Modeling of the general circulation with the LMD-AOPP-IAA GCM: Update on model design and comparison with observations

Conference Item

How to cite:

For guidance on citations see FAQs

© [not recorded]
Version: [not recorded]
Link(s) to article on publisher's website:

Copyright and Moral Rights for the articles on this site are retained by the individual authors and/or other copyright owners. For more information on Open Research Online’s data policy on reuse of materials please consult the policies page.
I. The LMD-AOPP GCM

The LMD-AOPP GCM is developed jointly by LMD in Paris and AOPP in Oxford, with the collaboration of IAA in Granada for the physical processes specific to the upper atmosphere. The collaboration between the two teams is based on the use of different dynamical core (grid-point at LMD, spectral at AOPP), which allows us to estimate the likely uncertainty arising from different types of modeling errors. Similarly, we use different schemes to compute tracer transport, etc... The work has benefited from support from ESA (since 1995) and CNES (since 2000). Within that context, the GCMs are used to produce a Martian climate “database” which is used by more than 30 teams around the world for mission design and scientific studies (see Bingham et al., this issue and Lewis et al., 1999).

The baseline version of the GCM is described in detail in Forget et al. (1999). Here we describe the recent improvements and design changes since this publication. Compared to this previous version, the new GCM covers a wider range of altitude, from 0 to 120 km in the vertical, it uses improved topography and thermal inertia surface maps from Mars Global Surveyor (MGS), and includes a new “dust scenario” to describe the distribution of airborne dust in the atmosphere.

Surface fields

The topography now used by the model is, of course, the topography measured by MOLA aboard Mars Express. New thermal inertia data deduced from MGS TES have been retrieved by Mellon et al. (2000) and included in the GCM. However, this paper only provided reliable measurements from 65° North to about 30° South, and no global map has been released so far. Therefore, for the rest of the planet, we continue to use the canonic thermal inertia map from Palluconi and Kieffer (1981) extended to the polar region by Paige et al. (1994) and Paige and Keegan (1994). However, on the basis of the analyses performed by Haberle and Jakosky (1991) and Hayashi et al. (1995) regarding the impact of the airborne dust on thermal inertia (not properly accounted in these less recent analyses), we have applied some correction to the old dataset: 1) between 90° N and 65° N, the Paige et al. (1994) data are decreased by 25%, 2) between 30° S and 60° S, the Palluconi and Kieffer (1981) data are decreased by 8%, and 3) between 60° S and 90° S Paige and Keegan (1994) data are decreased by 28%. These corrections yield an homogeneous dataset, and are shown to be consistent with the impact of the dust when the measurements were made.

A new “dust scenario”

The distribution of dust is highly variable on Mars. Although we have developed dedicated version of the model to simulate the dust cycle and predict interactive dust fields, for most application, the amount of dust in the atmosphere must be prescribed. In order to roughly match the thermal structure of the atmosphere observed by MGS at the beginning of the mission (TES and radio occultation), we found necessary to vary the prescribed amount of dust in the atmosphere as a function of altitude, latitude, and season. In practice, the dust optical depth (defined at 700 Pa) and the dust vertical distribution is varied using simple sinusoidal functions. The corresponding spatial and temporal evolutions are represented on Figure 1. This “dust scenario” is now used for our baseline simulations and most applications were we wish to represent a “typical martian year”.

Vertical extension up to 120 km

Motivation. The atmosphere of Mars above 70 km remain poorly known. On the one hand, very little observations have been obtained by remote sensing instruments. Only a few in-situ measurements are available, including the 3 density profiles from the Viking and Pathfinder entries and the density measurements obtained during the aerobraking phases of the MGS and Mars Odyssey missions. On the other hand, very little comprehensive GCM studies have been performed in the 70-120km altitude range. This is due to the fact that the GCMs cannot accurately be used above 80 km because the Local Thermal Equilibrium (LTE) assumed in these models to compute the radiative heating and cooling budget of the atmosphere is not valid at such low pressures.

The few observations available (in-situ density observations) have revealed a very interesting middle atmosphere with a complex and highly variable dynamics combining various kind of waves probably interacting with the mean circulation (Keating et al., 1998; Magalhães et al. 1999). Moreover, information on this part
of the atmosphere is vital to prepare spacecraft missions performing aerobraking, aerocapture or re-entry.

Parameterization of non-LTE Near Infrared CO\textsubscript{2} solar heating. The main impact of non-LTE processes on the solar heating rates is that a significant fraction of the solar energy absorbed in the 2.7 and 4.3 \(\mu\)m regions is emitted back to space (10\% at 80 km, 50\% at 100 km, 80\% at 107 km), mostly at other vibrational levels, instead of heating the gas as it would happen in LTE conditions. Detailed calculations of the actual solar heating rate using a full non-LTE model including 92 transitions have been performed by Lopez-Puertas and Lopez-Valverde (1995, see also reference therein) and Lopez-Valverde et al. (1998). Fortunately, the solar absorption in the near-infrared is only weakly dependent on the thermal structure of the atmosphere. This allowed Lopez-Valverde et al. (1998) to provide a table of correction factors on a pressure grid to convert LTE radiative transfer calculation heating rate into realistic heating rates. On this basis, we have updated the function used in Forget et al. (1999) to accurately compute the near infrared CO\textsubscript{2} solar absorption at high altitude. At pressure \(p_0 = 700\) Pa and for a mean Mars-Sun distance \(r_0 = 1.52\) AU, the heating rate (per martian day) corresponding to a zero solar zenith angle \((\mu = 0)\) is taken to be \(\partial T/\partial t(p_0, r_0, 0) = 1.1956\) K day\(^{-1}\). The heating rate at other pressures \(p\), Mars-Sun distance \(r\), and zenithal angle \(\mu\) is then computed as follows:

\[
\frac{\partial T}{\partial t}(p, r, \mu) = \frac{\partial T}{\partial t}(p_0, r_0, 0) \times \frac{r_0^2}{r^2} \sqrt{\frac{p_0}{p}} \tilde{\mu} (1 + \frac{p_1}{p})^{-b} \tag{1}
\]

with \(p_1 = 0.0015889\) Pa, \(b = 1.9628\) and \(\tilde{\mu}\) the cosine of the solar zenith angle corrected for atmospheric refraction (we use \(\tilde{\mu} = [(1224\mu^2 + 1)/1225]^{1/2}\)).

Parameterization of non-LTE thermal cooling rate. Unfortunately, a simple scheme similar to the one used at solar wavelengths is not possible for the thermal cooling rates which are strongly affected by the varying thermal structure (Lopez-Puertas and Lopez-Valverde, 1995). In theory, it would be necessary to take into account the evolution of tens of transitions between the various internal energy mode (fundamentals, hot bands), for various isotopes, as performed in the full IAA model. This is much too computationally expensive for a GCM. Nevertheless, after investigating various method to simplify the problem, a new parameterization have been developed for the GCM. This non-LTE thermal infrared model is well adapted to the upper atmosphere where non-LTE processes occurs but remain crude below. To compute the cooling rate at any level in the GCM, we merge the non-LTE cooling rate results with the cooling rate computed by the more sophisticated GCM orginal LTE wide band model.

Figure 1: Our baseline “MGS dust scenario”: Variation of the reference optical depth \(\tau\) at 700 Pa and the altitude of the top of the dust layer \(z_{max}\) as a function of season (solar longitude \(L_s\)) and latitude. The dust mass mixing ratio \(q\) is defined as a function of season (solar longitude \(L_s\)) and latitude. The dust mass mixing ratio \(q\) is defined as a function of pressure \(p\); that is, \(q = q_0\exp\left\{0.007 \left[1 - \frac{p}{p_c}\right]^{(70\ km/\ m_a q)}\right\}\) where \(q_0\) is a constant determined by the prescribed optical depth.
Figure 3: Horizontal wind field simulated by the GCM near Northern spring equinox at two pressure levels. The structure of the wind around 60 km is characteristic of thermal tides propagating from the lower atmosphere as predicted by classical atmospheric tidal theory (Zurek, 1976). At higher altitude, solar to antisolar circulation forced by the NIR CO$_2$ absorption progressively dominate.

General Circulation of the upper atmosphere

Simulations were performed using 32 model layers starting at 5 m, 20 m, 50 m, 115 m, 240 m, 490 m, 980 m, etc... with the uppermost level at about 101, 106, 110, 114 and 120 km. The typical characteristic of the simulated atmosphere are shown on figure 2 and 3.

II. Comparison with observations

Comparison MGS radio-occultation

The MGS radio-occultation experiment (Hinson et al., 1999, 2001) provides high resolution profiles of atmospheric density, pressure, and temperature versus radius and geopotential between 0 and about 35 km. We have performed detailed comparison with the dataset obtained during the first year of the mapping mission, with a particular interest in the vertical structure of the lower atmosphere. Waves structures has not been analysed, yet.

In general: very good agreement between model and observations. Using the “MGS dust scenario” (Fig. 1), the simulated temperature profiles are usually within 10K from the observations. Very often, the model is able to predict the detailed thermal structure of the atmosphere with a striking accuracy (Figure 4). This is true for various seasons and latitudes, corresponding to very different dust loading and insolation. Figure 4 bottom illustrates the ability of the model to simulate the diurnal changes in the lower atmosphere thermal structure as a function of local time for 3 profiles, here obtained during summer in the southern hemisphere. During southern summer, the low atmosphere thermal structure can be well reproduced by the model in spite of a large range of behavior. Interestingly, In a previous paper addressing the comparison of NASA Ames Mars GCM with this southern summer radiosience dataset, Joshi et al. (2000) noted that the model was not able to match such structures. In particular, this was the case for the temperature inversion peaking at 6 km shown on Figure 4, bottom right (see Fig. 3 in Joshi et al. 2000), leading them to suggest that water ice clouds, an non-uniform vertical distribution of the dust or enhanced gravity wave activity was necessary to explain the observations.
Figure 2: A summary of the dynamical fields simulated by the extended GCM during Northern winter ($L_s = 270^\circ - 300^\circ$). The middle and right columns illustrate that the atmospheric dynamic is especially rich above 70 km where very little data is available, and where Non-LTE processes must be taken into account. At every seasons, including this particular one, strong thermal tides (diurnal and semi-diurnal westward waves as well as a combination of non-migrating tides) are excited by the diurnal cycle near the surface as well as by the local diurnal heating by the CO$_2$ absorption of near infrared radiation. In addition, large amplitude transient waves are simulated above 80 km, with in particular wavenumber 1 Kelvin waves with a period of about 3 days. In this particular case (N. winter), the zonal mean circulation above 70 km is controlled by wave-mean flow interaction. The westward thermal tides are especially important. For instance, they drag the zonal mean wind toward retrograde (negative) values, creating a summer to winter hemisphere mean meridional circulation, and contributing to force a warming of the atmosphere above the winter pole. However, the zonal mean fields (column 1) are not representative of the mean circulation given the large diurnal variations (column 3).
Some problems, locally

Local variations in dust loading. During some seasons, the dust loading can be highly variable spatially and temporally. For instance, this is the case during summer in the southern hemisphere, leading to slight disagreement between observations and model, with modeled temperatures warmer or colder than the observations.

Low atmosphere in northern polar regions in summer. A small, systematic disagreement between the observations and the simulations of the low atmosphere thermal structure (< 5 km) is observed in the northern summer polar spectra (Figure 5). This could be due to non-realistic surface properties in the model (local ice) or, more likely, to the impact of water ice clouds.

Waves and inversions in the Northern summer sub-tropics. Among the profiles observed during northern summer in the sub-tropics are found profiles containing strong inversions (Figure 6). They are particularly found near pavonis Mons and Tharsis. These inversions are almost not reproduced by the model. Small “bumps” in the mean temperature profiles at altitude similar to the observed inversions can sometime be simulated, but the magnitude is much smaller than in reality (Figure 6). These inversions may results from dynamical phenomenons (tidal waves not well represented in the models, tidal waves interacting with subgrid-scale gravity waves) and/or the presence of water ice clouds.

Southern winter polar temperature. Figure 7 shows a subset of temperature profiles obtained around 70°S latitude at various time during southern winter. Discrepancies between observations and models are obvious, especially toward the end of the winter when atmospheric temperature are getting warmer as the edge of the polar night recede toward the pole. Such differences are unexpected, although they may partly result from the fact that the database contains fields averaged over 30° Solar Longitude. Further work is required to better understand the disagreement between model and observations.

Comparison with the The MGS Thermal Emission Spectrometer temperature retrieval

Detailed comparison have been performed by the AOPP team, and will be presented in a companion paper.

Comparison with lander entry profiles

Figure 8 shows temperature measurement taken during the entry phases of the Viking landers (Seiff and Kirk, 1977) and Pathfinder (Magalhães et al., 1999) compared with MCD prediction at the same location and time for
In conflict with remote observations obtained simultaneously (Clancy et al., 2000), the entry profiles appear more and more to be in conflict with the measurements of the density recorded in situ by the Viking and Pathfinder landers compared with GCM profiles retrieved from the Mars Climate database MGS dust scenario (green solid line) and a “dusty” scenario (red dashed line).

The GCM prediction of the density have been compared to radio occultation profiles obtained at similar location by MGS. This comparison, and the analysis of the waves in the atmosphere of Mars in summer mid-latitudes (Seiff and Kirk, 1977) and thermal inertia mapping of Mars from the Mars Global Surveyor Thermal Emission Spectrometer (Twicken and Tyler, 1999) are better matched by the dusty scenario, although for Viking 1 this is still not warm enough. These results are surprising since the “dusty” scenario profiles are at least 10 K warmer than our “best guess” MGS scenario. They are better matched by the dusty scenario profiles obtained at similar location and time. Could this be due to interannual variability? In fact, the entry profiles appear more and more to be in conflict with remote observations obtained simultaneously (Clancy et al., 2000, Dave Hinson, personal communication, 2001). This could be due to local effects and/or to some misunderstanding in the data analysis.

Comparison with upper atmosphere density aerobraking measurements

The GCM prediction of the density have been compared with the measurements of the density recorded in-situ by MGS. This comparison, and the analysis of the waves involved in the observed structure are described in Angelats i Coll et al., this issue.

References

