloid deposition [314, 315]. In contrast however, increased insoluble, and, importantly, soluble \(A\beta\) oligomers are found in the brain tissue of AD patients (reviewed in [311]). For example, Gong et al [316], found an increase of up to 70-fold in levels of oligomeric species (main constituent 12-mer) in AD patient tissue, compared to controls. The increased retention of positron emission tomography (PET) agents, which can bind to the fibrillar form of \(A\beta\), have also been demonstrated in AD patients and in a subset of patients with mild cognitive impairment that subsequently developed AD (reviewed in [317]). For example, the retention of the Pittsburgh compound-B (PIB) was higher in AD patients compared to controls and was inversely correlated with glucose metabolism [318].

Measurements of plasma \(A\beta\) levels have been inconclusive as to whether \(A\beta\) levels are increased or unaltered in AD (reviewed in [313]). The contradictory findings can originate from the inability of ELISA techniques to sufficiently measure aggregated \(A\beta\) levels, \(A\beta\) binding to plasma proteins and a high intra- and inter-individual variability. More recently, however, increased free [319] and total plasma \(A\beta\) levels [320] have been found in AD patients compared to healthy controls. Furthermore, Van Oijen et al [321] have found that high \(A\beta\) 1-40 levels in early life corresponded with an increased risk of developing dementia in later life, compared to those who did not develop dementia.

CSF levels of \(A\beta\) 1-42 are reduced in AD patients compared to controls, most likely as the result of sequestration and deposition in the brain [311, 312, 322]. Indeed,
CSF levels are inversely correlated with Aβ load after autopsy [323] and PIB labelling [324].

1.2.2.3 Genetic factors underlying AD pathogenesis

A key line of evidence for the role of Aβ in AD has originated from genetic studies. Down’s syndrome is caused by a trisomy in chromosome 21, where the APP gene is located, and Down’s syndrome patients display AD pathologies including increased levels of Aβ 1-40 and Aβ 1-42 in brain and plasma [325, 326], Aβ plaques [327, 328] and the development of dementia at an early age [329]. In a rare case of Down’s syndrome, a point break mutation left a patient diploid for APP [330]. This patient lived until 78 years of age with no evidence of dementia and an autopsy revealed no Aβ deposition, highlighting a central role of Aβ in AD.

The genetic mutations found thus far in FAD all reside in the APP, PS1 or PS2 sequence (reviewed in [284, 285]). Mutations in the APP sequence are often named after the region of origin (e.g. Swedish, Dutch, Arctic, Iowa) and all have the net consequence of increasing the production of Aβ or increasing the ratio of Aβ 1-42 to Aβ 1-40 [284, 285]. In many cases the ability of these mutations to confer AD pathology has been confirmed in transgenic mouse models (reviewed in [310, 331, 332]). For example, the Tg 2756 mouse model expresses the 695 human isoform of the Swedish mutation of APP, and develops Aβ deposits at around 9 months of age. Mutations in PS1 and PS2 have the net result of increasing the production of Aβ 1-42, which is considered a more toxic species, as observed from the plasma and in the media of cultured skin fibroblasts from patients harbouring PS1 and/or PS2 mutations [333].

The majority of AD is sporadic, with the only high genetic risk factor being ApoE4 allele inheritance [334]. The ApoE gene is involved in nerve regeneration, immunoregulation and the activation of several lipolytic enzymes [335]. ApoE4 is
associated with a higher Aβ plaque burden [336, 337] in AD, although the mechanism through which this is caused is not clear [338]. Crossing APP transgenic mice with Apo E-deficient mice results in reduced cerebral Aβ deposition [339]. An interesting role of ApoE proteins is their ability to block Aβ transport from the blood into the brain. ApoE2 and 3 completely prevent the blood-to-brain transport of Aβ in a guinea pig perfusion model, whilst 85% of Apo E4-Aβ crossed into the brain, which could increase the brain levels of Aβ and add to AD pathology [340].

1.2.2.4 Effects of soluble Aβ on neurons

There is a large body of work that has demonstrated that Aβ is toxic to neurones in vitro [341-353] and can cause neuronal dysfunction in vivo both in transgenic models and after intracerebral injection of Aβ [354]. More recently, soluble oligomeric Aβ species are emerging as the most neurotoxic Aβ forms (reviewed in [355-359]). As noted earlier, oligomers have been detected in AD patients at 70 fold higher levels than in control patients [316]. The first description of toxic non-plaque Aβ species was noted by Oda et al [360]. Astrocytic Apo J can prevent the formation of large aggregates, and was incubated with Aβ 1-42 and PC12 cells (cell line derived from a pheochromocytoma of the rat adrenal medulla) in an attempt to reverse toxicity. Oda et al [360] found enhanced neuronal toxicity, which was later attributed to smaller Aβ oligomers [361] named Aβ-derived diffusible ligands (ADDL) [356, 362]. ADDLs can be anything from dimer to 24 mer in size and impair synaptic plasticity and hippocampal long term potentiation (LTP) and induce neuronal cell death. ADDLs can induce hippocampal, but not cerebellar, neuronal death in in vitro mouse cultures, mirroring AD pathology [356, 357, 362]. In addition, de Felice et al [363] have shown that oligomers isolated from human AD tissue can induce tau hyperphosphorylation in rat hippocampal neuronal cultures.
More recently, synaptic defects are thought to underlie the cognitive dysfunction found in AD. Aβ administration in vivo and in vitro, similarly to AD transgenic mouse models, leads to reduced dendritic spines and synapse number, and inhibition of LTP (reviewed in [364-368]). The inhibition of LTP, which is believed to be critical for memory formation, might, in part, be due to Aβ-induced loss of AMPA receptors and PSD-95 ([364-368]). Soluble oligomers can induce many of these changes in vivo [359]. For example, Klyubin et al [369] have recently found that Aβ-dimers, isolated from AD patients, impaired LTP, decreased hippocampal spine density and disrupted learned memory behaviour in rats, and these effects were inhibited by Aβ antibody treatment.

As described earlier, NFT are considered to be a consequence of Aβ in AD. NFT are not specific for AD and are found in other CNS disorders with (e.g. fronto-temporal dementia with Parkinsonism) and without dementia (e.g. progressive supranuclear palsy). NFT are insufficient to induce plaques. By contrast, Aβ has been shown to induce tau pathology. Gotz et al [370] have demonstrated that intracerebral injection of Aβ 1-42 into mutant tau over-expressing mice can increase the levels of NFT by 5-fold. Lewis et al [371] observed that transgenic mice expressing mutant tau and APP have increased levels of NFT in the olfactory cortex and limbic system compared to mice that expressed the tau mutation alone. Thus, whilst NFT are considered a key component of neuronal toxicity in AD, they are more likely to play a secondary role to Aβ [372].

1.2.2.5 Inflammatory response in AD

Another component of AD pathology is the presence of brain inflammation. The observed inflammatory response includes astrocytic end feet swelling [373], microglia activation [374] and either pericytic atrophy [375] or an increase in pericyte capillary coverage [376], which may constitute a second line of defence. The activation of astrocytes and microglia is often associated with an inflammatory response, and in AD patients the
cytokines IL-1 α/β, IL-6 and TNF-α are elevated [377]. Increased levels of Aβ might in part be responsible for the inflammatory response in AD. Aβ *in vitro* has been demonstrated to activate astrocytes and microglia to produce the cytokines mentioned above ([374, 377]), adding further evidence for the role of Aβ in AD. Whilst the relative contribution of inflammation to neuronal malfunction and death remains undetermined, it is interesting to note that inhibition of p38MAPK, activation of which is associated with increased production of cytokines by microglia, has beneficial demonstrable effects *in vivo*. Munoz *et al* [378] have recently demonstrated that p38MAPK inhibition suppressed hippocampal levels of TNF-α and IL-1 induced by intracerebroventricular Aβ 1-42 injections in mice, which was associated with an improvement in cognitive function.

1.2.3 Mechanisms of Aβ deposition

The increased levels of Aβ found in AD may be a direct consequence of increased production by brain resident cells, or of decreased clearance via the ISF or across the BBB.

1.2.3.1 Increased production of Aβ by brain resident cells

The increased levels of Aβ found in the CNS of AD patients are an indication of increased production by brain resident cells. Indeed, cultured neurones and astrocytes have been shown to produce Aβ [379], and neurones *in vivo* also produce Aβ [308]. Neuronal APP processing can occur during axonal transport and via the endosomal pathway. Cirrito *et al* [308] have demonstrated that synaptic activity is associated with vesicular Aβ release in Tg2756 mice. Mutations in PS1 and/or 2 and APP increase the production of Aβ by neurones *in vitro* [380, 381]. It is therefore considered that increased Aβ production by neurones might be a key pathogenic event in AD. However, there is currently no direct evidence of this in non-familial AD, and the mechanisms by which neurones might increase Aβ production in AD remains unclear.
1.2.3.2 Perivascular drainage of \(A\beta \)

Reduced perivascular drainage of \(A\beta \) might represent a mechanism by which CNS \(A\beta \) levels are increased (reviewed in [382]). The interstitial fluid (ISF) that surrounds the brain tissue, is roughly 280 ml in volume, and has a drainage rate of 0.11-0.29 \(\mu l/\text{minute}/g \) of brain [382]. ISF drains along the capillary and artery basement membrane to cervical lymph nodes. In AD, this pathway for \(A\beta \) elimination might be disrupted. Increased \(A\beta \) production by neurones, and stiffening of arteries during aging could reduce the clearance of \(A\beta \) via ISF drainage. \(A\beta \) is also found deposited on the blood vessels (arteries and capillaries) in many AD patients as a result of a process known as cerebral amyloid angiopathy (CAA), and is associated with a loss of smooth muscle cells in arteries [382]. A loss in smooth muscle cells might contribute further to reducing the perivasular drainage of \(A\beta \).

1.2.3.3 Blood-brain barrier clearance of \(A\beta \)

Recently, Zlokovic \textit{et al} [137, 383] have postulated that faulty clearance of \(A\beta \) at the BBB is key to the pathogenesis of AD. BECs express proteins capable of \(A\beta \) transport into the brain, most notably the receptor for advanced glycation end products (RAGE) and megalin, and from the brain, namely low-density lipoprotein receptor related protein (LRP-1) and P-gp (Figure 1.8).

RAGE is a multiligand receptor of the immunoglobulin superfamily, and is found expressed on microglia, neurones and BECs. The distribution of RAGE appears to be altered in AD. Donahue \textit{et al} [384] observed an increased microvascular and decreased neuronal RAGE expression in the hippocampi of AD patients compared to controls. Miller \textit{et al} [385] have recently confirmed this finding in hippocampal slices and found that RAGE levels were increased in cerebral BECs at the onset of AD and also in the progression to advanced BRAAQ stages. The interaction of \(A\beta \) with RAGE on neurones
can result in direct and indirect (via microglia activation) toxicity [386] and neuronal stress [387, 388], whilst in BECs a major consequence of Aβ-RAGE interaction is Aβ transcytosis across the BBB from the blood to the brain.

Figure 1.8. Proposed BBB transport routes for Aβ. Abluminal LRP-1 in addition to the ABC transporter P-gp, is considered to transport Aβ from the brain into the blood. RAGE mediates blood-to-brain Aβ transport. LRP-2/Megalin is also a proposed to mediate blood-to-brain transport of ApoJ-bound Aβ.

Using isolated primary hBECs, Mackie *et al* [389] demonstrated that RAGE transcytosed Aβ 1-40 from the luminal (blood) side to the abluminal side and was blocked by an anti-RAGE antibody *in vitro*. Deane *et al* [390] used an *in vivo* model, whereby Aβ 1-40 was intravenously infused into mice, and found RAGE-mediated Aβ transcytosis across the BBB. RAGE-Aβ interactions in the mouse model also led to the expression of inflammatory cytokines including TNF-α and IL-6, and induced vasoconstriction via endothelin-1 production. These authors also showed that in RAGE-null mice, the transport of Aβ into the CNS, was undetectable. Soluble RAGE (sRAGE), is a secreted form of RAGE, which can act as a signalling decoy receptor, and Emanuele *et al* [391] have recently reported decreased levels of sRAGE in the plasma of AD patients. In AD,
increased RAGE expression by BECs, together with decreased plasma sRAGE would therefore result in increased susceptibility to Aβ deposition in the brain.

A second blood-to-brain Aβ transporter at the BBB for Apo J-bound Aβ has also been described. Zlokovic et al [392] have shown that the infusion of ApoJ-Aβ complexes in guinea pigs, results in a high affinity brain uptake via LRP-2/megalin/gp330. However the significance of this interaction for AD has not been explored further.

LRP-1 is a multi-ligand scavenger receptor expressed on the abluminal membrane of BECs and also on neurones. Data from in vitro fibroblast and neuronal cultures have demonstrated that LRP-1 binds to carrier (α2 macroglobulin)-bound Aβ [393], and in vivo LRP-1 binds to free Aβ. At the BBB, interactions between Aβ and LRP-1 result in the clearance of Aβ from the abluminal membrane to the luminal side i.e. clearance of Aβ from the CNS. Shibata et al [394] reported that after intracerebral injection of Aβ 1-40 in young mice, the peptide was rapidly removed from the brain, an effect that could be significantly reduced by LRP-1 antibodies. Deane et al. [395] further demonstrated in vivo the ability of LRP-1 to clear Aβ from the mouse brain and also identified two binding regions in LRP-1 which Aβ binds to: cluster II and IV. Subsequently, Sagare et al [319] found that treatment with recombinant LRP cluster IV (sLRP-IV) in APPsw +/− mice resulted in clearance of Aβ 1-40 and Aβ 1-42 from the hippocampus, cortex and whole brain. The increased clearance of Aβ appeared to be mediated by sequestration of Aβ in the plasma by sLRP-IV, and resulted in improvements in cognitive function as assessed by operant learning.

Alterations in LRP-1 expression are also found in AD. Kang et al [396] have described decreased LRP-1 expression at the BBB associated with increased plaque deposition in AD patients. Donahue et al [384] have also demonstrated reduced LRP-1 expression in cerebral microvessels of AD patients. Intriguingly, Sagare et al [319] have also found 30 % reduction in soluble LRP (sLRP) plasma levels in AD patients and an increase in free Aβ levels. There remains a degree of controversy as to the validity of LRP-
genetic mutations as a risk factor for AD. There are conflicting reports of a
polymorphism of the \textit{LRP-1} gene as an increased risk factor for developing AD. A positive
correlation between with the C766T and C766C genotype but not the T766T genotype of
LRP-1 has been observed in AD patients [397-401], although no correlation was observed
in other studies [402-405]. In one study, carriers of the T766T genotype were observed to
have decreased plaque numbers and increased LRP-1 expression by BECs, although all
presented with AD [396]. Therefore in AD, a decreased LRP-1 expression at the BBB and
sLRP-1 the plasma, could result in increased A\beta deposition in the brain. Currently, the
application of sLRP to the treatment of AD is under investigation.

Lam \textit{et al} [406] were the first to describe the ability of A\beta to bind to P-gp. The
group found that transfection of MDR into a human embryonic kidney cell line (HEK293)
previously stably transfected with human APP harbouring the Swedish mutation, or co-
transfection with the Swedish mutation APP gene into wild type HEK293 cells, resulted in
increased A\beta levels in the media. However, MDR1 transfection resulted in an increased
APP expression in the cell line, which may account for increased A\beta production. A\beta was
confirmed as a P-gp substrate, since A\beta 1-40 and A\beta 1-42 were shown to decrease the
transport of colchicine into P-gp-enriched hamster vesicles and also to quench the
fluorescence of labelled P-gp. Further \textit{in vitro} [407] evidence for P-gp-mediated A\beta
transport has been derived from a porcine derived kidney epithelial cell line (LLC). LLC
cells transfected with human P-gp, showed increased A\beta 1-40 and A\beta 1-42 transport from
the basolateral-to-apical chamber when grown on filter inserts compared to untransfected
LLC cells. This increased A\beta transport was inhibited by cyclosporin A. In membrane
vesicles derived from LLC-mdrl cell lines, the transport of rh123 was increased compared
to untransfected LLC cells and was also inhibited by A\beta 1-40 and A\beta 1-42 to a similar
extent as that induced by verapamil.

Cirrito \textit{et al} [408] have recently investigated P-gp-mediated A\beta transport \textit{in vivo}.
Initially, it was demonstrated that P-gp null mice cleared intracerebrally injected A\beta 1-40
and Aβ 1-42 at a much slower rate than wild type mice. However, the P-gp null mice also showed a marked decrease in expression of LRP-1, which may account for this effect. This group therefore went on to investigate the effect of a pharmacological P-gp inhibitor, tariquidar (XR9576), in Tg2576 mice. Tariquidar-treated animals showed increased ISF levels of Aβ compared to control animals. In addition, P-gp null mice when crossed with Tg2576 mice displayed increased hippocampal Aβ load, compared to Tg2576 mice. However LRP-1 down-regulation might have been responsible in part for this effect. Whilst an inverse correlation between P-gp expression and Aβ plaque deposition has been noted in non-dementia autopsies [409], the exact role of P-gp in AD is not fully understood and the contribution of P-gp to Aβ transport at the BBB warrants further investigation.

1.2.4 Role of vascular dysfunction in AD pathogenesis

The BBB may play an important role in the transport of Aβ into and out of the brain. In addition, multiple investigators have recently suggested that cerebrovascular dysfunction plays an important part in AD pathology (reviewed in [410-420]). This includes hypoperfusion and alterations in brain capillary function.

1.2.4.1 Brain hypoperfusion in AD

Using epidemiological studies, multiple risk factors have been identified for AD (Table 1.6), and most, if not all of which are vascular in nature e.g. stroke, cardiac disease and atherosclerosis. De La Torre [421] has recently suggested that the risk factors occur prior to cognitive decline and result in a ‘critically attained threshold of cerebral hypoperfusion’ (CATCH hypothesis Figure 1.9) which, in combination with vascular abnormalities, may cause dementia in the elderly. A variable global decrease in cerebral blood flow (CBF) between 70 % and 90 % has been observed in AD patients, when compared to controls [413]. Ruitenberge et al [422] have observed that reductions in CBF
velocity and brain hypoperfusion precede the onset of dementia and hippocampal atrophy as observed via MRI. Hippocampal hypoperfusion as assessed by SPECT analysis, has been demonstrated to predict the progression from mild cognitive impairment to AD [423, 424].

Ischemic events, which are risk factors for AD, could lead to decreased CBF. Snowdon et al [425], examining AD patient autopsies, observed that multiple infarcts in the ganglia, thalamus, or deep white matter were a positive indicator for dementia severity. Results form Vermeer et al [426] corroborate these data with the finding that MRI-detectable infarcts more than double the risk of dementia development. Medial artery occlusion models in rodents can result in hippocampal neuronal damage, capillary irregularities, glial reactivity and glucose uptake deficiency, and bilateral occlusion of the carotid artery, can increase the production of Aβ [427, 428], adding to the evidence that brain hypoperfusion plays a significant role in AD pathogenesis.

<table>
<thead>
<tr>
<th>Heart-related risk factors</th>
<th>Peripheral risk factors</th>
<th>Brain-related risk factors</th>
</tr>
</thead>
<tbody>
<tr>
<td>Congestive heart failure</td>
<td>Smoking</td>
<td>Ageing</td>
</tr>
<tr>
<td>Cardiac arrhythmia</td>
<td>Alcoholism</td>
<td>Ischaemic stroke</td>
</tr>
<tr>
<td>Hypertension</td>
<td>High cholesterol</td>
<td>Silent stroke</td>
</tr>
<tr>
<td>Hypotension</td>
<td>High intake saturated fat</td>
<td>Head injury</td>
</tr>
<tr>
<td>Thrombotic episodes</td>
<td>Diabetes mellitus</td>
<td>Menopause</td>
</tr>
<tr>
<td>Atrial fibrillation</td>
<td>Haemorheological abnormalities</td>
<td>Migraine</td>
</tr>
<tr>
<td>Atherosclerosis</td>
<td></td>
<td>Depression</td>
</tr>
</tbody>
</table>

Table 1.6. Risk factors for AD. There are multiple identified risk factors for AD, many of which can be linked to vascular dysfunction. Adapted from [421]
Figure 1.9. **Critically attained threshold of cerebral hypoperfusion vascular hypothesis in AD.** Torre has proposed that a convergence of aging and vascular risk factors leads to a critically attained threshold of cerebral hypoperfusion (CATCH). CATCH leads to capillary dysfunction, alterations in the neuronal homeostatic environment and a reduction in neuronal energy supply. Reduced neuronal metabolism triggers a cascade of events leading to the development of dementia [421].

1.2.4.2 *Pathological changes of cerebral capillaries in AD*

Multiple alterations throughout the vasculature have been described in AD patients. Cerebral capillaries appear fragmented and display atrophy, luminal buckling, decreased luminal diameter, basement membrane thickening, deposition of Aβ on the capillary wall and increased leakiness [413]. Morphological changes in small arteries in AD (e.g. pial and
intracerebral arteries) include CAA and decreased vascular smooth muscle content and can lead to the rupture of vessels. Capillary degeneration in AD may play a significant role in AD pathology which in turn may reflect a disturbance in angiogenesis. Wu et al [429] identified a gene that was under-expressed in AD BECs called mesenchyme homeobox 2 (MEOX-2), which is a transcription factor involved in vascular differentiation. Restoration of MEOX-2 in isolated BECs from AD patients resulted in angiogenesis, suppressed apoptosis and increased LRP-1 expression. In Meox-2 null mice, a reduction in brain capillary density, cerebral blood flow and angiogenic response to hypoxia was observed.

Decreased cerebral glucose utilisation is also found in AD patients. Hoyer et al [430] noted a 45% decline in cerebral glucose utilisation, whilst Fukuyama et al [431] found a significant decrease in glucose metabolism in the frontal, parietal and temporal region as measured by PET in AD patients. Reduced glucose uptake or metabolism in the hippocampus [432, 433], entorhinal [434] and posterior cingulate gyrus [435] can also predict the conversion of mild cognitive impairment to AD. De Leon et al [436] have also demonstrated that the development of mild cognitive impairment in the elderly is predicted by reduced glucose metabolism. Decreased expression of Glut-1 in AD patient capillaries has been observed, which could be a major contributing factor to decreased glucose utilisation, and might contribute to neurodegeneration [437, 438].

The detection of plasma proteins such as albumin, thrombin and IgG in the brain parenchyma of AD patients is indicative of a leaky BBB [439]. An increase in BBB permeability is also observed in AD mouse models. Tg2765 mice display increased BBB permeability prior to the onset of pathology, which can be reversed by Aβ immunisation [440]. In an APP/PS1 transgenic mouse model, increased BBB permeability was associated with occludin down-regulation in mice fed on a high fat diet [94]. Intravenous infusion of Aβ can also lead to a disruption in BBB integrity in rats [441], and Aβ increases ECs permeability in vitro [442-444]. The pathological significance of increased
BBB permeability has not been fully explored, but in principle it could disrupt the neuronal homeostatic environment, further contributing to AD pathogenesis.

1.2.6 Combined neuronal and vascular dysfunction model for AD

The most commonly accepted view of AD pathology is the Aβ cascade hypothesis, whereby increased Aβ levels induce direct, or indirect via microglia activation, neuronal dysfunction and toxicity. The BBB may play a key role in the transport of Aβ out of or into the brain, and in part determine the brain amyloid load. However, what is absent in the amyloid beta cascade hypothesis is an understanding of how vascular dysfunction including increased BBB permeability, brain hypoperfusion and decreased Glut-1 expression may be linked to AD pathology. These vascular events could be the result of increased Aβ levels (Aβ cascade hypothesis), and might represent a further mechanism by which Aβ induces AD pathology. A second possibility is that one or more of these vascular events precede Aβ deposition and act as a causative factor in AD, such as the CATCH hypothesis. A third, unifying possibility, is that vascular events and Aβ production are interlinked in a more complex way. Indeed, as proposed by Roy and Rauk [419], an event(s) may occur in AD, that causes increased Aβ levels, which induce a synergistic toxicity of Aβ on BECs and neurones (Figure 1.10, Absent). Under their theory, in addition to inducing direct neurotoxicity, Aβ may also induce BEC damage, which in turn may lead to decreased glucose uptake into the brain, stroke and other vascular alterations, with the net consequence of inducing neuronal cell death. Whilst the initiating event(s) that causes AD is/are currently elusive, it remains a possibility that vascular dysfunction, decreased Aβ clearance across the BBB, and/or in combination with other predisposition(s) may all act to induce Aβ production.
Advancing age/predisposition

Increased abnormal APP cleavage/decreased clearance

Increased soluble Aβ/Plaque formation

EC damage

Decreased perfusion, decrease glucose transport, increased inflammation

Direct neurotoxicity

Reversible neuron dysfunction = MCI

Stroke and other pathologies

Neuronal death; AD

Figure 1.10 Aβ synergistic endothelial and neuronal toxicity hypothesis. Aβ production can lead to BEC damage, which in combination with neuronal cell death leads to AD [419].

1.2.7 Current therapies for AD

The only two current routine treatments for AD are based on strategies to prolong ACh signalling and prevent excitotoxicity. Cholinesterase inhibitors (targeting enzymes that degrade ACh, AChEIs) were the first FDA-approved treatments for AD. These include tacrine, donepezil, rivastigmine and galantamine. Birks [445] has recently evaluated the results of 10 randomised double-blind placebo-controlled AD trials with donepezil,
rivastigmine and galantamine, and concluded that whilst they improved cognitive function, none of the effects were large. This is in agreement with other clinical trials, which demonstrate a slight improvement of symptoms [446, 447] or delayed onset in AD [448]. Treatment of mild cognitive impairment, a condition where there is cognitive or memory impairment that does not interfere with daily function and might represent a pre-clinical AD stage, with AChEI does not alter the conversion to AD [449]. The direct application of nicotine to AD patients does not improve memory function, but can lead to increased attention span [301].

The only other FDA-approved drug for the treatment of AD is memantine, a low affinity N-Methyl-D-aspartate (NMDA) receptor antagonist. Neurodegeneration as a result of excess glutamate activity, is considered a possible mechanism in AD pathogenesis, and so mementine was approved for AD treatment [450]. Unfortunately, the benefits only appear marginal in AD and only to those in late stages of the disease [451]. Therefore there is a need to develop new AD treatments.

More recently, the assumption that Aβ is the root cause of AD has led to the design of vaccine strategies for the treatment of AD. Vaccination of transgenic mice with Aβ 1-42 or peptide fragments has shown great promise in the removal of plaques from the brain [452-460]. Schenk et al [456] immunised AD transgenic mice with Aβ 1-42 both before and after the onset on Aβ plaque formation and found the near-complete reduction in plaque deposits and astrocyte activation. Sigurdsson et al [458] have demonstrated that immunisation of transgenic mice which express the Swedish APP mutation (Tg2576), with an Aβ homologous peptide which does not form fibrils can reduce cortical and hippocampal Aβ levels by 89 % and 81 % respectively. In a follow up study, this group have observed improved cognition in Tg2576 mice possibly through IgM-mediated peripheral clearance [457]. Therefore immunisation not only clears Aβ plaques but also improves cognition in transgenic models. Morgan et al [455] used Aβ 1-42 with Freunds’ complete adjuvant (inactive nitrobacteria) for immunisation in an APP/PS1 transgenic
mouse model. Using a water maze test, these authors demonstrated superior working memory compared to controls. Nasal immunisation using Aβ peptides can also result in the reduction of Aβ burden [454, 459]. Passive immunisation can also clear Aβ plaques. Bard et al [452] peripherally administered mice antibodies against Aβ or commercially available Aβ antibodies to an APP transgenic mouse model and reported reduction in amyloid burden in the cortex. The clearance they observed was via a Fc receptor mediated microglial phagocytosis, an effect that has been described by other research groups [460].

The advantageous effects of vaccination in transgenic models led to the clinical trial of a vaccine containing pre-aggregated Aβ 1-42 called AN1792 (reviewed in [461]). A phase 2 trial was conducted on 372 patients and unfortunately had to be stopped due to development of acute meningoencephalitis in 6% of the patients, possibly due to over-activation of the Th1 mediated response. From autopsies of some of the trial participants, there was extensive clearance of amyloid plaques and this was associated with microglial phagocytic activity; however amyloid deposition in the cerebral vessel walls and NFT remained. There was also very little evidence for any improvement in cognition. The relative failure of this trial might be related to the possibility that vaccination needs to start before the development of clinical pathology, and future vaccination studies are underway which should provide a clearer picture for AD treatment. There may also be a need however, to identify areas of treatment which can prevent the signalling of Aβ to immediately protect the vasculature and neurones in AD patients.

1.3 In vitro models to study Aβ effects on cellular function

Much information has been gained on the effect of Aβ using cell cultures to investigate AD pathogenesis. These include primary rodent [343] and human [342] neuronal cultures, stable neuroblastoma cell lines [353], microglial cells [462], primary human BECs [389] and BECs from other species [463]. Typically, dissolved Aβ peptides
have been added to the cell cultures to observe the effects on cell viability, signalling molecules and transport. The most commonly used Aβ fragments are Aβ 1-40 and Aβ 1-42 although in some cases an Aβ 1-40 or Aβ 1-42 isoform containing FAD mutation(s) is also used [464]. Smaller fragments of the Aβ peptide are also used in *vitro*. The most common is a fragment containing the amino acids 25-35 of full length Aβ. It has been proposed that Aβ 25-35 represents a biologically active region of the Aβ molecule [465]. Unlike full length Aβ, Aβ 25-35 forms β-sheet fibrils and aggregates immediately on dissolution and retains Aβ toxicity to neuronal cell cultures [466, 467]. However, fragments of Aβ may not behave as full length Aβ, in terms of their physical structure and ability to bind to receptors. Pre-aggregated Aβ is also frequently added to cell culture systems, and more recently, on the basis of observations in AD patients, soluble oligomers have been used [356, 357, 362]. A drawback of using these species is that it is not currently known what particular Aβ oligomers(s) is/are predominant in AD, or whether the synthetic oligomer(s) obtained *in vitro* correspond to the *in vivo* species.

1.3.1 An immortalised human brain endothelial cell for BBB study

In terms of studying Aβ effects on BEC function, non-BECs, and primary human BECs cultures have been used. A major driving force behind this study was to use BECs of human origin. Primary hBECs are phenotypically unstable and after a limited passage number undergo cellular senescence. The supply of human tissue is also limited and the use of primary human BECs in detailed experimentation is not feasible. A limited number of immortalised hBECs [468-472] are described in the literature. However, none are fully described with respect to the specific BEC phenotype. A major exception to this is the immortalised hBEC line referred to as hCMEC/D3 [473]. The hCMEC/D3 cell line was produced by lentiviral transduction of isolated human BECs from a female epileptic patient with the catalytic subunit of human telomerase (hTERT) and the SV40 large T antigen.
hTERT acts to prevent telomere shortening whilst SV40 large T antigen is an oncogene capable of transforming cell lines. hCMEC/D3 cells are utilised by an increasing number of laboratories worldwide [263, 474-481] as they retain most of the unique properties of the BBB. hCMEC/D3 cells grow to confluent monolayers and express TJ proteins, adhesion molecules, chemokine receptors and ABC transporter proteins.

P-gp and BCRP functional expression by hCMEC/D3 cells has been demonstrated using substrate uptake experiments. Intracellular rhodamine 123 levels, a fluorescence substrate of P-gp, are increased by co-incubation with a P-gp inhibitor (PSC833). Functional BCRP expression has also been demonstrated by assessing intracellular levels of \(^{3}\)H daunorubicin (substrate for P-gp, MRP-1 and BCRP) in the presence and absence of KO-143 (BCRP inhibitor). hCMEC/D3 cells display restricted permeability to a variety of drugs (e.g. vinblastine and colchicine), in good agreement with \textit{in vivo} perfusion studies in rats or mice. hCMEC/D3 cells are also highly restrictive with regards to FITC-dextran (a paracellular marker) of different sizes (4, 40, 70 kDa), inulin and sucrose permeability when compared to primary bovine BECs and rat BECs. For example, the permeability of the hCMEC/D3 cells to \(^{14}\)C-sucrose is \(1.65 \times 10^{-3} \text{ cm/min}\), which although higher, is similar in value to a co-culture model of bovine BECs and astrocytes (\(0.75 \times 10^{-3} \text{ cm/min}\)) [473]. The only major discrepancy of hCMEC/D3 cells with regards to the \textit{in vivo} situation is ionic permeability. The trans endothelial electrical resistance (TEER) of hCMEC/D3 cells, when grown on filters is in the range of 30-40 \(\Omega \text{ cm}^2\), much lower than rat and porcine cell lines and BECs \textit{in vivo}. Therefore, hCMEC/D3 cells do not form a restrictive barrier to ions.

hCMEC/D3 cells are currently the best characterised and most widely studied hBECs cell line. They retain many unique properties of the BBB and are therefore the most suitable \textit{in vitro} tool for human BBB study.
1.4 Aims

The BBB may represent an important aspect of AD pathology. ABC transporters at the BBB may act to transport Aβ out of the brain, or to protect the brain from blood-borne Aβ peptides. To date, there are no experiments which have investigated the significance of P-gp and BCRP mediated Aβ transport by hBECs. In AD, a leaky BBB and decreased brain glucose uptake could be the result of a dysfunctional BBB. Increased levels of Aβ could in principle underlie many of these alterations. The aims of this study were:

1) To characterise the functional expression of P-gp and BCRP by hCMEC/D3 cells at the protein level and using a functional assay.

2) To investigate the role of P-gp and BCRP in Aβ transport by hCMEC/D3 cells using inhibitors for each transporter.

3) To study the effects of Aβ on the expression of TJ and other transporter proteins by hCMEC/D3 cells.

4) To determine the signalling or molecular pathways responsible for the changes found in aim 3.
Chapter 2

Characterisation of functional P-gp and BCRP expression by hCMEC/D3 cells

Abstract

The aim of the work described in this study was to investigate the expression of P-gp and BCRP by hCMEC/D3 cells. P-gp and BCRP expression by hCMEC/D3 cells was confirmed by western blotting, flow cytometry and immunocytochemistry. The expression of P-gp was stable between passages 23 and 38 and whilst primary isolated hBEC P-gp expression was ~ 30% higher than that of hCMEC/D3 cells, the differences in P-gp levels were not statistically significant. Using differential detergent fractionation, P-gp was found to be associated with a membrane/organelle fraction. Immunogold staining indicated that P-gp is expressed at a higher level on the apical as opposed to basolateral membrane. Functional P-gp expression was confirmed using a rh123 efflux assay. rh123 efflux from preloaded hCMEC/D3 cells was time-dependent and inhibited by the P-gp inhibitors vinblastine and tariquidar but not by the BCRP inhibitor FTC. The results demonstrate that hCMEC/D3 cells express functional P-gp, located mainly on the apical membrane and therefore represent a suitable model to investigate Aβ transport across hBECs in vitro.
2.1 Introduction

ABC transporters at the BBB prevent the entry of unwanted endogenous signalling molecules and toxic xenobiotics into the brain (reviewed in [171, 172]). P-gp is the most extensively studied ABC transporter at the BBB, both in vitro and in vivo, and appears to prevent a broad range of lipophilic substances from entering brain tissue including many therapeutic drugs in use today (reviewed in [171, 172, 176, 186]). The function of BCRP at the BBB is not as extensively investigated as P-gp. However, some BCRP and P-gp substrates overlap and both play an important role in the protection of the brain from unwanted blood-borne molecules, with the undesirable effect of excluding therapeutic drugs (see Figure 1.4 for a comprehensive list).

P-gp expression has been described on the luminal membrane of rat brain capillaries [210, 482], isolated mouse BECs [211] and human brain microvessels [212, 483], although recently the polarised distribution of this transporter has been called into question [213]. Using EM techniques, Bendayan et al [213] have observed enhanced abluminal expression of P-gp in rat BECs. Further conflicting evidence on P-gp expression was described by Pardridge et al [209], who, using the antibody MRK16, reported no BEC P-gp staining but astrocytic expression in human brain sections. In subsequent studies, this group found P-gp co-localised with GFAP in human [208] and rhesus monkey brain tissue sections [484].

In vivo data supports the notion of a barrier function for P-gp at the BBB. Mice lacking either mdr1a or combined mdr1a/b genes display enhanced brain accumulation of many P-gp substrates, including verapamil, indinavir, vinblastine and morphine, compared to wild type control mice (reviewed in [171, 172, 216]). In addition, Drion et al [217] have demonstrated that treatment of rats with PSC-833 (a P-gp inhibitor) increases the brain concentrations of colchicine and vinblastine by 8.4 and 9.1, respectively.

BCRP expression has been observed on the luminal membrane of isolated human brain microvessels [229] and, like P-gp, acts to prevent certain substrates from entering the
brain. This is evident as BCRP inhibition causes enhanced brain uptake of prazosin and mitoxantrone in mdr1a(-/-) mice [228]. Youdim et al [231] have also demonstrated increased quercetin accumulation in the brain of rats by BCRP inhibition.

The focus of this study was to investigate the function of P-gp and BCRP in hBECs and so to further aid the understanding of substrate transport at the BBB. Whilst in vivo studies represent an important data source for evaluation of ABC transporter function at the BBB, they are highly costly and may be problematic due to species differences between the animal models and humans. For example, the comparison of P-gp expression by Bendayan et al [213] at the abluminal BEC membrane in rats, is in contrast to the data from mouse and human studies. It is useful therefore, to investigate the ability of ABC transporters to efflux a known/unknown substrate in vitro using BECs of human origin and to compare across species. Multiple cell lines are available for the study of P-gp from different tissues and species (Table 2.1). In terms of hBECs, primary and immortalised BEC cultures have been investigated. Human primary cell cultures are neither stable over passage 5 nor readily available and are therefore not suited for routine high throughput studies. There are only two extensively described immortalised hBEC cell lines; hCMEC/D3 [473] and BB19 [470] cells. The BB19 cell line has been shown to express P-gp, BCRP and MRP family members using mRNA analysis, immunostaining and western blotting, whilst the functionality of P-gp in this cell line has been demonstrated by increased uptake of daunomycin in cells treated with verapamil [470]. However, the BB19 cell line has not been used in any subsequent studies and is not fully characterised with respect to characteristic BEC protein expression. In contrast, the hCMEC/D3 cell line has been extensively characterised with respect to BEC-specific protein expression and permeability to paracellular tracers and has been used in multiple follow up studies [188, 474-476, 480, 481, 485, 486]. hCMEC/D3 cells express TJ proteins and are restrictive to molecules over 4 kDa in molecular weight. hCMEC/D3 cell P-gp expression has been demonstrated using western blotting and mRNA analysis, whilst P-gp function was also
shown using a fluorescent P-gp substrate, rhodamine 123 (rh123), and the P-gp inhibitor PSC-833 [473]. PSC-833 was demonstrated to increase the net influx of rh123, indicating active P-gp expression. Functional BCRP expression by hCMEC/D3 cells has also been demonstrated as the BCRP inhibitor KO143 increased the accumulation of 3H daunorubicin in these cells. Given the limited availability of primary cells and their poor stability over passage number, hCMEC/D3 cells are the most suitable available option to study P-gp function in cells from human origin which retain characteristics of primary BECs.

The aim of this study was to confirm and investigate functional P-gp and BCRP expression by hCMEC/D3 cells, so that the role of these transporters in Aβ transport could be addressed in further studies. Comparisons were made with primary hBECs and the results demonstrate hCMEC/D3 cell suitability for investigating P-gp substrate interactions using the 3rd generation P-gp inhibitor tariquidar [487, 488], and the P-gp competitive substrate vinblastine.
<table>
<thead>
<tr>
<th>Source</th>
<th>Type</th>
<th>Cell line example</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>Kidney epithelium</td>
<td>Madin-Darby canine kidney cells wild type and transfected with MDR1 gene.</td>
<td>MDCK II, MDCK II-MDR1</td>
<td>[489, 490]</td>
</tr>
<tr>
<td></td>
<td>Porcine cells wild type and transfected with MDR1 gene.</td>
<td>LLC-PK1, LLC-PK1-MDR1</td>
<td>[183] [491]</td>
</tr>
<tr>
<td>Intestinal epithelium</td>
<td>Human colon carcinoma cell lines.</td>
<td>Caco-2, LS180</td>
<td>[492] [493]</td>
</tr>
<tr>
<td>Lung epithelium</td>
<td>Primary human bronchiolar and alveolar cells.</td>
<td>-</td>
<td>[494, 495]</td>
</tr>
<tr>
<td></td>
<td>Primary porcine and rat pulmonary cells.</td>
<td>-</td>
<td>[495, 496]</td>
</tr>
<tr>
<td></td>
<td>Human lung adenocarcinoma cells.</td>
<td>A549 NCI-H460</td>
<td>[497-499]</td>
</tr>
<tr>
<td>Hepatocytes</td>
<td>Primary rat and human cells.</td>
<td>-</td>
<td>[500, 501]</td>
</tr>
<tr>
<td></td>
<td>Liver carcinoma cell lines.</td>
<td>HEP G2</td>
<td>[502]</td>
</tr>
<tr>
<td>Embryo</td>
<td>Immortalised syncytiotrophoblast cells.</td>
<td>TR-TBTs</td>
<td>[503]</td>
</tr>
<tr>
<td>Brain endothelium</td>
<td>Primary rat, human, mouse, porcine cells.</td>
<td>-</td>
<td>Reviewed</td>
</tr>
<tr>
<td></td>
<td>Immortalised rat, bovine, mouse, porcine, human cells.</td>
<td>Rat; RBE4, GPNT, GP8, rBCEC4.</td>
<td>[46, 172, 504]</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Mouse; TMBB4 MBEC, bEnd.3, bEnd. 5.</td>
<td>[211, 506-508]</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Porcine; PBMEC.</td>
<td>[509, 510]</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Bovine; SV-BEC, t-BBEC-117.</td>
<td>[20, 511]</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Human; BB19, hCMEC/D3.</td>
<td>[470, 473]</td>
</tr>
</tbody>
</table>

Table 2.1. Summary of cell lines used for investigation of P-gp function. Multiple cell lines have been developed for the study of P-gp function, including kidney, intestinal and lung epithelial cells and ECs from the brain.
2.2 Methods

2.2.1 Culture medium

hCMEC/D3 cells were cultured in endothelial growth medium (EGM-2, Lonza, Wokingham, UK) supplemented with 2.5 % foetal bovine serum (FBS), ascorbic acid, gentamycin sulphate, hydrocortisone and ¼ volume of the supplied growth factor supplements [vascular endothelium growth factor (VEGF), epidermal growth factor (EGF), insulin-like growth factor 1 (IGF-1) and human basic fibroblastic growth factor (bFGF)]. Cambrex have optimised the composition of EGM-2 to induce endothelial cell proliferation and do not disclose the concentrations of the supplements. Primary hBECs were grown in EGM-2 media to which a full volume of the supplied growth factor supplements were added.

2.2.2 Growth surface preparation

Both primary hBECs and hCMEC/D3 cells were grown on tissue culture plastic flasks (Greiner, Gloucestershire, UK) coated with collagen type 1 from calf skin (Sigma-Aldrich, Dorset, UK). The collagen stock solution of 0.1 % w/v was diluted 1 in 20 in Hank’s balanced salts solution (HBSS) (Sigma-Aldrich, Dorset, UK) and left for 1 h at room temperature (RT) on the plastic surface. The flasks were then washed once with HBSS and filled with EGM-2 medium in preparation for cell culture. For experiments that used transwell polyester membrane inserts (0.4 μm pore, 12mm diameter, Corning Costar, Buckingham, UK), the filters were coated with collagen and fibronectin which are required for optimal for hCMEC/D3 cell growth. For this, the filters were incubated for 1 h in collagen, washed in HBSS and incubated for 1 h with a 5 μg/ml solution of fibronectin from human plasma (Sigma-Aldrich, Dorset, UK).
2.2.3 hCMEC/D3 and primary human brain endothelial cell (hBEC) culture maintenance

hCMEC/D3 cells were grown until confluent (~ 1 x 10^5 cells/cm^2) on collagen-coated flasks at 37°C (5% CO2), with the culture medium changed every 2-3 days. Primary hBEC were typically grown to 90% confluence, due the difficulty in trypsinising these cells at full confluence. To split cell cultures, both hCMEC/D3 cells and primary hBECs were washed in HBSS without Ca^{2+} and Mg^{2+} [HBSS w/o Ca^{2+}Mg^{2+} (Sigma-Aldrich, Dorset, UK)] at 37°C for 1-5 min and then incubated with 0.25% w/v porcine trypsin and 0.02% w/v ethylene diamine tetraacetic acid (EDTA) (Sigma-Aldrich, Dorset, UK) at 37°C until detached. EGM-2 was then added to neutralise trypsin activity and cells were split at a ratio of 1:5 onto collagen-coated tissue culture flasks. For all experiments, hCMEC/D3 cells between passage (p) 23 and 33 were used, unless stated otherwise, whilst primary hBEC were used up to p4.

2.2.4 Isolation of primary hBECs

Solution A: HBSS w/o Ca^{2+} Mg^{2+} containing 10 mM HEPES (Sigma-Aldrich, Dorset, UK), 50 U/ml penicillin, 50 µg/ml streptomycin (Invitrogen, Paisley, UK), 2.5 µg/ml amphotericin B (Invitrogen, Paisley, UK) and 0.4% w/v BSA (Sigma-Aldrich, Dorset, UK). Adjusted to pH 7.4 by eye and sterile filtered through 0.22 µm filter.

25% w/v BSA: BSA dissolved in solution A, sterile filtered through 0.8 µm and 0.22 µm filters.

Collagenase/dispase: 1 mg/ml collagenase/dispase solution (Roche, West Sussex, UK) supplemented with 10 µg/ml DNase (Sigma-Aldrich, Dorset, UK) and 0.147 µg/ml N-p-tosyl-L-lysine chloromethyl ketone hydrochloride (Sigma-Aldrich, Dorset, UK).

Percoll gradient: Prepared immediately prior to use in an ethanol-sterilised (20 min, 70% ethanol) and blocked (solution A, 10 min) dupont tube. A 50% percoll solution (Sigma-
Aldrich, Dorset, UK) in HBSS was added to the dupont tube and centrifuged for 1 h at 25,000 xg, 4°C.

In procedures approved by ethical committees at both Kings College London and The Open University, human brain tissue was obtained with written consent from patients undergoing cerebral cortical lobectomies, conducted at Kings College Hospital to relieve medically intractable seizures. The isolation of hBECs was carried out within 24 h post operation based on the protocol by Hughes and Lantos [512], and unless stated otherwise, all steps were carried out on ice or at 4°C.

The brain tissue was placed in a sterile petri dish and the meninges removed using autoclaved forceps. The tissue was then placed in 1 ml of solution A and cut into small pieces using a scalp blade. Tissue fragments were then centrifuged at 300 xg for 10 min in 10 ml of solution A, the pellet resuspended in 15 ml of collagenase/dispase solution and incubated for 1 h at 37°C. The digest was then centrifuged (300 xg, 5 min, 4°C) and the resulting pellet re-suspended in 5 ml of solution A, using initially a glass pasteur pipette and subsequently a heated end glass pasteur pipette. The digest was then centrifuged (300 xg, 5 min, 4°C).

The capillaries were then isolated using density dependent centrifugation in 25% BSA. Brain tissue fragments were re-suspended in 20 ml of 25 % BSA solution and centrifuged for 15 min at 1000 xg at 4°C. The myelin plug was removed by gently turning the tube and poured swiftly into a separate tube leaving the initial tube upturned to prevent any BSA re-suspending the capillaries, since prolonged BSA can become toxic. The myelin was then resuspended and centrifuged a further couple of times (15 min, 1000 xg, 4°C) to increase the yield of pelleted capillaries. Capillary pellets were then pooled in solution A and centrifuged (300 xg, 5 min, 4°C). The capillaries then underwent a further 1 h digestion in 5 ml of collagenase/dispase for 1 h at 37°C.
A Percoll gradient was used to separate the capillary fragments from the red blood cells and surrounding cell contaminants. Pelleted capillary fragments (300 xg, 5 min, 4°C) were resuspended in 1.5 ml of solution A and pipetted carefully on top of 7 ml of a prepared Percoll gradient and centrifuged at 1000 xg for 10 min. Three layers formed (the middle containing BECs), and each layer was carefully pipetted out into separate tubes containing 10 ml of solution A and centrifuged (300 xg, 5 min, 4°C). The resulting pellets were re-suspended in 10 ml of 1:1 solution A and EBM-2 medium, centrifuged (300 xg, 5 min, 4°C) and resuspended in 5 ml medium containing amphotericin B (2.5 µg/ml) and placed in collagen-coated 25 cm² tissue culture flasks. Each layer of the Percoll gradient was collected to increase the EC yield, as EC can sometimes reside in the top and bottom fractions. After 48 h the culture medium was replaced with fresh culture medium containing 0.5 µg/ml puromycin (Sigma-Aldrich, Dorset, UK), which was left in the culture medium for 5 days in order to selectively inhibit the growth of contaminating cells that lack P-gp expression and are therefore vulnerable to intracellular puromycin accumulation. The medium was changed every 48 h.

2.2.5 SDS-PAGE and western blotting

Lysis buffer: RIPA buffer (Sigma-Aldrich, Dorset, UK) containing 1 mM phenylmethanesulfonyl fluoride [PMSF (Sigma-Aldrich, Dorset, UK)], 10 ng/µl of leupeptin (Sigma-Aldrich, Dorset, UK), pepstatin A (Sigma-Aldrich, Dorset, UK) and aprotinin (Sigma-Aldrich, Dorset, UK).

Laemmli’s buffer reducing 4 X: 0.01 % w/v bromophenol blue (Sigma-Aldrich, Dorset, UK), 15 mg/ml D,L- dithiothreitol [DTT (Sigma-Aldrich, Dorset, UK)], 40 % v/v glycerol (Sigma-Aldrich, Dorset, UK), 8 % w/v sodium dodecyl sulphate [SDS (Sigma-Aldrich, Dorset, UK)] in 250 mM tris/HCl pH 6.8.
Running gel: 10% v/v Protogel [30% acrylamide, 0.8% methylene bis-acrylamide, (National diagnostics, North Yorkshire, UK)], 0.1% w/v SDS, 0.37 M tris/HCl pH 8.8, 0.05% v/v tetramethyl-ethlenediamine [TEMED (Sigma-Aldrich, Dorset, UK)] and 0.1% w/v ammonium persulphate [APS (Sigma-Aldrich, Dorset, UK)].

Stacking gel: 5% v/v Protogel, 0.1% w/v SDS, 0.12 M tris/HCl pH 6.8, 0.05% v/v TEMED, and 0.1% w/v APS.

Running Buffer: 25 mM Tris, 192 mM glycine, 0.01% SDS in deionised water [prepared from 10 x stock (National diagnostics, North Yorkshire, UK)].

Transfer buffer: 25 mM Tris and 192 mM glycine, [prepared from 10 x stock (National diagnostics, North Yorkshire, UK)] with 20% v/v ethanol in deionised water.

Blocking buffer: 0.2% v/v tween 20 (Sigma-Aldrich, Dorset, UK), 5% w/v fat-free dried milk dissolved in PBS.

Washing solution: 0.2% v/v tween 20 dissolved in PBS.

Full range molecular weight marker: Rainbow marker (Amersham, Buckinghamshire, UK).

Stripping solution: 2% w/v SDS, 0.0625 M Tris pH 6.8, 0.008% v/v β-mecaptoethanol.

hCMEC/D3 cells (p23) were grown to confluence (total ~ 1 x 10^7 cells) in a 75 cm^2 collagen-coated flask and left for 2 days. hCMEC/D3 cells were then detached and passed 1 in 5 into another 75 cm^2 flask. The remaining cells were washed twice in PBS and resuspended in 500 µl of lysis buffer. The suspension was left on ice for 5 min and then sonicated on ice 3 times for 5 seconds (Soniprep 150, MSE, London, UK). The cell lysate was then centrifuged at 8000 xg for 5 min at 4°C and the supernatant collected. This procedure was repeated for the cells every 3rd passage up to p44.

The protein concentration of the samples was calculated using the detergent compatible (DC) protein assay (Biorad, Hertfordshire UK), using BSA as a standard. For each lane of the western blotting gel, 20 µg of total protein in 1 x Laemmli’s buffer was
loaded on 10 % polyacrylamide resolving gels with a 5 % stacking gel. Prior to loading, the samples were denatured by heating at 95 °C for 5 min. The proteins were resolved on the gel by applying a 100-150 V potential until the dye front reached the end of the gel. Following electrophoresis, proteins were transferred onto nitrocellulose membranes (Amersham, Buckinghamshire, UK) using a wet blotting system run at a constant current of 0.15 A overnight at 4°C, with transfer buffer. Post-transfer, the nitrocellulose membranes were incubated with blocking buffer for 1 h at RT and incubated over-night at 4°C with 500 ng/ml of C219, an anti-P-gp antibody [mouse monoclonal IgG2a, (Abcam, Cambridgeshire, UK)]. Membranes were then subjected to six 10 min washes in washing solution and a horse-radish peroxidise (HRP)-conjugated anti-mouse IgG secondary antibody [diluted 1/20000 (Pierce Biotechnology, Cheshire, UK)] was added for 1 h at RT. The membranes were then washed five times for 10 min with washing solution, followed by a 10 min wash in PBS. The membrane were then developed using an enhanced chemiluminescence (ECL) western blotting detection reagents system (Amersham, Buckinghamshire, UK), exposed to films (Amersham, Buckinghamshire, UK) and films were developed with an X-Omat 1000 automatic processor (Kodak, New York, USA). Film exposure times were adjusted to ensure adequate signal development.

In order to check for equal loading, the nitrocellulose membrane was subjected to a harsh stripping procedure. Membranes were placed in stripping buffer for 40 min at 50°C and washed for 30 min with frequent changes of washing solution. The membrane was then blocked as described above and re-probed using an anti-actin antibody [1 µg/ml, mouse monoclonal IgG1, (Sigma-Aldrich, Dorset, UK)]. The signal intensities of the bands on the films were analysed using image J software and P-gp expression was normalised to actin expression.
2.2.6 Flow cytometry analysis

Permeabilisation/blocking buffer: 3 % v/v normal goat serum [NGS, (Sigma-Aldrich, Dorset, UK)], 0.1 % v/v triton X-100 (Sigma-Aldrich, Dorset, UK) in PBS.

hCMEC/D3 cells or primary hBECs were grown to confluence in 6 well tissue culture plates (total ~ 1 x 10^6 cells per well), detached, centrifuged (300 g, 5 min, 4°C) and fixed in 4 % w/v p-formaldehyde (PAF, BDH, Dorset, UK) in PBS for 10 min at RT. After one wash in PBS, cells were incubated for 30 min in permeabilisation buffer, which contained 3 % NGS to prevent non-specific binding of antibodies. The cells were subsequently counted and 0.5 x 10^6 cells per treatment were incubated overnight at 4°C with 50-100 µl of permeabilisation buffer containing a primary antibody or isotype-specific control at a concentration of 5 µg/ml. The antibodies used were anti-BCRP BXP-21 [mouse monoclonal IgG2a, (Merck, Nottinghamshire, UK)] or anti-P-gp JSB-1 [mouse monoclonal IgG1, (Abcam, Cambridgeshire, UK)]. The isotype-specific controls were mouse IgG2a (Sigma-Aldrich, Dorset, UK) or mouse IgG1 (Sigma-Aldrich, Dorset, UK) as appropriate. JSB-1 rather than C219 was used for flow cytometry staining of P-gp as it proved more suitable for this staining technique.

After incubation with the primary antibody, the cells were washed three times in PBS and resuspended in permeabilisation buffer containing 10 µg/ml of a fluoresceinisothiocyanate (FITC) - conjugated goat anti-mouse IgG antibody (Chemicon, Hampshire, UK). After two final washes with PBS, the cells were suspended in 500 µl PBS and analysed using a FACSCalibur flow cytometer with Cellquest software [488 nm λexcitation, 530 nm λemission, (Becton Dickinson, Oxfordshire, UK)]. For each sample the median fluorescence of 10,000 cells was determined.
2.2.7 Differential detergent fractionation

In order to investigate the localisation of P-gp, hCMEC/D3 whole cell lysates were separated into cytosolic, membrane/organelle, nuclear and cytoskeletal fractions using differential detergent fractionation as described by Ramsby et al. [513].

Extraction buffer 1 (EB1): 10 mM piperazine-1, 4'-bis (2-ethanesulphonic acid) [PIPES, (Sigma-Aldrich, Dorset, UK)] pH 6.8, containing 300 nM sucrose (Sigma-Aldrich, Dorset, UK), 100 mM sodium chloride [NaCl (Sigma-Aldrich, Dorset, UK)], 3 mM magnesium dichloride [MgCl₂ (Sigma-Aldrich, Dorset, UK)], 5 mM [EDTA (Sigma-Aldrich, Dorset, UK)], 1.2 mM phenylmethylsulphonyl fluoride [PMSF (Sigma-Aldrich, Dorset, UK)] and 0.01 % w/v digitonin (Sigma-Aldrich, Dorset, UK).

Extraction buffer 2 (EB2): 10 mM PIPES pH 7.4, containing 300 mM sucrose, 100 mM NaCl, 3 mM MgCl₂, 3 mM EDTA, 1.2 mM PMSF and 0.5 % v/v triton X-100.

Extraction buffer 3 (EB3): 10 mM PIPES pH 7.4, containing 10 mM NaCl, 1 mM MgCl₂, 1.2 mM PMSF, 0.5 % v/v triton X-100, 1 % v/v tween-40, 0.5 % w/v sodium deoxycholate (Sigma-Aldrich, Dorset, UK).

hCMEC/D3 cells were grown until confluence in a 75 cm² flask (1 x 10⁷ cells), detached by trypsinisation, washed once in HBSS and lysed in 250 μl of EB1 buffer. The whole cell lysate was incubated on ice for 10 min with occasional inversion to ensure solubilisation. After centrifugation (500 xg, 10 min, 4°C), the supernatant was collected (cytosolic protein fraction) and the pellet resuspended in 250 μl of EB2 buffer. The whole cell lysate was then incubated on ice for 20 min (with occasional inversion), centrifuged (5000 xg, 10 min, 4°C), and the supernatant collected (membrane/organelle fraction). The remaining pellet was resuspended in 125 μl of EB3, incubated on ice for 10 min and centrifuged (7000 xg, 10 min, 4°C). The supernatant contains the nuclear proteins, whilst
the pellet contains cytoskeletal proteins. The pellet was dissolved in 250 μl of 1 x Laemmli’s buffer.

Laemmli’s buffer was added to each fraction collected and the samples denatured at 95 °C for 5 min. Samples were then resolved using SDS-PAGE and western blotting as described in section 2.2.5. 20 μl of the cytosolic, membrane-organelle and cytoskeletal fractions and 10 μl of the nuclear fraction were loaded per lane. Antibodies against the transcription factor Sp3 [200 ng/ml, mouse monoclonal IgG2a, (Santa Cruz, California USA)], P-gp (500 ng/ml, C219), BCRP (200 ng/ml, BXP-21,) and actin (1 μg/ml), were used for western blotting detection as described in section 2.2.5. The intensity of the signals were analysed using image J software. For each protein, the intensity of the signal corresponding to each fraction (cytosolic, membrane/organelle, nuclear or cytoskeleton) was expressed as a percentage sum of the signals for all the fractions.

2.2.8 Immunocytochemistry

Permeabilisation/blocking buffer: 3 % v/v NGS, 0.1 % v/v triton X-100 (Sigma-Aldrich, Dorset, UK) in PBS.

hCMEC/D3 cells were grown to confluence on collagen-coated Labtek chamber slides (Nunc Scientific laboratory supplies, Nottinghamshire, UK), washed in PBS and fixed in 4 % PAF for 10 min. After three washes (PBS, 5 min each) permeabilisation/blocking buffer was added to each chamber for 30 min. Anti P-gp (JSB-1), BCRP (BXP-21) or isotype controls (IgG1 or IgG2a respectively) were added to the fixed cells at 5 μg/ml overnight at 4°C. After three 10 min washes in PBS, a FITC-conjugated goat anti-mouse IgG secondary antibody (as described in section 2.2.6) was added for 1 h at RT. After three further washes in PBS, a drop of 4',6-diamidino-2-phenylindole (DAPI) mounting media (Dako, Cambridgeshire, UK) was added for 5 min
and then, after a final wash in water, the slides were mounted with a glass coverslip and viewed with a fluorescent microscope (Olympus BX61, Olympus, Hertfordshire, UK).

For imaging via confocal microscopy, hCMEC/D3 cells were grown to confluence on collagen- and fibronectin- coated transwell polyester membrane inserts (0.4 μm pore, 12mm diameter, Corning Costar, Buckingham, UK) and stained as above with the exception that instead of DAPI, 5 μM DRAQ5 (Biostatus, Cambridge, UK) was added with the secondary antibody to stain nuclear DNA. hCMEC/D3 cells were then viewed with a confocal microscope, (Leica DMIRBE, Leica, Buckingham UK), taking XY and Z cross sections over a selected field to reconstruct a three dimensional image using Volocity software (Improvision, Coventry, UK).

2.2.9 Transmission electron microscopy combined with immunogold labelling

Phosphate buffer (PB): 0.018 M NaH₂PO₄.H₂O (VWR, Leicestershire, UK), 0.082 M Na₂HPO₄ (VWR, Leicestershire, UK).

Paraformaldehyde-lysine-periodate fixative (PLP): 2 % w/v PAF, 0.01 M sodium metaperiodate (Sigma-Aldrich, Dorset, UK), 0.075 M lysine monohydrochloride (Sigma-Aldrich, Dorset, UK).

For the detection of P-gp at the ultrastructural level, the method of Bendayan et al [213] was followed with technical and experimental help from the EM suite at The Open University. hCMEC/D3 cells were grown to full confluence on collagen- fibronectin-coated transwell polyester membrane inserts (0.4 μm diameter pore, 12 mm diameter width) and left for 2 days. hCMEC/D3 cells were then fixed for 21 h (6 h RT, 15 h 4°C) with PLP. Post fixation, hCMEC/D3 cells were washed twice with PB (1–5 min) cut into 2 mm strips and processed using ‘progressive lowering of temperature’ with a Leica AFS2 automatic freeze substitution system (Leica, Buckingham UK). This method was used to dehydrate and prevent translocation of the antigen and involves the progressive lowering of
temperature from 0° to -30°C whilst increasing the methanol content of the solution (Table 2.2). hCMEC/D3 cells were infiltrated in the acrylic resin Lowicryl K4M (Agar Scientific, Essex, UK) and polymerised at -30°C under ultra violet (UV) light.

Ultrathin sections of the membrane insert were then cut (80 nm) using a Diatome diamond knife on a Leica ultra-microtome (Leica UCT, Leica, Buckinghamshire UK). The sections were mounted on formvar (Agar Scientific, Essex, UK) coated nickel slot grids, and all reactions were performed using 20 μl droplets on a parafilm lined box lid which was covered during incubation. Non-specific binding was blocked using 1% w/v ovalbumin (Sigma-Aldrich, Dorset, UK) in 0.01 M PBS for 30 min at RT. Grids were incubated with droplets of anti-P-gp (5 μg/ml, C219, dissolved in PBS) or an isotype matched control (5 μg/ml, IgG2a) antibody overnight at RT in a humidified box. The grids were then washed by transferring from drop to drop (3 x 5 min in PBS), blocked (1% ovalbumin, 10 min, RT) and incubated with a goat anti-mouse IgG conjugated to 10 nm gold secondary antibody for 2 h at RT (British Biocell International, Cardiff, Wales). The samples were then washed (3 x 5 min, PBS), fixed in 2.5% w/v glutaraldehyde in PBS (Agar Scientific, Essex, UK), washed (2 x 5 min in PBS, 1 min with deionised water), allowed to air dry and counterstained with 4% w/v aqueous uranyl acetate (Agar Scientific, Essex, UK) for 15 min. After a final three washes in distilled water the sections of immunolabelled hCMEC/D3 cells were examined using a JEOL JEM 1400 transmission electron microscope (JEOL, Hertfordshire, UK) operating at 80 kv. The images were acquired using an AMT XR60 11 mega pixel digital camera calibrated for magnification such that each image displayed a scale marker. Images of 7.5 μm lengths of membrane were taken every 2-3 frames for a total of 500 μm membrane. For both the apical and basolateral membranes, the number of gold particles within 100 nm was counted in each 7.5 μm length of membrane and expressed as gold particles per 1 μm of membrane.
Table 2.2. Protocol for progressive lowering of temperature for electron microscopy and immunogold staining

Fixed hCMEC/D3 cells were subjected to this protocol in order to prevent antigen translocation during dehydration and embedding for TEM immunolabelling (K4M: lowicryl K4M).

<table>
<thead>
<tr>
<th>Reagent</th>
<th>Temperature Start (°C)</th>
<th>Temperature End (°C)</th>
<th>Time (h)</th>
</tr>
</thead>
<tbody>
<tr>
<td>30 % MeOH</td>
<td>0</td>
<td>0</td>
<td>0.5</td>
</tr>
<tr>
<td>50 % MeOH</td>
<td>0</td>
<td>-10</td>
<td>0.5</td>
</tr>
<tr>
<td>75 % MeOH</td>
<td>-10</td>
<td>-20</td>
<td>0.5</td>
</tr>
<tr>
<td>100 % MeOH</td>
<td>-20</td>
<td>-30</td>
<td>0.5</td>
</tr>
<tr>
<td>100 % MeOH</td>
<td>-30</td>
<td>-30</td>
<td>0.5</td>
</tr>
<tr>
<td>25 % K4M: 75 % MeOH</td>
<td>-30</td>
<td>-30</td>
<td>1</td>
</tr>
<tr>
<td>50 % K4M: MeOH</td>
<td>-30</td>
<td>-30</td>
<td>1</td>
</tr>
<tr>
<td>80 % K4M: MeOH</td>
<td>-30</td>
<td>-30</td>
<td>1</td>
</tr>
<tr>
<td>K4M</td>
<td>-30</td>
<td>-30</td>
<td>15</td>
</tr>
<tr>
<td>K4M</td>
<td>-30</td>
<td>-30</td>
<td>1</td>
</tr>
<tr>
<td>K4M</td>
<td>-30</td>
<td>-30</td>
<td>48</td>
</tr>
</tbody>
</table>

2.2.10 Methylthiazolyldiphenyl-tetrazolium (MTT) bromide cytotoxicity assay

The cytotoxicity of the P-gp inhibitors tariquidar (a kind gift from Xenova, Berkshire, UK), vinblastine (Sigma-Aldrich, Dorset, UK) and the BCRP inhibitor fumitremorgin C [FTC, (Axxora, Nottingham, UK)] were investigated using a Methylthiazolyldiphenyl-tetrazolium bromide [MTT, (Sigma-Aldrich, Dorset, UK)] toxicity assay.

hCMEC/D3 cells were seeded in 96 well tissue culture plates (3 x 10⁴ per well), left for 2 days and the cell culture medium replaced with 100 µl of fresh culture media containing tariquidar (20-600 nM), FTC (0.3-22 µM), vinblastine (0.100 - 40 µM) in vehicle (DMSO or ethanol for vinblastine/FTC and tariquidar, respectively) or medium containing vehicle alone (< 1 % v/v), for either 24 h or 48 h at 37 °C. After the indicated time, 10 µl of MTT (stock 5 mg/ml) was added to each well to give a final concentration of 0.5 mg/ml and the plates left for 4 h at 37 °C. The media was then aspirated and the cells washed twice in PBS. Finally, 200 µl of isopropanol (Sigma-Aldrich, Dorset, UK) was added to lyse the cells and to solubilise precipitated formazan salts, produced by the action
of mitochondrial dehydrogenase in living cells on MIT. After complete solubilisation, the plates were read on a colourimeter (BMG, Offenberg, Germany) at a wavelength of 550 nm.

2.2.11 Rhodamine 123 (rh123) efflux assay

The principles underlying the rhodamine 123 (rh123) efflux assay are depicted in Figure 2.1. hCMEC/D3 cells were grown to confluence in collagen-coated 75 cm² flasks, detached, and the cells counted using a haemocytometer. For each test condition, 2.5 x 10⁵ cells were used in duplicate. The test conditions for time-dependent efflux were: hCMEC/D3 cells preloaded with rh123 and kept at 4°C, rh123-preloaded hCMEC/D3 cells incubated at 15, 30, 60, 120, 180 and 360 min in the absence or presence of vinblastine, hCMEC/D3 cells that were not preloaded with rh123 in order to later subtract background fluorescence. For each experiment, two aliquots of 3.5 x 10⁶ cells were centrifuged at 300 xg for 5 min at 4°C and re-suspended in efflux buffer [RPMI-1640, (Cambrex, Berkshire, UK) containing 1 % w/v BSA] at 4°C. From each aliquot of cell suspension, 2.5 x 10⁵ cells were taken and placed on ice for the duration of the experiment (negative control). The remaining cells were then centrifuged (300 xg, 5 min, 4°C), re-suspended at 1 x 10⁶/ml in efflux buffer containing 10 µg/ml (22 µM) rh123 (Sigma-Aldrich, Dorset, UK) and incubated on ice for 1 h. Rh123 preloaded cells were washed twice in efflux buffer and redistributed into different tubes according to each treatment. From each repetition, 2.5 x 10⁵ cells rh123 preloaded cells were placed at 4°C in efflux buffer, whilst the remaining cells were incubated at 37°C with vinblastine (22 µM) in vehicle, or vehicle only, in efflux buffer. At 15, 30, 60, 120, 180 and 360 min intervals, 2.5 x 10⁵ cells were removed and placed on ice/4°C for the duration of the experiment. After all samples had been collected, cells were washed twice in PBS and resuspended in 500 µl PBS. The samples were then read using a FACSCalibur with Cellquest software (488 nm λ excitation, 530 nm λ emission) and
the median fluorescence of 10,000 cells per sample recorded. The median fluorescence intensity of the negative control was subtracted from all the other treatments and the data expressed as a percentage of rh123 preloaded cells kept at 4°C. For each experiment the time taken for the fluorescence intensity to decline by 50 % was calculated, by plotting cellular rh123 levels against time, and using cells incubated at 4°C as time = 0 min.

For some experiments, the effects of inhibitors were tested on hCMEC/D3 cells both preloaded with rh123 alone or with an inhibitor and incubated at 37 °C for 1 h. The following inhibitors in vehicle or vehicle only were used; FTC (22 μM), vinblastine (22 μM) or tariquidar (300 nM).

2.2.12 rh123 permeability

The permeability of hCMEC/D3 cells grown on Transwell polyester membrane inserts (0.4 μm pore, 12mm diameter) to rh123 was investigated (Figure 2.2). hCMEC/D3 cells were cultured on collagen- and fibronectin-coated 12 well membrane inserts until confluent and left for 2 days. The cells were then washed with permeability buffer (DMEM, 2 % v/v FCS Sigma-Aldrich, Dorset, UK) and rh123 (22 μM), alone or in the presence of tariquidar (300 nM), vinblastine (22 μM) or FTC (22 μM), was added to the apical chamber (upper). The inserts were then transferred sequentially at 5 min intervals from well to well containing 1.5 ml of transport buffer (+/- appropriate inhibitors) for 30 min. The fluorescence diffusing to the basolateral (bottom) chamber was measured at an excitation wavelength of 485 nm and emission wavelength of 520 nm with a fluorescence plate reader (BMG, Offenberg, Germany). A vehicle control received DMSO (0.1 %) since ethanol had no appreciable difference in the efflux experiment.

Permeability coefficients of the hCMEC/D3 cell monolayers were calculated using the following calculations [473];

\[
\text{Cleared volume} = \frac{(\text{AU}_a - \text{AU}_b)}{\text{FI}}
\]
The cleared volume (in μl/ml) represents the cumulative volume of rh123 solution passing through the cell monolayer at a particular time. AUa is the total fluorescence (arbitrary units) in the basal compartment, AUb is the background fluorescence, Fi is the fluorescence of the initial solution (AU/ml). The cleared volume is plotted against time and the permeability coefficients (Pe in cm/min) for the EC monolayer calculated as:

\[
\frac{1}{PS} = \frac{1}{PS_{ef}} - \frac{1}{PS_{f}} \quad \text{and} \quad Pe = \frac{PS}{S}
\]

PS_{ef} and PS_{f} correspond to the gradients of the curves for EC grown on filters or filters alone (ml/min). PS is the permeability surface area of the EC monolayer (ml/min) and S is the surface area of the filter. The higher the Pe value the more permeable the EC are to the fluorescent dye.

To investigate the basolateral-to-apical permeability, 1.5 ml rh123 (22 μM) was added to the basolateral chamber of a 12 well plate [+/- tariquidar (300 nM), vinblastine (22 μM) or FTC (22 μM)] and filters containing the appropriate inhibitors placed into the well. The filter was left in place for 30 min and the fluorescence of the apical and basolateral chambers measured. The Pe values were calculated using the assumption that the curve was linear:

\[
PS_{ef} = \frac{[(AUa - AUb)/Fi]}{30}
\]

2.2.13 Statistical analysis

All data are represented as means +/- SEM and the number of experiments, n, indicated each time. For each data the statistical significance was calculated using ANOVA followed by Student’s t test, comparing each treatment to the control (* p < 0.05). For the permeability experiments, a paired t-test was used, as there was an internal control specific for each experiment.
Figure 2.1. Principles underlying rh123 efflux experiment. rh123, a fluorescent P-gp substrate, is effluxed from preloaded hCMEC/D3 cells in a time-dependent manner. Inhibition of P-gp raises the intracellular levels, indicative of functional P-gp.

Figure 2.2. In vitro BBB model used to investigate hCMEC/D3 cell permeability to rh123. hCMEC/D3 cells were grown to confluence on transwell filters. A rh123 solution (22 μM) was added to either the basolateral or apical chamber with or without the inhibitors tariquidar, vinblastine and FTC. Ultrastructural localisation of P-gp (i.e. whether located on the apical or basolateral plasma membrane) is thought to influence the passage of rh123 from the compartment to which it was added to the other compartment.
2.3 Results

2.3.1 Morphology of hCMEC/D3 and primary hBECs

A main advantage of hCMEC/D3 cells is that they can be used for high throughput studies. For that reason, a morphological examination was carried out, comparing hCMEC/D3 cells to primary hBECs. Primary hBECs grew outwards from isolated capillary fragments to form colonies of spindle-like shaped cells (Figure 2.3a). These colonies were noticeable 1-2 days post isolation, formed confluent monolayers after 1-2 weeks and appeared free of contaminating cells. After p5, primary hBECs neither appeared completely spindle-shaped nor continued to grow at a sufficient rate to reach confluence. hCMEC/D3 cells, grew in a similar elongated spindle-shaped manner (Figure 2.3b) and reached confluence 2-3 days after a 1 in 5 passage. In contrast to primary hBECs, there were no alterations in shape or growth rates over the passage ranges used in this study (p 23 – 44). From a strictly morphological view, hCMEC/D3 cells and primary hBECs appeared very similar.

2.3.2 Expression of P-gp by hCMEC/D3 cells over passage as assessed by western blotting

One of the aims of this study was to investigate the role of P-gp-mediated Aβ transport by hCMEC/D3 cells. The expression of P-gp by hCMEC/D3 cells was therefore characterised, and compared to that of another ABC efflux transporter with an overlapping substrate range, BCRP. Firstly, the expression of P-gp over passage was investigated in order to determine the maximum passage in which this cell line could be used for further experimentation and also to ensure that results obtained between passages were comparable (Figure 2.4). Using western blotting techniques, P-gp expression was detected as a diffuse band of ∼160 kDa, which probably reflects different glycosylation patterns of
the MDR1 product in hCMEC/D3 cells. P-gp expression was similar between p23 and 38 (n = 1), but at higher passages (> p41) appeared decreased (Figure 2.4a). In contrast, actin levels were maintained with the exception of the highest passage investigated (p44) expression declined. P-gp expression was quantified by measuring the signal intensity and normalised to actin as a control to account for loading differences (figure 2.4b). From this experiment, a maximum passage of 38 was selected for further experiments, as by comparison p 41 had a 30 % decrease in P-gp levels.

2.3.3 The expression of P-gp and BCRP by hCMEC/D3 and primary hBECs as measured by flow cytometry

To provide a more accurate quantitative method for protein expression, the expression of P-gp and BCRP by hCMEC/D3 cells was measured using flow cytometry (Figure 2.5). Flow cytometry showed a higher median fluorescence intensity when antibodies against P-gp (20.1 ± 1.5) and BCRP (30.96 ± 1.53) were used when compared to their controls [IgG1 (4.6 ± 1.0),] and IgG2a (3.9 ± 0.3), respectively] (n = 3, P < 0.01), indicating that both ABC efflux transporters are expressed by hCMEC/D3 cells.

The levels of P-gp expression were then compared between hCMEC/D3 cells and primary hBECs using flow cytometry to determine the suitability of the former cell line as a hBEC model. Both primary hBECs and hCMEC/D3 cells demonstrated a higher median fluorescence staining intensity compared to their controls (n = 3 experiments with duplicate samples, P < 0.01, Figure 2.6). Whilst primary hBECs expressed 37.6 % ± 8.0 more P-gp than hCMEC/D3 cells, these levels were not significant (for primary hBECs, n = 3 from 2 donors, P > 0.05). The results indicate that the expression of P-gp by hCMEC/D3 cells is close to that of primary hBECs cells and so they represent a suitable model for the study of P-gp expression.
2.3.4 The expression of P-gp by hCMEC/D3 cells as assessed by immunocytochemistry

The ability of P-gp to act as an efflux transporter is dependent on its localisation to the plasma membrane. Furthermore, the polarisation of P-gp to either the basolateral or apical membrane will determine the direction of efflux, which \textit{in vivo} corresponds to the brain or blood side of the BBB respectively. Therefore, the sub-cellular localisation of P-gp was investigated by ICC. Using fluorescence microscopy, both P-gp and BCRP displayed a diffuse staining at the cytoplasm and membrane, but not in the nucleus (Figure 2.7, \(n = 3\)). As for fluorescence microscopy, the sub-cellular localisation of P-gp could not be discerned by confocal microscopy (Figure 2.8, \(n = 1\)). P-gp expression was not detected in the nucleus but appeared to be distributed throughout the cytoplasm and plasma membrane. The results indicate that either both techniques are not sufficiently sensitive to detect the sub-cellular localisation of P-gp, or that P-gp is distributed throughout hCMEC/D3 cells.

2.3.5 Sub-cellular localisation of P-gp as assessed by differential detergent fractionation

Since P-gp appeared distributed diffusely throughout hCMEC/D3 cells, a biochemical assay was employed to investigate the relative sub-cellular distribution of P-gp. hCMEC/D3 cells were separated into cytosolic, membrane/organelle, nuclear and cytoskeletal fractions using differential detergent fractionation. The expression of P-gp and BCRP in each fraction was determined by western blotting and compared to a nuclear marker, the transcription factor Sp3, and a cytoskeletal marker, actin (Figure 2.9).

Sp3 was found almost entirely in the nuclear fraction (89.3 \(\% \pm 5.4\), \(n = 3\)), whereas actin was expressed highest in the cytoskeletal followed by nuclear and membrane fractions (75.2 \(\% \pm 9.5\), 15.5 \(\% \pm 4.8\) and 8.3 \(\% \pm 5.4\), respectively, \(n = 3\)). P-gp and BCRP
were both predominantly expressed in the membrane/organelle fraction (78.5 % ± 2.6, 88.8 % ± 5.09, respectively, n = 3). Therefore, both efflux pumps under investigation were located on cellular membranes, which includes both plasma membrane and membranes of intracellular organelles.

2.3.6 Localisation of P-gp at the ultrastructural level

It is essential to determine whether P-gp expression is polarised on the plasma membrane as this would determine whether substrates would be effluxed on the apical or basolateral side of hCMEC/D3 cells, corresponding to the blood and brain sides respectively, in vivo. As ICC techniques were unable to demonstrate the polarised nature of P-gp, TEM and immunogold staining techniques were employed. Gold particles were observed in the apical, basolateral and intracellular compartments (Figures 2.10 a, b and c, respectively) in agreement with ICC staining. When quantified, the number of gold particles associated with the apical plasma membrane was 2.9 times greater than on the basolateral membrane (Figure 2.10 b, 66 images analysed over a 500 μm section of plasma membrane). Therefore, whilst P-gp molecules are distributed on both membranes, the majority are on the apical membrane, which corresponds to the blood side in vivo. Located on this membrane, P-gp would be situated to prevent the movement of unwanted substrates from the blood into the brain.

2.3.7 Cytotoxicity of P-gp and BCRP inhibitors

An aim of this chapter was to investigate the functional expression of P-gp by hCMEC/D3 cells using the P-gp inhibitors tariquidar, vinblastine and the BCRP inhibitor FTC. To determine non-cytotoxic doses of these inhibitors, an MTT assay was carried out encompassing a concentration range previously reported to inhibit drug efflux by the ABC transporters. Figure 2.11 shows that tariquidar (0 – 600 nM) and FTC (0 – 22 μM) did not
affect cell viability following a 48 h incubation period, indicating non-cytotoxicity to hCMEC/D3 cells over the range of concentrations tested. In contrast, vinblastine caused a concentration-dependent decrease in cell viability at 48 h with an IC₅₀ of 26.3 μM ± 6.1 (n = 3). The cytotoxicity was significant at concentrations of 0.5 μM and above when compared to the control (n = 3, P < 0.05). However, a 24 h incubation with the same doses of vinblastine (0 - 40 μM), did not decrease cell viability (n = 3, P > 0.05) over the entire concentration range investigated. In subsequent experiments, 22 μM vinblastine was used at incubation periods of 12 h or shorter, whilst 300 nM tariquidar and 22 μM FTC were used for periods shorter than 48 h.

2.3.8 P-gp-mediated efflux of rh123 by hCMEC/D3 cells

In the original characterisation of the hCMEC/D3 cell line, P-gp functional expression was demonstrated by an increase in the net influx of rh123 in the presence of PSC-833 [473]. The aim here was to expand on this evidence by investigating whether P-gp acts to efflux rh123 from preloaded hCMEC/D3 cells. Efflux is potentially a more sensitive assay than influx as a measure of activity, since it is dependent on the efflux activity of P-gp rather than a measure of the relative contribution of efflux versus influx mechanisms. Localisation of P-gp to the plasma membrane is also a prerequisite for the efflux function of P-gp, which has been demonstrated in Figure 2.10. hCMEC/D3 cells were preloaded with 22 μM rh123 (1 h, 4°C) and incubated at 37°C over 6 h (Figure 2.12). Compared to cells preloaded with rh123 and incubated at 4°C, cellular rh123 levels decreased sharply in the first hour and then continued to decline. The t₁/₂ was estimated to be 13.3 min ± 1.1 (n = 3). The addition of 22 μM vinblastine to the efflux buffer during incubation at 37°C resulted in a less steep decline and a t₁/₂ of 112.2 min ± 3.7. At every time point measured (15, 30, 60, 120, 180 and 360 min), the median fluorescence intensity of cells treated with vinblastine was higher and statistically significant compared to those
treated with DMSO control (n = 3, \(P < 0.05 \)). These results indicate that rh123 is effluxed from hCMEC/D3 cells via functional P-gp.

A mutation at arginine position 428 to glycine or threonine of BCRP can result in enhanced substrate specificity to rh123 [221], and so it remained a possibility that BCRP could act as a rh123 transporter in hCMEC/D3 cells. To further determine the relative contribution of P-gp or BCRP to rh123 efflux, the effects of tariquidar (300 nM), FTC (22 \(\mu M \)) and vinblastine (22 \(\mu M \)) were investigated. hCMEC/D3 cells were preloaded with 22 \(\mu M \) rh123 at 4°C for 60 min, followed by incubation at 37°C for 60 min with the different treatments (Figure 2.13). 300 nM tariquidar increased cellular rh123 levels compared to an ethanol control (n = 3, \(P < 0.01 \)). 22 \(\mu M \) vinblastine, but not 22 \(\mu M \) FTC, also increased cellular rh123 levels compared to the DMSO control (n = 3, \(P < 0.01 \)). rh123-mediated efflux by hCMEC/D3 cells was therefore mainly mediated by P-gp and not BCRP.

Tariquidar has been demonstrated to have a long lasting, possibly irreversible inhibition on P-gp activity, whilst vinblastine acts as a competitive inhibitor. To investigate the mechanism of P-gp inhibition by tariquidar and vinblastine, hCMEC/D3 cells were preloaded at 4°C with 22 \(\mu M \) rh123 in combination with either tariquidar (300 nM) or vinblastine (22 \(\mu M \)), followed by incubation at 37°C for 60 min with either tariquidar, vinblastine or a control. After preloading hCMEC/D3 cells with rh123 and tariquidar, cellular rh123 levels were of similar high magnitude following incubation with tariquidar or a vehicle control (control 53.7 \(\pm \) 5.3, tariquidar 55.7 \(\pm \) 4.3, n = 3). In contrast, after preloading hCMEC/D3 cells with rh123 and vinblastine, the presence of vinblastine during the incubation at 37°C was required to inhibit efflux of rh123 (control 5.8 \(\pm \) 1.4, vinblastine 50 \(\pm \) 12.2, n = 3). The results imply that tariquidar is a long lasting P-gp inhibitor that unlike vinblastine, can exert its effect after preincubation, even if absent during the efflux stage of an assay. The long lasting inhibition of P-gp by tariquidar might be caused by high affinity binding of tariquidar with P-gp, which persists even after washing steps.
2.3.9 The permeability of hCMEC/D3 cells to rh123

P-gp efflux activity may limit the permeability of its substrates across BEC monolayers since P-gp was located mainly on the apical membrane. Therefore the permeability of hCMEC/D3 cells grown on transwell filters to rh123 was investigated (Figure 2.14). Apical-to-basolateral permeability of hCMEC/D3 cells to 22 μM rh123 was unaffected by both 300 nM tariquidar and 22 μM vinblastine (n = 3, P > 0.05). The basolateral-to-apical permeability of hCMEC/D3 to rh123 was also unaffected by 300 nM tariquidar or 22 μM vinblastine compared to the control (n = 3, P > 0.05). The results show that hCMEC/D3 cells might not be suitable to measure the polarised transport of lipophilic molecules with a molecular weight of ~ 400 Da. Indeed, Weksler et al [473] have demonstrated that hCMEC/D3 cells are useful for investigating the permeability of paracellular tracers larger than or equal to 4 kDa in size.
(a) Primary brain endothelial cells

Freshly isolated primary hBECs grew outwards from isolated capillary fragments. One week after isolation, colonies of spindle shaped cells formed confluent monolayers.

(b) hCMEC/D3 cells

hCMEC/D3 cells were split at a ratio of 1 in 5 onto collagen-coated tissue culture flasks. When confluent, ~2-3 days, hCMEC/D3 cells formed a monolayer of spindle shaped, tightly packed cells. Images taken on Nikon eclipse TS100.

Figure 2.3. Morphology of hCMEC/D3 cells and primary hBECs viewed by phase contrast microscopy. (a) Freshly isolated primary hBECs grew outwards from isolated capillary fragments. One week after isolation, colonies of spindle shaped cells formed confluent monolayers. (b) hCMEC/D3 cells were split at a ratio of 1 in 5 onto collagen-coated tissue culture flasks. When confluent, ~2-3 days, hCMEC/D3 cells formed a monolayer of spindle shaped, tightly packed cells. Images taken on Nikon eclipse TS100.
Figure 2.4. The expression of P-gp by hCMEC/D3 cells over passage. (a) Fully confluent hCMEC/D3 cells were lysed in RIPA buffer and the expression of P-gp (C219, mouse monoclonal IgG2a) and actin (mouse monoclonal IgG1) was determined over passage number from 23 to 44 using western blotting techniques. (b) The signal intensity of the bands corresponding to P-gp and actin were determined by image J and P-gp expression normalised. n = 1, with single samples.
Figure 2.5. The expression of P-gp and BCRP by hCMEC/D3 cells as assessed by flow cytometry. Fully confluent hCMEC/D3 cells were fixed in 4% PAF, permeabilised using 0.1% triton X-100 and stained with antibodies for (a) P-gp (JSB-1, mouse monoclonal IgG1) (b) BCRP (BXP21, mouse monoclonal IgG2a) or their negative controls (mouse IgG1 and IgG2a respectively) and analysed via flow cytometry (488 nm λ_{excitation}, 520 nm λ_{emission}).

(c) Data represents mean ± SEM, n = 3 with duplicate samples. ** P < 0.01 using Student’s t test.
Figure 2.6. The expression of P-gp by hCMEC/D3 cells and primary hBECs as assessed by flow cytometry. Fully confluent (a) hCMEC/D3 cells (p23-28) and (b) primary hBEC (p2-4) were fixed in 4% PAF, permeabilised using 0.1% triton X-100 and stained with antibodies for P-gp (JSB-1, mouse monoclonal IgG1) or a negative control (mouse IgG1) and analysed via flow cytometry (488 nm λexcitation 520 nm λemission) (c) Data represents mean ± SEM, n = 3 with duplicate samples. ** P < 0.01 using Student’s t test.
Figure 2.7. Expression of P-gp and BCRP by hCMEC/D3 cells as viewed by fluorescence microscopy. hCMEC/D3 cells were grown on collagen-coated Labtek slides until confluent, fixed (4 % PFA), permeabilised (0.1 % triton X-100) and stained for (a,b) P-gp [JSB-1 (mouse monoclonal IgG1)] or isotype-matched control or (c,d) BCRP [BXP21,(mouse monoclonal IgG2a)], counterstained for the nucleus with DAPI and viewed via fluorescence microscopy. Images are a representation of hCMEC/D3 cells at p 26. (n = 3 with single samples)
Figure 2.8. Expression of P-gp by hCMEC/D3 cells as viewed by confocal microscopy
hCMEC/D3 cells (p 28) were grown to confluence on collagen- and fibronectin- coated
transwell polyester membrane inserts (0.4 μm pore, 12mm diameter), fixed (4 % PAF),
permeabilised (0.1 % triton X-100) and stained for P-gp (JSB-1, mouse monoclonal IgG1)
or an isotype control (mouse IgG1), counterstained with the nuclear stain DAPI and
viewed on a confocal microscope. (a) An XY Z cross-section was taken over a selected
field, enabling top down (b) and (c) three dimensional reconstruction with Volocity
software. Images are from one experiment carried out in duplicate.
Figure 2.9. The sub-cellular localisation of P-gp, BCRP, Sp3 and actin in hCMEC/D3 cells as determined by western blotting after differential detergent fractionation. (a) Fully confluent hCMEC/D3 cells were separated into cytosol, membrane/organelle, nuclear and cytoskeletal components using differential detergent fractionation and the expression of Sp3 (rabbit polyclonal IgG), actin (mouse monoclonal IgG), BCRP [BXP21, (mouse monoclonal IgG2a, anti-human)] and P-gp [C219,(mouse monoclonal IgG2a)] was assessed by western blotting. (b) Relative expression of each protein in cytosol, membrane/organelle, nuclear and cytoskeletal fractions as a percentage of total expression. Data represents mean ± SEM, n = 3 with single samples.
Figure 2.10. Expression of P-gp by hCMEC/D3 cells as assessed by TEM and immunogold staining. hCMEC/D3 cells (p 28) were grown to confluence on transwell polyester membrane inserts (0.4 μm pore, 12mm diameter), fixed (PLP), mounted on nickel slots, stained for P-gp [C219, (mouse monoclonal IgG2a) or an isotype control (IgG2a)] and viewed in TEM. One frame length of 7.5 μm was taken every 2-3 frames (a-c) for a total of 500 μm, and the number of gold gold particles counted within 100 nm of the apical or basolateral membrane per image. (d) The average number of gold particles per μm was then calculated. ➔ Indicates gold particles. Scale bar = 100 nm.
Figure 2.11. Cytotoxicity of vinblastine, tariquidar and FTC to hCMEC/D3 cells as assessed by an MTT assay. Cytotoxicity of (a) tariquidar, (b) FTC and (c) vinblastine in fully confluent hCMEC/D3 cells was assessed using an MTT assay. Data represents mean ± SEM, n = 3 with quintuplet samples. * P < 0.05 using Student’s t test for raw data.
Figure 2.12. Time-dependent efflux of Rh123 by hCMEC/D3 cells. (a) Fully confluent hCMEC/D3 cells were preloaded with Rh123 (22 μM) for 1 h at 4°C and then incubated at 37°C in the presence of 22 μM vinblastine or DMSO for 15, 30, 60, 120, 180 or 360 min and analysed via flow cytometry (488 nm λ_{excitation} 520 nm λ_{emission}). (b) The median fluorescence intensity was measured and expressed as a percentage of preloaded cells incubated at 4°C. Data represents mean ± SEM, n = 3 with duplicate samples. * P < 0.05, ** P < 0.01 using Student’s t-test comparing vinblastine to DMSO at each time point.
Figure 2.13. Rh123 efflux inhibition by tariquidar and vinblastine from hCMEC/D3 cells. (a) hCMEC/D3 cells were preloaded with rh123 (22 μM) at 4°C for 60 min followed by 60 min incubation at 37 °C in the presence of tariquidar (300 nM), vinblastine (22 μM), FTC (22 μM) or an appropriate control and the median fluorescence intensity measured by flow cytometry. Data represents mean ± SEM, n = 3 with duplicate samples. * P < 0.05, ** P < 0.01 using Student’s t test comparing treatment to appropriate control. (b) hCMEC/D3 cells were preloaded with rh123 and either tariquidar (300 nM) or vinblastine (22 μM) for 60 min at 4°C followed by 60 min incubation at 37 °C in the presence or absence of the appropriate inhibitor. n = 3 with duplicate samples.
Figure 2.14. The permeability of hCMEC/D3 cells to rh123 in the presence or absence of tariquidar and vinblastine. hCMEC/D3 cell were grown to confluence on collagen- and fibronectin-coated filter inserts. rh123 (22 μM) was then added to the apical or basolateral side of the filter in the presence of tariquidar, vinblastine or DMSO and the amount of rh123 that crossed the filter was measured using a fluorescence plate reader. (a) Shows a typical curve of the volume of rh123 cleared versus time for apical to basolateral permeability. (b) The apical-to-basolateral permeability coefficient (P_e) of hCMEC/D3 cells was calculated using the slope of the curve. Data represents mean ± SEM, n = 3 with duplicate samples. P > 0.05. (c) Rh123 (22 μM) in the presence of tariquidar (300 nM), vinblastine (22 μM) or appropriate control was added to the basolateral chamber of fully-confluent hCMEC/D3 cells grown on filters. After 30 min the fluorescence was measured in the apical and basolateral chambers and the P_e calculated. Data represents mean ± SEM, n = 3 with duplicate samples. P > 0.05.
2.4 Discussion

2.4.1 P-gp expression by hCMEC/D3 cells

hBECs express P-gp which acts as a barrier for many therapeutic drugs and endogenous molecules, preventing their entry into the brain (reviewed in [172, 186]). The study of P-gp \textit{in vitro} is a useful tool for identifying potential substrates and inhibitors. The overall aim of this chapter was to fully characterise P-gp expression by an immortalised hBEC cell line, hCMEC/D3 cells, previously suggested as a suitable \textit{in vitro} human BBB model [473]. The data presented here shows that hCMEC/D3 cells express P-gp as assessed by flow cytometry, western blotting, ICC and TEM staining. This data is agreement with multiple studies that have demonstrated BEC P-gp expression at both the protein and mRNA level from \textit{in vitro} cultures of both primary and immortalised cells of rat, mouse and human origin [172, 186, 210-212, 473, 482, 504, 506, 514, 515].

In terms of P-gp expression, the BEC phenotype appears to be preserved in hCMEC/D3 cells over a wide range of passages (up to p38) and P-gp expression was comparable, albeit slightly reduced, to primary BECs. It is likely that the primary BECs used here however would have a marked decrease in P-gp expression compared to isolated capillaries, which more closely mimic the \textit{in vivo} situation as has been demonstrated in a number of animal and human studies. Regina \textit{et al} [244, 516] demonstrated that compared to isolated rat brain capillaries, an immortalised rat BEC cell line, RBE4, and primary rat BECs express less P-gp when assessed by western blotting and by RT-PCR for \textit{mdrla}. The authors also found that P-gp expression was higher in primary rat BECs than in RBE4 cells, which is similar to the observations made in this study with hCMEC/D3 cells and primary hBECs. Barrand \textit{et al} [517] have also demonstrated that isolated BECs express less P-gp than cerebral microvessels from rats. Seetharamam \textit{et al} [212] have corroborated this finding in humans, reporting that isolated BECs express less P-gp, assessed by ICC when compared to brain capillaries. P-gp expression can be elevated in cell culture using a
variety of different agents including puromycin, dexamethasone, cAMP elevation and PKC activation [518] [244, 519]. hCMEC/D3 cells, however, have not been demonstrated to induce P-gp in response to a number of different agents (D.K.Male, The Open University personal communication) including TNF-α and puromycin.

2.4.2 P-gp cellular distribution in the CNS

There has been some controversy surrounding the expression of P-gp by BECs. In 1997, Pardridge et al. [209] found that MRK16, an antibody directed against an external epitope of P-gp, co-localised with GFAP but not with Glut-1 in isolated human brain microvessels and rhesus monkey tissue samples. GFAP is a typical astrocyte marker, whereas Glut-1 is an EC marker. In a follow up study, there was a similar finding in unfixed isolated human brain capillaries, whereby GFAP and MRK16 staining were co-localised in a discrete continuous pattern. This led the authors to conclude that P-gp was located on astrocytic foot processes on the abluminal side on ECs [208], although the activation state of the astrocytes in the post mortem tissue might have induced P-gp up-regulation. This finding has been challenged by several groups on the basis that only one P-gp antibody was used in the experiment and it has been suggested that in certain cell types, the glycosylation state of P-gp can mask the antibody binding site of MRK16 [172, 186, 515]. It is of interest to note that using a rabbit polyclonal anti-P-gp antibody, a group of researchers including Pardridge demonstrated P-gp expression on both astrocytes and ECs from normal primate brain [484]. Bendayan et al [213] have also noted astrocytic P-gp expression from human brain tissue sections using TEM. Whilst the numerous data describing BEC P-gp expression far outweighs the relatively few studies, described above, which do not show P-gp expression by BECs, this does not exclude the possibility that astrocytes do express P-gp. A recent study by Volk [248] indicated that in acetone-fixed rat brain tissue, P-gp is predominately expressed by capillary ECs and weakly by perivascular
astrocytes. After kainate induced seizures, P-gp was found unregulated in hippocampal neurones but not in astrocytes. Interestingly, however, in PAF-fixed sections, P-gp localisation was absent in BECs, whilst astrocytic P-gp expression was found up-regulated post-seizures [248]. This demonstrates that the fixation method can alter the pattern of P-gp expression, which could explain the results obtained by Pardridge. Astrocyte P-gp up-regulation has been observed in animal studies in response to seizure inducing agents [520] and increased astrocytic P-gp staining has been observed in epileptic brain tissue specimens [521]. Such observations may indicate a role for astrocytes as a second line of defence, to protect the brain after insult [522]

In this study P-gp expression was observed on both primary BECs and hCMEC/D3 cells, which is consistent with the P-gp staining found in isolated human brain capillaries [212] and tissue sections [483].

2.4.3 Sub-cellular P-gp localisation by hBEC

In this study, P-gp expression was localised to the membrane/organelle fraction, when isolated using differential detergent fractionation. Using TEM and immunogold staining, P-gp was found to be localised mainly in or at the apical membrane, although labelling in the cytoplasm and basolateral membrane was also observed. These results are in partial agreement with Bendayan et al [213] who found abluminal, luminal and cytoplasmic (cytoplasmic vesicles, Golgi complex, and rough endoplasmic reticulum) staining of P-gp in rat and human brain tissue. However, Bendayan demonstrated abluminal polarisation of P-gp in rat brain tissue and overall the number of gold particles per μm of membrane was much higher than that observed in our study (1.17 ± 0.04 abluminal, 0.85 ± 0.03 luminal compared to 0.038 ± 0.009 and 0.11 ± 0.017, respectively, in this study). These contrasting results might reflect species differences between rats and humans. Indeed, numerous lines of evidence point to the polarisation of P-gp on the
luminal membrane of BECs. Luminal P-gp expression has been observed in isolated human brain capillaries [212] and human tissue [483]. Virgintino et al [483] have demonstrated, using confocal microscopy, luminal microvessel P-gp expression in the human cerebral cortex. *In vivo*, Mdr1a or mdr1a/b knock out mice display enhanced accumulation of many intravenously injected P-gp substrates, including cyclosporin A, vinblastine, digoxin, morphine and digoxin, colchicine and morphine (reviewed [172, 186]). The polarised nature of BEC function has been demonstrated *in vitro* on isolated BECs grown on filter inserts, which show directional transport of cyclosporin A and vincristine in mouse BECs [211, 523].

In summary, the expression of P-gp by BECs is more likely to be luminal in nature as a protection mechanism from blood substrates. However, further research is required to clarify differences in the polarisation of P-gp expression by BECs across species.

2.4.2 Cytotoxicity of P-gp and BCRP substrates and inhibitors

FTC is a selective inhibitor of BCRP. The ability of FTC to block BCRP was first described by Rabindran et al., [524] who demonstrated that FTC was able to reverse the drug resistance of a human carcinoma cell line. Since that discovery, FTC has been used in a variety of cellular models at doses in the 5-10 μM range, to inhibit BCRP function [525-528] and its toxicity has been evaluated *in vivo* [529]. It has been suggested that FTC acts as a competitive inhibitor of BCRP [524]. The finding that FTC was non-toxic up to 22 μM for 48 h to hCMEC/D3 cells meant that subsequent experiments could be carried out in the μM range.

As mentioned in section 1.1.5.1, P-gp expression has been detected in many tumours, conferring tumour cell resistance to many anti-cancer drugs. To combat this multidrug resistance, many P-gp inhibitors have been developed (reviewed [530]). Tariquidar (XR9576) is a 3rd generation P-gp inhibitor that has been demonstrated to block
P-gp activity in cell cultures at concentrations in the nM range and is also effective \textit{in vivo} [487, 531-537]. Tariquidar has been confirmed to have a superior potency than cyclosporin A and verapamil \textit{in vitro}, and also to have a long duration of action, since it is not itself a P-gp substrate. In human and murine cell lines, Tariquidar was found to block the efflux of rh123 mediated by P-gp, and also to increase the cellular of ³H daunorubicin levels, a P-gp/MRP-1 substrate [531]. In the current study, Tariquidar was found to be non-toxic to hCMEC/D3 cells at concentrations up to 600 nM for 48 h and so it was used at 300 nM in subsequently studies, a dose at which it effectively inhibited P-gp activity.

Vinblastine was found to be non-cytotoxic to hCMEC/D3 cells after 24 h incubation, but cytotoxic after 48 h incubation at concentrations over 0.5 \textmu M. The maximum incubation time for that vinblastine was used at later studies was 12 h at 22 \textmu M, i.e. non-cytotoxic concentrations. It is likely, however, that even at a non-cytotoxic dose, vinblastine was altering the protein expression and/or microtubule architecture of hCMEC/D3 cells. Vinblastine is a vinca alkaloid, which is used in cancer chemotherapy as it induces mitotic arrest. Vinca alkaloids bind to tubulin and prevent the assembly of microtubules, halting tumour cells in metaphase [538-540]. Vinblastine has demonstrable toxic effects on ECs [541-543]. In a co-culture model of porcine BECs and astrocytes, Van der Sandt \textit{et al} [543] demonstrated that vinblastine caused a dose-dependent reduction in the TEER of porcine BECs between 0 and 1 \textmu M, after 6 h incubation. This reduction in TEER was increased by the addition of cycloporin A, verapamil and PSC-833. Vinblastine has also been demonstrated to inhibit EC proliferation, motility and organisation at low concentrations [541, 542, 544] and also to up-regulate the expression of genes associated with cell cycle and apoptosis [545]. Pierre \textit{et al} [546] have also demonstrated that treatment of primary isolated rat BECs with 5.51 \textmu M vinblastine results in complete apoptosis of all cells. Tariquidar, FTC and vinblastine have no cytotoxic effects on hCMEC/D3 cells at the doses and incubations times selected for later experiments in this study.
2.4.3 P-gp activity in hCMEC/D3 cells

A rh123 efflux assay was used to determine functional P-gp expression in hCMEC/D3 cells. Rh123 is a low molecular weight (MW 380.82) fluorescent substrate of P-gp, which has been used to investigate P-gp activity in a range of different cell lines. Specifically for BECs, many groups have investigated the net influx of rh123 in the presence or absence of P-gp modulators (Table 2.3). Using this method and the P-gp inhibitor PSC-833, Weksler et al [473] have demonstrated that P-gp inhibition increases the intracellular accumulation of rh123 in hCMEC/D3 cells by 50 % after 1 h incubation. In this study, tariquidar and vinblastine inhibited the efflux of rh123 by ~ 55 % and 42 % compared to cells incubated at 4°C. Therefore, the sensitivity of P-gp-mediated inhibition appears similar for rh123 influx and efflux experiments. However, if the raw median fluorescence intensity data for tariquidar and vinblastine is divided by the control data, as carried out for influx data [473], the cellular levels are 779 % and 691 % higher than controls, respectively, revealing an increased sensitivity and improved P-gp functional assay than influx.

The efflux of preloaded rh123 (22 μM) was time-dependent with a t1/2 of 13.3 min ± 1.1, whilst in the presence of vinblastine the t1/2 was 112.2 ± 3.7 min. The t1/2 obtained here is in agreement with Ji et al.[547], who obtained a t1/2 of similar magnitude in rat primary BECs (~ 20 min). However, in contrast to the relatively modest increase in the t1/2 caused by verapamil in that study, in the present study vinblastine caused a much more potent inhibition. These contrasting results could be explained by differences in methodology, since the rat BECs were loaded at 37°C and the data is expressed as a percentage of time zero, rather than cells left at 4°C. The levels of P-gp expression might also differ between the cell lines. Since vinblastine and tariquidar both inhibited rh123 efflux, there is strong evidence that rh123 efflux from hCMEC/D3 cells is mediated by P-gp. In agreement with other research groups, FTC in this study did not inhibit rh123 efflux [473, 548]. BCRP has been demonstrated to recognise rh123 as a substrate only when there
is a mutation at position 482 [221, 230, 549, 550]. Therefore it is likely that hCMEC/D3 express wild type, non-mutated BCRP, since BCRP activity has been demonstrated in hCMEC/D3 cells [473]

The inhibition of P-gp function by tariquidar was longer lasting than that of vinblastine. This observation is in agreement with Misty et al. [531] who reported an irreversible long-lasting inhibition of rh123 and ³H daunorubicin efflux by tariquidar in a human ovarian carcinoma cell line, only if the inhibitor was present in the preloading stage. This evidence suggests that tariquidar might be a more suitable inhibitor than vinblastine for the study of the role of P-gp in the CNS penetration of drugs.

2.4.4 Permeability of hCMEC/D3 cells to rh123

The permeability of hCMEC/D3 cells grown on filters to rh123 was unaffected by P-gp inhibition in both the apical-to-basolateral and basolateral-to-apical directions. This result is consistent with Gaillard et al [551] who found no significant polarised transport of rh123 and doxorubicin in either direction across porcine BEC monolayers, unless co-cultured with astrocytes (Table 2.3). The lack of polarised P-gp transport may not reflect an unpolarised distribution of P-gp expression by hCMEC/D3 cells as strong luminal expression was observed in this study. Rather, it may reflect a reduced tightness of the EC layer. Rh123 is a small molecular weight molecule (MW 380.80) and the Pₑ values obtained for rh123 are similar to those obtained for sucrose (1.65 x 10⁻³ cm/min) in the original description of the hCMEC/D3 cells [473]. This permeability coefficient is high when compared to larger molecular weight molecules (4 kDa FITC- dextran 0.235 x 10⁻³ cm/min) and it has been suggested that the hCMEC/D3 cells are a good model for measuring the paracellular permeability of molecules over 4 kDa in MW, due to the relatively low TEER values. Thus the tightness of the hCMEC/D3 cells may not be sufficient to allow a barrier function for rh123, masking the contribution of P-gp to
Rh123 is lipophilic whereas sucrose is hydrophilic, and so the main route of entry of sucrose is paracellular, whilst rh123 can cross hCMEC/D3 monolayers by paracellular and transcellular pathways. Therefore, if the hCMEC/D3 cell layers are not very tight, as indicated by the low TEER values obtained by Weksler et al [473], then the paracellular diffusion of rh123 will mask the influence of P-gp over its transcellular transport. Astrocytes in the co-culture system described by Gaillard [551] might have increased the TEER values of BECs to an extent that permeability might be solely transcellular in nature. Indeed, Kunhe et al [407] have demonstrated that in porcine kidney epithelial cells (LLC cells) transfected with the MDR1 gene, the basolateral-to-apical transport of rh123 was increased compared to untransfected cells. LLC cells form much tighter monolayers than BECs, which may allow rh123 to be used as a polarisation transport marker.

2.5 Conclusions

In this study, functional P-gp expression by hCMEC/D3 cells has been demonstrated. hCMEC/D3 cells were found to express P-gp polarised on the apical membrane as previously reported in isolated human brain capillaries and are therefore a good in vitro model for investigating the transport of P-gp substrates. P-gp expression was also found lower than primary BECs in agreement with the literature. The supply of human tissue is fairly limited for this study and so the hCMEC/D3 cell line represents the most suitable human in vitro BEC model for investigation P-gp function. Tariquidar and vinblastine were demonstrated to inhibit the efflux of rh123 and so can be used to inhibit P-gp function by hCMEC/D3 cells. Whilst P-gp was functional and polarised, rh123 cannot be used as a as a permeability tracer due to the hCMEC/D3 cells high permeability to low molecular weight molecules.
<table>
<thead>
<tr>
<th>Type of rh123 experiment</th>
<th>Cell line</th>
<th>Result</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>Influx</td>
<td>Rat BECs</td>
<td>Net influx of rh123 (5 μM 90 min) increased after the addition of verapamil (10 μM) and amloidipine derivatives (CJX1 and CJX2 1-10 μM). Verapamil increased influx by 297.3%</td>
<td>[547]</td>
</tr>
<tr>
<td></td>
<td>Bovine BECs</td>
<td>Net influx of rh123 (4 μM, 20 min) increased after ultrasound induced hypothermia (74 % increase) and PSC-833 (1 μm, 60%).</td>
<td>[552]</td>
</tr>
<tr>
<td></td>
<td>Rat BECs</td>
<td>Net influx of rh123 (2.6 μM, 60 min) increased by 2.5 fold by addition of cyclosporin A (50 μM) in hypoxic BECs.</td>
<td>[251]</td>
</tr>
<tr>
<td></td>
<td>hCMEC/D3 cells</td>
<td>Net influx of rh123 (10 μM, 30 min) increased by 70% of control by PSC-833 (10 μM)</td>
<td>[473]</td>
</tr>
<tr>
<td></td>
<td>Immortalised rat BECs</td>
<td>Net influx of rh123 (10 μM 1 h) increased by PSC-833 (10 μm, 30 min preloading) by ~ 70 %.</td>
<td>[504]</td>
</tr>
<tr>
<td></td>
<td>Mice BECs</td>
<td>Net influx (10 μM, 60 min) decreased by TAT 1-72 partially overcome by verapamil.</td>
<td>[252]</td>
</tr>
<tr>
<td></td>
<td>Bovine BECs</td>
<td>Cyclosporin A and verapamil increase the net intracellular accumulation of 3.2 μM rh123 after 60 min.</td>
<td>[553]</td>
</tr>
<tr>
<td></td>
<td>Rat BECs</td>
<td>Cyclosporin A (50 μM) and verapamil (200 μM) increase the cellular uptake of rh123 (200 μM).</td>
<td>[247]</td>
</tr>
<tr>
<td></td>
<td>Rat BECs</td>
<td>Glutamate (100 μM, 30min) decreases rh123 accumulation (5 μM, 90 min) to 43 % of control.</td>
<td>[249]</td>
</tr>
</tbody>
</table>
Efflux

<table>
<thead>
<tr>
<th>Cell Type</th>
<th>Assay Details</th>
<th>References</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rat BECs</td>
<td>BEC loaded with 5 μM rh123 for 90 min at 37°C, followed by incubation at 37°C +/- verapamil (10 μM). Control t_{1/2} ~ 10 min and ~ 20 min with verapamil. Amlodipine derivates also increased cellular retention.</td>
<td>[547]</td>
</tr>
<tr>
<td>Human BECs</td>
<td>BEC loaded with rh123 (10 μM rh123 15 min, followed by 1 h incubation +/- verapamil (30 μM). Cellular retention increased by 1.2-1.4 relative to control.</td>
<td>[554]</td>
</tr>
<tr>
<td>Human Ovarian cancer cell line</td>
<td>2780AD cells loaded for 1 h with 2 μM rh123 +/- tariquidar (200,300nM) and then incubated minus inhibitors for 2 h. Cyclosporin A did no inhibit (t_{1/2} ~ 20 min. Tariquidar caused complete inhibition</td>
<td>[529]</td>
</tr>
</tbody>
</table>

Permeability

<table>
<thead>
<tr>
<th>Cell Type</th>
<th>Assay Details</th>
<th>References</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rat BECs</td>
<td>Apical-to-basolateral permeability of BECs to rh123 (4 μM) unaffected by PSC-833 (1 μM) after 30 min.</td>
<td>[555]</td>
</tr>
<tr>
<td>LLC-MDR1</td>
<td>LLC-MDR1 cells have increased basolateral to apical transport of rh123 (10 μM), but not apical to basolateral, when compared to LLC.</td>
<td>[407]</td>
</tr>
<tr>
<td>Bovine BECs</td>
<td>No polarised transport of rh123 by bovine endothelial cells alone, only when co-cultured with astrocytes</td>
<td>[551]</td>
</tr>
</tbody>
</table>

Table 2.3. rh123 assays used to investigate P-gp function in brain endothelial cells and epithelial cells.
Chapter 3

Role of P-gp and BCRP in Aβ transport across hCMEC/D3 cells

Abstract

The aim of this study was to investigate whether Aβ was a substrate for the brain efflux transporters P-gp and BCRP. The net influx of fluorescein-tagged Aβ 1-40 and Aβ 1-42 (fAβ 1-42 and fAβ 1-40 at 0.1 μM and 1 Mm, respectively) into hCMEC/D3 cells was unaltered by inhibitors for P-gp (tariquidar, vinblastine) or BCRP (FTC). In addition, the efflux of fAβ 1-40 and fAβ 1-42 from preloaded cells (1 μM, 24 h) was not affected by P-gp and BCRP inhibition. In contrast, at physiological concentrations of Aβ (125I Aβ 1-40, 0.1 nM), influx was increased and efflux was decreased by the addition of P-gp inhibitors (vinblastine, tariquidar) in hCMEC/D3 cells. Importantly, the permeability of the hCMEC/D3 cells to 125I Aβ 1-40 in the apical-to-basolateral direction, but not in the basolateral-to-apical direction, was increased by P-gp and BCRP inhibition. This finding was consistent with P-gp and BCRP acting to prevent blood-borne Aβ peptides entering the brain in vivo.
3.1 Introduction

Increased levels of neurotoxic Aβ in the brain are thought to be central in the pathogenesis of AD [302]. A potential therapy for AD is to increase the clearance of Aβ peptides from the brain, thus reducing the amyloid burden (reviewed in [137, 390, 556]). A number of transporters for Aβ have been demonstrated at the BBB which lead to Aβ transport into (RAGE, LRP-2/megalin) or out of (LRP-1, P-gp) the CNS.

LRP-1, a member of the low density lipoprotein receptor family, is the most extensively described brain-to-blood Aβ transporter at the BBB [319, 384, 394-396, 400, 401, 557-563], binding to both free Aβ [395] and Aβ bound to a carrier (ApoE, α2 macroglobulin) [396, 563, 564]. In vitro, both Aβ 1-40 and Aβ 1-42 bind with high affinity to two LRP-1 extracellular binding domains, called cluster II and IV [395], which results in internalisation [396] [563] and transcytosis [395] of the peptide in cultured BECs. In vivo, Aβ binds at the abluminal membrane of BECs via LRP-1 [395] and results in the transcytosis and clearance from the brain [319, 394, 395], whilst LRP-1 in the liver clears Aβ from the circulation [565] in rats. Recently, Sagare et al, [319] demonstrated that soluble recombinant LRP-1 cluster IV can reduce Aβ-related dysfunction in mice heterogeneous for the Swedish mutation of human APP, evidence that suggests treatment may be effective in AD.

RAGE acts to transport Aβ from the blood into the brain [389, 390], and increased microvascular RAGE expression has been observed in AD hippocampi sections compared to controls, whilst decreased BEC LRP-1 expression is found in AD patients [384]. Importantly, Deane et al [383] have calculated that if Aβ blood-to-brain transport was shut down, LRP-1 could remove all soluble Aβ from the ISF in the CNS in AD patients in ~ 40 min.

P-gp, similarly to LRP-1, appears to transport Aβ from the brain into the blood, although the interaction is much less well investigated. Lam et al [406] were the first to describe in vitro that both Aβ 1-40 and Aβ 1-42 bind to P-gp, using a human embryonic
kidney cell line (K269sw) enriched with the human MDR1 gene product and vesicles derived from the membrane of CHO cells. Further in vitro [407] evidence has shown that porcine kidney epithelial cells transfected with human MDR1 (LLC-MDR1), transcytose Aβ 1-40 and Aβ 1-42 from the basolateral-to-apical compartments when grown on filter inserts, and this transport is inhibited by cyclosporin A. In vivo data is consistent with in vitro observations. Cirrito et al [408] have found that Mdr1a/b(-/-) mice clear intracerebrally injected 125I Aβ 1-40 and 1-42 from the CNS at half the rate of wild type mice. However, LRP-1 was found to be down-regulated at the BBB of these mice. To clarify the contribution of P-gp to Aβ clearance, the same research group went on to show that Tg2576 transgenic mice (harbouring the human APP Swedish mutation gene), treated with a P-gp inhibitor (XR9576), have increased ISF levels of Aβ in the brain. Whilst there is no direct evidence of P-gp dysfunction in AD patients, it is of note that Vogelgesang et al. [409] found an inverse correlation between senile Aβ plaque deposition and P-gp expression in the median temporal lobe of non-demented subjects. There is also a reported P-gp down-regulation in Creutzfeldt-Jacob disease, a disease in which, at later stages, amyloid plaques and prion proteins are sometimes found aggregated [566].

There do, however, remain a few questions over the interactions between P-gp and Aβ at the BBB. The in vitro data collected thus far has originated from cell types that are not BEC in origin and so may express different levels of P-gp in addition to other Aβ transporters. Whilst the few in vitro studies too support the notion of P-gp functioning as a transporter for Aβ, a recent study using MDCK epithelial cells transfected with the human MDR1 gene (MDCK-MDR1 cells), found that the basolateral-to-apical transport of Aβ was the same for MDCK and MDCK-MDR1 cells [561]. Furthermore, using the P-gp inhibitors verapamil and quinidine, the brain-to-blood transport of human Aβ at the rat BBB in vivo has been demonstrated to be partially due to LRP-1, but not to P-gp [560].

In chapter 2, it was demonstrated that hCMEC/D3 cells express functional P-gp polarised to the apical membrane. The aim of this chapter was to investigate whether P-gp
and BCRP could act as transporters of Aβ at high concentrations (0.1-1 μM), using fluorescein tagged Aβ, and at physiological concentrations of Aβ, (0.1 nM) using 125I Aβ. To do this, the effects of P-gp and BCRP inhibition on the net influx of Aβ, and efflux of Aβ preloaded from hCMEC/D3 cells, were investigated. If Aβ is a substrate for P-gp or BCRP, then their inhibition would be expected to increase Aβ net influx and decrease efflux from hCMEC/D3 cells, as is noted with other P-gp substrates such as rh123. It should be noted however, that influx and efflux, as indicated by cellular levels, represents all process by which Aβ could associate and dissociate with the hCMEC/D3 cells. These include receptor mediated transport, diffusion, endocytosis, vesicular release and any ‘sticking’ to the cell membrane. In addition, the contribution of each transporter to the permeability of hCMEC/D3 cells to Aβ was investigated.
3.2 Methods

3.2.1 MTT cytotoxicity assay

Aβ 1-40, Aβ 1-42 (Bachem, Weil am Rhein, Germany), scrambled Aβ 1-40 and scrambled Aβ 1-42 (sAβ) (Covalence, California, USA) peptides were dissolved in DMSO (stock of 5 mM), and stored in Sigmacote (Sigma-Aldrich, Dorset, UK)-coated eppendorf tubes at -80°C. The toxicity of Aβ and sAβ peptides was investigated after 48 h incubation with a concentration range of 0.05 to 5 μM, in the presence of tariquidar (300 nM) or FTC (22 μM) in vehicle, or medium containing vehicle alone, using the MTT method described in section 2.2.10. The data is presented as a percentage of the vehicle control, however statistical analysis was performed on the raw data.

3.2.2 Influx of fluorescein-conjugated Aβ (fAβ) peptides

Fluorescein tagged Aβ (fAβ) peptides (Anaspec, California, USA) were dissolved and stored as for Aβ peptides (section 3.2.1). 1 x 10^5 hCMEC/D3 cells were seeded on collagen-coated 12 well plates, grown to confluence, and left for 1-2 days. 500 μl of fresh culture media was then added, containing 1 μM fAβ1-40 or fAβ1-42, and the hCMEC/D3 cells were incubated for 1, 6, 24 or 48 h at 37°C. At each time point, hCMEC/D3 cells were detached, washed twice in PBS and resuspended in 500 μl of PBS. The samples were then analysed using a FACSCalibur flow cytometer with Cellquest software (488 nm λexcitation, 530 nm λemission) and the median fluorescence of 10,000 cells per sample was read. The median fluorescence intensity of a negative control, not incubated with fAβ, was used for statistical analysis.

To characterise the concentration-dependent influx of fAβ with BECs, hCMEC/D3 cells were grown to confluence and incubated with 0.001, 0.01, 0.1 and 1 μM fAβ 1-40 or fAβ 1-42 for 24 h and analysed via flow cytometry as described above.
In order to investigate the role of different transporters/receptors in the influx of fAβ with BECs, hCMEC/D3 cells were grown to confluence and either 1 μM fAβ 1-40 or 0.1 μM fAβ 1-42 was added for 24 h with 300 nM tariquidar, 22 μM vinblastine, 22 μM FTC, 200 nM receptor associated protein (RAP, an inhibitor of LRP, EMD Biosciences, California, USA), 2 μM Aβ 1-40, 2 μM sAβ 1-40, 2 μM Aβ 1-42, 2 μM sAβ 1-42 or a DMSO vehicle control. hCMEC/D3 cells were then detached and read via flow cytometry as previously described, with the exception that background fluorescence was subtracted from all treatments prior to statistical analysis.

3.2.3 Efflux of fAβ 1-40 and fAβ 1-42

hCMEC/D3 cells were grown to confluence as described in section 3.2.2 and preloaded with 1 μM fAβ 1-40 or fAβ 1-42 for 24 h. hCMEC/D3 cells were then detached, washed and incubated at 37°C in culture media for 1, 3, 6 and 12 h or incubated at 4°C for 12 h. The samples were kept at 4°C until all incubation time points had been collected and the samples were washed twice in PBS and resuspended in 500 μl of PBS. The fluorescence intensity of cells was then measured via flow cytometry as described in 3.2.2. The median fluorescence intensity of each sample after background subtraction was expressed as a percentage of that for fAβ preloaded cells that had been kept at 4°C.

In some experiments, hCMEC/D3 cells were preloaded with 1 μM fAβ 1-40 or fAβ 1-42 for 24 h, washed and incubated at 37°C in cell culture media for 6 h with 300 nM tariquidar, 22 μM vinblastine, 22 μM FTC or a DMSO vehicle control and the fluorescence measured by flow cytometry as described above.

3.2.4 Intracellular detection of fAβ by confocal microscopy

hCMEC/D3 cells were grown to confluence on collagen-coated 12 well tissue culture plates and incubated with 1 μM fAβ 1-40 or fAβ 1-42 for 24 h. hCMEC/D3 cells
were then detached, washed twice in PBS, fixed in 4 % PAF and incubated with 5 μM DRAQ5 in PBS for 1 h. After two washes, the cells were resuspended in PBS and ~ 5 x 10^4 cells were placed on a glass slide and mounted with a glass coverslip. hCMEC/D3 cells were then viewed with a confocal microscope (Leica DMIRBE, Leica, Buckingham UK), taking XY and Z cross sections over a selected field to reconstruct a three dimensional image using Volocity software (Improvision, Coventry, UK).

3.2.5 Influx of ^{125}I Aβ 1-40

hCMEC/D3 cells were seeded on collagen-coated 24 well plates (5 x 10^4 per well), grown to confluence and left for 2 days. Fresh culture media containing 0.1 nM ^{125}I Aβ 1-40 (1110 Ci/m mole, Weil am Rhein, Germany) was then added and the hCMEC/D3 cells were incubated for 0.5, 1, 3, 6 and 24 h. From all samples, the ^{125}I Aβ remaining in the media and in trypsinised hCMEC/D3 cells was measured using a γ-counter (Wallac Wizard, Perkin Elmer, Cambridgeshire, UK).

To further characterise ^{125}I Aβ 1-40 influx, hCMEC/D3 cells were grown to confluence as described above and incubated for 30 min with 0.1 nM ^{125}I Aβ 1-40 and vinblastine (2 μM), tarquidar (300 nM), FTC (2 μM), Aβ 1-40 (100 nM), sAβ 1-40 (100 nM), or a DMSO vehicle control. The ^{125}I Aβ 1-40 counts were then measured in the supernatant and trypsinised cells. For both experiments the amount of protein in each sample was determined using a DC protein assay. For data analysis, the hCMEC/D3 cellular levels of ^{125}I Aβ 1-40, in femtomes, was related to the total protein in the cell suspension (fmoles/mg).

3.2.6 Efflux of ^{125}I Aβ 1-40

To measure ^{125}I Aβ 1-40 efflux from hCMEC/D3 cells, cells were grown as described in 3.2.5, preloaded with 0.1 nM ^{125}I Aβ 1-40 for 3 h, the culture media removed,
the amount of 125I Aβ 1-40 counted, and fresh culture media added. hCMEC/D3 cells were then incubated for 7.5, 15, 30, 60 and 180 min at 37°C and the 125I radioactivity measured in the trypsinised cells. A further treatment was also collected whereby preloaded cells were incubated at 4°C for 180 min. Cellular 125I Aβ 1-40 levels were calculated as before. The $t_{1/2}$ was calculated with the assumption that the sample incubated at 4°C for 180 min represented the maximal cellular levels of 125I Aβ 1-40 and also represented $T = 0$ min.

The effect of P-gp and BCRP inhibitors was then investigated on 125I Aβ 1-40 efflux form hCMEC/D3 cells. Fully confluent hCMEC/D3 cells were loaded with 0.1 nM 125I Aβ 1-40 for 3 h and then incubated for 10 min at 37°C in fresh culture media containing vinblastine (2 μM), tariquidar (300 nM), FTC (2 μM) or DMSO and the 125I radioactivity measured in trypsinised cells as above.

3.2.7 The permeability of hCMEC/D3 cells to 125I Aβ 1-40

hCMEC/D3 cells were grown on filter inserts (0.4 μm pore diameter, 12 mm diameter), until confluent and rested for 1-2 days. The permeability of hCMEC/D3 cells to 125I Aβ1-40 and the paracellular tracer 14C Inulin was then determined. Fresh media containing 0.1 nM 125I Aβ and 0.1 mM 14C Inulin (1-3 μCi/mg; MP biomedicals, Ohio, USA) in the presence of vinblastine (2 μM), tariquidar (300 nM), FTC (2 μM) or DMSO vehicle control was added to the apical or basolateral chamber and left for 30 min. The amount of 125I Aβ 1-40 in the apical medium, basolateral medium, trypsinised cells and filter was then counted. For 14C inulin, the amount in the apical and basal compartments was measured (Wallac trilux, Perkin Elmer, Cambridgeshire, UK).

The data was analysed using an Aβ clearance quotient (Aβ CQ) as described by Nazer et. al. [561] with modifications:
\[A\beta C_{Q_{BL}} = \frac{^{125}I_{AP}}{^{125}I_{total}} \]
\[A\beta C_{Q_{AP}} = \frac{^{125}I_{BL}}{^{125}I_{total}} \]
\[^{14}C_{AP}/^{14}C_{total} \]
\[^{14}C_{BL}/^{14}C_{total} \]

\(^{125}I_{total}\) represents the total counts for the apical and basal compartments plus trypsinised cells plus the filter. \(^{14}C_{total}\) is the total inulin counts for apical and the basolateral compartment. \(^{125}I_{AP}\) are the apical counts whilst \(^{125}I_{BL}\) represents basolateral counts. The amount of \(^{125}I\) in the trypsinised cells only accounted for \(\sim 0.2\%\) of total \(^{125}I\) counts and so whilst not accounted for with the \(^{14}C\) counts, the contribution was considered to be negligible.

3.2.8 Statistical analysis

All data are represented as means +/- SEM and the number of experiments, n, indicated each time. For all experiments, the statistical significance was calculated using ANOVA followed by Student's t test, comparing each treatment to the control (* \(P < 0.05\), ** \(P < 0.01\)). For the permeability, influx and efflux experiments, a paired t-test was employed, since each experiment was carried out with paired control and treated samples.
3.3 Results

3.3.1 Cytotoxicity of Aβ 1-40 and Aβ 1-42 peptides to hCMEC/D3 cells

An aim of this chapter was to investigate the interactions of Aβ peptides with P-gp and BCRP at high and low concentrations. An MTT cytotoxicity assay was initially carried out to ensure that non-toxic concentrations of Aβ were used (Figures 3.1 and 3.2). Incubation of hCMEC/D3 cells with Aβ 1-40, sAβ 1-40, Aβ 1-42 or sAβ 1-42 for 48 h did not affect cell viability over the concentration range 0 - 5 μM as assessed by formazan production from MTT (n = 3, P > 0.05). Following co-incubation of Aβ and sAβ peptides with tariquidar (300 nM) or FTC (22 μM), there was no increase in Aβ-induced cytotoxicity to hCMEC/D3 cells (n = 3, P > 0.05). This suggests that if P-gp or BCRP inhibition increase Aβ levels in hCMEC/D3 cells, this was not sufficient to induce cell death at the concentrations used here. The highest concentration of Aβ used in subsequent experiments was 1 μM for 24 h incubation.

3.3.2 Sub-cellular localisation of fAβ peptides as assessed by confocal microscopy

In order to investigate the interaction of Aβ with hCMEC/D3 cells, fAβ was employed for ease of detection. fAβ differs from Aβ, by the addition of a fluorescein molecule on the N-terminus of the peptide and it should be noted that the fluorescence tag increases the molecular weight of Aβ 1-40 from 4329.86 to 4688.2 and Aβ 1-42 from 4514.1 to 4873.4. For Aβ to be effluxed from hCMEC/D3 cells by BCRP and/or P-gp, it should first access the intracellular compartment. Therefore, confocal imaging was carried out to investigate fAβ peptide sub-cellular localisation (Figure 3.3 and 3.4). Confocal imaging shows that both fAβ peptides appeared intracellularly but not in nuclear compartments. There is particularly strong staining in the area around the nucleus, where
the golgi apparatus, which is involved in the trafficking of vesicles, is located. These data indicate that a high proportion of fAβ peptides are located intracellularly.

3.3.3 Influx of fAβ peptides into hCMEC/D3 cells

Next, the effect of P-gp, BCRP and LRP-1 inhibition on fAβ influx was investigated. Initially, a time-course and dose-response curve of fAβ 1-40 and fAβ 1-42 influx into hCMEC/D3 cells was determined, in order to pick optimal conditions for subsequent influx experiments with inhibitors (Figure 3.5). 0.1 μM fAβ 1-42 influx into hCMEC/D3 cells increased with time, with a maximum at 24 h, and then a slight decrease after 48 h incubation to 70.4 % ± 1.8 of maximum levels (n = 3, P > 0.05). The pattern of fAβ 1-40 influx was similar, reaching a maximum at 24 h and then decreasing to 75.9 % ± 1.53 of maximum levels after 48 h incubation (n = 3, P > 0.05). However, from 6 h, the median fluorescence intensity values for fAβ 1-40 were much lower than those for fAβ 1-42 (e.g. 56 ± 16 and 20 ± 1.5 for fAβ 1-42 and 1-40, respectively, after 24 h incubation). For fAβ 1-40, the median fluorescence intensity was higher than background for all time points investigated (n = 3, P < 0.01) whilst for fAβ 1-42 the levels were only significant at 24 h and 48 h (n = 3, P < 0.05) due to the high variability at lower time points. The results indicate that the maximal influx of both fAβ species into hCMEC/D3 cells occurs at 24 h.

The concentration-dependent influx of fAβ peptides into hCMEC/D3 cell was next investigated. A concentration-dependent increase in fAβ 1-42 influx into hCMEC/D3 cells was observed after 24 h incubation, which was significant compared to background median fluorescence intensity at concentrations of 0.1 μM and 1 μM (n = 3, P < 0.05) but not at lower concentrations. For fAβ 1-40, influx into hCMEC/D3 cells was lower than that for fAβ 1-42, and was only significantly higher than background at the highest dose 1 μM (n = 3, P < 0.05). In subsequent influx experiments, 1 μM fAβ 1-40 and 0.1 μM Aβ 1-42 were used at 24 h incubation. These parameters were selected to ensure that fAβ 1-42 cellular levels were not maximal in hCMEC/D3 cells so that any increases due to P-gp or BCRP
inhibition could be detected. In the case of fAβ 1-40 only 1 μM could be used, due to the lack of detectable florescence at lower concentrations.

3.3.4 Role of P-gp, BCRP and LRP-1 in fAβ influx into hCMEC/D3 cells

An aim of this chapter was to investigate if Aβ is a substrate for P-gp or BCRP in hCMEC/D3 cells. The net influx of P-gp and BCRP substrates are enhanced by the addition of specific inhibitors as previously demonstrated for rh123 and daunorubicin in hCMEC/D3 cells [473]. Whether this was the case for fAβ peptides was therefore investigated. The transcytosis of Aβ across EC monolayers has been described to be mediated by RAGE and LRP (reviewed in [137]) and as part of this process the Aβ peptide would be internalised. The effects of LRP inhibition and unlabelled Aβ peptides were investigated to determine the potential mechanisms of fAβ influx into hCMEC/D3 cells (Figure 3.6). Compared to control levels the influx of 0.1 μM fAβ 1-42 or 1 μM fAβ 1-40 into hCMEC/D3 cells was unaffected by co-incubation with 300 nM tariquidar, 22 μM vinblastine, 22 μM FTC, 200 nM RAP, 2 μM Aβ 1-42, 2 μM Aβ 1-40, 2 μM sAβ 1-42 or 2 μM sAβ 1-40 after 24 h incubation (n = 3, P > 0.05). These results imply that the influx of Aβ into hCMEC/D3 cells may not be a receptor-mediated event, and that P-gp and BCRP do not play a significant role in Aβ influx at concentration > 100 nM.

3.3.5 Role of P-gp and BCRP in fAβ efflux from hCMEC/D3 cells

The results described in chapter 2 implicated that the efflux of preloaded P-gp substrates from hCMEC/D3 cells is potentially a more sensitive measurement of P-gp activity than net influx as indicated by rh123. Therefore, efflux of preloaded fAβ from hCMEC/D3 cells was investigated using P-gp and BCRP inhibitors. Initially a characterisation of time-dependent efflux was carried out (Figure 3.7). After preloading hCMEC/D3 cells with fAβ peptides, (1 μM, 24 h), the efflux of each peptide was determined over time. Efflux (reduction in cell median fluorescence intensity expressed as
a % of 4°C treated cells) was time-dependent, with a t\(_{1/2}\) of 203.2 min ± 14.3 and 216 min ± 3.1 min for fAβ 1-40 and 1-42, respectively (n = 3). For both peptides, the data was significantly different at time points over 6 h incubation when compared to preloaded hCMEC/D3 cells incubated at 4°C (n = 3, P < 0.05).

The efflux of hCMEC/D3 cells preloaded with fAβ 1-40 or fAβ 1-42 in the presence of tariquidar (300 nM), vinblastine (22 μM), FTC (22 μM) or a vehicle control was then investigated after 6 h incubation. There was no significant difference in median fluorescence intensity between any treatments compared to the control for both fAβ 1-40 or fAβ 1-42 (n = 8 for fAβ 1-42; n = 4 for fAβ 1-40; P > 0.05). The results indicate that, at high concentration of Aβ (1 μM), the contribution of P-gp and BCRP to Aβ efflux from hCMEC/D3 cells is negligible.

3.3.6 Effects of P-gp or BCRP inhibition on the influx of \(^{125}\)I Aβ 1-40 into hCMEC/D3 cells

It is possible that high concentrations of fAβ saturated the transport capability of P-gp in hCMEC/D3 cells, or that the fluorescein tagged peptides are not P-gp substrates as they are more hydrophilic. Therefore, the influx of a lower concentration of 0.1 nM \(^{125}\)I Aβ 1-40 was investigated, which is closer to physiological levels (reviewed in [313]). Firstly, a characterisation of the time-dependent influx of 0.1 nM \(^{125}\)I Aβ 1-40 was carried out. 0.1 nM \(^{125}\)I Aβ 1-40 influx into hCMEC/D3 cells was indeed time-dependent, reaching saturation between 3 and 6 h with a t\(_{1/2}\) of 35 ± 5.0 min (Figure 3.10) (n = 3).

Next, the influx of 0.1 nM \(^{125}\)I Aβ 1-40 after 30 min incubation with inhibitors for P-gp (300 nM tariquidar, 2 μM vinblastine), BCRP (FTC 2 μM), unlabelled Aβ or sAβ (100 nM) or a DMSO vehicle was investigated (Figure 3.10). Tariquidar significantly increased \(^{125}\)I Aβ 1-40 influx by 20.9 % ± 0.6 compared to the control (n = 3, P < 0.05).

Whilst FTC and vinblastine both increased the influx of \(^{125}\)I Aβ 1-40 into hCMEC/D3 cells
(19.6 % ± 1.1, 10.7 % ± 0.7 respectively) but levels did not reach statistical significance ($P = 0.26$ for FTC and 0.07 for vinblastine). Aβ 1-40 and sAβ1-40 did not alter 125I Aβ 1-40 levels compared to the control ($n = 3$, $P < 0.05$). These results indicate, that P-gp, and possibly BCRP, might act to reduce cellular levels of 125I Aβ 1-40 at 0.1 nM, and that Aβ influx is not a receptor-specific phenomenon in hCMEC/D3 cells.

3.3.7 The role of P-gp or BCRP on 125I Aβ 1-40 efflux from hCMEC/D3 cells

To further explore the possibility that Aβ might be a P-gp or BCRP substrate in hCMEC/D3 cells, the efflux of 125I Aβ 1-40 was investigated (Figure 3.11). After preloading hCMEC/D3 cells with 0.1 nM 125I Aβ 1-40 for 3 h, efflux was time-dependent, with a $t_{1/2}$ of 11.6 min ± 0.88 (using preloaded hCMEC/D3 cells incubated at 4°C as a measure of maximal cellular levels).

hCMEC/D3 cells were preloaded with 0.1 nM 125I Aβ 1-40 and incubated for 10 min with P-gp and BCRP inhibitors. Compared to the control, tariquidar (300 nM) and vinblastine (2 μM) both increased cellular levels of 125I Aβ 1-40 by 62.2 % ± 17.6 and 53.8 % ± 7.2 , respectively ($n = 3$, $P < 0.05$). Whilst FTC (2 μM) increased cellular levels by 27 % ± 13.6, the levels did not reach statistical significance ($n = 3$, $P > 0.05$). The levels of cellular 125I Aβ 1-40 in hCMEC/D3 cells incubated at 4°C for 10 min had increased by 157.8 % ± 21.1 of controls ($n = 3$, $P < 0.01$). These results indicate that P-gp, and to a lesser extent BCRP, contribute to 125I Aβ 1-40 efflux from hCMEC/D3 cells, in addition to other mechanisms which may include receptor-mediated transport, vesicle-mediated secretion or diffusion from either inside the cells or from the membrane.

3.3.8 The permeability of hCMEC/D3 cells to 125I Aβ 1-40

Since P-gp, and to a lesser extent BCRP, have roles in the influx and efflux of 0.1 nM 125I Aβ 1-40, they may also be a factor in determining the permeability of hCMEC/D3 cells to 125I Aβ 1-40. Although the results of chapter 2 have indicated that hCMEC/D3 cells...
are not a suitable model for studying the permeability to small molecules (rh123), it has been proposed that they are adequate to study the paracellular permeability of tracers with a MW of 4 kDa or greater [473]. The permeability of hCMEC/D3 cells grown on filters to 0.1 nM 125I Aβ 1-40 in the presence of tariquidar (300 nM), vinblastine (2 μM) and FTC (2 μM) or a vehicle control was thus investigated over 30 min (Figure 3.10 and 11). In order to take into account potential alterations in paracellular permeability, the permeability to 14C inulin, which has a similar molecular weight, was used as a correction factor.

From the apical-to-basolateral chambers, the permeability of filter inserts to 125I Aβ 1-40 was higher than that of hCMEC/D3 cells on filters, by around 250 % ($n = 6, P < 0.05$). This was also the case for the basolateral-to-apical transport, where in the absence of hCMEC/D3 cells, 185 % more 125I Aβ 1-40 crossed into the apical chamber compared to hCMEC/D3 cells on filters ($n = 6, P < 0.05$). Higher total 14C inulin also crossed from the apical-to-basolateral (152 %) and basolateral-to-apical side (420%) in the absence of cells, compared to cells of filters ($n = 3, P < 0.05$). The hCMEC/D3 cells therefore formed a barrier to the passage of both 125I Aβ 1-40 and 14C inulin (Figure 3.10).

The Aβ CQ$_{AP}$ of hCMEC/D3 cells when compared to control levels was increased by 54.2 % ± 16.3 with tariquidar (300 nM), 40.8 % ± 19.9 with vinblastine (2 μM) and 18.9 % ± 4.0 by FTC (2 μM) ($n = 6, P < 0.05$). In contrast, the Aβ CQ$_{BL}$ was unaltered by tariquidar, vinblastine or FTC ($n = 6, P > 0.05$). When 125I Aβ 1-40 was applied on the apical side, cellular levels of 125I Aβ 1-40 in hCMEC/D3 cells was increased by tariquidar (20 % ±16), vinblastine (46 % ± 23) and FTC (88 % ± 65), although these increases were not statistically significant. When 125I Aβ 1-40 was applied to the basolateral side, no such increase in influx was observed with any of the inhibitors (Figure 3.11).

These results suggest that P-gp and BCRP act to prevent the movement of Aβ from the apical-to-basolateral side of the cells, which is consistent with the luminal P-gp expression observed in chapter 2.
Figure 3.1. Cytotoxicity of Aβ 1-40 to hCMEC/D3 cells as assessed by an MTT assay. The cytotoxicity of (a) Aβ 1-40 or (b) sAβ 1-40 (0 - 5 μM) to fully confluent hCMEC/D3 cells was determined over 48 h in the presence of tariquidar (300 nM), FTC (22 μM) or a vehicle control using an MTT assay. Data represents mean ± SEM, n = 3 with quintuplet samples plotted on a semi-logarithmic scale. The SEM of controls values (100) were ± 12.1 and ± 16.7 for Aβ and sAβ, respectively. P > 0.05 using Student’s t test for raw data compared to vehicle control.
Figure 3.2. Cytotoxicity of Aβ 1-42 to hCMEC/D3 cells as assessed by an MTT assay. The cytotoxicity of (a) Aβ 1-42 or (b) sAβ 1-42 (0 - 5 μM) to fully confluent hCMEC/D3 cells was observed over 48 h in the presence of tariquidar (300 nM), FTC (22 μM) or a vehicle control using an MTT assay. Data represents mean ± SEM, n = 3 with quintuplet samples plotted on a semi-logarithmic scale. SEM of controls values (100) were ± 12.1 and ± 16.7 for Aβ and sAβ respectively. P > 0.05 using Student's t test for raw data compared to vehicle control.
Figure 3.3. Sub-cellular localisation of fAβ 1-42 in hCMEC/D3 cells as viewed by confocal microscopy. hCMEC/D3 cells were grown to confluence in a 12 well collagen-coated plate, incubated with 1 μM fAβ 1-42 for 24 h, detached, fixed in 4 % PAF, stained with DRAQ-5, mounted and viewed on a confocal microscope. An XY Z cross-section was taken over a selected field (a,c), enabling a three dimensional reconstruction with Volocity software (b,d). n = 1 with duplicate samples.
Figure 3.4. Sub-cellular localisation of fAβ 1-40 in hCMEC/D3 cells as viewed by confocal microscopy. hCMEC/D3 cells were grown to confluence in a 12 well collagen-coated plate, incubated with 1 μM fAβ 1-40 for 24 h, detached, fixed in 4 % PAF, stained with DRAQ-5 mounted an viewed on a confocal microscope. An XY Z cross-section was taken over a selected field (a), enabling a three dimensional reconstruction with Volocity software (b). n = 1 with duplicate samples.
Figure 3.5. The effects of time and concentration on the influx of fAβ peptides into hCMEC/D3 cells. (a) hCMEC/D3 cells were grown to confluence on 12 well plates and incubated for 1, 6, 24 and 48 h with 1 μM fAβ 1-40 or 1-42. The cells were then detached and analysed via flow cytometry (488 nm λ_{excitation}, 520 nm λ_{emission}). (b) hCMEC/D3 cells were incubated for 24 h with either fAβ 1-40 or Aβ 1-42 at concentrations of 0.001, 0.01, 0.1 and 1 μM before analysis via flow cytometry (488 nm λ_{excitation}, 530 nm λ_{emission}). Data represents mean ± SEM, n = 3 with duplicate samples. * P < 0.05, ** P < 0.01 using paired t test comparing the fluorescence at each time point to background fluorescence, which in (a) is represented by time = 0 min on the graph.
Figure 3.6. The effects of P-gp, BCRP or LRP-1 inhibition on the influx of fAβ peptides into hCMEC/D3 cells. hCMEC/D3 cells were grown until fully confluent, rested for 2 days, and the incubated for 24 h with ether (a) 1 μM fAβ 1-40 or (b) 0.1 μM fAβ 1-42 in the presence tariquidar (300nM), vinblastine (22 μM), FTC (22 μM), RAP (200 nM), unlabelled Aβ 1-40 or sAβ 1-40 or 1-42 (2 μM) or a DMSO vehicle control. The fluorescence was then measured via flow cytometry (488 nm λexcitation, 530 nm λemission) and expressed as a % of the value for the vehicle control. Data represents mean ± SEM, n = 3 with duplicate samples.
Figure 3.7. The effects of P-gp or BCRP inhibition on the efflux of fAβ peptides from hCMEC/D3 cells. (a) hCMEC/D3 cells were grown to confluence on 12 well plates and preloaded with 1 μM fAβ 1-40 or fAβ 1-42 for 24 h. Cells were then detached and incubated at 37°C for 1, 3, 6 and 12 h, or left at 4°C. The fluorescence was then measured by flow cytometry, and the data expressed as a percentage of fluorescence in cells left at 4°C. Data represents mean ± SEM, n = 3 with duplicate samples. (b) hCMEC/D3 cells were preloaded with 1 μM fAβ 1-40 or fAβ 1-42 for 24 h, and then incubated at 37°C for 6 h with tariquidar (300 nM), vinblastine (22 μM), FTC (22 μM) or DMSO vehicle control. The fluorescence was then measured by flow cytometry and the data expressed as a percentage of the 4°C treatment. Data represents mean ± SEM, n = 8 fAβ 1-42 and n = 4 for fAβ 1-40 with duplicate samples. P > 0.05 using paired t test comparing the raw data to the control.
Figure 3.8. The effects of P-gp or BCRP inhibition on the influx of 125I Aβ 1-40 into hCMEC/D3 cells. (a) Fully confluent hCMEC/D3 cells were incubated with 0.1 nM 125I Aβ 1-40 for 0.5, 1, 3, 6 and 24 h, detached and the cellular levels of 125I Aβ 1-40 (fmol/mg of total protein) were measured using a γ-counter. Data represents mean ± SEM, n = 3 experiments with duplicate samples. (b) Fully confluent hCMEC/D3 cells were incubated with 0.1 nM 125I Aβ 1-40 for 30 min in the presence of tariquidar (300 nM), vinblastine (2 μM), FTC (2 μM), Aβ 1-40 (100 nM), sAβ 1-40 (100 nM) or a DMSO vehicle control, and the cellular levels of 125I Aβ 1-40 calculated. Data represents mean ± SEM, n = 4 experiments with duplicate samples. * $P < 0.05$, ** $P < 0.01$ for treatments compared to control using paired t test.
Figure 3.9. The effects of P-gp or BCRP inhibition on the efflux of 125I Aβ 1-40 from hCMEC/D3 cells. (a) Fully confluent hCMEC/D3 cells were preloaded for 3 h with 0.1 nM 125I Aβ 1-40, the cell culture media was changed and the cells were incubated for 7.5, 15, 30, 60 and 180 min at 37°C. At each time point the cellular levels of 125I Aβ 1-40 (fmoles/mg of total protein) were measured using a γ-counter. Data represents mean ± SEM, n = 3 experiments with duplicate samples. (b) Preloaded hCMEC/D3 cells were incubated with tariquidar (300 nM), vinblastine (2 μM), FTC (2 μM) or a DMSO vehicle control for 10 min at 37°C, cellular levels of 125I Aβ 1-40 (fmoles/mg of total protein) were measured using a γ-counter. Data represents mean ± SEM, n = 4 experiments with duplicate samples. * P < 0.05, ** P < 0.01 for treatments compared to the control using paired t test.
Figure 3.10. The permeability of hCMEC/D3 cells to 125IAβ 1-40 and 14C inulin. hCMEC/D3 cells were grown to confluence on filter inserts and 0.1 nM 125IAβ 1-40 and 0.1 mM 14C inulin was added to either the (a) apical or (b) basolateral compartments for 30 min. The total counts in each compartment were measured and the percentage crossing the filter calculated. Data represents mean ± SEM, n = 6 with single samples, * $P < 0.05$, compared to filters with no cells using paired t test.
Figure 3.11. The effect of P-gp and BCRP inhibition on the clearance quotient of hCMEC/D3 cells to 125I Aβ 1-40. (a) hCMEC/D3 cells were grown to confluence on filter inserts and rested for 48 h. Fresh culture media was then added to the apical or basolateral chamber containing 0.1 nM 125I Aβ 1-40 and 0.1 mM 14C inulin and tariquidar (300 nM), vinblastine (2 μM), FTC (2 μM) or a vehicle control for 30 min. The 125I and 14C counts were measured and the amyloid clearance quotient calculated. (b) Represents the total 125I 125I Aβ 1-40 recorded from the trypsinised cells as a percentage of the total 125I Aβ 1-40 counts. For both experiments data represents mean ± SEM, n = 6 with single samples, * P< 0.05, comparing each treatment to the control using a paired t-test.
3.4 Discussion

3.4.1 Mechanism of Aβ influx and efflux in hCMEC/D3 cells

Aβ peptides have been previously reported to be a substrate for multiple receptors at the BBB, which mediate CNS Aβ transport in the brain-to-blood direction (P-gp, LRP-1) or in the blood-to-brain direction (RAGE, megalin). Increased P-gp activity and/or expression could therefore be therapeutically beneficial in AD, reducing the brain amyloid burden. In this study the roles of P-gp and BCRP, which shares a similar substrate overlap with P-gp, on Aβ transport by hCMEC/D3 cells were investigated. The results indicate that, at high concentrations of Aβ, the influx and efflux of Aβ is mediated by a non-receptor-mediated process, and both are unaltered by P-gp or BCRP inhibition. At lower more physiological concentrations of Aβ, influx also appeared dependent on a non-receptor mediated process. However, P-gp, and to a lesser extent BCRP inhibition, results in increased influx and decreased efflux of Aβ.

3.4.1.1 Role of LRP-1 and RAGE on Aβ influx in hBECs

The first interesting finding of this study was that LRP-1 inhibition and up to a 20 fold higher concentration of unlabelled Aβ did not affect the influx of fAβ into hCMEC/D3 cells. Confocal imaging demonstrated that a high proportion of fAβ appears intracellularly, rather than membrane-associated, and so the measurement of cellular fAβ levels most likely represented intracellular levels. This finding was confirmed using a low concentration of Aβ, as 125I Aβ 1-40 influx into hCMEC/D3 cells was unaltered by the addition of 1000 times excess of unlabelled Aβ 1-40. Therefore, the influx mechanism of Aβ into hCMEC/D3 cells may not be receptor-mediated endocytosis and is possibly mediated by diffusion through the membrane, membrane binding or fluid-phase endocytosis.
There are two major receptors reported to be involved in the influx of Aβ into BECs and Aβ clearance at the BBB, LRP-1 and RAGE. Conflicting reports exist as to the role of LRP in the transport of Aβ at the BBB. Shibata et al [394] have demonstrated that after intracerebral injection of 125IAβ 1-40 into mice, rapid clearance across the BBB occurs with a t$_{1/2}$ of < 25 min. The authors also found that 125IAβ 1-40 transport was half saturated at 15.3 nM with full saturation at 70-100 nM, which was inhibited by antibodies against LRP-1 and α-2 macroglobulin (an Aβ binding partner and LRP-1 ligand). Ito et al [560] have confirmed this finding in rats, where the clearance of intracerebral microinjections of 125IAβ 1-40 was inhibited by 20.3% by RAP (LRP-1 inhibitor), although this result does imply that other routes of brain-to-blood transport are present.

Deane et al [395] have demonstrated that Aβ binds with high affinity to LRP recombinant fragments (binding clusters I and IV) and that microinjections of 125IAβ 1-40 are cleared across the mouse BBB, which was found to be inhibited by RAP and LRP-1 neutralising antibodies. In addition to transcytosis of Aβ, LRP can mediate internalisation. Deane et al [395] demonstrated that mouse capillaries internalise Aβ 1-40 and Aβ 1-42 via LRP-1.

Kang et al [396] have found that in mouse fibroblasts transfected with human LRP-1, uptake of Aβ only occurs if α2 macroglobulin is present to form a complex. Ito et al [559] have found contrasting results as to the ability of LRP ligands to form binding partners with Aβ and mediate transcytosis. This research group has found that Aβ dimer formation and pre-incubation of Aβ with α2 macroglobulin and ApoE results in a reduced elimination of 125IAβ 1-40 injected intracerebrally into the rat brain compared to freshly dissolved Aβ. However, the uptake of Aβ was found to be increased after ApoE 2,3 and 4 preincubation in a multiple myeloma cell line (MEF-1).

The very nature of LRP-1-mediated Aβ transcytosis has also been called into question. Nazer et al [561] have demonstrated that MDCK cells transfected with LRP binding domain IV (MDCK-mLRP4) internalise and degrade, but do not transcytose intact
Aβ peptides. The authors found that LRP-1-mediated Aβ transport across cells grown on filters only occurred for degraded Aβ fragments.

The above data indicates that LRP-1 can mediate the transcytosis of Aβ across the BBB. However, this might not be only route of brain-to-blood transport, and in vitro the internalisation of Aβ by BECs mediated by LRP might be dependent on monomeric Aβ species and binding to an LRP-1 ligand. The finding in this study that LRP-1 is not a major pathway involved in Aβ influx into hCMEC/D3 cells might reflect the absence of LRP-1 ligands binding to Aβ in the culture media, or the absence of functional LRP-1 expression by hCMEC/D3 cells. Concerning the latter, it is important to note that Nazer et al. [561] discovered that 125I Aβ 1-40 uptake and degradation (0.1 nM, 24 h) was inhibited by 500 nM RAP in hCMEC/D3 cells, as determined by cell lysate counts. In addition, this research group went on to demonstrate that hCMEC/D3 cells exhibited a time-dependent uptake of HiLyte Fluor 55 Aβ 1-40 (100 nM, 6 and 24 h), which was inhibited by 500 nM RAP. The contrast between these results and the present study might, in some part, be due to the fact that in the study by Nazer et al., hCMEC/D3 cells, when used for fluorescence uptake studies, were at around 10 % confluence if compared to the cells used in this current study (fully confluent). Fully confluent hCMEC/D3 cells might be a better refection of fully mature BECs, whilst at 10 % confluence the uptake of Aβ by proliferating ECs may be dependent on a different pattern of transporter receptor expression. Whilst LRP-1 expression was demonstrated via western blotting in that study, LRP-1 levels were much less than those expressed by HUVEC, MDCK-mLRP4 and possibly even wild type MDCK cells. Indeed, the proportion of fluorescent hCMEC/D3 cells after incubation with HiLyte Fluor 55-conjugated Aβ 1-40 was found to be ~10 %, which was comparable to MDCK cells (~ 10 %) but not to MDCK-mLRP4 cells (~ 40 %). Therefore, hCMEC/D3 cells might not express high enough levels of LRP-1 to allow significant internalisation of Aβ compared to diffusion.
RAGE has been demonstrated to mediate Aβ transport in primary isolated hBECs. Mackie et al [389] found that the binding of 125I Aβ 1-40 (0.5 nM over 1 h) to primary hBECs was time-dependent, polarised to the apical membrane, and inhibited by 63 % by co-incubation with an anti-RAGE antibody and CHO cells transfected with human RAGE internalise Aβ. In the current study however, the contribution of RAGE to Aβ internalisation is unlikely, as excess unlabelled Aβ did not block the influx of either fAβ or 125I Aβ 1-40 with hCMEC/D3 cells. It is possible that isolated hBECs express increased RAGE compared to hCMEC/D3 cells as is the case for P-gp (chapter 2). The results of this study demonstrate that Aβ influx into hCMEC/D3 cells is likely to be mediated by bulk flow and that further *in vivo* investigations should be carried to take into account this potential route of Aβ entry into BECs.

3.4.1.2 Role of P-gp and BCRP on Aβ influx and efflux in hBECs

The second interesting finding of the present study was that P-gp inhibition only increases influx and decreases efflux at low concentrations of Aβ. There are a number of possibilities that could explain the lack of a contribution of P-gp in the influx and efflux of fAβ. Firstly, the high concentrations of fAβ used for influx and efflux might have masked the comparatively small contribution of P-gp mediated transport, which was indistinguishable by flow cytometry. An additional variable of time might also have impacted on the results. hCMEC/D3 cells were incubated for 24 h with fAβ and 30 min with 125I Aβ 1-40 for influx followed by 3 h or 10 min (3 h preloading for 125I Aβ 1-40) for efflux respectively. In addition, the fluorescein tag might have altered the physiochemical properties of Aβ, since fluorescein is hydrophilic, and could have altered the ability of fAβ to be a substrate for P-gp or BCRP.

Another possibility factor is that after 24 h incubation with fAβ, the peptides are at sites inaccessible to P-gp, such as organelle- or vesicle-bound in hCMEC/D3 cells.
Confocal imaging does not rule out this possibility, as fAβ appears mainly located in the cytoplasm surrounding the nucleus where the golgi apparatus is located. To be a P-gp substrate, localisation to the membrane is considered a prerequisite. Exactly how the fAβ then effluxes from the hCMEC/D3 cells remains unknown. It is possible that another transporter or mechanism such as vesicular transport is partially responsible for efflux or that diffusion through the membrane is the limiting step for both influx and efflux at high concentrations of Aβ.

An additional possibility is that for both influx and efflux, fAβ undergoes significant degradation, and Aβ fragments may not readily be transported by P-gp. BECs express enzymes capable of Aβ degradation (reviewed in [567]) including neprilysin (NEP), [568, 569] insulin degrading enzyme (IDE) [570], endothelin converting enzyme (ECE-1 and 2) [571] and angiotensin converting enzyme [572]. A possibility therefore, is that, rather than efflux, degradation is the main route of Aβ elimination from hCMEC/D3 cells once it has been internalised. Multiple sites exist within the Aβ protein sequence for enzymatic cleavage by NEP, IDE and ECE, producing various fragments in length ([573, 574]). For example, Iwata et al.[569] found that 125I Aβ injected into the hippocampus of rodents was degraded with a half life of 17.5 min with the major catabolic intermediate, Aβ 10-37, generated by NEP activity. Leissrung et al [575] have demonstrated using a kinase assay that IDE hydrolysis can cleave Aβ to form various fragments of 1-13, 1-14, 1-19, 1-29 and 20-40 in length, whilst NEP produced Aβ 20-30, 20-28, 20-29 and 14-25. Eckman et al [571] found that CHO cells transfected with ECE-1 were able to reduce the extracellular concentration of Aβ 1-40 by up to 90 % with the production of Aβ fragments 1-17, 1-19 and 20-40 over a 24 h period. The location of the fluorescein tag on the N terminus of fAβ raises the possibility that if fragments of 1-x in length were produced, they would be detected by flow cytometry. In addition, the most lipophilic region of the Aβ peptide is within the C-terminus. It is thus possible that non-fluorescently labelled Aβ fragments are transported out of cells by P-gp. The degradation of Aβ by hCMEC/D3 cells
has been noted by Nazer et al [561], who found that after incubation of 1 nM 125I Aβ1-40 for 24 h that 44.2% of the 125I Aβ counts in the whole cell lysate originated from degraded Aβ in hCMEC/D3 cells. The group also demonstrated that after the addition of 1 nM 125I Aβ1-40 to the basolateral compartment of MDCK-LRP cells grown on filters, only degraded fragments are released into the apical compartment. This data would indicate that a proportion of the degraded peptides still remain intracellular, and that degraded peptides can be either transcytosed or effluxed from cell cultures. Since in the present study hCMEC/D3 cells were preloaded for efflux and incubated for influx for 24 h, the fAβ measured via flow cytometry and confocal microscopy most possibly reflected a combination of degraded and ‘whole’ Aβ, which may more accurately reflect the in vivo situation rather than short term exposure.

In contrast to high concentrations of fAβ, the influx and efflux of 125IAβ 1-40 was increased by P-gp inhibition, and although not statistically significant, by BCRP inhibition. To date, there are no published experiments that have investigated the influx and efflux of Aβ with P-gp inhibitors in cultured hBECs and none which have reported a possible role for BCRP in Aβ efflux. The permeability of cell cultures to Aβ (see section 3.4.2) and in vitro studies however does imply Aβ is a P-gp substrate. Lam et al. [406] showed that the fluorescence of membrane vesicles from CHO cells transfected with the human MDR1 gene and labelled with a fluorescence marker, was quenched upon increasing additions of Aβ peptides with a binding affinity comparable to other P-gp substrates. This research group also demonstrated that Aβ 1-40 and Aβ 1-42 both compete for the uptake of 3H-colchicine in MDR1 over expressing-CHO cells, with an IC50 of 27 µM and 22 µM for Aβ 1-40 and Aβ 1-42, respectively. Intriguingly, the authors do not state the concentration of 3H-colchicine used, and instead refer to previous papers in the methods section where they use 1 µM. If that is the case, then these results imply that interaction between P-gp and Aβ is not very strong in nature, as very high concentrations of Aβ were needed to block the uptake of 3H-colchicine. More specific vesicle binding of Aβ was observed by Kuhne et al.
[407], who established that rh123 (10 μM) was transported by an ATP-dependent mechanism into LLC-MDR membrane vesicles, and this was inhibited to 25% of control levels by 10 μM Aβ 1-40 and Aβ 1-42. Furthermore, cyclosporin A (10 μM) and verapamil (100 μM) reduced the uptake of FITC-conjugated Aβ1-40 and Aβ 1-42 to 65% of control levels in inside-out vesicles. Whilst the ability of amyloid peptides to block rh123 uptake is apparent, the rather modest inhibition of Aβ uptake by cyclosporin A implies other mechanisms mediating Aβ efflux are at work in addition to that mediated by P-gp. The results of the above studies were from P-gp over-expressing cell lines and using membrane vesicles. Whilst they do indicate that P-gp may function as an Aβ transporter, the results in the present study indicate that in hBECs this may only be so at physiological concentrations of Aβ.

3.4.2 The permeability of 125I Aβ 1-40 to hCMEC/D3 cells

Fully confluent hCMEC/D3 monolayers formed a barrier to the passage of both 125IAβ 1-40 (< 1%) and 14C inulin (< 2%) in both the apical-to-basolateral and basolateral-to-apical directions. 14C inulin predominantly crosses BECs via paracellular diffusion, and to a much lesser extent, fluid phase endocytosis, whereas the permeability of BECs to 125IAβ 1-40 is dependent on several processes: paracellular diffusion, fluid phase endocytosis and receptor-mediated transcytosis. Several factors may contribute to the differences in permeability between 14C and 125IAβ 1-40 in untreated hCMEC/D3 cells. 1) Aβ may aggregating in the culture media increasing its molecular weight; 2) Aβ is highly hydrophobic and may stick to the filter and/or plastic; and 3) the molecular shape of 14C inulin and 125IAβ 1-40 may be different affecting their ability to diffuse within the culture media. For example, 14C inulin may form a more globular structure than 125IAβ 1-40, a property which would result in increased paracellular diffusion compared to Aβ. The results of this current study indicate that BCRP and P-gp both play a role in preventing the
apical-to-basolateral, but not the basolateral-to-apical, permeability of hCMEC/D3 cells to
$^{125}\text{I} \text{A}\beta 1-40$. Whilst the data was not significant, increased cellular levels of $^{125}\text{I} \text{A}\beta 1-40$ were also observed following P-gp and BCRP inhibition, indicative of a barrier function of each transporter to Aβ.

It is unlikely that the transported $^{125}\text{I} \text{A}\beta 1-40$ in the present study represented degraded peptide fragments. Mackic et al [389] have demonstrated > 94% of cellular $^{125}\text{I} \text{A}\beta 1-40$ remains intact after 60 min incubation with primary hBECs. Whilst Nazer et al [561] have found that MDCK-mLRP4 cells only transport degraded fragments, and 44% of hCMEC/D3 cellular levels of $^{125}\text{I} \text{A}\beta 1-40$ represented the degraded peptide, the incubations times used were 24 h, much longer than the 30 min used in this study.

The role of P-gp in the permeability of the BBB to Aβ is an area of controversy. Kunhne et al, [407] found that compared to LLC cells, LLC-MDRI cells have enhanced basolateral- to-apical permeability but not apical-to-basolateral permeability to 5 μM FITC-Aβ 1-40 and Aβ 1-42. This enhanced permeability, in cells over-expressing P-gp, was inhibited by 10 μM cyclosporin A after 1 h incubation. In the same study, it was also noted that transport of rh123 (10 μM) was increased only in the basolateral-to-apical direction in LLC-MDRI cells compared to LLC cells alone, and this effect was inhibited by Aβ peptides with an IC 50 of ~ 50 μM. Whilst the expression of P-gp LLC-MDRI cells was demonstrated to be polarised on the apical membrane with little or no intracellular or basolateral staining, it was carried out using confocal microscopy of cells grown on glass coverslips not filter inserts, which may have altered the distribution of P-gp expression. In contrast, Nazer et al [561] found that the basolateral-to-apical transport of 1 nM $^{125}\text{I} \text{A}\beta 1-40$ at 24 and 48 h in MDCK cells over-expressing human MDR1 (MDCK-MDR) is not increased compared to wild type MDCK cells. It would have been interesting if in that study the apical-to-basolateral permeability had been investigated. Mackie et al [389] have demonstrated that in isolated hBECs, $^{125}\text{I} \text{A}\beta 1-40$ (0.5 nM 30 and 60 min) exclusively binds to the apical membrane and is transported towards the basolateral membrane, not
vice-versa, in agreement with the present study. However, these authors demonstrated that Aβ binding to hBECs was inhibited by non-tagged Aβ and was 63% attributable to RAGE. Whilst the results of the current study do not exclude the binding of RAGE to Aβ in hCMEC/D3 cells, the influx data indicates that is unlikely to be significant. Differences in Aβ concentrations, incubation times and cell types makes comparisons between studies very difficult. The permeability results found in the present study are consistent with P-gp and BCRP protecting the brain from blood-borne Aβ species but not transporting Aβ from the brain. Interestingly, there are no reports on the role of BCRP and on Aβ transport in the literature.

In vivo data has also produced conflicting results with regards to the role of P-gp in Aβ transport at the BBB. Cirrito *et al* [408] have found intracerebrally injected Aβ 1-40 and Aβ 1-42 accumulates in the brain of mdr1a/b(-/-) mice at higher rates than wild type mice (although LRP-1 was also down regulated in the mdr1a/b(-/-)). In the same study, it was also found that tariquidar treated Tg 2576 mice have increased basal ISF Aβ levels in the CNS compared to control after 8 h treatment. Although it should be noted that astrocytes may also express P-gp in addition to epithelial cells throughout the body, which may have impacted on the results. For example, P-gp inhibition could increase cellular retention of Aβ by astrocytes, reducing brain ISF Aβ levels. In contrast to these findings, Ito *et al* [560] have demonstrated that the brain elimination of intracerebrally injected 125I Aβ 1-40 is unaltered by quinidine and verapamil (both P-gp inhibitors). The differences between these two studies could be explained by the finding that in one finding from rat tissue, Bendayan *et al* [213] found that P-gp was primarily located on the abluminal membrane. However, there is also evidence for luminal expression in rats [210], and as described in section 1.1.1.6.1, the majority of mice and human studies have indicated that P-gp is expressed in higher amounts on the luminal membrane at the BBB. The results presented in the present study, might in part explain the discrepancy described above. The increased ISF fluid Aβ levels in Tg 2756 mice after P-gp inhibition described by Cirrito *et
al [408] may be due to the increased blood-to-brain permeability of the BEC. In the results described by Ito et al [558], there was no brain-to-blood P-gp mediated Aβ transport, which is consistent with the in vitro data described here.

Increased Aβ levels in the brain are believed to be key in the pathogenesis of AD, and some research groups argue that decreased BBB clearance is a key component of AD. Increased plasma levels of Aβ are reported in AD patients compared to controls [576]. For example Sagare et al [319] have noted a 300-400% increase in free Aβ levels compared to control patients. The results of this study imply that P-gp might protect the CNS from this Aβ pool and at higher concentrations of Aβ found in AD patients may become saturated. P-gp saturation, RAGE up-regulation and LRP down-regulation in BECs in AD [384], might significantly add to the brain Aβ load. In addition many drugs which are prescribed for elderly patients, such as lipid lowering agents and antidepressants, are substrates for P-gp and in principle might act as competitive substrates for Aβ at the BBB, potentially increasing the risk of developing AD.

3.5 Conclusions

The results presented here indicate that P-gp, and to a lesser extent BCRP, act to decrease influx and increase efflux of low Aβ concentrations in hBECs. However, at high concentration of Aβ over longer periods of time, neither transporter affects the influx of efflux of Aβ. At both concentrations of Aβ, the influx mechanism is a non-receptor mediated process. Importantly, P-gp and BCRP both prevented the apical-to-basolateral permeability of human brain endothelial cells to Aβ, which is consistent with blood-brain protection in vivo.
Chapter 4

Effect of Aβ on tight junction and transporter protein expression by hCMEC/D3 cells

Abstract

The aim of this study was to investigate the effects of Aβ on the expression of tight junction and transporter proteins by hCMEC/D3 cells. A 48 h treatment with a non-cytotoxic dose (5 µM) of Aβ 1-40 or Aβ 1-42 decreased the expression of Glut-1 but not P-gp or the transferrin receptor by hMCEC/D3 cells as assessed by western blotting. These treatments also decreased the expression of the tight junctional protein occludin but not of claudin-5 (Cl-5) or ZO-1, as determined by western blotting and flow cytometry. When viewed via immunocytochemistry, Aβ 1-40 reduced occludin expression intracellularly and at the level of the tight junctions. At the mRNA level, Aβ 1-40 decreased occludin levels after 24 h, with partial recovery by 48 h. Cl-5 mRNA levels were unaltered up to and including 48 h treatment with Aβ, whilst increased ZO-1 mRNA levels were detected after 48 h but not 24 h. Tight junctional proteins restrict endothelial cell paracellular transport of molecules. Thus the permeability of hCMEC/D3 cells to the paracellular tracer molecules 4 kDa and 70 kDa FITC – dextran was investigated. Whilst Aβ 1-40 or Aβ 1-42 incubation did not alter the permeability to 4 kDa FITC-dextran, both peptides increased the permeability to 70 kDa FITC-dextran. These results demonstrate that Aβ can directly induce a leaky BBB in vitro, potentially via the down-regulation of occludin expression.
4.1 Introduction

Vascular dysfunction is emerging as a key pathological hallmark in AD, with features that include brain hypoperfusion (reviewed in [410, 421]) reduced glucose uptake [430, 431, 436], detrimental BEC morphological alterations [413, 414] and increased permeability of the BBB [577-581]. Increased BBB permeability could have potentially disastrous consequences for the homeostatic neuronal environment, especially with regards to alterations in the levels of soluble ions, insulin, glucocorticoids, glutamate and pathogens.

Aβ in vitro evokes direct cytotoxic effects in BECs, with increased superoxide [582, 583] and decreased nitric oxide [412] production proposed as key detrimental factors. Aβ peptides have also been demonstrated to increase the paracellular permeability of porcine artery ECs [442] and BECs of human [443] and porcine origin [444] in culture. In vivo, increased BBB permeability has also been noted in AD transgenic animal models [94, 440, 584], and after the intravenous infusion of Aβ in rats [441]. Furthermore, blood-borne molecules have been detected in the CNS parenchyma of tissue samples from AD patients indicative of a leaky BBB [577-581]. TJ proteins are critical to restrict the paracellular leakage of molecules at the BBB. In principle, TJ protein alterations may in part be responsible for the increased leakiness found in AD. Indeed, Marco and Skaper [486] found that Aβ 1-42 decreased occludin levels in cultures of rat BECs after 24 h incubation, whilst Cl-5 and ZO-1 levels remained unaltered via western blotting. In addition, Aβ 1-40 soluble oligomers have recently been demonstrated to induce ZO-1 translocation from junctional areas in primary hBECs [443]. Furthermore, Takechi et al [94] recently demonstrated substantially reduced occludin expression in APP/PS1 mice compared to wild type mice and significant plasma protein (IgG) extravasation, indicative of a leaky BBB. This evidence implies that alterations in TJ protein expression might play a role in the increased BBB permeability observed in AD.
Other proteins expressed by BECs are also altered in AD. Decreased Glut-1 expression has been observed in AD patients in neurons [585] and BECs [146, 438, 586, 587]. Alterations in Glut-1 expression would have the net result of reducing the amount of glucose available to neurons and BECs, potentially leading to energy deprivation and neuronal and BEC death. Indeed, decreased cerebral glucose utilisation has been observed in AD patients [430, 431]. In addition, an inverse correlation of P-gp levels with Aβ plaques has also been demonstrated in non-demented subjects [409]. Reduced P-gp expression would compromise the barrier properties of brain endothelium to a range of drugs and signalling molecules.

The aim of this chapter was investigate the effects of Aβ on the expression of transporter and TJ proteins by hBECs and the resulting physiological consequences i.e. altered permeability. The results of this study are important since they could provide information on whether Aβ could directly induce alterations in the BBB function, as observed in AD patients.
4.2 Methods

4.2.1 Cell culture conditions

The cell culture conditions used in this study are different to those used in other chapters. It was observed by Dr K. Logan (The Open University, personal communication) that maximal expression of occludin (as assessed by western blotting) occurred when hCMEC/D3 cells were maintained without a change in culture medium for 2-3 days post confluence. Therefore, for all experiments described here, hCMEC/D3 cells were grown to confluence as indicated previously (2.2.3), with culture media changes every 2-3 days, then rested for 2-3 days after confluence and treated with Aβ in the same media.

4.2.2 MTT cytotoxicity assay

hCMEC/D3 cells grown in collagen-coated 96 well plates were treated with Aβ 1-40, Aβ 1-42, sAb1-40, or sAβ 1-42 at concentrations of 0, 0.5, 1, 5 and 10 μM for 48 h. An MTT toxicity assay was then carried out as described in section 2.2.11.

4.2.3 SDS PAGE and Western blotting

hCMEC/D3 cells were grown on collagen-coated 6 well plates and Aβ 1-40, Aβ 1-42, sAb 1-40 or sAβ 1-42 was then added to the culture media to give a final concentration of 0.5 or 5 μM, and cells were incubated for 24 h or 48 h. At the appropriate time point, hCMEC/D3 cells were washed in HBSS and 250 μl of lysis buffer (RIPA buffer containing 1 mM PMSF, 10 ng/μl leupeptin, pepstatin and apotinin) was added to each well for 5 min at 4°C. Each well was then scraped using a cell scraper (Greiner, Gloucestershire, UK) and the resultant lysate was collected and subjected to the same procedure as in 2.2.5. The expression of P-gp (C219, 500 ng/ml, mouse monoclonal IgG2a), Glut-1 (1 μg/ml rabbit polyclonal IgG, Abcam, Cambridge, UK) transferrin receptor (1 μg/ml mouse monoclonal
IgG), Santa Cruz, CA USA), occludin (1 μg/ml of rabbit polyclonal IgG, Zymed, California, USA), CI-5 (1 μg/ml mouse monoclonal IgG, Zymed, California, USA) and ZO-1 (1 μg/ml rabbit polyclonal IgG, Zymed, California, USA) was then determined using appropriate HRP-conjugated secondary antibodies (Anti-mouse/rabbit IgG diluted 1 in 20,000, Pierce Biotechnology, Cheshire, UK) and visualised by ECL. Membranes were then stripped and re-probed for actin (1 μg/ml, mouse monoclonal IgG) as described in section 2.2.5. The signal intensities of the bands on the films were analysed using image J software and protein expression was normalised with actin.

4.2.4 Flow cytometry

hCMEC/D3 cells grown on collagen-coated 12-well plates were incubated with 5 μM Aβ 1-40, Aβ 1-42, sAβ 1-40 or sAβ 1-42 for 48 h. The expression of occludin (2.5 μg/ml rabbit polyclonal IgG) or CI-5 (2.5 μg/ml mouse monoclonal IgG) was then measured using flow cytometry (488 nm λ_{excitation}, 530 nm λ_{emission}) as described in section 2.2.6, with the alteration that the primary and secondary [10 μg/ml Alexa Fluor-488-rabbit polyclonal IgG (Invitrogen, paisley UK) or FITC-conjugated goat monoclonal IgG] antibodies were incubated for 1 h at RT. Statistical analysis was performed on the raw data. However, for illustrative purposes, CI-5 or occludin expression by hCMEC/D3 cells was expressed as a percentage of cells treated with Aβ compared to those treated with the sAβ peptide.

4.2.5 Immunocytochemistry

hCMEC/D3 cells were grown on collagen-coated glass cover slips and Aβ 1-40 or sAβ 1-40 (5 μM) was added to the culture medium for 48 h. hCMEC/D3 cells were then fixed for 10 min in ice-cold methanol (Sigma-Aldrich, Dorset, UK) and ICC staining was carried out described in section 2.2.9, using 2.5 μg/ml of an anti-occludin rabbit polyclonal
IgG as the primary antibody, and 10 μg/ml of Alexa Fluor-488-rabbit polyclonal IgG as the secondary antibody applied for 1 h at RT. Mounted cells were viewed with a fluorescent microscope (Olympus bx61).

4.2.5 Quantitative RT-PCR

hCMEC/D3 cells grown on collagen-coated 12 well plates were incubated with 5 μM Aβ 1-40, Aβ 1-42, sAβ1-40 or sAβ 1-42 for 24 h or 48 h. Total RNA was then extracted using TRIzol reagent (Invitrogen, Paisley, UK). hCMEC/D3 cells were washed with HBSS, incubated with 1 ml per well of TRIzol for 5 min at RT, collected with a cell scraper and transferred to a microfuge tube. Chloroform [0.2 ml/ml (Sigma-Aldrich, Dorset, UK)] was then added, and tubes were mixed vigorously for 15 seconds and incubated for 3 min at RT. After centrifugation (9000 xg, 15 min, 4 °C), the upper aqueous phase containing RNA was collected. To precipitate the RNA, isopropyl alcohol (0.5 ml per tube) was added to each sample and incubated for 10 min at RT, followed by centrifugation (6000 xg, 5 min). The supernatant was then removed and the pellet washed with 75 % ethanol. After centrifugation (6000 xg, 5 min, 4°C), the supernatant was removed, the pellet air-dried for 5 min at RT and redissolved in 50 μl of DNase/RNAse-free water. The concentration and purity of RNA was then calculated using UV spectrophotometry at λ260 and λ280. First strand DNA synthesis was then carried out using a Reaction Ready First strand cDNA synthesis kit (Superarray, Maryland, USA), as directed by the manufacturer’s protocol. Briefly, 1 μg of RNA was added to 1 μl of buffer P and dissolved in RNase-free water to a final volume of 10 μl. The mixture was then placed in a thermal cycler (Bio-Rad, California, USA) at 70°C for 3 min, cooled to 37°C and held for 10 min. A cocktail containing reverse transcriptase and RNAse inhibitor was then added to the annealing mixture, incubated at 37°C for 60 min, heated to 95°C for 5 min and held at 4°C. Real time PCR was then carried out using SYBR green and primer
sets for Cl-5, occludin, ZO-1 and actin according to the manufacturer's protocol (Superarray, Maryland, USA). Briefly, a mixture was made containing 1 μl of cDNA template, 1 μl of primer mix, 12.5 μl of 2x RT² Real-TimeTM SYBR green PCR master mix in a final volume of 25 μl water. The mixture was then placed in a thermal cycler (DNA engine Opticon 2, Bio-Rad, CA, USA), using a 40 cycle program (95°C, 30 sec; 55°C, 30 sec; and 72°C, 30 sec). Using this method, cycle threshold (CT) values are obtained, which corresponds to the cycle number at which the fluorescence curve crosses a predetermined threshold (3 x Standard deviation over cycle range). The threshold is designated for the data during the logarithmic phase of the graph.

The data was then calculated using a comparative method. First the difference in CT between the target (i.e. occludin, Cl-5 or ZO-1) and housekeeping gene (actin) was calculated:

\[\Delta \text{CT}_{\text{target}} = \Delta \text{CT}_{\text{actin}} = \Delta \text{CT} \]

Then the difference between each treatment and that of the control was then calculated

\[\Delta \Delta \text{CT} = \Delta \text{CT}_{\text{Aβ}} - \Delta \text{CT}_{\text{Aβ}^-} \]

The data was then transformed into absolute values;

Comparative expression levels = \(2^{-\Delta \Delta \text{CT}}\)

This method is appropriate for primers with similar efficiencies. Dr Logan calculated the primer efficiencies of actin, Cl-5, occludin, and ZO-1 to be 1.81, 2.07, 1.70, 1.58. Due to the difference in primer efficiency between Cl-5 and actin the Pfaffl method [588] was employed, which takes these alterations into account:

\[\text{Ratio} = \frac{E_{\text{target}} \Delta \text{CT}_{\text{target}}}{E_{\text{ref}} \Delta \text{CT}_{\text{ref}}} \]

Where E represents the primer efficiencies.
However, it was found using this method that there was no difference between the Pfaffl and comparative method and so all data is shown as calculating using the comparative method.

Actin was considered an appropriate control, since the difference between the CT values of the different samples was low (~0.5 CT value). In addition, the primer efficiency of actin was similar compared to ZO-1, CI-5 and occludin.

4.2.6 Permeability of hCMEC/D3 cells to 4 kDa and 70 kDa FITC-dextran

hCMEC/D3 cells were grown on collagen-and fibronectin-coated transwell polyester membrane inserts (0.4 μm diameter pore, 12mm diameter) and incubated with 5 μM Aβ 1-40, sAβ 1-40, sAβ 1-42 or 1-42 for 48 h. The permeability of hCMEC/D3 cells to 2 mg/ml of 4 kDa or 70 kDa FITC-dextran (Sigma-Aldrich, Dorset, UK) added to the apical chamber was investigated using the method described in section 2.2.14. Pre-and post-Aβ incubation, the trans endothelial electrical resistance (TEER) of hCMEC/D3 cells was measured using an Endohm 12 chamber and an Endohmeter (World precision instruments, Florida, USA).

4.2.7 Statistical analysis

All data are represented as means +/- SEM and the number of experiments, n, indicated each time. Statistical significance was calculated using ANOVA followed by Student's t test, comparing each treatment to the control (* P < 0.05, ** P < 0.01). For the western blotting, RT-PCR and permeability experiments, a paired t-test was employed. For RT-PCR, analysis was carried out using ΔCT values as the $2^{-ΔΔCT}$ method standardised all data so that the sAβ value is always 1.
4.3 Results

4.3.1 Cytotoxicity of Aβ 1-40 and Aβ 1-42 to hCMEC/D3 cells

The aim of this study was to investigate the effects of non-toxic concentrations of Aβ on hCMEC/D3 cell protein expression. The cell culture conditions used here are different from those in previous chapters and so a separate MTT assay was carried out (Figure 4.1). Aβ 1-42 and Aβ 1-40 incubations did not alter cell viability of hCMEC/D3 cells as assessed by the MTT assay at 0.5, 1 or 5 μM. However, cell viability was reduced at 10 μM (n = 3, P < 0.05) after incubation with both Aβ peptides. Aβ 1-42 and Aβ 1-40 incubation at 10 μM decreased hCMEC/D3 cell viability by 26 % ± 7.0 and 30 % ± 7.08 respectively compared to a vehicle control. These results show that both Aβ species were toxic to hCMEC/D3 cells at 10 μM after 48 h incubation and therefore 5 μM was used to investigate regulation of protein expression by Aβ in hCMEC/D3 cells.

4.3.2 The effect of Aβ on the expression of transporter proteins by hCMEC/D3 cells

Reduced expression of Glut-1 [146, 437, 586, 587] and increased brain levels of iron [589] have been observed in brain sections of AD patients in addition to an inverse correlation between plaque deposition and P-gp expression in non-demented elderly patients [409]. The transferrin receptor is capable of transporting transferrin bound iron at the BBB [150, 151]. The effect of Aβ on the expression of P-gp, Glut-1 and the transferrin receptor was investigated using western blotting (Figures 4.2-4.4).

Incubation with a sub-cytotoxic concentrations of Aβ 1-40 or Aβ 1-42 did not alter the expression levels of P-gp (Figure 4.2) or transferrin receptor (Figure 4.4) after 24 or 48 h incubation, when compared to cells incubated with sAβ peptides (n = 3, P > 0.05). By contrast, Aβ 1-42 reduced Glut-1 expression levels to 69.5 % ± 1.2 of sAβ 1-42 levels after 24 h and to 51.7 % ± 12.2 after 48 h incubation (Figure 4.3, n = 3, P < 0.05). Aβ 1-40 also
reduced Glut-1 levels to 60.5 % ± 5.3 after 48 h incubation (n = 3 experiments, \(P < 0.05 \)) but not after 24 h. These results provide evidence that sub-cytotoxic Aβ concentrations do not affect P-gp or transferrin receptor protein expression but specifically reduce Glut-1 expression in hCMEC/D3 cells.

4.3.3 The effect of Aβ on the expression of tight junction proteins by hCMEC/D3 cells

There is evidence for a leaky BBB in both AD patients [579] and in transgenic mouse [440, 584] models of AD. The aim of this part of the study was to investigate whether Aβ could decrease the expression of TJ proteins, which could lead to increased hCMEC/D3 cell permeability (Figure 2.5-2.8). Occludin, Cl-5 and ZO-1 are key components of the TJ complex and were the focus of this study.

ZO-1 and Cl-5 levels were unaltered after 24 h and 48 h incubation with both Aβ peptides compared to the sAβ peptides (Figure 4.5 and 4.6, n = 3, \(P > 0.05 \)). Occludin levels, though unchanged after 24 h, were reduced after 48 h Aβ incubation compared to sAβ incubation \([n = 3, \ P > 0.05, \ (Figures \ 4.7)] \). Aβ 1-40 and Aβ 1-42 incubation decreased occludin expression to 49.0 % ± 8.3 and 58.4 % ± 7.1, respectively, compared to cells incubated with sAβ peptides (Figure 4.8). The decreased occludin expression after 48 h was concentration-dependent, since 0.5 \(\mu \)M of both Aβ species did not alter occludin levels by hCMEC/D3 cells (Figure 4.8, n = 3, \(P > 0.05 \)). The results presented here show that incubation of hCMEC/D3 cells with either Aβ 1-40 or Aβ 1-42 results in specific occludin down-regulation, but not Cl-5 or ZO-1, after 48 h incubation.

4.3.4 The effect of Aβ on the expression of occludin and claudin-5 by hCMEC/D3 cells as assessed by flow cytometry

For a more quantitative measurement of Aβ-mediated occludin down-regulation, flow cytometry was employed (Figure 4.9). After 48 h incubation with 5 \(\mu \)M Aβ 1-40,
occludin levels were reduced to 73.8 % ± 1.14 compared to cells treated with sAβ 1-40 (n = 20 experiments, \(P < 0.01 \)). Aβ 1-42 incubation induced a similar significant decrease in occludin levels to 73.5 % ± 3.3 (n = 3 experiments, \(P < 0.05 \)). To confirm the specificity of Aβ mediated occludin down-regulation, the expression of Cl-5 after 48 h incubation with Aβ 1-40 or sAβ 1-40 was investigated. In agreement with the western blotting findings, there was no decrease in Cl-5 levels in cells incubated with Aβ 1-40 compared to cells incubated with sAβ 1-40. These results have confirmed the western blotting findings, in that Aβ 1-40 and Aβ 1-42 both specifically reduce occludin levels after 48 h incubation in hCMEC/D3 cells.

4.3.5 The effect of Aβ 1-40 on the expression of occludin by hCMEC/D3 cells as assessed by immunocytochemistry

Whilst flow cytometry and western blotting data demonstrate occludin down-regulation mediated by Aβ, they give no indication as to the sub-cellular location of occludin. Therefore, the expression of occludin was investigated after 48 h incubation with Aβ 1-40 or sAβ 1-40 using ICC (Figure 4.10). Occludin expression after sAβ 1-40 incubation was strongly detected at the cell-cell borders between hCMEC/D3 cells, indicative of TJ localisation, and intracellularly, albeit at lower levels. In comparison, Aβ 1-40 incubation of hCMEC/D3 cells caused a decreased staining both at the cell borders and intracellularly. For some hCMEC/D3 cells, a complete loss of occludin was observed at the cell junctions. Aβ induced the loss of occludin at the TJ, which suggests that the paracellular permeability of hCMEC/D3 cells may be increased.
4.3.6 The effect of Aβ on the expression of tight junction mRNA levels by hCMEC/D3 cells

A decrease in both intracellular and cell junctional occludin was observed suggesting that overall levels of occludin may be reduced by Aβ. To assess whether Aβ affected the mRNA levels of occludin in addition to the protein levels, quantitative RT-PCR techniques were used (Figure 4.11). After 24 h incubation, neither Aβ 1-40 nor Aβ 1-42 significantly altered the mRNA levels of Cl-5 or ZO-1 (n = 4, P > 0.05) by hCMEC/D3 cells. By contrast, occludin mRNA levels were decreased significantly in hCMEC/D3 cells (n = 4, samples P < 0.05) after incubation for 24 h with Aβ 1-40 by ~ 55 % compared to cells treated with sAβ 1-40, and whilst the levels were also decreased with Aβ 1-42, they did not reach significance (n = 4, P > 0.05). After 48 h incubation with Aβ 1-40, mRNA levels of Cl-5 remained unaltered (n = 3, P > 0.05). Occludin mRNA levels were reduced in cells incubated with Aβ 1-40 after 48 h by ~ 30 %, compared to those incubated with sAβ 1-40, however this effect was not significant (n = 3, P > 0.05). Interestingly, ZO-1 mRNA levels were significantly increased by ~ 30 % after 48 h incubation with Aβ 1-40 (n = 3, P < 0.05). These results show that occludin is suppressed at the mRNA level after 24 h incubation with Aβ 1-40, whilst at the protein level changes are observed at 48 h (Figure 4.7).

4.3.7 The effect of Aβ on the permeability of hCMEC/D3 cells to 4 and 70 kDa FITC-dextran

The permeability of hCMEC/D3 cells to the paracellular tracers 4 and 70 kDa FITC-dextran after Aβ incubation was investigated to see whether occludin down-regulation was associated with BBB dysfunction (Figure 4.12).

After 48 h incubation, neither Aβ 1-40 nor Aβ 1-42 altered the permeability of hCMEC/D3 cells to 4 kDa FITC-dextran compared to cells incubated with the sAβ
peptides (n = 3, P > 0.05). In contrast, Aβ 1-40 incubation significantly increased hCMEC/D3 cell permeability to 70 kDa FITC-dextran by 53 % ± 10.1 compared to sAβ 1-40 treated cells (n = 6, P < 0.01). After 48 h incubation, Aβ 1-42 also increased the permeability of hCMEC/D3 cells to 70 kDa FITC-dextran (an increase of 28 % ± 17), however this increase did not reach statistical significance (n = 3, P > 0.05). It is interesting to note that the TEER values of hCMEC/D3 cells were unaltered by Aβ incubation (Figure 4.13, n = 6 and 3 for Aβ 1-40 and Aβ 1-42, respectively, P > 0.05). As indicated by the low TEER values pre-incubation, hCMEC/D3 cells do not form an extensive barrier to ions when grown on filters. It is therefore no surprise that Aβ treatment did not alter this already low value.

These results demonstrate that Aβ can increase the paracellular permeability of hCMEC/D3 cells to 70 but not to 4 kDa FITC-dextran. This implies that the occludin down-regulation observed at the protein and mRNA levels might have the net result of increasing leakiness of hCMEC/D3 cells to paracellular tracers.
Figure 4.1. Cytotoxicity of Aβ 1-40 and Aβ 1-42 to hCMEC/D3 cells after 48 h incubation as assessed by an MTT assay. (a) The cytotoxicity of Aβ 1-40 or sAβ1-40 and (b) Aβ 1-42 or sAβ 1-42 was investigated in hCMEC/D3 cells cultured as described in section 4.2.1, using an MTT assay, over a 48 h incubation period. Data represents mean ± SEM, n = 3 experiments with quintuplet samples. * P < 0.05 comparing each data to vehicle control.
Figure 4.2. The effects of Aβ 1-40 and Aβ 1-42 on the expression of P-gp by hCMEC/D3 cells. (a) Fully confluent hCMEC/D3 cells were incubated with 5 μM Aβ 1-40, Aβ 1-42, sAβ1-40 or sAβ1-42 for 24 h or 48 h, and the expression of P-gp (mouse monoclonal IgG2a) or actin (mouse monoclonal IgG1) was then assessed by western blotting. (b) The optical density corresponding to P-gp (arbitrary units) was divided by the optical density corresponding to actin and data was normalised with their respective sAβ controls. Data represents mean ± SEM, n = 3 experiments with single samples. P > 0.05 comparing sAβ to Aβ raw data values using a paired t test.
Figure 4.3. The effects of Aβ 1-40 and Aβ 1-42 on the expression of Glut-1 by hCMEC/D3 cells. (a) Fully confluent hCMEC/D3 cells were incubated with 5 µM Aβ 1-40, Aβ 1-42, sAβ1-40 or sAβ1-42 for 24 h or 48 h and the expression of Glut-1 (rabbit polyclonal IgG) or actin (mouse monoclonal IgG) was then assessed by western blotting. (b) The optical density corresponding to Glut-1 (arbitrary units) was divided by the optical density corresponding to actin and data was normalised with their respective sAβ controls. Data represents mean ± SEM, n = 3 experiments with single samples. * P < 0.05 comparing sAβ to Aβ raw data values using a paired t test.
Figure 4.4. The effects of Aβ 1-40 and Aβ 1-42 on the expression of the transferrin receptor by hCMEC/D3 cells. (a) Fully confluent hCMEC/D3 cells were incubated with 5 μM Aβ 1-40, Aβ 1-42, sAβ1-40 or sAβ1-42 for 24 h or 48 h and the expression of the transferrin receptor (TR, mouse monoclonal IgG) or actin (mouse monoclonal IgG) was then assessed by western blotting. (b) The optical density corresponding to the TR (arbitrary units) was divided by the optical density corresponding to actin and data was normalised with their respective sAβ controls. Data represents mean ± SEM, n = 3 experiments with single samples. P > 0.05 comparing sAβ to Aβ raw data values using a paired t test.
Figure 4.5. The effects of Aβ 1-40 and Aβ 1-42 on the expression of ZO-1 by hCMEC/D3 cells. (a) Fully confluent hCMEC/D3 cells were incubated with 5 μM Aβ 1-40, Aβ 1-42, sAβ1-40 or sAβ1-42 for 24 h or 48 h and the expression of ZO-1 (rabbit polyclonal IgG) or actin (mouse monoclonal IgG) was then assessed by western blotting. (b) The optical density corresponding to ZO-1 (arbitrary units) was divided by the optical density corresponding to actin and data was normalised with their respective sAβ controls. Data represents mean ± SEM, n = 3 experiments with single samples. P > 0.05 comparing sAβ to Aβ raw data values using a paired t test.
Figure 4.6. The effects of Aβ 1-40 and Aβ 1-42 on the expression of Cl-5 by hCMEC/D3 cells. (a) Fully confluent hCMEC/D3 cells were incubated with 5 μM Aβ 1-40, Aβ 1-42, sAβ1-40 or sAβ1-42 for 24 h or 48 h and the expression of Cl-5 (mouse monoclonal IgG) or actin (mouse monoclonal IgG) was then assessed by western blotting. (b) The optical density corresponding to Cl-5 (arbitrary units) was divided by the optical density corresponding to actin and data was normalised with their respective sAβ controls. Data represents mean ± SEM, n = 3 experiments with single samples. P > 0.05 comparing sAβ to Aβ raw data values using a paired t test.
Figure 4.7. The effects of Aβ 1-40 and Aβ 1-42 on the expression of occludin by hCMEC/D3 cells. (a) Fully confluent hCMEC/D3 cells were incubated with 5 μM Aβ 1-40, Aβ 1-42, sAβ1-40 or sAβ1-42 for 24 h or 48 h and the expression of occludin (rabbit polyclonal IgG) or actin (mouse monoclonal IgG1) was then assessed by western blotting. (b) The optical density corresponding to occludin (arbitrary units) was divided by the optical density corresponding to actin and data was normalised with their respective sAβ controls. Data represents mean ± SEM, n = 3 experiments with single samples. * P < 0.05 comparing sAβ to Aβ raw data values using a paired t test.
Figure 4.8. The concentration-dependent effects of Aβ 1-40 and Aβ 1-42 on occludin expression in hCMEC/D3 cells after a 48 h incubation period. (a) Fully confluent hCMEC/D3 cells were incubated with 0.5 or 5 μM Aβ 1-40, Aβ 1-42 or 5 μM sAβ 1-42 or sAβ1-40 for 48 h. The expression of occludin (rabbit polyclonal IgG) or actin (mouse monoclonal IgG1) was then assessed by western blotting (b) The optical density corresponding to occludin (arbitrary units) was divided by the optical density corresponding to actin and data was normalised with their respective sAβ controls. Data represents mean ± SEM, n = 4 experiments with single samples. * P < 0.05 comparing sAβ to Aβ raw data values using a paired t test.
Figure 4.9. The effects of Aβ 1-40 and Aβ 1-42 on the expression of occludin and Cl-5 by hCMEC/D3 cells after a 48 h incubation period as assessed by flow cytometry. Fully confluent hCMEC/D3 cells were incubated with 5 μM of either Aβ 1-40, Aβ 1-42, sAβ 1-40 or sAβ 1-42 for 48 h. The cells were then fixed in 4 % PAF, permeabilised with 0.1 % triton x 100 and the expression of occludin or Cl-5 measured by FACS analysis. Data represents mean ± SEM. n = 3 experiments with duplicate samples for Aβ 1-42 and n = 20 for Aβ 1-40 occludin expression. n = 3 experiments with duplicate samples for Cl-5 expression. * P < 0.05, ** P < 0.01 comparing the raw data for sAβ to Aβ using a paired t test.
Figure 4.10. The expression of occludin by hCMEC/D3 cells after 48 h Aβ 1-40 incubation as assessed by immunocytochemistry. Fully confluent hCMEC/D3 cells were incubated with 5 μM (a) sAβ 1-40 or (b) Aβ 1-40 for 48 h. The cells were then fixed in methanol, permeabilised with 0.1 % triton x 100 and the expression of occludin (rabbit polyclonal IgG) measured by ICC. Results are from one experiment representative of 2. The scale bar represents 50 μM.
Figure 4.11. The effects of Aβ peptides on the mRNA levels of occludin, ZO-1 and Cl-5 after 24 and 48 h incubation in hCMEC/D3 cells. (a) Fully confluent hCMEC/D3 cells were incubated with 5 μM Aβ 1-42, Aβ 1-40, sAβ1-40 or sAβ 1-42 for 48 h and the mRNA levels of Cl-5, occludin and ZO-1 was calculated using RT-PCR. Data represents mean ± SEM. n = 4 experiments with duplicate samples. * P < 0.05 comparing ΔCT values using a paired t test. (b) mRNA levels of the TJ proteins were assessed after 48 h incubation with Aβ 1-40. Data represents mean ± SEM. n = 3 experiments with duplicate samples * P < 0.05 comparing ΔCT values.
Figure 4.12. Permeability coefficient of hCMEC/D3 cells to 4 and 70 kDa FITC-dextran after 48 h Aβ1-40 or Aβ 1-42 incubation. hCMEC/D3 cells grown to confluence on transwell filter inserts were treated with 5 μM Aβ 1-40, Aβ 1-42, sAβ 1-42 or sAβ 1-40 for 48 h. The permeability of the cells to the paracellular tracers (a) 4 kDa or (b) 70 kDa FITC-Dextran was then investigated. Data represents mean ± SEM. n = 3 with duplicate samples for with the exception of Aβ 1-40 and sAβ 1-40 in (b) where n = 6 with duplicate samples. * P < 0.05, ** P < 0.01 using a paired t test.
TEER ($\Omega \cdot cm^2$)

<table>
<thead>
<tr>
<th></th>
<th>Pre incubation</th>
<th>Post incubation</th>
</tr>
</thead>
<tbody>
<tr>
<td>sAβ1-40</td>
<td>27.8 ± 1.6</td>
<td>28 ± 2.7</td>
</tr>
<tr>
<td>Aβ 1-40</td>
<td>28.5 ± 2.6</td>
<td>29.7 ± 3.8</td>
</tr>
<tr>
<td>sAβ1-42</td>
<td>27.8 ± 2.9</td>
<td>28.5 ± 3.7</td>
</tr>
<tr>
<td>Aβ 1-42</td>
<td>28.8 ± 3.5</td>
<td>30 ± 3.9</td>
</tr>
</tbody>
</table>

Figure 4.13. The trans-endothelial electrical resistance of hCMEC/D3 cells after 48 h incubation with Aβ. hCMEC/D3 cells were grown to confluence on collagen- and fibronectin-coated 12 well transwell inserts and incubated for 48 h with 5 µM Aβ 1-40, Aβ 1-42, sAβ 1-42 or sAβ 1-40. The trans-endothelial cell electrical resistance of hCMEC/D3 cells was recorded before and after Aβ incubation. n = 3 with duplicate samples. P > 0.05 using a paired t test.
4.4 Discussion

4.4.1 Cytotoxicity of Aβ to hCMEC/D3 cells

In the current study, both Aβ 1-40 and Aβ 1-42 peptides were only toxic at concentrations of 10 μM (when compared to their scrambled counterparts) to hCMEC/D3 cells after 48 h incubation. Results from other groups have found a large variation in concentrations needed to evoke toxic effects ranging from 100 nM to 20 μM using different EC types (Table 4.1). The toxicity of Aβ to ECs is believed to involve caspase activation [582], superoxide oxide production [582] and decreased nitric oxide production [412]. The confluent state of ECs might constitute a factor which can affect the cytotoxicity of Aβ. Using bovine aortic ECs, Balcells et al [590] found that Aβ 1-42 secreted from CHO cells co-transfected with APP and mutated PS genes was not toxic to confluent ECs, but displayed toxic properties to sub-confluent ECs. In this study, fully confluent hCMEC/D3 cells were used and both Aβ 1-40 and 1-42 only displayed modest toxicity after 48 h incubation. This result is in partial agreement with Eisenhower et al [464], who found that Aβ 1-40 was only toxic to primary hBECs at 20 μM, to but not at 2 μM. In contrast however, this group found that Aβ 1-42 displayed toxic effects at much lower concentrations, between 2 and 20 μM. It is worth mentioning that concentrations as high as 20 μM Aβ 1-42 have been added to primary rat BECs and shown no appreciable toxicity [486]. In addition to EC confluence, Aβ aggregation might in part explain the differences in concentrations needed to elicit toxic responses. Eisenhower et al [464] have demonstrated that aggregated Aβ 1-40 is more toxic to primary BECs than unaggregated Aβ 1-40. Recently, soluble oligomers have been hypothesised as the more toxic species of Aβ. Shankar et al [591] demonstrated that Aβ dimers isolated directly from AD patients are capable of impairment of synaptic plasticity and memory in rodents. Furthermore, Klein et al [357] have demonstrated that Aβ 1-42 oligomers are up to 40 times more toxic to neuronal cell cultures than unaggregated Aβ 1-42, with oligomer concentrations as low
as 10 nM eliciting a cytotoxic response. The overall consensus from this study, and other publications, is that Aβ can cause direct toxicity to BECs in vitro, albeit at high concentrations if unaggregated. Brain capillaries in AD display a number of morphological changes including basement membrane thickening, pericyte degeneration, endothelial shape changes, endothelial degeneration and luminal buckling [413]. This has led some researchers to argue that these events occur prior to the onset of AD symptoms as a result of cerebral blood flow reduction [421]. However, the observation that Aβ causes EC death in vitro, implies a further possible mechanism for BBB dysfunction in AD. Accumulation of Aβ as cerebrovascular deposits, could act to disturb the function of the BBB and provide a further neuropathogenic mechanism for AD.

4.4.2 Effects of Aβ on the expression of transporter proteins by hCMEC/D3 cells

The protein levels of P-gp were unaltered by Aβ. Currently, there are no reports on the effect of Aβ on the expression of P-gp by BECs in vitro and only one report from tissue samples [409]. Vogelgesgang et al [409] reported an inverse correlation between Aβ plaque deposition and P-gp expression in the medial temporal lobe of non-demented subjects. The results from the present study, however, do not demonstrate a direct link between Aβ and P-gp protein expression. Unpublished data from Margery Barrand (University of Cambridge, personal communication) has demonstrated P-gp down-regulation in capillaries from AD patient tissue samples. This apparent discrepancy might suggest that Aβ is not directly linked to P-gp down-regulation in AD, rather that other indirect mechanisms might contribute to this effect. For example, Aβ might act on other cell types such as astrocytes, pericytes, or microglia, which could secrete factors that mediate P-gp down-regulation. Astrocytic end feet swelling [373], microglia activation [374] and either pericytic atrophy [375] or an increase in pericyte capillary coverage [376], as a potential second line of defence, have been observed in tissue sections from AD.
patients. In the CSF, plasma and brains of AD patient's, the cytokines IL-1 α/β, IL-6 and TNF-α are found elevated and Aβ in vitro can induce astrocytes and microglia to produce these cytokines [374, 377]. TNF-α has been demonstrated to decrease the activity of P-gp in an immortalised rat BEC cell line (GPNT)[246], whilst IL-6 can down-regulate P-gp expression in cultured rat hepatocytes [592] and in vivo in mice after intraperitoneal injection [593] (reviewed [594]). IL-1β is also found to decrease P-gp expression in rat hepatocytes in vitro [592]. P-gp down-regulation in AD might therefore be mediated by an indirect mechanism induced by Aβ or as a result of inflammation.

Iron accumulation has been observed in different brain regions in AD including the hippocampus and cerebral cortices [589]. The interaction of iron with Aβ causes ROS production and Aβ aggregation and it has been hypothesised that redox active iron is a key mediator in Aβ toxicity [595, 596]. The transferrin receptor is a key transporter molecule for iron at the BBB, acting to transport iron into ECs from the blood [150, 151]. In this chapter, Aβ did not alter the protein levels of the transferrin receptor. This result implies that increased levels of iron in the brain, would not be due to Aβ-induced transferrin receptor up-regulation and hence iron transport. This is in agreement with Kalaria et al [597], who noted that 125I transferrin binding was decreased in hippocampal regions. However, in this current study there were no differences in cerebral microvessel binding in AD patients compared to controls. Morris et al [598] have also found decreased transferrin receptor levels in brain regions most prone to senile plaques, notably the hippocampus, though not at the microvessel level. The increased iron found in AD patients might originate from brain resident cells such as microglia, which can release iron from ferritin in vitro [599], or by binding of iron to Aβ deposits rather than from an absolute increase in iron levels in brain ISF. Increased iron concentrations in the brain might also be the result of BBB changes in AD patients. The up-regulation of an alternate iron receptor, such as melanotransferrin [600] could mediate blood-to-brain iron transport. Also, since there are
increased levels of iron in the plasma compared to CSF levels, a leaky BBB as found in AD patients, could allow diffusion of iron into the brain [150, 151, 601].

In the present study, Aβ 1-40 and Aβ 1-42 were both shown to decrease the expression of Glut-1 by hCMEC/D3 cells after 48 h incubation. This finding is in agreement with investigations in AD patients, where decreased glucose utilisation has been observed [431]. Reduced glucose metabolism in the hippocampus [432], neocortex [434] and posterior cingulate gyrus [435] has been noted in patients with AD. The decreased glucose metabolism might be due in part to a decreased uptake of glucose into the brain across the BBB. Glut-1 is highly expressed by BECs and is responsible for the transport of glucose across the BBB [138]. Using both immunolabelling and covalent binding of cytochalasin B, decreased Glut-1 levels have been observed in brain tissue from AD patients at the level of the BBB [146, 586, 587]. Mooradian et al [438] have further demonstrated in AD patients that Glut-1 is altered at the protein level, but not at the mRNA level. There is also evidence that Aβ can cause Glut-1 down-regulation in vivo. Using APP/PS1 mice, Hooijmans et al [437] found that Aβ load in the hippocampus precedes Glut-1 reduction, and that Glut-1 density per capillary was decreased. In vitro, Aβ 25-35 has also been demonstrated to decrease the uptake of glucose in porcine pulmonary ECs, however Glut-1 levels were not assessed [442]. Taken together, the results of the present study and the data described above indicate that Aβ can cause a down-regulation in the Glut-1 receptor, which could contribute to reduced neuronal activity contributing to the pathogenesis of AD.

4.4.3 Effect on Aβ tight junction protein expression by hCMEC/D3 cells

The results from this present study have demonstrated that Aβ incubation induces occludin down-regulation at the protein and mRNA level and increased hCMEC/D3 cell paracellular permeability. These results suggest that the two findings are interlinked, i.e. occludin is a key component of endothelial cell permeability. The importance of occludin
in conferring restrictive TJs has been demonstrated in vitro [84, 85, 134] and in vivo [91, 92, 276]. Transfection of truncated occludin or siRNA knockdown in MDCK cells or Xenopus embryo cells results in increased paracellular permeability [84, 85, 134]. Occludin down-regulation and increased permeability has been observed in animal models of oxidative stress [276], IL-1-induced neutrophil BBB breakdown [91] and inflammatory pain [92]. Occludin down-regulation, as observed in the current study, is in partial agreement with Marco and Skaper [486], who observed that Aβ 1-42 at 20 μM induced occludin down-regulation in rat BECs at 24 h, but not at 48 or 72 h incubation. In addition, these authors did not detect any alterations in overall CI-5 or ZO-1 levels, in agreement with our study, although they reported that CI-5 translocated to the cytoplasm and they did not investigate endothelial cell permeability. Soluble Aβ 1-40 oligomers, but not unaggregated Aβ 1-40 species, have also been demonstrated to increase the paracellular permeability of hBEC cultures after 24 h incubation, which was associated with ZO-1 translocation to the cytoplasm and nucleus from the cell membrane [443]. In that study, the expression of occludin was not investigated, and the total levels of ZO-1 were not quantified. Therefore, whilst in this current study total levels of ZO-1 were not decreased, as assessed by western blotting, it cannot be ruled out that ZO-1 could have translocated away from the membrane after Aβ 1-40 incubation.

Decreased occludin expression and increased BBB permeability has been noted by Takechi et al in APP/PS1 mice [94]. Stewart et al [376] have described that in AD patients there is a reduction in the number of TJs per vessel length. Therefore the evidence suggests that TJ disorganisation and occludin down-regulation might contribute significantly to the pathology in AD.

4.4.4 BBB permeability in AD

The results of this study have shown that incubation with Aβ 1-40 increases the permeability of hCMEC/D3 cells to the paracellular tracer FITC-dextran of 70 kDa but not
that of 4 kDa. The lack of an effect of Aβ 1-40 incubation on the permeability of hCMEC/D3 cells to 4 kDa FITC-dextran may be related to the relatively high permeability of the hCMEC/D3 cells to smaller molecules prior to Aβ treatment. Indeed, the P_e of hCMEC/D3 cells to 4 kDa FITC-dextran was ~ 5 fold higher than that to 70 kDa FITC-dextran.

Some studies have shown increased CSF/plasma protein ratios of albumin and IgG, suggesting that a leaky BBB is a common occurrence in AD patients [577-581]; however other studies have not confirmed this finding [602-604]. The most compelling evidence for an increased BBB permeability in AD was provided by Zipser et al [439], who found that prothrombin leakage from the blood into the CNS was significant in advanced stage AD. Matsumoto et al. [579] recently demonstrated, using CSF measurements and MRI, that increased BBB permeability to albumin was associated with medial temporal atrophy in AD patients. Other evidence, using AD animal models, also suggests that an increased BBB permeability can be induced by Aβ. Using Tg 2576 mice, Ujii et al [584] observed increased BBB permeability after 4 months of age, prior to plaque deposition and disease onset, which can be reversed via Aβ peptide immunisation [440]. Su et al [441] have also demonstrated that intravascular jugular vein injections of Aβ 1-40 can induce a leaky BBB and microglia activation in rats. Aβ 25-35 and Aβ 1-40 have also been demonstrated to increase the permeability of EC cultures in vitro including porcine BECs [442], human BECs [443] and porcine pulmonary ECs [444].

The increased BBB permeability induced by Aβ in vitro, as noted by others and in this study, is in agreement with data found in AD patients and in vivo models. This raises the question as to what extent a leaky BBB would induce alterations in CNS function.

Increased BBB permeability has been proposed as a key pathogenic mechanism in other diseases such as stroke [605], multiple sclerosis [606] and the progression of epilepsy [607]. TJ s at the BBB serve to limit the permeability of hydrophilic substances from the blood into the CNS, although transporters allow transfer of molecules. A breakdown of the
BBB in principle could lead to enhanced brain content of insulin, glucocorticoids [608], glutamate [155], plasma proteins and ions [609]. Insulin entry into the brain could compete with insulin degrading enzyme for the degradation of Aβ, increasing Aβ brain load. Extravasation of serum proteins in the brain has been linked to epilepsy and, interestingly, BBB breakdown is correlated with seizure frequency in mannitol-treated rats [607]. Similarly, the efflux of glucocorticoids by P-gp would be disrupted by a leaky BBB, which in turn could cause neuronal catabolism [610]. A leaky BBB would also decrease the efflux capability of all ABC transporters at the BBB, allowing unwanted potentially toxic xenobiotics entry to the CNS. Increased glutamate in the brain as a result of a leaky BBB could results in excitotoxic events. As mentioned previously, increased iron concentrations are found associated with AD plaques, in addition to other heavy metal ions. Transferrin-bound iron exists at much higher concentrations in the plasma than in brain tissue. A potential route of entry could therefore be via a leaky BBB.

The abnormal presence of serum-derived proteins in AD patients, via a leaky BBB, might act to cause inflammation and neuronal degeneration. Albumin levels are much higher in blood than the brain, and albumin has been demonstrated to activate microglia [611], and induce cholinergic cell death in vitro [612]. Albumin is also bound to Aβ in the plasma [613] and plasma proteins are frequently found as a component of Aβ plaques [614, 615]. A leaky BBB in AD patients could lead to the diffusion of serum proteins into the brain, which in turn could cause direct and indirect, via Aβ aggregation, neuronal degeneration. It would be expected that increased permeability of the BBB to serum proteins would lead to oedema as is the case in stroke. However, there are no reports suggesting the presence of oedema in AD patient’s brains. This suggests that the BBB leakiness in AD patients may be subtler in nature.

Recently, Stone [616] has hypothesised that capillary haemorrhages might be an underlying cause of AD. Stone suggested that microhaemorrhages cause ischemia, which results in oxidative damage and increased neuophil Aβ production, and the release of
haemoglobin into the neuropil, which binds to Aβ to produce oligomers. Whilst the results of this study do not demonstrate a causative role for BBB leakiness in AD, they do provide a further mechanism of BBB dysfunction in this disease. Increased Aβ production could induce a leaky BBB, resulting in haemoglobin extravasation into the CNS. Haemoglobin could bind to Aβ and promote oligomer formation. In line with this view, haemoglobin has been demonstrated to promote the formation of Aβ oligomers in vitro and is associated with senile plaques in AD patients [617].

A further consequence of BBB permeability could be the access of the brain of pathogens. Interestingly, increased levels of herpes simplex virus have been noted in the elderly and in AD patients [618], and pathogens have been proposed by some researchers to be a causative factor in AD [619, 620]. Increased BBB permeability caused by Aβ could increase the susceptibility of the brain to infection.

Whilst evidence that the BBB is compromised in AD patients is compelling, and numerous studies in vitro and in animal models have suggested possible mechanisms by which a leaky BBB might contribute to the pathogenesis of AD, unfortunately, to date, there is no evidence for direct BBB dysfunction underlying neuronal degeneration in AD patients.

4.5 Conclusions

The results of the present study demonstrate that Aβ can down-regulate Glut-1 expression in BECs, which may consequently reduce the amount of glucose available to neurones and promote neuronal degeneration. At the TJ level, non-toxic concentrations of Aβ induce a decrease in occludin expression by BECs, which was associated with an increased paracellular permeability. These results suggest that Aβ-induced BBB dysfunction, might contribute significantly to the pathogenesis of AD patients.
<table>
<thead>
<tr>
<th>Cell type</th>
<th>Concentration of Aβ required for toxicity</th>
<th>Pathway involved</th>
<th>Assessed by</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bovine post capillary heart venular ECs</td>
<td>5 μM Aβ 1-40/1-42 evoke 71% and 62% of control cell growth</td>
<td>Aβ induced ROS and caspase -3 activation</td>
<td>MTT</td>
<td>[582]</td>
</tr>
<tr>
<td>Primary human BECs</td>
<td>Aβ 1-40 toxic at 20 μM, whilst Aβ 1-42 toxic at 2 and 20 μM</td>
<td></td>
<td>MTT</td>
<td>[464]</td>
</tr>
<tr>
<td>Rat BECs</td>
<td>1 – 100 nM Aβ 1-40 and Aβ 1-42 enhance necrosis and apoptosis after 3 h but not 48 h</td>
<td></td>
<td>TUNEL, lactate dehydrogenase</td>
<td>[621]</td>
</tr>
<tr>
<td>Bovine aortic ECs</td>
<td>Aβ 25-35 and Aβ 1-40 ~ 1 μM induces apoptosis.</td>
<td>Decreased NO production and K+ ion channel disruption</td>
<td>MTT</td>
<td>[622]</td>
</tr>
<tr>
<td>Rat BECs</td>
<td>Aβ at concentrations of 100 nM and higher were toxic</td>
<td>Possibly NO</td>
<td>-</td>
<td>[623]</td>
</tr>
<tr>
<td>Rodent coronary ECs</td>
<td>5-100 nM proliferation of EC, 500 nM and above toxic of Aβ 1-40.</td>
<td>ERK/1/2 inhibition possibly mediated via decrease in FGF-2 production</td>
<td>Cell counts</td>
<td>[624]</td>
</tr>
<tr>
<td>Bovine aortic ECs</td>
<td>Aβ 1-40 50 μM caused endothelial cell death.</td>
<td></td>
<td>Hoesrst</td>
<td>[625]</td>
</tr>
<tr>
<td>Bovine aortic ECs</td>
<td>Aβ 1-40 1 μM induce apoptosis.</td>
<td>Toxicity deceased after SOD addition. Also NO dysfunction.</td>
<td>Light microscopy</td>
<td>[583]</td>
</tr>
<tr>
<td>Murine BECs</td>
<td>Aβ1-40 caused 40% toxicity after 48 h. 25-35 also evoked a strong endothelial cell death</td>
<td>Reversed by caspase and an antioxidant both decreased cell death</td>
<td>MTT</td>
<td>[626]</td>
</tr>
<tr>
<td>Bovine aortic ECs</td>
<td>Aβ secreted from CHO over secreting Aβ cells. Not toxic unless ECs were sub confluent</td>
<td></td>
<td>Cell counts</td>
<td>[590]</td>
</tr>
</tbody>
</table>

Table 4.1. Selected references on the toxicity of Aβ to ECs
Chapter 5

Molecular mechanisms mediating Aβ 1-40- induced occludin down-regulation and increased hCMEC/D3 cell permeability

Abstract

The aim of this study was to investigate the pathway(s) involved in Aβ 1-40-mediated occludin down-regulation in hCMEC/D3 cells. Pharmacological inhibitors of signalling pathways which Aβ is known to activate (GSK-3β, NF-KB, JNK, p38MAPK, ERK) and others implicated in the regulation of occludin levels (Src, ROCK, PI3K, PKC) were used. Inhibitors of JNK (SP600125, TAT-TI-JIP153-163) and p38MAPK (SB203580) selectively prevented Aβ 1-40-mediated occludin down-regulation as assessed by flow cytometry. All three MAPK family members (p38MAPK, JNK-46 kDa and ERK2) were activated at 24 h and 48 h by Aβ 1-40. After 48 h incubation with Aβ 1-40, SB203580 inhibited p38MAPK and JNK activation by Aβ 1-40; however, SP600125 and TAT-TI-JIP153-163 only blocked JNK activation. JNK and p38MAPK inhibitors prevented the Aβ 1-40-mediated increase in hCMEC/D3 cell permeability to 70 kDa FITC-dextran. The aggregation of Aβ 1-40 as a possible mechanism mediating this effect was also investigated. When assessed by western blotting, using an anti-Aβ antibody, it was observed that levels of the 4 kDa Aβ 1-40 monomer decreased over 48 h in the supernatant and cell lysates, whilst a large 150 kDa protein was detected from 24 h. This 150 kDa band did not correspond to endogenous APP and might represent the activating Aβ species, since it appeared at the same time as MAPK activation. These results demonstrate that the JNK pathway is critical in the signalling of Aβ 1-40 mediating occludin down-regulation and increased paracellular permeability in hCMEC/D3 cells. JNK inhibition could represent a therapeutic target for AD to prevent BBB dysfunction found in AD patients.
5.1 Introduction

Aβ has been shown to induce several signalling pathways in many cell types, with investigations focused mainly on neuronal and EC death, or glial cell activation (reviewed in [627]). The toxicity of Aβ to neurones involves complex molecular mechanisms, potentially involving multiple pathways, both extra and intracellular, such as ROS and cytokine release [627]. Three main intracellular signalling pathways are commonly described as being activated by Aβ in neurones or in different cell types, namely GSK-3β, JNK and NF-kB.

GSK-3β forms part of the PI3K-Akt mediated cell survival pathway and is proposed to play multiple roles in AD [628, 629], including tau hyperphosphorylation, Aβ production and neuronal apoptosis. Recently, it has been demonstrated that GSK-3β inhibition [345] and PI3K activation [347], which in turn leads to GSK-3β inactivation, prevents Aβ- induced neuronal cell death in rat hippocampal neurones. Akt and GSK-3β are also implicated in Aβ toxicity to ECs. HUVEC cells transfected with APP, have been demonstrated to produce Aβ 1-42, which is associated with reduced AKT and increased GSK-3β activation, inducing apoptosis [630].

The JNK pathway also represents a potential therapeutic target in AD (reviewed in [631]). In brain tissue from AD patients, JNK activation has been found associated with both intracellular Aβ in neurones from the cerebral cortex [632], and Aβ plaques and NFT in the hippocampus [633]. In vitro, JNK activation can be induced following incubation of cultured neurones with Aβ [353, 634-636]. Wei et al. [353] have demonstrated, using the neuroblastoma cell line SH-SY5Y, that Aβ 25-35 and Aβ 1-42 rapidly induce JNK activation and cell death, which is prevented by JNK inactivation, albeit indirectly via insulin-like growth factor. Bozyczko-coyne et al [634] and Troy et al [636] have also demonstrated that direct JNK inhibition can prevent Aβ- induced cell death in rat cortical neurones and PC12 cells, respectively.
There is conflicting evidence regarding the role of NF-kB in AD. NF-kB has been reported to be activated in neurones and astrocytes surrounding early amyloid plaques in the cortex and hippocampus of AD patients brains [637]. NF-kB activation has also been described in the neurones of the hippocampus and entorhinal cortex [638, 639] and also, in large cholinergic neurones in AD patients [640]. Aβ can also induce the activation of NF-kB in primary rat cerebellar granule cells [637] and human neuroblastoma cells [641].

In vitro, NF-kB inhibitors have been demonstrated to prevent Aβ toxicity in rat primary neurones [351]. In contrast, Kaldschmidt et al [344] showed that NF-kB inhibition can potentiate the toxicity of Aβ 1-40 in rat primary neurones, and demonstrated a reduction in NF-kB staining in neurones surrounding plaques in AD brain tissue, compared to age-matched controls. The authors have explained this discrepancy by suggesting that a certain threshold levels of NF-kB is protective, whilst too high or low levels are neurotoxic [642].

The overall aim of this chapter was to investigate the signalling pathway(s) involved in occludin down-regulation and increased permeability mediated by Aβ. Aβ 1-40 was used in preference to Aβ 1-42 in this study, since this particular species is most abundant in AD patients plasma and whole brain homogenates [313]. In addition, Oijen et al [321] also found that high plasma concentrations of Aβ 1-40 are associated with an increased risk of developing dementia, and Aβ 1-40 is the species found at the highest levels in cerebrovascular deposits [643]. Therefore, in this study, inhibitors for JNK, GSK-3β and NF-kB, the main signalling pathways mediating Aβ actions, were initially used in an attempt to reverse the Aβ 1-40-mediated occludin down-regulation in hCMEC/D3 cells. Other pharmacological inhibitors were also employed for PI3K, ROCK, Src and PKC pathways which have been previously shown to regulate occludin expression and/or induce post-translational changes at the protein level.
5.2 Methods

5.2.1 Signalling pathway inhibitors

For this study, various inhibitors of signalling pathways, or soluble receptor antagonists for cytokines were employed (Table 5.1). For each inhibitor, concentrations were used that have been previously shown to inhibit the pathway under investigation in vitro, either reported in the literature, or as previously demonstrated in the laboratories at The Open University (Dr Ignacio Romero, personal communication). Two exceptions were the soluble cytokine receptors, and the JNK 2/3 inhibitor N-(3-Cyano-4,5,6,7-tetrahydro-1-benzothien-2-yl)-1-naphthamide. For the cytokine receptors, at least a 10 x higher concentration than the IC50 described by the data sheet was used. For N-(3-Cyano-4,5,6,7-tetrahydro-1-benzothien-2-yl)-1-naphthamide, as yet, there are no reported in vitro studies that have used this inhibitor. Initial experiments conducted as part of this study found N-(3-Cyano-4,5,6,7-tetrahydro-1-benzothien-2-yl)-1-naphthamide to be toxic to hCMEC/D3 cells. Therefore, an MTT assay (0.25, 0.5, 1, 5, 10, 20 μM) was carried out to determine non-toxic concentrations for use in subsequent experiments (Figure 5.1).

5.2.2 Flow cytometry

Fully confluent hCMEC/D3 cells (grown as in 4.2.4) were pre-incubated for 30 min in the presence or absence of the pharmacological inhibitors/antagonists listed in Table 5.1. 5 μM Aβ 1-40 or sAβ 1-40 was then added to the supernatant for 48 h, and the expression of occludin measured by flow cytometry as described in section 4.2.4.
<table>
<thead>
<tr>
<th>Modulator</th>
<th>Pathway inhibited</th>
<th>Concentration</th>
<th>Source</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>SP600125</td>
<td>JNK 1, 2 and 3</td>
<td>10, 50 μM</td>
<td>Calbiochem NJ, USA</td>
<td>[644]</td>
</tr>
<tr>
<td>TAT-TI-JIP<sub>153-163</sub></td>
<td>JNK 1, 2 and 3</td>
<td>1, 5, 10 μM</td>
<td>Calbiochem NJ, USA</td>
<td>[645]</td>
</tr>
<tr>
<td>N-(3-Cyano-4,5,6,7-tetrahydro-1-benzothien-2-yl)-1-naphthamide</td>
<td>JNK 2 and 3</td>
<td>0.5 μM</td>
<td>Calbiochem NJ, USA</td>
<td>[646]</td>
</tr>
<tr>
<td>SB203580</td>
<td>p38MAPK</td>
<td>20 μM</td>
<td>Calbiochem NJ, USA</td>
<td>[647]</td>
</tr>
<tr>
<td>PD98059</td>
<td>MEK</td>
<td>50 μM</td>
<td>Calbiochem NJ, USA</td>
<td>[648]</td>
</tr>
<tr>
<td>pp2</td>
<td>Src family</td>
<td>10 μM</td>
<td>Calbiochem NJ, USA</td>
<td>[649]</td>
</tr>
<tr>
<td>Y-27632</td>
<td>ROCK inhibitor</td>
<td>700 nM</td>
<td>Calbiochem NJ, USA</td>
<td>[650]</td>
</tr>
<tr>
<td>Bisindolylmaleimide</td>
<td>PKC</td>
<td>10 μM</td>
<td>Calbiochem NJ, USA</td>
<td>[651]</td>
</tr>
<tr>
<td>LY294002</td>
<td>PI3-kinase</td>
<td>300 μM</td>
<td>Calbiochem NJ, USA</td>
<td>[652]</td>
</tr>
<tr>
<td>Lithium chloride (LiCl)</td>
<td>GSK-3β</td>
<td>5 mM</td>
<td>Sigma-Aldrich, Dorset, UK</td>
<td>[345]</td>
</tr>
<tr>
<td>sn50</td>
<td>NF-κβ</td>
<td>200 μM</td>
<td>Calbiochem NJ, USA</td>
<td>[653]</td>
</tr>
<tr>
<td>sn50-m</td>
<td>Control sn-50</td>
<td>200 μM</td>
<td>Calbiochem NJ, USA</td>
<td>-</td>
</tr>
<tr>
<td>sIL-1ra</td>
<td>IL-1</td>
<td>10 ng/ml</td>
<td>Prospec, Rehovot, Israel</td>
<td>IC 50- 0.5 ng/ml</td>
</tr>
<tr>
<td>sTNF-R1</td>
<td>TNF - α</td>
<td>10 ng/ml</td>
<td>Prospec, Rehovot, Israel</td>
<td>IC 50- 0.4-1 ng/ml</td>
</tr>
<tr>
<td>sIL-6 R</td>
<td>IL-6</td>
<td>10 ng/ml</td>
<td>Prospec, Rehovot, Israel</td>
<td>-</td>
</tr>
</tbody>
</table>

Table 5.1. Signalling pathway modulators and soluble cytokine receptors used to investigate Aβ 1-40 - mediated occludin down-regulation in hCMEC/D3 cells.
5.2.3 Permeability of hCMEC/D3 cells to 70 kDa FITC-dextran

hCMEC/D3 cells were grown to confluence in collagen- and fibronectin- coated transwell polyester membrane inserts (0.4 μm pore diameter, 12 mm diameter). SP600125 (50 μM), TAT-TI-JIP153-163 (10 μM), SB203580 (10 μM) or a vehicle control was then added to the apical chamber for 30 min. sAβ 1-40 or Aβ 1-40 was then added to the culture medium in the apical chamber for 48 h. The permeability of hCMEC/D3 cells to 70 kDa FITC-dextran was determined as described in section 4.2.6 in addition to the trans endothelial electrical resistance (TEER).

5.2.4 SDS-PAGE and Western blotting

hCMEC/D3 cells were grown to full confluence in collagen-coated 6-well plates and incubated with sAβ 1-40 or Aβ 1-40 for 0, 1, 5, 15, 30 and 60 min or 1, 3, 6, 24 and 48 h. A further experiment was carried out whereby hCMEC/D3 cells were pre-incubated with SP600125 (50 μM), TAT-TI-JIP153-163 (10 μM), SB203580 (10 μM), N-(3-Cyano-4,5,6,7-tetrahydro-1-benzothien-2-yl)-1-naphthamide (0.5 μM), or a vehicle control and then incubated with Aβ 1-40 or sAβ 1-40 for 48 h. Cell lysates were then obtained as described in section 4.2.3. The expression of active JNK, p38MAPK and ERK was then assessed by western blotting using specific antibodies for the phosphorylated form of each signalling molecule (Table 5.2). To normalise the results, the western blots were stripped as described in section 2.2.5 and re-probed with antibodies specific for total JNK, p38MAPK or ERK2 (Table 5.2). As a positive control, hCMEC/D3 cells were placed under UV for 30 min, lysed and processed as above.
<table>
<thead>
<tr>
<th>Anti-</th>
<th>Species</th>
<th>Concentration</th>
<th>Source</th>
</tr>
</thead>
<tbody>
<tr>
<td>Phospho-</td>
<td>rabbit</td>
<td>1 in 1000 dilution</td>
<td>Cell signalling, Massachusetts, USA</td>
</tr>
<tr>
<td>JNK</td>
<td>polyclonal</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Phospho-</td>
<td>rabbit</td>
<td>1 in 1000 dilution</td>
<td>Cell signalling, Massachusetts, USA</td>
</tr>
<tr>
<td>p38MAPK</td>
<td>polyclonal</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Phospho-</td>
<td>mouse IgG₁</td>
<td>1 in 1000 dilution</td>
<td>Biosource, California, USA</td>
</tr>
<tr>
<td>ERK1/2</td>
<td>monoclonal</td>
<td></td>
<td></td>
</tr>
<tr>
<td>JNK</td>
<td>rabbit</td>
<td>1 in 1000 dilution</td>
<td>Cell signalling, Massachusetts, USA</td>
</tr>
<tr>
<td>p38MAPK</td>
<td>rabbit</td>
<td>1 in 1000 dilution</td>
<td>Cell signalling, Massachusetts, USA</td>
</tr>
<tr>
<td>ERK2</td>
<td>mouse IgG₂a</td>
<td>1 in 1000 dilution</td>
<td>Upstate California USA</td>
</tr>
<tr>
<td></td>
<td>monoclonal</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Table 5.2. List of antibodies used for western blotting.

5.2.5 Aβ peptide in whole cell lysates and culture supernatants as assessed by SDS-PAGE and western blotting

hCMEC/D3 cells were grown to full confluence in collagen-coated 6-well plates, and incubated with Aβ 1-40 for 1, 3, 6, 24 and 48 h. To determine Aβ aggregation in the absence of cultured cells, Aβ 1-40 was added to collagen-coated tissue culture plates, with no hCMEC/D3 cells, for the same time points. 20 µl of each culture medium sample was added to 5 µl of 4 X Laemmli’s buffer, whereas cells or collagen-coated wells were scraped and treated as described in section 4.2.3. Aβ levels were then assessed in both the cell lysates and medium samples using SDS-PAGE on 15 % and 8 % gels and western blotting techniques (Antibody 6E10 directed against Aβ 1-16, 1 in 100 dilution, mouse monoclonal IgG₁, Abcam, Cambridge, UK). The membranes were stripped and reprobed, as described in section 2.2.5, for APP (22C11 directed against APP 66-81, diluted 1 in 100, mouse monoclonal IgG₁, Chemicon, Mannheim, Germany).
5.2.5 Statistical analysis.

All data are represented as means +/- SEM and the number of experiments, n, indicated each time. Statistical significance was calculated using ANOVA followed by Student's t test, comparing each treatment to the control (* \(P < 0.05 \), ** \(P < 0.01 \)). For the permeability experiments, a paired t-test was employed.
5.3 Results

5.3.1 Signalling pathways involved in Aβ 1-40-mediated occludin down-regulation by hCMEC/D3 cells

The aim of this experiment was to investigate the contribution of various signalling pathways in Aβ-mediated occludin down-regulation. Initially pathways known to be activated by Aβ (NF-κB, GSK-3β, JNK) [627], and others that have been previously shown to regulate TJ expression (Rock, Src, PKC) were investigated [131] (Figure 5.2).

Aβ 1-40 caused a decrease in occludin expression by 29 % ± 6.3 (compared to sAβ 1-40) in hCMEC/D3 cells. Pre-incubation with inhibitors of Src (pp2), ROCK (Y-27632), PKC (Bis-1), NF-κB (sn50), GSK-3β (LiCl) or PI3K (LY294002) did not prevent Aβ 1-40-induced occludin down-regulation (Figure 5.2a). However, this effect was completely blocked by pre-incubation with 50 μM SP600125, a JNK inhibitor.

JNK is a member of the mitogen activated protein kinase (MAPK) family of which there are three members, p38MAPK, JNK and ERK. Therefore, to investigate the specificity of the JNK pathway involvement in Aβ-induced occludin down-regulation, hCMEC/D3 cells were pre-incubated with two further inhibitors of JNK (TAT-TI-JIP153-163 and N-(3-Cyano-4,5,6,7-tetrahydro-1-benzothien-2-yl)-1-naphthamide), a p38MAPK inhibitor (SB203580) or an indirect inhibitor of ERK (PD98059) at different concentrations (Figure 5.2b). JNK exists as three isoforms (JNK1, 2 and 3). JNK1 and 3 are described as important for Aβ-mediated toxicity to neurones [654]. N-(3-Cyano-4,5,6,7-tetrahydro-1-benzothien-2-yl)-1-naphthamide [646] is reported to be specific for JNK2/3 and so was used in an attempt to elucidate the isoform responsible for Aβ signalling in hCMEC/D3 cells. SP600125 at a lower concentration of 10 μM inhibited the Aβ 1-40-mediated occludin down-regulation (n = 3, P < 0.05) as found with the 50 μM dose (Figure 5.2a and b). 10 μM TAT-TI-JIP153-163 rescued occludin down-regulation in hCMEC/D3 cells (n = 3, P < 0.05), although 5 μM and 1 μM doses were not effective. N-
(3-Cyano-4,5,6,7-tetrahydro-1-benzothen-2-yl)-1-naphthamide was toxic to hCMEC/D3 cells at concentrations of 1 μM and upwards (Figure 5.1). When used at 0.5 μM, however, there was no inhibition of occludin down-regulation, and similarly the MEK inhibitor PD98059 also had no effect \((n = 3, P > 0.05)\). Interestingly, 20 μM SB203580 completely blocked the down-regulation of occludin \((n = 3, P < 0.05)\). These results demonstrate that p38MAPK and JNK inhibition both attenuate Aβ-mediated occludin down-regulation in hCMEC/D3 cells.

5.3.2 Time-dependent activation of JNK, ERK and p38MAPK as assessed by western blotting

The next issue to be addressed was whether JNK and p38MAPK were activated in hCMEC/D3 cells by Aβ 1-40 treatment (Figures 5.3- Figure 5.5). The activation of ERK was also investigated to determine the specificity of MAPK activation. Neither JNK nor p38MAPK were activated at early time points of 1, 5, 15, 30 and 60 min (Figure 5.3). By contrast, activation of all three kinases was observed after 24 h and 48 h incubation with Aβ 1-40 (Figures 5.4 and 5.5).

JNK activation was detected as early as 6 h post incubation with Aβ 1-40 and increased with time up to 48 h, but no JNK activation was observed following sAβ 1-40 incubation. JNK resolves as two bands of 52 kDa and 46 kDa. Aβ 1-40 activated 46 kDa JNK but not 52 kDa, whilst the positive control (UV light, 30 min) stimulated both. ERK was also activated by Aβ 1-40 at 24 h and 48 h. Two forms of ERK exist, ERK1 (44 kDa) and ERK 2 (42 kDa) and Aβ 1-40 appeared to exclusively activate ERK 2. p38MAPK activation was determined following 24 h and 48 h incubation with Aβ 1-40, however the band resolved was very weak and difficult to fully identify.

The activation of JNK, p38MAPK and ERK after 48 h incubation with Aβ 1-40 was then investigated, in the presence or absence of their specific inhibitors (Figure 5.6 and...
5.7): 10 μM TAT-TI-JIP153-163, 20 μM SB203580, 50 μM SP600125 and 10 μM PD98059. Both JNK inhibitors (TAT-TI-JIP153-163 and SP600125) reduced the activation of JNK caused by Aβ 1-40, but did not inhibit the activation of p38MAPK or ERK2. Similarly, PD98059 decreased the activation of ERK but not that of JNK or p38MAPK. By contrast, SB203580 inhibited both JNK and p38MAPK activation but not ERK2. These results show that SB203580 also prevented JNK activation and so might not be specific for the p38MAPK pathway, or that p38MAPK signalling mediates the activation of JNK through an as yet undefined mechanism.

N-(3-Cyano-4,5,6,7-tetrahydro-1-benzothien-2-yl)-1-naphthamide increased the activity of ERK, p38MAPK and JNK, indicating that hCMEC/D3 cells were under stress (Figure 5.8). It is therefore unsurprising that this compound did not prevent Aβ-mediated occludin down-regulation, since it activated rather than inhibited JNK.

5.3.3 The effect of soluble cytokine receptors on Aβ 1-40-mediated occludin down-regulation by hCMEC/D3 cells

The activation of p38MAPK is associated with the production of inflammatory mediators, which in principle could act to decrease the expression of occludin by hCMEC/D3 cells in a JNK-dependent manner. IL-1β, TNF-α and IL-6 are all elevated in AD patients [377] and IL-1β [265-270] or TNF-α [655, 656] can alter the expression of TJ proteins. In this study, sTNF-R1, sIL-1ra, combined sTNF-R1/sIL-1ra or a sIL-6 R all failed to prevent occludin down-regulation (Figure 5.8). These results suggest that either another unknown secreted factor is released by Aβ-stimulated BECs, or a direct activation of JNK or p38MAPK is crucial in the observed down-regulation of occludin levels by hCMEC/D3 cells. However, the lack of activation of p38MAPK as assessed by western blotting at early time points appears to rule out the possibility of the secretion of an unknown mediator by hCMEC/D3 cells, unless it is released via a p38MAPK-independent
mechanism. Indeed, p38MAPK, JNK and ERK activation were all observed at the same time of 24 h upwards, indicative of co-activation. The fact that TAT-TI-JIP153-163, SP600125 inhibit JNK and not p38MAPK, and SB203580 inhibits both, implies that JNK is the critical pathway in occludin down-regulation mediated by Aβ.

5.3.4 The effect of JNK and p38MAPK inhibition on Aβ 1-40-mediated increased hCMEC/D3 cell paracellular permeability

Since TAT-TI-JIP153-163, SB203580 and SP600125 all attenuated occludin down-regulation mediated by Aβ 1-40, their effect on the Aβ-mediated increase in hCMEC/D3 cell permeability was investigated (Figure 5.10 and 11). The TEER of hCMEC/D3 cells was unaltered by Aβ 1-40 incubation and also by the incubation of 10 μM TAT-TI-JIP153-163, 20 μM SB203580 or 50 μM SP600125 (Figure 5.10, n = 3, P > 0.05). These results imply that none of the treatments sufficiently alter the permeability of hCMEC/D3 cells to small ions, probably due to the relatively poor basal TEER of the hCMEC/D3 cells.

Aβ 1-40 increased the permeability coefficient of hCMEC/D3 cells to 70 kDa FITC-dextran compared to the sAβ peptide by 69.7 ± 8.5% (Figure 5.11, n = 3, P < 0.05). This effect was inhibited by pre-incubation with TAT-TI-JIP153-163, or SP600125 prior to Aβ 1-40 incubation (n = 3, P > 0.05). There was also no increased paracellular permeability after pre-incubation with SB203580 and subsequent Aβ 1-40 incubation (n = 3, P > 0.05). Although, it should be noted, that pre-incubation of hCMEC/D3 cells with SB203580 slightly increased the permeability coefficient when incubated with both s1-40 and Aβ 1-40 by 33.8 ± 22.5 % and 26.7 ± 12.6 %, respectively, when expressed as a percentage of vehicle pre-incubated sAβ 1-40 control, however the data was not significant (n = 3, P > 0.05). These results show that JNK and p38MAPK inhibition can prevent the Aβ 1-40 mediated increase in hCMEC/D3 cell permeability to 70 kDa – FITC dextran, most likely via occludin down-regulation.
5.3.5 Aβ peptide in whole cell lysates and culture supernatants as assessed by SDS-PAGE and western blotting

Aβ has a high tendency to self aggregate and there is some debate as to the most toxic form of Aβ (reviewed [359]). To investigate which Aβ species might be responsible for occludin down-regulation in hCMEC/D3 cells, Aβ levels in cell lysates and culture medium were assessed via western blotting. Using a 15 % acrylamide gel, a time-dependent reduction of a 4 kDa protein in both the supernatant and cell lysate was observed when Aβ 1-40 was incubated with fully confluent hCMEC/D3 cells, but not in the absence of cells (Figure 5.12). Interestingly, at 6, 24 and 48 h, increasing amounts of a large protein of ~150 kDa was detected in both cell lysates and the culture medium. To further investigate the identity of this protein, samples were electrophoresed on an 8 % acrylamide gel (Figures 5.12 and 5.13), which was blotted for Aβ, then stripped and re-probed for APP. As observed on the 15 % acrylamide gel, a 150 kDa protein was observed in hCMEC/D3 cell lysates and culture medium (Figure 5.12 and 5.13). In addition, in the supernatant of hCMEC/D3 cells incubated with Aβ 1-40, a decreased expression of a 50 kDa protein was observed using an APP antibody. The results suggest that either Aβ of 4 kDa is degraded by hCMEC/D3 cells or that Aβ aggregates with other Aβ molecules or with another protein(s), without the production of intermediate species.
Figure 5.1. The toxicity of N-(3-Cyano-4,5,6,7-tetrahydro-1-benzothien-2-yl)-1-naphthamide to hCMEC/D3 cells. Fully confluent hCMEC/D3 cells were incubated with different concentrations of N-(3-Cyano-4,5,6,7-tetrahydro-1-benzothien-2-yl)-1-naphthamide for 48 h and the cell viability measured using an MTT assay. Data represents mean ± S.D. n = 1 experiment with quintuplet samples.
Figure 5.2. The role of signalling pathway inhibition on occludin expression by hCMEC/D3 cells following Aβ 1-40 incubation for 48 h. (a) Fully confluent hCMEC/D3 cells were pre-incubated for 30 min with inhibitors for the PI-3K, NF-κB, GSK-3β, Src, ROCK, PKC and JNK pathways and subsequently incubated for 48 h with either Aβ 1-40 or sAβ 1-40, and the expression of occludin assessed via flow cytometry. (b) Fully confluent hCMEC/D3 cells were pre-incubated with inhibitors for the MAPK family before sAβ 1-40 or Aβ 1-40 incubation. Data represents mean ± SEM. n = 3 experiments with duplicate samples. * p < 0.05 using a Student’s t test comparing each treatment to the control.
Figure 5.3. The effect of Aβ 1-40 treatment on the activation of JNK and p38MAPK by hCMEC/D3 cells over 60 min. (a) Fully confluent hCMEC/D3 cells were incubated with Aβ 1-40 or sAβ 1-40 for 1, 5, 15, 30 and 60 min. The cells were then lysed and the protein levels of active/phosphorylated JNK (rabbit polyclonal IgG) and total JNK (rabbit polyclonal IgG) was assessed via western blotting techniques. (b) Active and total p38MAPK (both rabbit polyclonal IgG) after Aβ 1-40 incubation. Results are from one experiment representative of 3 with single samples.
Figure 5.4. The effect of Aβ 1-40 treatment on the activation of JNK, ERK, p38MAPK by hCMEC/D3 cells over 48 h. (a) Fully confluent hCMEC/D3 cells were incubated with Aβ 1-40 for 1, 3, 6, 24 and 48 h. The cells were then lysed and the protein levels of active and total JNK (rabbit polyclonal IgG) was assessed via western blotting. (b) Active (mouse monoclonal IgG1) and total ERK2 (mouse monoclonal IgG2a) after Aβ incubation. (c) Active (rabbit polyclonal IgG) and total p38MAPK (rabbit polyclonal IgG) after Aβ incubation. Results are from one experiment representative of two.
Figure 5.5. The activation of JNK, ERK and p38MAPK over 48 h after treatment with Aβ 1-40 as assessed by optical density analysis of western blots. The OD of the active JNK (46 kDa) ERK2 and p38MAPK bands from Figure 5.4 were divided by total JNK, ERK and p38MAPK respectively (arbitrary units) and normalised to sAβ control.
Figure 5.6. The role of signalling pathway inhibition on the activation of JNK, ERK and p38MAPK by hCMEC/D3 cells following Aβ 1-40 incubation for 48 h. (a) Fully confluent hCMEC/D3 cells were pre-incubated with SP600125 (50 μM), TAT-TI-JIP₁₅₃₋₁₆₃, PD98059 (50 μM), SB203580 (20 μM) or N-(3-Cyano-4,5,6,7-tetrahydro-1-benzothien-2-yl)-1-naphthamide (0.5 μM) for 30 min and then incubated with Aβ 1-40 or sAβ 1-40 for 48 h. The expression of active and total JNK was then assessed via western blotting techniques. (b) The expression of active and total p38MAPK and (c) ERK was also measured. Results are from one experiment representative of two.
Figure 5.7. The role of signalling pathway inhibition on the relative activation of JNK, ERK and p38MAPK by hCMEC/D3 cells following Aβ incubation for 48 h as assessed by optical density analysis of western blots. Fully confluent hCMEC/D3 were pre-incubated with SP600125, TAT-TI-JIP153-163, PD98059, SB203580 or for 30 min and then incubated with Aβ1-40 or sAβ 1-40 for 48 h. The OD of the active JNK (46 kDa) ERK2 and p38MAPK bands from Figure 5.6 were divided by total JNK, ERK and p38MAPK respectively.
Figure 5.8. The activation of JNK, p38MAPK and ERK2 after Aβ 1-40 incubation with N-(3-Cyano-4,5,6,7-tetrahydro-1-benzothien-2-yl)-1-naphthamide as assessed via optical density analysis by hCMEC/D3 cells. Fully confluent hCMEC/D3 were pre-incubated with N-(3-Cyano-4,5,6,7-tetrahydro-1-benzothien-2-yl)-1-naphthamide or for 30 min and then incubated with Aβ1-40 or sAβ 1-40 for 48 h. The OD of the active JNK (46 kDa) ERK2 and p38MAPK bands from Figure 5.6 were divided by total JNK, ERK and p38MAPK respectively. The data was then normalised to Aβ 1-40.
Figure 5.9. The effect of soluble cytokine receptors on Aβ 1-40-mediated occludin down-regulation by hCMEC/D3 cells. Fully confluent hCMEC/D3 cells were incubated with Aβ 1-40 or sAβ 1-40 in the presence or absence of sTNF-R, sIL-1 ra, sIL-6 receptor or combined sTNF-R and sIL-1 ra. Data represents mean ± SEM. n = 3 experiments with duplicate samples. P > 0.05 using a Student’s t test comparing each treatment to their sAβ counterparts.
<table>
<thead>
<tr>
<th></th>
<th>Pre incubation</th>
<th>Post incubation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Control</td>
<td>Aβ 1-40</td>
<td>29 ± 1.5</td>
</tr>
<tr>
<td></td>
<td>sAβ 1-40</td>
<td>29 ± 1.3</td>
</tr>
<tr>
<td>SP600125</td>
<td>Aβ 1-40</td>
<td>30 ± 2.5</td>
</tr>
<tr>
<td></td>
<td>sAβ 1-40</td>
<td>30 ± 2.4</td>
</tr>
<tr>
<td>TAT-JI-JIP</td>
<td>Aβ 1-40</td>
<td>30 ± 1.8</td>
</tr>
<tr>
<td></td>
<td>sAβ 1-40</td>
<td>30 ± 1.7</td>
</tr>
<tr>
<td>SB203580</td>
<td>Aβ 1-40</td>
<td>29 ± 1.5</td>
</tr>
<tr>
<td></td>
<td>sAβ 1-40</td>
<td>29 ± 1.1</td>
</tr>
</tbody>
</table>

Figure 5.10. The trans-endothelial electrical resistance (TEER) of hCMEC/D3 cells after 48 h Aβ 1-40 incubation with JNK and p38MAPK inhibitors. hCMEC/D3 cells were grown to confluence on collagen- and fibronectin- coated transwell filter inserts, pre-incubated with TAT-TI-JIP153-163 (10 μM), SB203580 (20 μM), SP600125 (50 μM) and incubated with 5 μM Aβ 1-40 or sAβ1-40 for 48. The trans-endothelial cell electrical resistance of hCMEC/D3 cells was recorded before and after Aβ incubation. n = 3 with duplicate samples. P > 0.05 using a paired t test compared cells incubated with sAβ 1-40 to those treated with Aβ 1-40.
Figure 5.11. The effect of JNK and p38 MAPK inhibition on Aβ 1-40-mediated increased hCMEC/D3 cell permeability to 70 kDa FITC-dextran. hCMEC/D3 cells were grown to confluence on collagen and fibronectin coated tranwell filter inserts, pre-incubated with TAT-TI-JIP 153-163 (10 μM), SB203580 (20 μM), SP600125 (50 μM) and incubated with 5 μM Aβ 1-40 or sAβ1-40 for 48 h. The permeability of the cells to 70-kDa FITC dextran was then investigated. Data represents mean ± SEM. n = 3 experiments with duplicate samples. ** P < 0.01 using a paired t test comparing each treatment to the sAβ 1-40 control.
(a) Supernatant.

Collagen-coated plastic

hCMEC/D3 cells

1 3 6 24 48

(b) Cell lysate.

Collagen-coated plastic

hCMEC/D3 cells

1 3 6 24 48

225 kDa
150 kDa
102 kDa
52 kDa
38 kDa
31 kDa
24 kDa
17 kDa
12 kDa

Figure 5.12. Aβ 1-40 in cells and supernatants after 48 h incubation with hCMEC/D3 cells or collagen coated plastic. (a) Aβ 1-40 was added to either a collagen-coated tissue culture plate or hCMEC/D3 cells for 1, 6, 24 or 48 h. The supernatant was collected and the protein levels of Aβ (6E10, mouse monoclonal IgG1) was investigated using western blotting techniques and a 15% acrylamide gel. (b) The protein levels of Aβ were measured in cell lysate at each time point on 15% acrylamide gels. The experiment was carried out once.
Figure 5.13. Aβ1-40 in cells after 48 h incubation with hCMEC/D3 or collagen coated plastic. (a) Aβ1-40 was added to either a collagen-coated tissue culture plate or hCMEC/D3 cells for 1, 6, 24 or 48 h. The cell lysate was collected and the protein levels of Aβ (6E10, mouse monoclonal IgG1) and (b) APP (22C11, mouse monoclonal IgG1) was investigated using western blotting techniques and a 8% acrylamide gel. Result from one experiment, representative of three. No treatment (NT) corresponds to wells to which no Aβ was added to the supernatant.
(a) Aβ1-40 in supernatants after 48 h incubation with hCMEC/D3 or collagen coated plastic. (a) Aβ1-40 was added to either a collagen coated tissue culture plate or hCMEC/D3 cells for 1, 6, 24 or 48 h. The supernatant was collected and the protein levels of Aβ (6E10, mouse monoclonal IgG1) and (b) APP (22C11, mouse monoclonal IgG1) was investigated using western blotting techniques and a 8% acrylamide gel. Result from one experiment, representative of three. No treatment (NT) corresponds to wells to which no Aβ was added to the supernatant.
5.4 Discussion

5.4.1 Role of intracellular signalling pathways involved in Aβ 1-40-mediated occludin down-regulation

A main aim of this study was to investigate the signalling pathway(s) involved in Aβ-mediated occludin down-regulation in hCMEC/D3 cells. The intracellular regulation of occludin is potentially very complex (reviewed in [131]) and therefore only pathways activated by Aβ or those most likely to be involved in the regulation of occludin expression were investigated.

Src, a non-receptor tyrosine kinase, is suggested to play a role in TJ assembly [657]. Sabath et al [657] identified Src as a key component of the TJ complex in MDCK cells. Furthermore, the group found that activation of the G protein G α12, induced Src phosphorylation of ZO-1 and dissociation of occludin and Cl-1 from the TJ complex. If Aβ was acting via Src in hCMEC/D3 cells, disruption in ZO-1 and possibly Cl-5 expression would be expected, however this was not observed at the protein or mRNA level. There are no reports of Src activation by Aβ in the literature and so it is unsurprising that its inhibition had no effect on Aβ-mediated occludin down-regulation.

Rho-associated kinases (ROCK) are serine/threonine kinases which can alter TJ protein expression (discussed in [131]). Persidsky et al [132], have demonstrated that the migration of HIV-1 infected monocytes across primary hBECs in vitro, occurs via rho/ROCK activation. In that study the activation of Rho/ROCK in hBECs induced the phosphorylation and disruption of occludin and Cl-5. In this study ROCK inhibition did not alter Aβ-induced occludin down-regulation and there was no alteration in Cl-5 levels.

PKC is a family of Ser/Thr specific kinases of which 12 isoforms exist. The activation of PKC, rather than inhibition, is a suggested therapeutic target for AD, (reviewed in [658]) as a preventative measure for neuronal cell death. The effect of PKC on occludin is complex and isoform-specific. For example, Andreeva et al [659] have
found that PKCa activation can cause TJ disassembly whilst PKCδ can mediate TJ assembly in MDCK cells. Bisindolylmaleimide -1 used here, is a non-specific PKC inhibitor and did not alter the Aβ-mediated occludin decrease in hCMEC/D3 cells.

PKC, ROCK and Src appear to act via modifications of TJ protein phosphorylation, or to alter the association of each TJ protein with each other. In general these processes are post-translational in nature and can occur quite rapidly. For example, ROCK-dependent migration of HIV monocytes occurs within hours [132], whilst TJ disruption as the result of low Ca⁺ levels, used in many models to investigate junction assembly, occurs within 20 h [659]. In the current study, a reduction in occludin at the protein level occurred only after 48 h, and occludin was also down-regulated at the mRNA level. This implies that Aβ may be acting at the level of transcriptional activity and/or of mRNA stability. For this reason, transcription factors or signalling pathways leading to modification in transcriptional activity (NF-κB, JNK, GSK-3β) were investigated.

NF-κB is an inducible transcription factor found in many cell types including ECs [660], neurones and glia [642]. NF-kB is activated by multiple signalling molecules including TNF-α, IL-1, LPS and Aβ (summarised in [642]). High levels of NF-kB activation induced by Aβ can lead to neuronal cell death in vitro [351, 641], whilst low activation might afford neuroprotection [344, 642]. Indeed, Kalschmidt et al [344, 642] have found that TNF-α at low concentrations (2 ng/ml) protects primary rat cerebellar granule cells against Aβ 1-40-mediated toxicity via NF-kB activation. In the present study however NF-kB inhibition did not reverse occludin down-regulation.

The PI3K, AKT, GSK-3β/α pathway is commonly described as an AD therapeutic target [628, 629]. Class 1 PI3K converts phosphatidylinositol 4,5 diphosphate (PI 4,5) to 3, 4, 5 triphosphate on the inner leaflet of the plasma membrane. PI 3,4,5 tri-phosphate causes AKT/PKB translocation to the membrane. Subsequent AKT activation, by phosphorylation at Ser473 and Thr308, suppresses the activity of GSK-3β, via phosphorylation at serine 9. GSK-3β activation has been noted in response to ROS [661, 662] and Aβ [345, 347] in
neuronal cell cultures. Schafer et al [661] have found that treatment of murine hippocampal cells with LiCl (GSK-3β inhibitor, 10 mM), increases their resistance to glutamate and hydrogen peroxide-induced oxidative stress. Aβ-induced activation of GSK-3β has been observed in both neuronal [345, 347] and EC cultures [630]. In neuronal cultures, Aβ neurotoxicity is associated with GSK-3β activation. Koh et al [345] found that LiCl at 5 and 10 mM increased the survival of rat hippocampal neuronal cell cultures treated with 20 μM Aβ 1-42. In a follow up study, Lee et al [347] have found that PI3K activation can also reverse the Aβ-mediated toxicity. Specifically, for ECs, Suhara et al [630] have demonstrated that virally-encoded Aβ 1-42 was pro-apoptotic, via the inhibition of AKT phosphorylation and GSK activation, in HUVEC cells. The role of PI3K in TJ regulation is not fully known. PI3K activation in response to TGF-β can result in the translocation of ZO-1 from the TJ [663]. It the present study, the finding that LiCl did not reverse Aβ-mediated occludin down-regulation does not rule out that cytotoxic effects at higher concentrations of Aβ may occur via the GSK-3β pathway. It is unsurprising however, that the PI3K inhibitor used in this study had no effect on occludin down-regulation, as there are no reports on Aβ directly activating PI3K. A future study into the signalling pathways mediating Aβ cytotoxicity in hCMEC/D3 cells would be interesting. It is noteworthy that other pathways converging on GSK-3β, such as the GSK-3β inhibitory protein Wnt [664], are also proposed targets in AD.

MAPK are Ser/Thr kinases that respond to a variety of stimuli (e.g. stress), and act to regulate a plethora of activities including gene expression, mitosis and apoptosis. There are three main groups called ERK, p38MAPK and JNK. MAPK signalling has a demonstrable role of TJ expression (reviewed in [131]). The activation of p38MAPK and ERK 1/2 can cause an increase or a decrease in TJ protein expression, depending on the stimulus and cell type [131]. The MAPK family are implicated in AD pathogenesis [665], since ERK [666, 667], JNK [633] and p38MAPK[668] are all found to be up-regulated in neurones from AD patients. Furthermore, Aβ-mediated neuronal cell death in vitro has
been reported as being JNK-dependent [353, 634]. In this study, inhibitors of JNK (SP600125 TAT-TI-JIP$_{153-163}$) and p38MAPK (SB203580) prevented Aβ-mediated occludin down-regulation and Aβ-mediated increased hCMEC/D3 cell permeability.

Alternative explanations for these results are that both p38MAPK and JNK pathways are important for the occludin down-regulation, or that the inhibitors used in this study are not specific for one pathway. Both SP600125 and TAT-TI-JIP$_{153-163}$ inhibited JNK but not p38MAPK or ERK2, however SB203580 inhibited both JNK and p38MAPK. The key pathway in Aβ 1-40-mediated occludin down-regulation appears therefore to be JNK, whereas the role of p38MAPK remains to be determined.

The specificity of SP600125 [669] and SB203580 [670] has recently been investigated in vitro. Using an in vitro kinase assay, SP600125 at 10 μM, was found to inhibit in addition to JNK 1/2, thirteen other protein kinases (including SGK, S6K1, AMPK, CDK2, CK1δ and DYRKIA) [669]. Numerous studies have used SP600125 for the inhibition of JNK (discussed in [654, 671, 672]). However to confirm the finding of Aβ 1-40 mediated occludin down-regulation via JNK activation; TAT-TI-JIP$_{153-163}$ was used.

Scaffold proteins known as JNK-interacting proteins (JIP) are thought to form an important part of the JNK pathway, by permitting JNK activation. A short conserved sequence of JIP1 has been demonstrated to bind to and inhibit JNK, by preventing JIP1-JNK interactions [645, 654, 671-674]. TAT-TI-JIP$_{153-163}$ is a small cell permeable peptide [675], containing an inhibitor sequence for JNK. TI-JIP$_{153-163}$ in vitro was shown to not inhibit ERK or p38MAPK [673]. TAT-TI-JIP$_{153-163}$, like SP600125, completely reversed occludin down-regulation.

In contrast to the JNK inhibitors used, SB203580 may not be specific for p38MAPK. Using an in vitro kinase assay, Bain et al [670] have demonstrated that SB203580 at 1 μM inhibits not only p38MAPK, but also GSK-3β, CK1, RIP2 and GAK. Furthermore SB203580 also decreased the activation of two of the three JNK isoforms; JNK2 (40 % inhibition) and JNK3 (72 % inhibition). In this study, SB203580 inhibited

- 225 -
JNK activation, occludin down-regulation and the increase in paracellular permeability as a result of Aβ treatment. SB203580 may therefore prevent the actions of Aβ to hCMEC/D3 cells by the inhibition of JNK rather than p38MAPK. Bain et al [670] also found that pp2, a src inhibitor, could decrease the activity of p38MAPK α/β isoforms by 57% and 62% respectively. In the present study pp2 did not reverse the Aβ-mediated occludin down-regulation, and therefore the p38MAPK pathway is not likely to be involved.

5.4.2 Role of extracellular soluble factors in Aβ 1-40- mediated occludin down-regulation by hCMEC/D3 cells

Although the data described above points to JNK rather than p38MAPK activation as being involved in the Aβ1-40-mediated occludin down-regulation in hCMEC/D3 cells, it has been shown that p38MAPK activation is associated with the production of inflammatory cytokines. Microglia activation by Aβ is associated with the production of inflammatory cytokines [374]. In vitro, various cytokines including IL-1, TNF and IL-6 are produced after Aβ incubation in a p38MAPK-dependent manner by microglia [676, 677], and in isolated glia from AD patients [678]. Crucially, a novel p38MAPK inhibitor was found to suppress hippocampus levels of TNF-α and IL-1β following intracerebroventricular infusion of Aβ 1-42 in mice [378]. In that study, synaptic dysfunction and behavioural deficits were attenuated after treatment. Aβ peptides have also been demonstrated to induce IFN-γ and IL-1β production in HUVEC cells [679]. Increased cytokine levels are found in AD patients, particularly IL-1β, TNF-α and IL-6 [377, 680]. IL-1β [265-268] and TNF-α [655, 656] can induce increased permeability in cell lines that form TJs. Importantly, IL-1 β has been shown to decrease occludin at the mRNA level in a human retinal pigment epithelial [265] and HUVEC [660] cell lines, whilst TNF-α has been shown to decrease occludin at the protein level in HUVEC cells [681]. It is therefore possible that Aβ activates p38MAPK in hCMEC/D3 cells, to produce a cytokine, which
could act to down-regulate occludin. In this study however, sIL-1-ra and sTNF-R1, when used singly or in combination, had no effect on Aβ-mediated occludin down-regulation. IL-6 is relatively unique, in that the soluble form of the receptor (sIL-6) can bind to IL-6 and function as a signalling receptor via gp130 activation [682-684]. ECs express gp130 [682], and therefore, if IL-6 was produced by hCMEC/D3 cells, one would predict that sIL-6 would enhance occludin down-regulation. The possibility remains that when hCMEC/D3 cells are treated with Aβ, a soluble factor is released such as IFN-γ [685-688], though this has yet to be accounted for. It is of note however, that the activation of p38MAPK was not found at time points earlier than 6 h and the activation of p38MAPK, JNK and ERK all occurred around the same time. It therefore seems unlikely that a p38MAPK-dependent secreted factor is acting on hCMEC/D3 cells, or p38MAPK activation would occur prior to JNK and ERK activation. These results imply that JNK is likely to be the key pathway in Aβ-mediated occludin down-regulation in hCMEC/D3 cells.

5.4.3 JNK as a therapeutic target in AD

JNK is a promising therapeutic target for AD, potentially decreasing Aβ production [689], offering protection for neurones and, as found in this study, preventing occludin down-regulation in BEC. There are three genes that encode JNK in mammalian systems: jnk1, jnk2, jnk3; and each gene is alternatively spliced to create 46 and 55 kDa forms of the proteins [654, 672, 690]. The significance of each variant is not fully known, however JNK 1 and 2 are widely expressed whilst JNK3 is largely restricted to the brain (reviewed in [654]). Morishima et al [635] have demonstrated that Aβ 25-35 toxicity is significantly reduced in cortical neurones derived from JNK3 knock-out mice compared to control neurones, however they also state that JNK1-deficient neurones are also resistant to apoptosis. Fogarty et al [691] concur with the involvement of JNK1 in neuronal cell death,
as they found that rat cortical neurones were resistant to Aβ-induced apoptosis if JNK1, but not JNK2, was depleted using antisense technology. SP600125 [692] and TAT-TI-JIP₁₅₃₋₁₆₃ [645, 675] are non-specific JNK inhibitors, whilst N-(3-Cyano-4,5,6,7-tetrahydro-1-benzothien-2-yl)-1-naphthamide has been demonstrated to inhibit JNK2 and 3, but not JNK1 [646]. In this study, N-(3-Cyano-4,5,6,7-tetrahydro-1-benzothien-2-yl)-1-naphthamide was found to be toxic to hCMEC/D3 cells at doses in excess of 0.5 μM. At a non-toxic concentration, N-(3-Cyano-4,5,6,7-tetrahydro-1-benzothien-2-yl)-1-naphthamide did not reverse the Aβ-mediated occludin down-regulation. Indeed, western blotting analysis revealed that this compound activated rather than inhibited JNK. It therefore appears that N-(3-Cyano-4,5,6,7-tetrahydro-1-benzothien-2-yl)-1-naphthamide, at the concentrations used here, initiates a cascade(s) that activates JNK, potentially leading to hCMEC/D3 cell death. There are no current reports of N-(3-Cyano-4,5,6,7-tetrahydro-1-benzothien-2-yl)-1-naphthamide used in cell culture settings, and it is possible that this compound may act on an as yet unidentified pathway to stimulate JNK. This part of the investigation has shown that JNK inhibition can reverse Aβ-mediated occludin down-regulation; however the JNK isoform involved was not identified. These results further support the view that JNK inhibition might be an attractive therapeutic target in AD, acting to prevent both neuronal cell death and BBB dysfunction.

5.4.3 Role of peptide aggregation in Aβ 1-40-mediated occludin down-regulation by hCMEC/D3 cells

The exact form of Aβ that is toxic to neurones is under debate, although soluble oligomers are emerging as a highly toxic species [357, 359]. Aβ exists as 4 kDa monomer, but has a high tendency to self-aggregate to form larger soluble species as well as larger insoluble fibrils and plaques. In the current study, it was found that the levels of monomeric Aβ 1-40 (4 kDa) were reduced over time in both the supernatant and cell
lysate. This could reflect either the degradation of Aβ by hCMEC/D3 cells, or the aggregation of Aβ. A second finding was the appearance of a large 150 kDa component at 24 and 48 h, which did not correspond to APP. The appearance of this species coincided with the activation of JNK, ERK and p38MAPK. A literature search revealed that the largest soluble aggregate previously resolved via western blot is 100 kDa in size and corresponds to soluble oligomers [693]. Kuo et al [694] were able to resolve a range of non-fibrillar forms of Aβ from AD patients into four molecular weight categories based on filter exclusion: > 100 kDa, 30-100 kDa, 10-30 kDa and < 10 kDa. Wu et al [617] have identified a 120 kDa Aβ aggregate, which forms after co-incubation with haemoglobin. The 150 kDa Aβ species identified here might therefore correspond to either a large soluble oligomer, or an insoluble aggregate. A future study should be carried out to centrifuge the supernatant (100,000 g, 30 min) to determine if the protein fulfils the criteria of an oligomer. The appearance of the large Aβ form could be explained by self aggregation, binding to a hCMEC/D3 cell-derived molecule, or by the detection of a protein not corresponding to Aβ by the antibody (6E10). A PubMed blast search (National Center for Biotechnology Information http://blast.ncbi.nlm.nih.gov/Blast.cgi) for the sequence detected by 6E10 (amino acids 1-16 of Aβ) did not detect any high molecular weight proteins with the exception of APP. This finding potentially rules out the theory of unspecific recognition by 6E10, unless the protein is as yet unidentified. As yet there are no reports of Aβ binding to proteins to produce a 150 kDa species. The potential aggregation found in this study is interesting in that there are no intermediate species of Aβ, only 4 or 150 kDa. The samples used in this study were under reducing and boiled conditions, which would have disrupted any weak non-covalent interactions. It is therefore possible that aggregation intermediates were disaggregated, whilst the larger aggregate was resistant. Argueing against this explanation is the fact that under reducing conditions Aβ dimers and trimers are successfully resolved on western blotting gels [617]. Whilst there
are no reports of covalent binding of Aβ to an EC secreted factor of 150 kDa in size, this hypothesis cannot be disregarded.

Interestingly, in APP blots, a 50 kDa protein was observed to be decreased over time with Aβ treatment, and this protein was not detected by 6E10. APP typically resolves as three bands between 100 and 130 kDa in size and so it is unlikely that the protein corresponds to full-length APP. To date there are no reports of a 50 kDa product of APP. APP belongs to a gene family that includes APP, APLP1 and APLP2. The possibility that the APP antibody was detecting APLP1/2 was considered. However, the molecular weight of APLP1 or 2 does not correspond to 50 kDa [695-697]. Furthermore a Blast search using the sequence of APP which the antibody recognises did not detect any proteins of 50 kDa which would be recognised by the antibody. The most likely explanation is that this unidentified protein is a fragment of APP.

5.5 Conclusions

The Aβ-mediated increase in permeability was reversed by JNK inhibition, most likely due to the prevention of occludin down-regulation. The JNK pathway might represent a potential therapeutic target of BBB dysfunction in AD.
Chapter 6

General discussion

6.1 The role of P-gp in Aβ transport across the BBB

In the current study, the interactions of P-gp and BCRP with Aβ were investigated using hCMEC/D3 cells. The results described in chapters 2 and 3 demonstrate that P-gp, and to a lesser extent BCRP, can act as Aβ efflux transporters at picomolar but not micromolar concentrations of Aβ. Figure 6.1 summarises the routes of Aβ transport at the BBB, based upon this and other studies (reviewed in [137]). In this study, it has been demonstrated using hCMEC/D3 cells, that both P-gp and BCRP restrict the passage of Aβ in the apical-to-basolateral direction, but do not act to facilitate the basolateral-to-apical passage of Aβ. These novel results are consistent with P-gp and BCRP acting to protect the brain from blood-borne Aβ, but not to clear Aβ peptides localised in the CNS parenchyma into the blood. Unfortunately, comparisons between plasma Aβ concentrations in AD patients and non-demented controls are difficult due to the binding of Aβ to plasma proteins [320, 613], oligomerisation of Aβ [698] and high intra- and inter-person variability [699]. None-the-less, there are numerous reports of increased Aβ 1-40 and Aβ 1-42 in the plasma of AD patients compared to controls [321, 699-703]. Quoted concentrations of free Aβ are in the nM to pM range, for example Mehta et al [703] found that plasma levels of Aβ 1-40 were higher in AD patients (0.063 nM) than in controls (0.052). Kuo et al [320] have recently demonstrated that, once released from plasma proteins, Aβ 1-40 levels in serum are higher in AD patients (2.53 nM) compared to elderly non-demented subjects (1.83 nM). P-gp and BCRP may serve as a protective mechanism for the brain if any of the Aβ bound to plasma proteins is released free [319, 701]. Sagare et al [319] recently demonstrated that sLRP, a major plasma Aβ-binding protein, is ~32.5
% lower in AD patients than controls, and this effect is associated with an elevated level of free unbound Aβ 1-40 (22 pM compared to 5 pM in controls). The concentrations of free Aβ in the plasma of AD patients are within the range used in this study, suggesting that P-gp and BCRP could indeed act to protect the brain from circulating unbound Aβ. The increased plasma Aβ levels found in AD could represent either increased production by the brain, or a peripherally produced pool of Aβ. In support of the latter hypothesis, Galloway et al [704, 705] have found that small intestine epithelial cells can secrete Aβ. Interestingly a high saturated fat and cholesterol diet, a high risk factor for AD, can induce Aβ production by epithelial cells [94]. Increased plasma Aβ levels, might saturate P-gp and BCRP, allowing blood-to-brain transport via diffusion or RAGE. There is not much evidence for the increased production of Aβ by brain resident cells in AD. However, transgenic mice produced from single or double mutations found in FAD have increased levels of Aβ in the brain parenchyma [331, 332], and neuronal cultures can be induced to increase their production of Aβ by oxidative stress [689]. Aβ produced within the brain could diffuse or be transported across the BBB, and P-gp could act to limit its re-entry into the CNS.

Decreased Aβ clearance from the brain parenchyma is emerging as a potential mechanism in AD pathogenesis [137]. LRP-1 binding at the abluminal membrane of BECs causes brain-to-blood Aβ transport, and decreased LRP-1 expression has been noted in AD patients [384]. To date, P-gp was also hypothesised to mediate brain-to-blood Aβ transport since decreased BEC P-gp expression is associated with plaque deposition [409] and in vitro evidence demonstrates P-gp-Aβ binding [406]. In addition, Cirrito et al [408] demonstrated in vivo, that tariquidar treatment increases Aβ ISF levels in APP mice. By contrast, the results presented here are constant with no significant P-gp or BCRP transport of Aβ in the brain-blood direction, possibly since most P-gp is located on the luminal membrane. The finding of Cirrito et al [408], might reflect inhibition of blood-to-brain Aβ transport, as indicated by this study, or an inhibition of P-gp expressed by other cells which
act to uptake Aβ e.g. astrocytes, epithelial cells. In AD, P-gp may therefore be important for the prevention of blood-to-brain Aβ transport, unlike LRP-1 which acts as a brain-to-blood Aβ transporter. It is also possible that P-gp down-regulation is a feature of BBB dysfunction observed in AD (Dr Barrand, Cambridge University, personal communication). If this is the case, brain Aβ load would probably increase by diffusion of the blood-borne peptide across BECs. However, a direct effect of Aβ on hCMEC/D3 cell expression of P-gp was not observed in this study, suggesting that an alternate indirect mechanism e.g. cytokines may induce the down-regulation of P-gp by brain capillaries.

The results of this study have opened up further questions, including whether Aβ transported across BECs is a degradation product or intact Aβ. BECs express enzymes capable of Aβ degradation (e.g. NEP, ICE, ECE) and it has been noted by Nazer et al [561], using MDCK cells grown on filters, that LRP can transport degraded peptides. It would be interesting therefore to distinguish between intact and degraded peptides in transport experiments. This could be achieved by re-suspending the supernatants in trichloroacetic acid and centrifuging to precipitate the intact peptide before counting the radiation in both separated fractions [561]. In addition to Aβ degradation, aggregation of Aβ might also be a factor affecting the ability of P-gp or BCRP to bind Aβ. It would be interesting to pre-aggregate Aβ and determine the efflux and permeability characteristics of Aβ across this in vitro BBB model. This could be carried out with non-tagged Aβ and ELISA techniques or tagged Aβ.

A further question raised by the results is the concentration range within which the efflux and transport of Aβ by BCRP or P-gp may operate. In order to test this, increasing concentrations of 125I Aβ 1-40 or native Aβ peptides could be used for efflux and permeability experiments with BCRP and P-gp inhibitors. Alternatively, hCMEC/D3 cells could be made to express increasing levels of P-gp following cell transfection with vectors containing the MDR1 gene, in order to investigate whether higher concentrations of Aβ could be effluxed or transported. In terms of the permeability of hCMEC/D3 cells, the
effect on transport of increasing Aβ concentrations on the basolateral and apical sides should be investigated further. This would be achieved by altering the concentration of Aβ to achieve either equal concentrations on each side, or higher concentrations in the basolateral chamber. This is potentially significant in AD, as if increased brain production of Aβ is the cause of AD, any potential protective effect of P-gp or BCRP pumping Aβ out of BECs into the plasma could be insignificant when compared to bulk flow out from the brain. There are no reports of BCRP-Aβ interactions in the literature and to further demonstrate BCRP-Aβ interactions, dual immunolabelling should be carried out. This could be performed in vitro, by incubating Aβ with hCMEC/D3 cells and co-immunolabelling to investigate sub-cellular localisation, and also in vivo using brain tissue from AD mouse models.

Finally, a general limitation of a two dimensional cell culture model of BECs is that it does not take into account the role of the cerebral blood flow. A novel technique has been developed [474] which uses hCMEC/D3 cells grown in the lumen of hollow microporous fibers that are exposed to a physiological pulsatile flow. This model would be useful to investigate Aβ mediated P-gp and BCRP transport as the conditions mimic more appropriately the in vivo situation. Furthermore, to extrapolate the findings to the in vivo, rodents could be pretreated with a P-gp inhibitor or vehicle control, and then in situ perfusion carried out with Aβ alone or with a P-gp inhibitor, and the cerebral ISF levels measured.

6.2 Aβ mediated down-regulation of Glut-1 at the BBB

An interesting finding of this study is that Aβ can induce robust Glut-1 down-regulation in hCMEC/D3 cells. This result is in agreement with data from AD CNS tissue samples, in which decreased Glut-1 expression is a common feature [146, 586, 587]. Decreased Glut-1 expression could have the effect of decreasing the amount of glucose
available to neurones, causing an energy crisis. Indeed, decreased glucose metabolism is a common feature of AD patients [430, 431]. The finding that Aβ is sufficient to decrease Glut-1 expression in vitro should be taken further experimentally. Firstly, it should be determined whether Glut-1 down-regulation by hCMEC/D3 cells results in a functional decrease in glucose transport. This could be carried out by measuring the intracellular accumulation of \(^{14}C\beta\)-H-2-deoxyglucose in Aβ-treated cells. Secondly, inhibitors for pathways activated by Aβ could be employed in an attempt to reverse Glut-1 down-regulation. Thirdly, the mechanisms of Aβ-mediated Glut-1 down-regulation could be investigated further using hCMEC/D3 cells transfected with vectors containing the Glut-1 promoter, to determine if Aβ suppresses transcriptional activity of the Glut-1 promoter.

6.3 Role of JNK in Aβ-mediated increased BBB permeability

In this study, the effect of Aβ on the expression of BEC proteins and permeability was investigated. The results from this study have demonstrated that Aβ in vitro can increase the permeability of BECs to paracellular markers. This data is in agreement with the findings that in AD patients increased BBB permeability [579] is observed as indicated by the abnormal presence of plasma proteins on the brain parenchyma. Increased BBB permeability could induce local neuronal degeneration through disruption of homeostasis. The present study provides evidence that increased Aβ levels might be the causative factor for increased BBB permeability. As described previously, elevated plasma levels of Aβ are reported in AD patients [319] and elevated brain levels of Aβ are hypothesised to be critical in the pathogenesis of AD [302]. Furthermore, in a vast majority of AD patients, cerebral amyloid angiopathy occurs in which Aβ is deposited on the vasculature walls [643]. Therefore, high local concentrations of Aβ could in principle lead to a leaky BBB. In fact, the results from chapters 4 and 5 show that Aβ added to the luminal side of the hCMEC/D3 cell cultures was sufficient to induce increased hCMEC/D3 cell permeability.
Results from this study also imply that specific occludin down-regulation at the TJs is responsible for the increased permeability of hCMEC/D3 cells. This is in agreement with Marco and Skaper [486], who found a partial decrease in occludin levels in rat BECs after Aβ incubation and Tachehci et al [94], who demonstrated, using an in vivo model (APP/PS1 mice), down-regulation of occludin and increased BBB permeability. Overall, the results described here expand on the mechanisms leading to a leaky BBB in AD and identify Aβ as having a central role in this effect, acting to decrease occludin expression by BECs.

A novel finding of the present study is that JNK inhibition can prevent the Aβ-induced increased permeability and occludin down-regulation in BECs. This finding demonstrates that JNK inhibitors might be a potential therapeutic target for the treatment of AD, preventing a leaky BBB. Further experimentation should be carried out both in vitro and in vivo in order to fully characterise the interplay between Aβ, JNK and occludin down-regulation.

Although the results imply that JNK rather than p38MAPK is the main pathway involved in Aβ-mediated occludin down-regulation, the results from this study have not exclusively ruled out p38MAPK involvement. To confirm involvement of different components of the MAPK family, BECs could be stimulated by Aβ in the presence or absence of MAPK inhibitors and quantitatively assessed for MAPK activity using various available ELISA kits. In addition, AD patient tissue from different BRAAK stages and areas of the brain could be stained for plasma proteins as a guide of BBB leakiness and examined for correlation with decreased occludin levels and phosphorylated MAPK family members, as well as other TJ proteins. This would determine whether JNK and/or p38MAPK activation is associated with decreased occludin expression at the BBB in AD patients. Furthermore, transgenic mouse models could be used. Tg2576 [584] and TASTPM [706] mice show increased BBB permeability. TJ protein expression and JNK activation should also be investigated at the levels of the BBB in these mice.
Another area for further investigation is the mechanism of Aβ-induced JNK activation. The activity of upstream JNK activators (e.g. MAPKK, MAPKKK) could be assessed via western blotting using phosphorylated-state specific antibodies in hCMEC/D3 cells after Aβ incubation. M KK4 and M KK7 are the two MAPKKs that activate JNK, which themselves are activated by a range of MAPKKKs. For example, TNF-1 and IL-1, known stimulators of the JNK pathway, stimulate the MAPKKK TAK1 [707]. Once and if identified, the gene of each identified signalling component could be silenced in hCMEC/D3 cells using siRNA, and the effects on Aβ mediated occludin down-regulation assessed. Furthermore, AD patient tissue and transgenic models could be stained for each identified signalling component. Aβ may also activate reactive oxygen species (ROS), which in turn could lead to JNK activation. This mechanism of JNK activation could be investigated in vitro, by measuring whether Aβ increases ROS levels in hCMEC/D3 cells.

In addition, the downstream consequences of JNK activation by Aβ could be investigated. Potentially, JNK could act to suppress occludin at the transcriptional level, on mRNA stability, directly at the protein level or even a combination of all three (Figure 6.2). To investigate Aβ-induced changes at the transcriptional level, the promoter of occludin could be cloned into reporter vectors and then transfected into hCMEC/D3 cells. The effect of Aβ on occludin promoter activity could then be investigated in the presence or absence of JNK inhibitors to determine if this is a significant mechanism of occludin down-regulation. Subsequent experiments (e.g. EMSA) could then be carried out to determine which transcription factor(s) are involved in this effect. To investigate JNK effects on occludin mRNA stability, qRT-PCR could be carried out. This could be achieved by investigating whether Aβ enhances the degradation of occludin mRNA in the presence of transcriptional inhibitors, i.e. actinomycin D, and also the effects of JNK inhibitors on this process. To investigate any possible direct effects of JNK at the protein
level, occludin could be isolated via immunoprecipitation and the phosphorylated state of
different splice forms investigated in the presence and absence of JNK inhibitors assessed
via western blotting. Once identified \textit{in vitro}, the results could be investigated \textit{in vivo}
from both AD patient tissue and AD transgenic mouse models. Using both AD patient
tissue and AD transgenic mouse models, binding of any transcription factors to the
occludin promoter in hCMEC/D3 cells could be investigated by chromatin
immunoprecipitation, and compared to age matched controls.

It would also be interesting to identify the JNK isoform activated by Aβ. siRNA
knockdown of each JNK isoform in hCMEC/D3 cells could be carried out, and the effect
of Aβ on occludin down-regulation determined. Alternatively, kinase assays on Aβ
hCMEC/D3 cell lysates could be analysed for the levels of each active JNK isoform.

The combined results of these experiments would elucidate the molecular
pathway(s) leading to the down-regulation of occludin by Aβ, and perhaps suggest novel
therapeutic ways of manipulating these pathway(s). A major future direction for this work,
would be the assessment of JNK inhibitors as an AD therapeutic agent. Tg2756 and
TASTPM mice could be treated with JNK inhibitors and the effect on BBB leakiness and
occludin expression observed. A water maze assessment could also be carried out to
investigate whether a reversal in BBB effects improves cognition in the mouse models.
Since JNK inhibition can also protect neurones, a detailed neuronal investigation should
also be carried out in regions susceptible to AD e.g. the hippocampus. The diagnosis of AD
is based on symptoms and significant neurodegeneration and BBB dysfunction might have
already occurred. Therefore, as therapeutic agents, JNK inhibitors would most likely be
administered after the onset of any damage. Further \textit{in vitro} and \textit{in vivo} evaluation of the
ability of JNK inhibition to stall disease progression, or better yet, reverse vascular and
neuronal dysfunction after symptoms have already occurred could be carried out in the
mouse models of AD.
In principle, JNK might represent an attractive dual target, preventing both neurotoxicity and increased BBB leakiness. Indeed, JNK inhibition can prevent Aβ-induced neuronal death \textit{in vitro} [353, 634, 636], and activated JNK is found in neurones from AD patient's tissue [632, 633]. It is thus possible, that with earlier diagnosis of AD in patients, administration of JNK inhibitors may become a novel therapy to protect against any further damaging effects of Aβ at the level of both neurons and the cerebral vasculature.
Figure 6.1. The transport of Aβ at the BBB mediated via LRP, P-gp and RAGE. The blood-to-brain transport of Aβ (black dot) is mediated by RAGE and LRP-2/megalin, whilst the brain-to-blood transport is mediated by LRP-1. The results of this study, indicated by a grey box, have demonstrated that P-gp and BCRP form a blood-brain Aβ transport barrier.
Figure 6.2. Potential mechanisms of Aβ-mediated increased permeability in hCMEC/D3 cells. Aβ induces down-regulation of occludin via JNK activation in hCMEC/D3 cells. JNK activation could theoretically act to alter occludin levels via transcription activity suppression, mRNA degradation or a direct effect on occludin at the protein level. ⋄ = Aβ monomer ⋆ = oligomer species
References

- 257 -

