New Cognitive Theories of Harmony Applied to Direct Manipulation Tools for Novices

Conference or Workshop Item

How to cite:

For guidance on citations see FAQs.

© [not recorded]

https://creativecommons.org/licenses/by-nc-nd/

Link(s) to article on publisher’s website:
https://quod.lib.umich.edu/i/icmc/bbp2372.1987.026/1

Copyright and Moral Rights for the articles on this site are retained by the individual authors and/or other copyright owners. For more information on Open Research Online’s data policy on reuse of materials please consult the policies page.
NEW COGNITIVE THEORIES OF HARMONY APPLIED TO DIRECT MANIPULATION TOOLS FOR NOVICES

Simon Holland
Open University

IET, Open University, Milton Keynes, MK7 6AA UK
Telephone Milton Keynes (0909) 553956
Email address (UK & Europe): SHOL@alvey
ARPANET: shol@shol.ac.uk msg@sun.unc.edu

Abstract
Two recent cognitive theories of harmony can be exploited to design powerful direct manipulation tools to help novices sketch, analyse and experiment with harmony. Longuet-Higgins' (1962) and Balzano's (1980) theories are at the focus of current investigation by cognitive psychologists of music but they also offer considerable potential, so far virtually unexplored, in music education and musician-machine interface design.

Longuet-Higgins and Balzano start from quite different bases, (one from the overtone series and the other from mathematical group theory) but the two theories lead to closely related two-dimensional representations of harmonic structures and relationships. The paper discusses the design of direct manipulation tools based on a version of Longuet-Higgins' theory to allow novices to modify, sketch and analyse harmonic sequences simply and clearly by moving two-dimensional patterns representing notes, chords and key areas on a computer screen linked to a synthesizer. Such interfaces should enable novices to experiment intelligently with harmony in ways that might normally be barred to them because of lack of theoretical knowledge or instrumental skill.

Introduction
This research is part of a wider project to find ways of using artificial intelligence to encourage and facilitate beginners to compose music for enjoyment. The wider project is aimed at novices who may not have a formal musical education and at users outside as well as inside the formal education system. (For this reason we will use popular music and jazz illustrations, although the tools work with l euro (harmony in any genre.) The research exploits two recent cognitive theories of harmony (Longuet-Higgins, 1962) and (Balzano, 1980) which give rise to principled and elegant representations for basic harmonic relationships and harmonic movement. Because of space limitations we will concentrate exclusively on interfaces based on a modified version of Longuet-Higgins' theory although closely related interfaces can be designed using adaptations of Balzano's theory.

2 Longuet-Higgins theory
Longuet-Higgins' theory of the perception of harmony involves the investigation of an array of notes arranged in ascending perfect fifths on one axis and major thirds on the other axis (fig. 1). (Readers not interested in the reasons for this could skip the rest of this section.)

Longuet-Higgins' (62) theory asserts that the set of intervals that occur in Western tonal music are those between notes whose frequencies are in a ratio expressible as the product of the three prime factors 2, 3, and 5 and no others (Theorem 73). Given this premise, it follows that the set of three intervals consisting of the octave, the perfect fifth and the major third is the only non-redundant co-ordinate space for all intervals in musical use. We can represent this geometrically by laying out notes in a three dimensional grid with notes ascending in octaves, perfect thirds and major fifths along the three axes. The above dimensions are discussed in more detail on grounds of octave equivalence and of practical convenience for focusing on the other two dimensions (Fig 1). The theory is of great interest to cognitive psychologists of music (Shibod68), (Howell, Croz and West, 85).

1 In Longuet-Higgins' presentations of the theory, and in all discussion of it in the psychological literature, the convention is that ascending perfect fifths appear on the x-axis and the ascending major thirds on the y-axis. In my discussions of educational applications I reverse this usage. The reversal originally happened accidentally, but now maintains it is educational contexts on three grounds; firstly it allows students to which more easily between the Balzano representation & the 12-note version of the Longuet-Higgins representation (which could both be available on a single interface for different tasks) - the x-axes coincide and the y-axes are related as if by a shear operation. Secondly it makes the dominant & subdominant areas coincide with Schoenberg's (54) dominant & subdominant regions (though of course the x-axes and the overall meaning of the respective diagrams differ). Thirdly the V-I moveements that dominate Western tonal harmony at so many different levels become aligned with gravity in a metaphor useful to novices. To any readers who find this convention confusing, I apologise.

1982 1987 ICIMC Proceedings
However, for the purposes of educating novices in the elementary facts of tonal harmony we map Languet-Higgins space onto the twelve note vocabulary of a fixed-rooting instrument resulting in what we might call '12-note two-dimensional Languet-Higgins harmony space or 2D harmony space for short. Consequently we lose the double sharps & double flats of fig 1, and the space now repeats exactly in all directions (fig 2). Notes with the same name really are the same note in this space. In fact a little thought will show that the space is, in fact a torus, which we have unfolded and repeated like a wallpaper pattern. One result of this is that instead of a single key window we have a repeating key window (fig 2).

Fig 1

![Diagram](image)

3.1 Representing the 'Statics' of harmony

3.1.1 Representing key areas and modulation

In diagrams such as Fig 1 all of the notes of the diatonic scale are "chewed" into a compact region. For example, all of the notes of C major, and no other notes are contained in the box or window in Fig 1. If we imagine the box or window as being free to slide around over the fixed grid of notes and delimit the set of notes lies over at any one time we will see that moving the window vertically upwards or downwards, for example, corresponds to modulation to the dominant and subdominant keys respectively. Other keys can be found by sliding the window in other directions. Despite the repetition of note names, it is important to note that notes with the same name are different positions are not the same note, but tennis with the same name in different keys (Standard (722) calls these "homonyms"). This is an extension, motivated by Languet-Higgins' theory, of the standard notational distinction that C double sharp, for example, is not the same name as D. (Sewden calls such pairs "homophones").
Notes also that we have a clear spatial metaphor for the centraty of the tonic—the tonic triad is literally the corner one of the three major triads of any major key. We can make similar observations for the minor triads. Minor triads correspond to normal L-shapes. Like major triads, they are maximally compact, three-element objects in the space. The three secondary triads generate the natural minor (and major) scale (6). We could deal with harmonic and melodic minor scales by extending the key window, but we do not pursue this here). Also, the space gives a clear visual metaphor for the centrality of the relative minor triad among the secondary triads. Completing the full set of scale tone triads for the major scale, the diminished triad is a sloping straight line. Some musical dialects, especially in areas of popular music consistently use seventh or ninth chords in place of triads. These chords similarly have memorable and consistent shapes in the space. See Fig. 4 for the representation of scale tone seventh.

![Diagram of major, minor, and diminished triads in C major](image)

Fig. 5 Triads in C major

3.2 Representing the Dynamics of Harmony

3.2.1 Simple Two and Three Chord Movements: So far we have used 2D harmony space to look at the representation of key areas and chords. Let us now move on to look at harmonic succession and progression. A fundamental I-V-I progression can be seen visually as one that begins on the central major triad of the key, and then moves to a maximally close neighbor before returning home (Fig. 5). Similarly, progressions involving I, IV and V can be seen as oscillating either side of the usual centre by the smallest possible step and then returning home.

Fig. 4 Scale tone 7ths in C major

3.2.2 Manipulating and Representing Cycles of Fifths

Moving onto wider chord vocabularies, progressions like II-V-I, VI-V-I, III-V-I etc. correspond to straight
lines vertically downward in 2D harmony space with the
tonal centre as their target (Fig. 5). We refer to straight
line motions in 2D harmony space to tonal goals as
harmonic trajectories. 6 In particular, if we begin a trajectory vertically downwards in a cycle of fifths from
I or IV, it turns out there are two classes of trajectory that
we could make. In one case (tonal cycle of fifths) we use
only notes in the key - physically this is a straight line
dealt or jumps where necessary 5 to remain in the
key window (Fig 5b and 5c excluding shaded points). In the
other case (real cycle of fifths) the root moves
unrestrictively in a straight line down the perfect fifth axis,
neatly cutting across areas not in the key window 6 (Fig 5c shaded points). In the proposed direct
manipulation environment we could sketch a tonal cycle of
fifths by selecting an option that constrained the root
to remain within the key window together with a second
option causing the chord quality to be dynamically
adjusted according to the position of the root relative to
the window. Having done this, if we made a vertical
straight line gesture with the mouse to play the cycle of
fifths, the size of the root step could be seen and heard
adjusting at one point to stay in key as the root came to
the bottom edge of the key window (fig 5b or c), and the
chord quality could be seen and heard flexing to fit within
the key window (fig 3 and 4). This would work even if
there were modulations (movements of key window)
mid-sequence. To play a real cycle of fifths, we
would simply switch off the options that constrained root
position and chord quality. 7 The harmony of wide areas
of Western tonal music is dominated by harmonic
trajectories of chords and keys moving down the dominant
axis. (See (Prest 84) for a version of this thesis in more
conventional language focussing on Bach, Schubert and
Mozart). If we reverse the direction of the arrow and
consider chord sequences moving vertically upwards, we

4 in deliberate imitation of Levitin's (1985) use of the
term trajectory to refer to the distinct but related
phenomenon of melodic trajectory.
5 e.g. if we are in the key of C, the root moves in a
diminished fifth from F to B.
6For chords outside the key window, simple harmonic
considerations cannot determine the default chord quality.
Different pieces and different dialects use different
solutions depending on the musical purpose involved.
7Other selectable options could include manually
creating or deleting the default chord quality at any time, holding
it constant or putting it under program control.

have what might be called extended played sequences and
cadences. This kind of chord sequence is occasionally used
in popular dialects as in, for example, "Hey Jude" (popular
an. Jimi Hendrix) as discussed by Strandman (83).

3.3.3 Manipulating chromatic and scalar sequences
Scalar sequences (i.e. movement up and down the
diatonic scale) can be represented as diagonal trajectories
confined to remain within the key windows (fig 6). So
for example, for the chord sequences I II III I IV V I
etc., can be represented as diagonal trajectories or diagonal
oscillations. Scalar root movement occurs frequently in
tonal music in short sequences and is often used in longer
sequences in modal music. If the constraint is removed,
that the root must stay within the key window, scalar
sequences become chromatic sequences (fig 7). Chromatic
chorus succession are widely used in some dialects of total
music, particularly in jazz dialects. (Footnote 6 applies here too.)

4 Analyzing real music in 2D harmony space
So far we have shown that a 2-note version of Longuet-
Higgins space can provide economical descriptions of
aspects of the statics and dynamics of harmony. Let us
now turn to the harmonic successions of a real piece of
music. Fig 8 gives the chord sequence of the jazz

This kind of analysis is different from and simpler
than, for example Longuet-Higgins' analysis of Schubert.

1987 ICMC Proceedings
standard "All the things you are". By most of limitations of space we will only consider the first 8 bars, but fig 8 gives a harmonic space trace of the whole chord sequence, and the analysis could easily be continued. For clarity, only the root of each chord is indicated, and chord alteration is indicated by superscript.

4.1 Example analysis
From an analytic point of view, the song breaks into a small number of recognizable harmonic plans (we only have space to deal with the first one). In the first eight bars, the sequence begins on a VI chord and makes a dominant-supported 9th trajectory towards the tonic (from what we know at this stage the goal being presumably the major I, though it could be the relative minor VI). But the sequence plunges on past I at the fourth bar onto IV at the fifth bar. The song at this point is in danger of breaking a standard convention for the diatonic. In jazz "standard" phrase is a convention that we normally expect to reach a tonic goal when we hit the major tonic chord at the end of each line (normally eight bars). It is as though we were shooting for a tonic goal but overshoot it. The solution used becomes in effect the harmonic "shift" of the whole piece - we move the goalpost. This is achieved by a timely transient resolution allowing the progression to reach the tonic goal in the nick of time. In the direct manipulation environment, the "moving goalpost" metaphor is demonstrated literally. The environment would physically show (fig 8) the goalpost in the shape of the key window being moved sideways so that the tonic cycle of fifths drops into the goal or tonic section at the audible metric boundary. The broad outlines of this analysis should be immediately comprehensible to the novice with access to the direct manipulation tools being discussed. It is important to note that visual formalism is not being proposed as a substitute for listening. It is being suggested that an animated implementation of the formalism linked to a sounding instrument may allow novices without instrumental skills to gain experience (62) and Freedman's analysis of Bach (72) using the full space.

9Phrass (84) phrase.

10 It is common in this dialect where all chords are routinely played as seventhas to emphasize arrival at the tonic (with restless chord quality major sevenths) by repeating it as a more stable major ninths.

of controlling and analyzing such sequences without knowledge of standard theory and terminology. But such an environment might be also be a good place to learn music theory if the novice desired.

5 Educational use
The direct manipulation design considerations so far discussed could be the basis of a family of environments for analysis, modification, playback and sketching of harmonic sequences as well as an aid to learning theory. As a sketching device, multiple mice could control, for example, independent melody, bass and accompaniment voices. The system could permit dynamic association of varied rhythmic figures, Alberti patterns and arpeggiation with given voices. Analysis could be carried out at low or high level. Tonal centres and roots could have been already identified and the interface used to help illuminate the higher level harmonic structure of a piece as in fig 8. Alternatively the student could use a version of the interface as an aid to help identify tonal centres, roots, modulations and perform the graphic equivalent of traditional harmonic analysis. Modification involves taking an existing piece and manually altering the annotated graphic trace to discover where small changes make big changes to the musical sense and vice versa. 2D harmonic space tools could be used as valuable aids for studying practically any theoretical aspect of tonal harmony (e.g. the relationship between modal harmony and tonal harmony, aspects of the evolution of major/minor tonic centres etc.). The environment could automatically convert 2D harmonic space displays into Common Music Notation and vice versa to assist this.

6 Problems and partial solutions
The ideas described so far give rise to a number of issues.
"All the things you are," chord sequence in 12-tone 2D Harmony space

Chord sequence: (Ab) VI / E / V / I / IV / (G) V / I / bV; (Bb) VII / G / VII / VII / (Ab) V / V / (G) VII / I / IV / (Bb) V / I / bV / VII / V / III / bII / II / (Ab) VII / V / I / IV / (G) VII / I / IV / (Bb) V / I / bV / VII / V / III / bII / II / (Ab) VII / V / I / IV / (G) VII / I / IV / (Bb) V / I / bV / VII / V / III / bII / II / (Ab)

See appendix for explanation of chord symbol notation.

Fig 8
which we can only outline here. These issues are all addressed in the research in progress of which this work forms part. The first problem is that to understand a chord sequence you usually need to know about its metrical context (as in the analysis above). A graphic notation has been devised to help address this problem. The second problem is that in a practical system, some means of controlling and displaying inversions and pitch register is needed. Some partial solutions have been devised. Thirdly, we have so far emphasized vertical aspects (in the traditional sense) at the expense of linear aspects of harmony. To a large extent this is an inherent limitation of 2D harmony space, but contrasting display strategies have been devised with partial success in special cases to selectively emphasise linear or chordal aspects of harmonic movement.

There is a potentially far more serious problem that fortunately has a satisfactory solution. The problem is that in a practical interface whose notes are not artificially constrained to fall within one octave, the diagonal (chromatic scalar) axis will act as a major seventh axis. Fortunately this problem can be addressed by using Balzano's representation in place of Longuet-Higgins', but bringing across the idea of a movable key window. Balzano's theory leads to a tone array similar to the 12-tone version of Longuet-Higgins but with axes of major third and major second. One diagonal axis turns out to be the cycle of fifths and the other diagonal axis a true chromatic axis. It turns out that the Balzano representation works satisfactorily both theoretically and practically for the kind of interfaces we are discussing. Unfortunately space limitations do not permit us to discuss this class of interfaces and the interesting issues that emerge comparing the suitability of the two kinds of environment for different tasks.

New Developments

2D harmony space is perhaps best viewed not as one tool but a family of tools. Other members of the family investigated include a rubber-band "MacDraw-like" version of the environment and a "Turtle Logo-like" programming language to control "harmonic turtles" in 2D harmony space. From an Artificial Intelligence and Education point of view, the 2D harmony space family of environments can be viewed as examples of what are known as discovery learning environments or microworlds. In order to tackle the problem common to such environments (Eismen-Cook, 84) of providing guidance tailored to individuals, 2D harmony space is being linked to an intelligent knowledge-based tutor for music composition under design as discussed in Holland (87). The linked system will then become a guided discovery learning environment for aspects of music composition in a variety of idioms.

Two further perspectives

One useful perspective can be provided by an analogy between Turtle Logo which embodies the mathematically pervasive 20th century concepts of the function and harmony space. A 2D harmony interface would embody a similarly powerful and appropriate representation for relationships in tonal harmony.

A second perspective is the Xerox Star/Macosintosh human computer interface analogy. Design aims for the human-machine interfaces of these machines included consistency, simplicity, reduction of short-term memory load and exploitation of existing knowledge. A 2D harmony space tool goes way towards meeting these aims for a harmony sketcher, since harmonic constraints and the relationships between keys are visually and physically externalised consistently to a higher degree than in the case of traditional instruments, keyboard instruments and common music notation.

Implementation

An early partial prototype of harmony space was implemented in Common Lisp using the interface design tool Dialog© on an Apollo Domain workstation controlling a Yamaha TX816 synthesizer via a Hintan MIDI RS232 to MIDI converter in Jan 1987.

Conclusions

Longuet-Higgins' (1962) and Balzano's (1980) theories are the focus of much current investigation by cognitive psychologists of music, but they also offer considerable potential in music education and musician-machine interface design. We have discussed how a family of direct manipulation tools based on the theories can be designed to allow novices to modify, sketch and analyse harmonic sequences simply and clearly by moving two-dimensional patterns representing notes, chords and key areas on a computer screen linked to a synthesizer. Such interfaces should enable novices to sketch, analyse and
experiment productively with harmony in ways that might normally be barred to them because of lack of theoretical knowledge or instrumental skill. The report from which this paper stems (Holland 86) appears to be the first discussion of educational use of Longuet-Higgins' theory, and its use for controlling as well as representing music.

Acknowledgements
Thanks to Mark Elsom-Cook for constant support, encouragement and guidance. This paper would not have existed without Mark Steedman's suggestion that Longuet-Higgins' theory was a good area to explore for educational applications. Thanks to Tim O'Shea for making it possible. Thanks to Mark Steedman, John Sloboda, Trevor Bray and Richard Middleton for comments on an earlier draft. Thanks to Christopher Longuet-Higgins, Ed Little and Mike Baker for valuable discussions. Thanks to Mark Elsom-Cook for help beyond the call of duty with specialized graphics, lab and interface programming. Thanks to Caroline, Simon & Peter for three things more important than 3D harmony space. Not all criticisms have yet been adopted, so responsibility for all errors lies definitely with the author. The support of this work by the ESRC is gratefully acknowledged.

References

Appendix: Chord symbol conventions
Roman numerals representing scale tone triads or sevenths I I I IV V etc. are written in capitals, irrespective of major or minor quality. Roman numerals represent triads of the quality normally associated with the degree of tonality or modality prevailing. We call this quality the "default" quality. In the jazz example, Roman numerals indicate scale-tone sevenths rather than triads. The following post-fix symbols are used to annotate Roman chord symbols to override the "default" quality as follows: x - dominant, o - diminished, # - half diminished, m - minor, M - major The following post-fix convention is used to alter indicated degrees of the scale; "#5" means default chord quality but with sharpened 3rd, "#7" means default chord quality but with sharpened 7th etc. The following post-fix convention is used to add notes to chords e.g. "+6" means default chord quality with added scale-tone sixth 6th. The prefixes # and b move all notes of the otherwise indicated chord's semitones up or down.