
Open Research Online
The Open University’s repository of research publications
and other research outputs

Using Dynamic Aspects in Music Composition Systems
Conference or Workshop Item
How to cite:

Hill, Patrick; Holland, Simon and Laney, Robin C. (2004). Using Dynamic Aspects in Music Composition
Systems. In: Proceedings of the 2004 Dynamic Aspects Workshop (DAW04) (Filman, Robert E. and Haupt, Michael
eds.), Research Institute for Advanced Computer Science (RIACS), pp. 89–97.

For guidance on citations see FAQs.

c© [not recorded]

Version: Accepted Manuscript

Copyright and Moral Rights for the articles on this site are retained by the individual authors and/or other copyright
owners. For more information on Open Research Online’s data policy on reuse of materials please consult the policies
page.

oro.open.ac.uk

http://oro.open.ac.uk/help/helpfaq.html
http://oro.open.ac.uk/help/helpfaq.html#Unrecorded_information_on_coversheet
http://oro.open.ac.uk/policies.html

Using Dynamic Aspects in Music Composition
Systems

Patrick Hill

The Open University
Walton Hall

Milton Keynes. MK7 6AA

PatrickHill@bcs.org.uk

Simon Holland
The Open University

Walton Hall
Milton Keynes. MK7 6AA

s.holland@open.ac.uk

Robin C. Laney
The Open University

Walton Hall
Milton Keynes. MK7 6AA

r.c.laney@open.ac.uk

ABSTRACT
Aspect-oriented programming (AOP) attempts to modularise
crosscutting concerns in software. Initial approaches to AOP have
used static weaving techniques in which crosscutting
implementation, encapsulated by aspects, is merged into . Research
into dynamic aspects suggests various ways in which crosscutting
implementations may be dynamically woven into code, enabling
aspects to be defined and composed at run-time.

It has been suggested, in [14], that AOP might be usefully applied
at the end-user level in applications that support multidimensional
creative processes, and in particular, of music composition. In this
paper we extend this argument to suggest that dynamic aspects are
essential to this application. We motivate our argument with a
high-level description of crosscutting that exists within music
composition, and ways in which these crosscutting concerns, and
requirements for their management, have arisen from our initial
use of static aspects in music composition. We then evaluate some
of the ways in which current research into dynamic aspects might
be utilised in addressing these requirements.

Categories and Subject Descriptors
D.2.2 [Software Engineering]: Design Tools and Techniques -
Object-oriented design methods, Aspect-oriented design; D.2.1
[Software Engineering]: Requirements / Specifications -
Methodologies, Separation of Concerns; D.2.3 [Software
Engineering]: Coding Tools and Techniques; D.3.3
[Programming Languages]: Language Constructs and Features -
Aspects, Dynamic Aspects; J.5 [Computer Applications]:
Performing Arts - Music

General Terms
Design, Languages, Human Factors.

Keywords
Aspect-oriented programming, Dynamic Aspects, music
composition.

1. INTRODUCTION
Aspect-oriented programming (AOP) is a technique that aims
to assist software developers in the separation and
composition of various dimensions of concern across a range
of software engineering tasks. Early compositional AOP tools,
such as AspectJ, operate by statically composing, or weaving,
crosscutting concerns, expressed as aspects, with basic
concern code, expressed as classes. However, static weaving,
by definition, assumes that aspectual relationships are largely
invariant and that they can be determined at design-time and
are therefore tied to a particular class-graph [19].

In contrast, dynamic aspects variously offer the potential to
defer binding of particular aspect implementations until run
time. Unlike the statically woven aspects of AspectJ, dynamic
aspects persist at run-time and it therefore becomes possible
to dynamically modify aspectual relationships, enabling
aspects to be added, withdrawn, or replaced depending upon
dynamic context.

In [14] we argue that music composition can be viewed in
terms of composition of various dimensions of musical
concern and that analogies exist with AOP. We suggest that
AOP may be used at the end-user level in systems that
support music composition. In this paper we further suggest
that aspectual relationships in musical composition are largely
dynamic, and that dynamic aspects could prove a useful
technology in the development of aspect-oriented music
composition tools.

2. SEPARATION AND COMPOSITION
OF CONCERNS IN MUSIC
Music composition is a creative process in which the
separation and composition of dimensions of concern are
important and pervasive problems. Multidimensional tangling
and scattering exists not only within the structure,
representation and manipulation of musical data, but also in
the cognitive processes of composition [14].

It is common experience that music is not merely a random
stream of sound events. Rather, the composer typically works
with a limited set of musical resources that are manipulated,
in various ways, to form a logical and coherent whole [28].
The ‘musical surface’ of a musical composition, which is
perceived by the listener in terms of pitch, duration, loudness

and timbre1 [20], can be viewed as the result of the composer’s
weaving together of a ‘tangled web’ of musical structures and
dimensions [8].

Although the processes of software engineering and music
composition are clearly different, there are some parallels between
the two. We can, for example, draw a broad analogy between the
notation that is traditionally output as part of a composition process
and the set of instructions executed by a computer as the result of a
software engineering process. In both cases, the outputs are,
largely, sets of low-level performance instructions resulting from
the composition of high-level abstractions.

For example, consider the musical gesture of crescendo, ie.
‘getting louder over time’. A crescendo might be readily achieved
by simply increasing the value of the ‘loudness dimension’, eg. by
striking piano keys with more force or blowing a trumpet more
forcefully2. However, there are other dimensions that may also be
modified in order to obtain a crescendo effect. For example, the
composer might choose to

• introduce additional instruments (timbre),
• use different pitches (pitch),
• modify the arrangement of harmonies (pitch /timbre)

and so forth.

Thus the basic ‘crescendo’ concern may be scattered among other
musical dimensions. Moreover, the particular crescendo
implementation used might depend upon musical context. For
example, while some sections of a musical piece might be written
for a full orchestra, other sections might be written for strings only.
Thus the ‘introduction of additional instruments’ approach to
crescendo might itself be limited in the instruments that may be
used.

We choose this example as one that is readily understood and that
does not mandate in-depth discussion of musical technicalities.
There are numerous other documented instances of crosscutting in
music. Examples include separation of metre and melody [17], the
impact of tempo on performance [10], and the interrelationship
between orchestration and composition [24]

While software is typically composed through the use of
automated tools; compilers, configuration management etc, even
with computer assistance, the music composer is often forced to
express high-level musical ideas in terms of tangled, low-level
musical detail, by manually weaving together various dimensions.
The requirement to express music in such a detailed ‘note-list’
representation rather than as higher-level constructs is
incompatible with the creative process itself [21]. Moreover,
musical composition does not appear to be a linear process. Rather,
composers tend to sketch out and elaborate ideas iteratively and
across multiple, possibly incomplete, dimensions [29][23][30].
During the composition process, certain musical elements may be
created which the composer wishes to preserve and use, but not
necessarily in the present composition [30]

1 Timbre describes those qualities of a sound that enable the
listener, for example, to distinguish between a trumpet and a
violin.
2 In practice, these techniques would also affect timbre.

From the viewpoint of the music analyst, just as it would be
difficult to identify aspects from reverse-engineered bytecode
produced by AspectJ, musical intent is often obscured in the
musical score produced by the composer. As Raes [27] points
out, musical scoring systems, conventional or otherwise, do
not express the ‘conception’ or ‘flow of ideas’ within a
musical composition. This is not to underestimate the power
of algorithmic musical composition systems but note that here
too, musical dimensions are often scattered or tangled.

We believe that AOP techniques might be usefully applied to
the domain of computer assisted music composition as a way
to weave together separately described musical elements that
express musical intent. An AOP-based music creation
environment could enable the composer to work in an iterative
experimental fashion that supports the creative process.

3. WHY ARE DYNAMIC ASPECTS
IMPORTANT TO MUSICAL
COMPOSITION APPLICATIONS?
Our initial research has shown that static aspects, of the type
implemented by AspectJ, may be used, with some success, to
help separate musical concerns and compose them into a
musical piece. For example, we have used AspectJ to
construct the first few bars of Widor’s famous organ Toccata,
using a core program that represents a sequence of chords, and
aspects that implement crosscutting concerns, such as changes
of key, temporal position and duration of chords, and
transformation of the chords into the left-hand and right-hand
parts of the original score. In considering the extension of this
system to generate the entire piece, it was observed that some
general requirements could not be met by AspectJ.

• Music is often based on the variation and
juxtaposition of a small number of musical elements
[28]. From an AOP perspective, this means that
aspectual relationships do not necessarily persist for
the entire duration of a musical piece. This is in
some ways analogous to the ‘Jumping Aspects’
problem [5], in that a particular aspect behaviour
might be desirable only within certain musical
contexts. Gybels [12] observes that some crosscut
languages, particularly that used in AspectJ, are not
Turing Complete, and are therefore unable to
evaluate dynamic expressions. Clearly, ‘enabling
conditions’ based on dynamic context might be
encoded into the advice, but this could lead to over-
complicated code and unclear separation of
concerns between pointcut and advice.

For example, consider the case where within the
same piece of music some crescendi are realised by
additional instrumentation, while others are realised
by a simple increase of ‘loudness’. A ‘pointcut’ on a
crescendo would require different ‘advice’
depending on context.

Dynamically installable aspects might be used to
separate concerns such that the selection of ‘which’
crescendo implementation is used is described
separately from the ‘aspect’ that invokes the

selected crescendo implementation at crescendo
pointcuts.

• By definition, static aspects cannot be defined and

applied interactively at run-time. Music composition is a
creative art that involves experimentation and iteration
[23][29][30]. The development of an interactive music
composition system that enables the composer to
selectively define, apply, refine, and withdraw aspectual
relationships presupposes a dynamic aspect platform.

• Given such an interactive music composition system, it

is possible that certain aspects could be constructed that
may have application in a range of musical
compositions, not only the one in which they were
defined. In a similar way to the ‘buy-don’t-build’ [7]
methodology espoused by proponents of component
based software development, the ability to encapsulate
musical aspects as components that may be subsequently
‘plugged-in’ and reused in other musical composition
projects is attractive.

• Greater separation of concerns might be achieved with

the facility to compose aspects with other aspects. While
this does not necessarily require dynamic aspects, it is
not currently possible using, for example, AspectJ.

4. DYNAMIC ASPECT SYSTEMS
In this section we overview ways in which current dynamic aspect
systems might help in the development of a musical composition
system as outlined above.

4.1 Event-Based Dynamic AOP
Whereas systems such as AspectJ determine pointcuts from
source-code inspection, event-based systems, such as EAOP [11],
Axon [1] and PROSE [26] utilise various techniques to generate
events at runtime. These events, which function as joinpoints, are
intercepted and used to invoke separately defined crosscutting
implementations.

EAOP performs source-code modification to produce a framework
that instruments the source application code such that execution
events are raised to an event monitor. Aspects, which are coded as
pieces of Java code, are invoked by the event monitor upon receipt
of particular events. An ‘aspect tree’, which specifies how events
are routed to aspect code, is maintained by the monitor. Dynamic
AOP is achieved by the ability to modify the aspect tree at run-
time. Aspects may be composed with other aspects through the use
of EAOP’s composition operators.

In contrast, both Axon and PROSE utilise the services of the Java
debugger interface (JVMDI) to raise events at appropriate points,
such as method calls, in the programs execution. This approach
does not require source-code modification. Axon uses an API to
programmatically define aspects in terms of dynamic associations
between pointcuts and advisory units. Advisory units, analogous to
AspectJ’s advice, are written as plain Java classes. In PROSE, Java
classes representing aspects are defined as subclasses of the
PROSE class Aspect. As such, each aspect class contains one or
more Crosscut objects, each of which equates to the combination
of an AspectJ pointcut and an advice. Pointcuts are defined using

specializers, which are specified using an AspectJ-like
pointcut syntax. Aspects may be added or removed through
interaction with PROSE’s ExtensionManager interface. An
interesting feature of this approach is the ability to manipulate
aspect instances from outside of the JVM in which the
application is running.

Event-based AOP has an immediate appeal for musical
applications, since parallels can be drawn with the event-
based nature of the industry-standard Musical Instruments
Digital Interface (MIDI) model that is used by many musical
software systems and the general observation that music is
perceived as discrete audio events in time. Advantages of
event-based AOP include the clear separation of aspect and
application code. Axon goes further and separates pointcuts
from advice. However, the event generation systems
employed by the three systems overviewed above are not
ideal. Typically, events are ‘over eager’; they are generated
irrespective of whether they are required by aspects. EAOP’s
source code modification conflicts with a general AOP
requirement of non-invasiveness [1] but the use of the JVMDI
imposes a performance overhead that might render it
unsuitable for realtime applications.

4.2 Meta Programming & Reflection
Metaprogramming and reflection techniques, in principle,
enable a piece of software to both discover and modify its
internal structure. Thus metaprogramming enables programs
to reason about themselves. To do this, a programming
language or environment must expose internal structure such
that it can be programmatically manipulated as data, through
the process of reification. Meta Object Protocols (MOPs)
enable structural program elements to be manipulated as
object-oriented encapsulations of reified data and appropriate
methods. Indeed, AOP has its roots in MOP research [31],
indeed AOP itself is a computational reflection mechanism
[16].

Meta Programming has been used as an underlying
technology that enables AOP. Examples of such enabling
technologies include MethodWrappers [4], AOP/ST [6], and
Handi-Wrap [2], all of which support the dynamic
composition of method code with additional ‘wrapper’ code
that might constitute advice.

AspectS [15] utilises MethodWrappers [4] to implement a
dynamic AOP system for Squeak Smalltalk. AspectS defines a
set of base classes from which aspects are derived. Aspects
are themselves written in Smalltalk, and are dynamically
woven or unwoven, by automatically modifying the relevant
Smalltalk Class descriptions (as described by the aspect’s
joinpoint) such that subsequent calls to the original method
are redirected to a new wrapped method. The wrapped
method, which is dynamically compiled into the Smalltalk
system, invokes the aspect’s advice and the original method in
ways that are analogous to AspectJ’s before(), after()
and around() advices. It is noted however [16] that
although AspectS focuses on message passing, other types of
joinpoint, such as member variable access, are not easily
achieved through the use of Smalltalk’s MOP.

Gybels [12] proposes the use of a Logic Meta Programming
Language as an Aspect language. His “Andrew” system uses the
Smalltalk Open Unification Language (SOUL) to implement a
dynamic aspect system with an aspect model similar to that of
AspectJ. SOUL is a variant of PROLOG, but its implementation
enables dynamic interaction between itself and Smalltalk. For
example, SOUL facts may contain arbitrary dynamic Smalltalk
expressions and the result of these expressions may be bound to
SOUL logic variables. Andrew implements pointcuts in terms of
SOUL predicates that relate to typical AOP joinpoints such as
method invocation, methods reception, member variable
assignment and so on. Aspects are implemented as the combination
of pointcuts and advice. Although Andrew implements
before() and after() advice, there is currently no support for
around() advice and as such it is currently not possible for
aspects to choose not to execute methods, as they can in AspectJ.
The use of logic language for aspect, and particularly pointcut,
definition is both intuitive and flexible. This is enhanced by the
language symbiosis between SOUL and Smalltalk.

Metaprogramming based AOP is heavily dependent on the
reflective nature of the underlying language, which may explain
why many such approaches target the highly reflective Smalltalk
language. A Java equivalent of AspectS, for example, would not be
possible because Java’s reflection capability is limited to
introspection and does not permit intercession [16]. Nevertheless,
Java-based dynamic AOP systems that utilise metaprogramming
do exist. A hybrid solution for Java, which uses static weaving and
a reflective Java environment is presented in [9], while Handi-
Wrap [2] uses Java extensions (implemented using Maya [3]) to
describe dynamic wrappers that are realised using compile-time
reflection..

Metaprogramming appears to be a key enabler of run-time
dynamic AOP systems, indeed certain MOP based AOP
implementations may be considered as disciplined
metaprogramming [16]. We also note that, many musical research
systems utilise highly reflective languages; key examples include.
Open Music [33] and Symbolic Composer [34] written in LISP,
and MODE [25], DMix [22] written in Smalltalk.

In the context of music composition systems, one approach might
therefore be to synthesise a dynamic AOP music composition
system from existing music systems, such as MODE, in
combination with a dynamic AOP system such as AspectS or
Andrew. We can also imagine scenarios where introspection into
the musical structure itself might be valuable. Consider the
example of ‘stretching’ the length of a section of music. This
operation, termed augmentation, typically involves multiplying the
onset time and duration of sound events by some factor. Thus
augmenting four consecutive notes each of 1 second duration by a
factor of two yields four consecutive notes each of 2 seconds
duration. However, in the case where the music being augmented
is, for example, a ‘drum roll’, then instead of multiplying
durations, it is necessary to preserve durations, but add additional
notes to fill the augmented duration. Thus augmenting a ‘drum
roll’ of four consecutive notes each of 1 second duration yields a
sequence of 8 consecutive notes, each of one second duration.
Using introspection, an ‘augmentation’ aspect could identify the
kind of musical structure that was being augmented and invoke the
correct behaviour. This behavioural abstraction is one of the

motivating factors behind the LISP-based Nyquist [35] music
system.

Like the use of JVMDI, however, MOP and reflection
typically impose a performance overhead [16], which may
make them unsuitable for realtime applications.

4.3 Aspectual Components
In principle, it is possible to design aspects that have a more
general application than the specific application in which they
are first defined. However, aspect systems such as AspectJ
and AspectS require that information relating to the static
class structure of an application be encoded into aspect
definitions. In AspectJ, for example, pointcuts must refer to
specific class and method names. Thus aspects may only be
re-used in applications that include a class subgraph that
matches that referenced by the pointcut definitions. Further, it
has been observed that undisciplined construction of aspects
in AspectJ prevents aspects from being extended and reused
[13].

In the spirit of structure-shy Adaptive Programming [18],
Aspectual Components [19] permit aspect binding to be
deferred by introducing a level of abstraction that divorces the
aspect definition from an particular class structure or method
protocol. This is achieved by defining an aspect, termed a
component, in terms of its own class structure or Participant
Graph (PG) that represents an abstract slice through a set of
possible concrete class graphs (CGs). Aspects are
subsequently bound to a CG using connectors that map both
classes and methods to the PG. Thus aspects may be defined
as discrete crosscutting components that may be applied to
any given application class graph through separate connector
specifications. It is unclear, however, how ACs can be made
to handle dynamic context, and thus avoid Jumping or
Vanishing aspects.

A practical implementation of ACs is provided by the JAsCo
system [32]. In JAsCo, the standard java component
metaphor, JavaBeans, is extended to form aspect beans.
Aspect beans correspond to the component structure of ACs
and encapsulate the behavioural properties of an aspect,
providing an abstract interface through which these
behaviours may be invoked. Like ACs, JAsCo utilises the
concept of a connector to establish a relationship between
aspect behaviour and a concrete class graph. JAsCo also
supports the dynamic insertion and removal of aspect beans.

Aspectual Components form the basis of technologies that
enable aspects to be defined as ‘plug-ins’ across a range of
applications and as such, promote re-use. In a musical context,
the use of Aspectual Components would permit the definition
of a range of crosscutting musical concerns that could then be
applied to multiple composition projects.

5. CONCLUSIONS
In this paper we have outlined that music composition is a
domain in which multidimensional scattering and tangling is
very much evident. We have described that the traditional role
of the music composer is to manually weave together these

dimensions to form the musical surface that is perceived by
listeners.

We have suggested that aspects could be used to help in the
construction of musical composition systems that enable
composers to express musical intent, and that perform low-level
weaving of musical data based upon higher level musical
descriptions. We note, however, that the relationships between
musical dimensions, even over common high-level concepts, such
as crescendo, are not static, and depend both upon the composer’s
wishes and musical context. We believe that dynamic aspects offer
a way to manage these dynamic crosscutting concerns in the
provision of AOP-based interactive music composition tools.

We have briefly outlined some of the current dynamic aspect
technologies and indicated their various strengths and weaknesses
and possible uses in relation to musical composition applications.

Our future research will consider ways in which dynamic aspects
may be implemented and used in the development of an interactive
computer based music composition system. Key areas of interest
are the development of a dynamic aspects system that supports the
requirements of music composition, in terms of the modelling and
implementation of dynamic musical relationships, and the
extension of the AOP paradigm to the user-level. In particular we
wish the user to be able to interactively and dynamically define,
apply, and modify crosscutting relationships and to store them for
future application in other musical composition projects. As an
interactive system, we require dynamic aspects that are responsive,
and with the potential for them to support music generation in
realtime. As an end-user application, we also require stability and
simplicity.

6. REFERENCES
[1] Aussmann, S., Haupt, M. Axon – Dynamic AOP through

Runtime Inspection and Monitoring. ASARTI Workshop
2003.

[2] Baker, J., Hsieh, W. Runtime Aspect Weaving Through

Metaprogramming. AOSD 2002.

[3] Baker, J., Hsieh, W. C. Maya: Multiple-Dispatch Syntax

Extension in Java. In Communications of the ACM. 2002.

[4] Brant, J., Foote, B., Johnson, R. E., Roberts, D. Wrappers to

the Rescue. ECOOP 1998.

[5] Brichau J., De Meuter W., De Volker K. Jumping Aspects.

Workshop of Aspects and Dimensions of Concerns ECOOP.
2000.

[6] Bollert, K. On Weaving Aspects. In Proceedings of Aspect-

Oriented Programming Workshop at ECOOP 1999.

[7] Brooks, F. P. No Silver Bullet: Essence and Accidents of

Software Engineering. Computer, vol 20, no. 4. 1987

[8] Dannenberg, R. B., Desain, P., Honing, H. Programming

Language Design for Music. In G. De Poli, A. Picialli, S. T.
Pope, & C. Roads (eds.), Musical Signal Processing. 271-315.
Lisse: Swets & Zeitlinger. 1997.

[9] David, P-C., Ledoux, T., Bouraqadi-Saâdani, N.M.N.
Two-Step Weaving with Reflection using AspectJ.

[10] Desain, P., Honing, H. Tempo Curves Considered

Harmful. Contemporary Music Review. 7(2). 1993.

[11] Douence, R., Sudholt, M. A model and a tool for Event-

based Aspect-Oriented Programming (EAOP) . TR 02/l
1/INFO, lcole des Mines de Nantes, french version
accepted at LMO'03, 2nd edition, Dec. 2002

[12] Gybels, K. Aspect-Oriented Programming using a Logic

Meta Programming Language to express cross-cutting
through a dynamic joinpoint structure. Ph.D. Thesis
2001.

[13] Hannenberg, S., Unland, R. Using and Reusing Aspects

in AspectJ. OOPSLA 2001

[14] Hill, P., Holland, S., Laney, R. C. Using Aspects to Help

Composers. Technical Report TR 2003/21. Open
University Dept of Computing 2003.

[15] Hirschfeld, R. Aspect-Oriented Programming with

AspectS. 2002

[16] Kojarski, S., Lieberherr, K., Lorenz, D. H., Hirschfeld, R.

Aspectual Reflection. AOSD SPLAT Workshop. 2003.

[17] Lerdahl, F., Jackendoff, R. A Generative Theory of Tonal

Music, MIT Press, 1983.

[18] Lieberherr, K. J., Silva-Lepe I., Xiao C. Adaptive Object-

Oriented Programming using Graph Customisation.
College of Computer Science, Northeastern University,
1994.

[19] Lieberherr, K., Lorenz, D. and Mezini, M. Programming

with Aspectual Components. Technical Report, NU-
CCS-99-01, March 1999.

[20] Loy, G., Abbott, C. Programming Languages for

Computer Music Synthesis, Performance and
Composition. ACM Computing Surveys, Vol.17, No. 2.
June 1985

[21] Oppenheim, D.V. Towards a Better Software-Design for

Supporting Creative Musical Activity. ICMC 1991.

[22] Oppenheim, D. DMIX: A multi faceted environment for

composing and performing computer music.
Mathematics and Computers, 1996.

[23] Pearce, M., Wiggins, G. A. Aspects of a Cognitive

Theory of Creativity in Musical Composition. Dept of
Computing, City University, London. 2002.

[24] Piston, W. Orchestration, Gollancz 1961.

[25] Pope, S. Introduction to MODE: The Musical Object

Development Environment. In The Well-Tempered

Object: Musical Applications of Object-Oriented Software
Technology, S. T. Pope, ed. MIT Press. 1991.

[26] Popovici, A., Gross, T., Alonso, G. Dynamic weaving for

aspect oriented programming. In Proceedings of the 1st
International Conference on Aspect-Oriented Software
Development, April 2002

[27] Raes, W-G. "The multitasker as an approach in musical

composition" 1997
http://logosfoundation.org/g_texts/multitaskers.html

[28] Shoenberg, A. (Strang F, Stein L. eds). Fundamentals of

Music composition, Faber and Faber. 1967.

[29] Sloboda, J. A. The Musical Mind. The Cognitive Psychology

of Music. Oxford University Press. 1985.

[30] Speigel, L. Old Fashioned Composing from the Inside
Out: On Sounding Un-Digital on the Compositional
Level. Proceedings of the 8th Symposium on Small
Computers in the Arts, Nov. 1988.

[31] Sullivan, G. T. Aspect-Oriented Programming using

Reflection. OOPSLA 2001.

[32] Suvée, D., Vanderperren., W., Jonckers., V. JAsCo: an

Aspect-Oriented approach tailored for Component Based
Software Development. AOSD 2003.

[33] http://www.ircam.fr/produits/logiciels/openmusic-e.html

[34] http://www.mracpublishing.com/scom/

[35] http://www-2.cs.cmu.edu/~rbd/doc/nyquist/root.html

