Discordant Haplotype Sequencing Identifies Functional Variants at the 2q33 Breast Cancer Risk Locus

How to cite:
Camp, Nicola J.; Lin, Wei-Yu; Bigelow, Alex; Burghel, George J.; Mosbruger, Timothy L.; Parry, Marina A.; Waller, Rosalie G.; Rigas, Sushilaben H.; Tai, Pei-Yi; Berrett, Kristofer; Rajamanickam, Venkatesh; Cosby, Rachel; Brock, Ian W.; Jones, Brandt; Connelly, Dan; Sargent, Robert; Wang, Guoying; Factor, Rachel E.; Bernard, Philip S.; Cannon-Albright, Lisa; Knight, Stacey; Abo, Ryan; Werner, Theresa L.; Reed, Malcolm W. R.; Gertz, Jason and Cox, Angela (2016). Discordant Haplotype Sequencing Identifies Functional Variants at the 2q33 Breast Cancer Risk Locus. Cancer Research, 76(7) pp. 1916–1925.

For guidance on citations see FAQs.

© 2016 American Association for Cancer Research

Version: Accepted Manuscript

Link(s) to article on publisher’s website:
http://dx.doi.org/doi:10.1158/0008-5472.CAN-15-1629

Copyright and Moral Rights for the articles on this site are retained by the individual authors and/or other copyright owners. For more information on Open Research Online’s data policy on reuse of materials please consult the policies page.

oro.open.ac.uk
Discordant Haplotype Sequencing Identifies Functional Variants at the 2q33 Breast Cancer Risk Locus

Short title: Discordant haplotype sequencing at 2q33

Nicola J. Camp1*, Wei-Yu Lin2,3, Alex Bigelow1,4, George J. Burghel2,5, Timothy L. Mosbruger6, Marina A. Parry2,7, Rosalie G. Waller1, Sushilaben H. Rigas2,8, Pei-Yi Tai1, Kristofer Berrett1, Venkatesh Rajamanickam1, Rachel Cosby1, Ian W. Brock2, Brandt Jones1, Dan Connley2, Robert Sargent1, Guoying Wang1, Rachel E. Factor1, Philip S. Bernard1, Lisa Cannon-Albright1, Stacey Knight1,9, Ryan Abo1,10, Theresa Werner1, Malcolm W.R. Reed2,11, Jason Gertz1, Angela Cox2.

1University of Utah School of Medicine, Salt Lake City, UT 84112, USA; 2Department of Oncology and Metabolism, University of Sheffield, Sheffield, S10 2JF, UK; 3current address: Cardiovascular Epidemiology Unit, Department of Public Health and Primary Care, University of Cambridge, Cambridge, CB1 8RN, UK; 4University of Utah School of Computing, Salt Lake City, UT 84112 USA; 5 current address: Manchester Centre for Genomic Medicine, Manchester, M13 9WL, UK; 6Bioinformatics Shared Resource, University of Utah, UT 84112, USA; 7current address: Cancer Research UK Manchester Institute, University of Manchester, Manchester, M20 4BX, UK; 8current address: School of Medical Sciences, Faculty of Life Sciences, University of Bradford, Bradford, BD7 1DP, UK; 9current address: Intermountain Heart Institute, Intermountain Medical Center, Salt Lake City, UT 84107, USA; 10current address: Dana-Farber Cancer Institute, Boston, MA 02215,
USA; current address: Brighton and Sussex Medical School, University of Sussex, Brighton, BN1 9RH, UK.

*Corresponding author

Nicola J. Camp, PhD
Professor of Medicine
Huntsman Cancer Institute Rm 4123
2000 Circle of Hope
Salt Lake City, UT 84112
801-587-9351
nicola.camp@utah.edu

Conflict of Interest
The authors have no conflicts of interest to declare.
Abstract

The findings from genome-wide association studies hold enormous potential for novel insight into disease mechanisms. Unfortunately, progress in mapping low-risk association signals to the underlying functional sequence variants (FSVs) involved in disease has been challenging. Simple sequence study designs are insufficient, as the vast numbers of statistically comparable variants and a limited knowledge of non-coding regulatory elements complicate prioritization. Furthermore, large sample sizes are typically required for adequate power to identify the initial association signals. One important question is whether similar sample sizes need to be sequenced to identify the FSVs. Here, we present a proof of principle example of an extreme discordant design to map FSVs at the 2q33 low-risk breast cancer locus. Our approach employed DNA sequencing of a small number of discordant haplotypes to efficiently identify candidate-FSVs. Our results were consistent with those from a 2000-fold larger, traditional imputation-based fine-mapping study. To prioritize further, we used expression-quantitative trait locus analysis of RNA sequencing from breast tissues, gene regulation annotations from the ENCODE consortium, and functional assays for differential enhancer activities. Notably, we implicate three regulatory variants at 2q33 that target \textit{CASP8} (rs3769823, rs3769821 in \textit{CASP8}, and rs10197246 in \textit{ALS2CR12}) as functionally relevant. We conclude that nested discordant haplotype sequencing is a promising approach to aid mapping of low-risk association loci. The ability to include more sophisticated and efficient sequencing designs into mapping efforts presents an opportunity for the field to capitalize on the potential of association loci and accelerate translation of association signals to their underlying FSVs.
Introduction

The large number of compelling disease loci identified from disease-association studies (e.g. 1-4) provides immense potential for novel insight into disease mechanisms and new opportunities for diagnosis, prevention and treatment. To date, 2,511 genome-wide association studies [GWAS] of 1,353 traits have generated 8,345 hits at $p \leq 5 \times 10^{-8}$.(5).

However, the task of identifying the underlying FSVs has proven extremely challenging and, thus far, very few FSV have been identified for these types of low-risk disease loci (e.g. 6-8). A number of factors contribute to the challenge, including cost and an inadequate functional knowledgebase. Performing DNA sequencing (DNAseq) of the disease loci would capture the FSVs, but this is often financially impractical for large case-control designs (GWAS for common traits can include 100,000s of cases and controls). Furthermore, empirical evidence suggests that the vast majority of FSVs for these loci will be common, non-coding variants influencing gene expression(9). Hence, the identification of the FSV via simple prioritization of the sequence data may be difficult because many variants will be statistically comparable and our understanding of non-coding regulatory elements is incomplete.

Instead of complete DNAseq of a GWAS region, a standard approach to identify cFSVs is a more detailed statistical interrogation of the region ("fine-mapping"). Often these fine-mapping studies are undertaken in the same large sample sets as the initial analyses, they explore evidence for multiple signals and use statistical imputation to estimate the association evidence for other common and rare variants in the region that were not directly genotyped(10). A caveat of statistical imputation is that it relies on external imputation panels that are not only distinct from the target populations, but are often much
smaller and sequenced only at very low depth (e.g. 4×), leading to potential inaccuracies, especially for rare variants. DNAseq of cases and controls would remove the need for imputation, but remains cost prohibitive for large case-control studies. Here, we propose a cost-efficient extreme discordant haplotype DNAseq design that is financially viable and can greatly aid in the identification of cFSVs.

At a predefined risk locus, we statistically phase the genotype data and perform haplotype mining to define risk haplotype/s that optimally distinguish cases from controls. Phasing does not require external data. Under the hypothesis that FSV/s lie on a risk haplotype backbone, selecting cases homozygous for risk-haplotype and controls without risk-haplotypes results in an extreme discordant design with good power to detect underlying FSVs with small sample sizes conducive to quick and affordable high-throughput sequencing (HTS). To illustrate the gain in power of the discordant design, consider a FSV with population risk allele frequency RAF=0.32 and an allelic odds ratio OR=1.09 (i.e. RAF=0.34 in cases). Even if the associated SNP is in perfect linkage disequilibrium (LD) with the FSV (r²=1.0), greater than 85,000 samples are required to identify it with 80% power at a significance of α=5×10⁻⁸. Now consider a haplotype discordant design: cases homozygous for the risk haplotype and controls with zero copies. If the risk haplotype were a perfect proxy, the FSV RAF would be enriched to 1.0 in cases and reduced to 0.0 in controls. While enrichment will not be perfect, it will be greatly enhanced; thus if RAFs become 0.9 (cases) and 0.1 (controls), a sample size of only 28 has 80% power at α=5×10⁻⁸ (see Supplemental Methods for more details).
As proof-of-concept we present a discordant haplotype HTS DNaseq study in 38 individuals for the 2q33 (CASP8/ALS2CR12) region, a breast cancer risk locus (11). In order to address the lack of knowledge surrounding gene regulation and better prioritize our sequence variants, we supplemented publicly available annotations with RNAseq in normal and tumor breast tissue, and identify three FSVs affecting enhancer activity.

Methods

An overview of study design detailing the sample sets used for the DNaseq and RNAseq analyses can be found in the Supplemental Figure.

DNA sequencing and variant prioritization

Haplotype mining was performed previously using hapConstructor (12) based on 45 tagging-SNPs across 220 kb spanning CFLAR, CASP10, CASP8 and ALS2CR12 in 3,888 individuals from the Utah and Sheffield Breast Cancer Studies (1,882 breast cancer cases and 1,896 controls). A six-SNP risk haplotype was defined (p<5×10^{-6}) that optimally extracted the association evidence across the region (13). Specifically, the alleles on the haplotype were ins-A-G-G-T-del across SNPs rs3834129-rs6723097-rs3817578-rs7571586-rs36043647-rs35010052. These 6 SNPs spanned CASP8 and the inter-genic region between CASP8 and ALS2CR12. HapMC (14), was used to impute missing genotypes and infer phase on all 3,888 individuals. Female breast cancer cases were selected who were homozygous for the risk haplotype, and female cancer-free controls who had zero copies (with probability >0.95). For these individuals, germ-line DNA (200 ng) from peripheral blood leukocytes was selected for the sequencing panel based on DNA quantity
and quality requirements (3-5 µg of high quality, high molecular weight genomic DNA, free of RNA contamination, and at a minimum concentration of 100 ng/µl with A_{260}/A_{280} and A_{260}/A_{230} ratios ≥ 1.8 and ≥ 1.9, respectively; confirmed by Bioanalyzer). The final panel comprised 38 individuals (21 cases and 17 controls).

In order to capture any underlying FSVs tagged through long-range LD with the risk haplotype, we sequenced across a broader region. We thus defined the chromosome 2q33.1 low-risk breast cancer locus to be from 201,566,128 to 202,566,128 bp (hg19); the minimal region required to contain all variants in the HapMap or 1000G projects with a $r^2 \geq 0.1$ with the previously reported variants associated with breast cancer (rs1045485 and rs10931936)(15,16). The region is gene-rich with 18 genes: AOX2P, LOC100507140, BZW1, CLK1, PPIL3, NIF3L1, ORC2, FAM126B, NDUF3B, CFLAR, CASP10, CASP8, ALS2CR12, TRAK2, STRADB, ALS2CR11, TMEM237, and MPP4 (Figure 1).

The SureSelect Target Enrichment system was used to generate libraries for next generation sequencing based on all non-repetitive genic and intergenic sequence in the 1 Mb region. Capture bait design was carried out using Agilent E-array and Windowsmasker (NCBI C++ Toolkit), resulting in 8,227 baits that mapped to 567,411 bp. Samples were multiplexed 12 per lane for ABI SOLiD sequencing to generate 50 bp single-end reads. Raw sequence reads were aligned using NovoalignCS (http://www.novocraft.com), developed specifically for color space SOLiD technology data. On average, 69.2% of reads accurately mapped to the 1 Mb region, and 609,165 bases had $\geq 10 \times$ coverage (mean 76×). Alignment was followed by duplicate marking using Picard (http://broadinstitute.github.io/picard) and GATK(17) best practice V2 for variant calling including local realignment,
recalibration, joint calling with UnifiedGenotyper and variant filtration. A total of 1,197 positions were heterozygous in at least one individual in the sequencing panel, and passed quality control variant filtration with good variant quality score (Q>30), 63 sequence variants (SVs) were not acknowledged by the 1000G project and were removed from consideration, resulting in 1,134 SVs for comparisons between cases and controls.

In the homozygous discordant risk haplotype design, the FSV should reside on all case chromosomes and no control chromosomes. To prioritize variants based on this expectation, the allele frequency (AF) was calculated for both REF and ALT alleles at each of the 1,134 SVs in both cases and controls. A SV was considered a cFSV if an allele had AF≥0.9 in cases and AF≤0.1 in controls. If so, that allele was considered the risk allele. 955 SVs had an allele with AF≥0.9 in cases, but only 18 of these also had AF≤0.1 in controls. For these 18, the RAF varied from 0.905—1.0 in cases, and from 0.0—0.094 in controls. One variant aligned perfectly with expectations (rs3769821, RAFs of 1.0 and 0.0 in cases and controls, respectively). Chi-squared tests of allele counts by case/control group were calculated to help interpret these observed discrepant RAF frequencies. All were highly significant (6.9×10^{-13}≤p≤2.8×10^{-18}, Table 1). Background frequencies for the risk alleles for the CEU/GBR 1000G samples are shown in Table 1.

RNA sequencing and differential expression
A panel of fresh frozen breast tissue samples was assembled from 88 women who had surgery at the Huntsman Cancer Hospital from 2009-2012. This included paired tumor and normal (adjacent grossly-uninvolved) tissues for 69 breast cancer patients and normal tissues from an additional 19 women undergoing breast reduction surgery. RNA was
extracted from all tissue samples. For germ-line genotypes, DNA extracted from peripheral blood (N=15), or from the normal tissue (N=73) was used. For genotyping, we required 10 µl of DNA at a concentration of 50 ng/µl measured by PicoGreen. An Illumina BeadExpress assay was designed for the 18 cFSVs. One variant failed design (rs10635401) and another failed genotyping QC (rs3769820), leaving 16 cFSVs with good quality genotype data for differential expression analyses (carriage of risk allele vs. no copies). For RNaseq, we required 50 µl of RNA at a concentration of 25 ng/µl and RIN≥6.0. Bioanalyzer results indicated that quality was generally high (average RIN=7.9), although one tumor sample yielded poor quality RNA (RIN=2.5) and was removed from consideration, resulting in a panel of 156 breast samples (88 normal, 68 tumor). RNaseq was carried out using Illumina TruSeq Stranded mRNA sample preparation with oligo dT selection, and samples were multiplexed 8 per lane on the Illumina HiSeq2000 to generate 50 bp single-end reads. Raw sequence reads were aligned using Novoalign (V2.08.01) against the reference genome plus extended splice junctions (hg19 annotations for gene model). We used USeq, an extensive package of open-source RNaseq workflow written and benchmarked by the University of Utah Bioinformatics Shared Resource(18), to quality control, wrap programs, manage and prepare files. Two samples failed RNaseq QC and were removed (degraded signatures by Picard) leaving 154 samples (86 normal, 68 tumor), with an average of 19.1 M reads per sample for analysis. We performed differential expression analyses based on carriage of risk alleles at cFSVs using DESeq2(19), which employs a negative binomial distribution to test for differences. The RNaseq panel provided 80% power to find ratios ≥1.19 or ≤0.84 (equivalent to fold differences in expression of ~20%), at a nominal significance level (α=0.05)(20).
We selected *CFLAR, CASP10, CASP8, ALS2CR12*, which span the central ~0.25 Mb of the 1 Mb region, as potential target genes for our cFSVs. The transcriptome-normalized counts, averaged across all samples, were 79.9, 27.1, 38.4, and <1.0 per million mapped reads respectively. This indicated that *CFLAR, CASP10* and *CASP8* were expressed sufficiently well in the breast to pursue eQTL analyses, but that *ALS2CR12* was not well expressed and was not considered further. Consistent with our data, ENCODE RNAseq data also indicated that *CFLAR, CASP10*, and *CASP8* were expressed in breast tissues. All were expressed in the human mammary epithelial (HMEC) normal breast cell line, although the level of *CASP10* expression was lower than the other genes; *CASP8* and *CFLAR* were also expressed in the breast cancer cell line MCF-7. These three genes are also good functional candidates: *CASP8* and *CASP10* are pro-apoptotic, while *CFLAR* (caspase-8 and FADD like apoptosis regulator) is anti-apototic, structurally similar to caspase-8 but lacking the pro-apoptotic caspase death domains. Because it has been suggested that more than 40% of enhancers do not target the nearest gene we tested for association between each cFSV and the all three genes(21).

The Cancer Genome Atlas (TCGA) RNAseq data for replication

Genome-wide germ-line SNP genotyping and whole transcriptome RNAseq data for 97 normal (adjacent grossly uninvolved) tissues and 753 tumor breast tissue samples are available as part of the TCGA Research Network (http://cancergenome.nih.gov/). Genotypes were available for only 3 SNPs from our list of 18 cFSVs. Transcriptome normalized counts (with correction for differences in transcriptome length and specific gene annotations from hg18 to hg19) indicated expression levels of 149.1, 16.0 and 89.9 per million mapped reads for *CFLAR, CASP10, CASP8*, respectively, and differential analyses
were performed all 3 genes in both normal and tumor tissues. We note that the average standardized counts for \textit{CASP10} fell below 20 counts per million mapped reads, and more caution should be exercised in interpreting findings for that gene in these data.

\textit{Comparison to traditional fine-mapping: Meta association evidence from BCAC and GWAS}

The R package \textit{metaphor} (http://cran.r-project.org/web/packages/metafor) was used to carry out a meta-analysis for the cFSVs, based on the odds ratios and 95\% confidence intervals provided for 46,450 cases, 42,600 controls (BCAC) and 22,627 cases and 10,052 controls (9 GWAS) in Lin et al(11).

\textit{Potential functional relevance: Luciferase assays for enhancer activity}

Variants rs3769823, rs3769821 and rs10197246 were chosen to investigate for ability to affect enhancer activity. To create the enhancer constructs, we performed PCR using genomic DNA from T-47D, which is homozygous for risk alleles at all three SNPs, and MCF10A, which is homozygous for neutral alleles, using the following primer pairs:

\begin{verbatim}
rs3769821/rs3769823 forward (1531 bp product),
TACCTGAGCTGCTAGCCGGATCAATGCTACAAAGACACG
rs3769821/rs3769823 reverse, GGCCAGATCTTGATATCCCAGTCACCTCTGGAGGCATT
rs10197246 forward (758 bp), TACCTGAGCTGCTAGCGCTGTTTAATTTCCATGCGTTT
rs10197246 reverse, GGCCAGATCTTGATATCCTCTTTAGCAGTAGCACAACACAAA
\end{verbatim}

Phusion HF master mix (NEB) and 10 ng genomic DNA was used for PCR and PCR products were purified with AMPure XP beads (Beckman Coulter). We then digested pGL4.23 (Promega) with XhoI (NEB) and combined the digest with the purified PCR products to perform Gibson Assembly (NEB) according to the manufacturer’s instructions. Clones were
verified by Sanger sequencing and no differences between the haplotypes, except for the expected alleles, were identified.

T-47D (ATCC HTB-133) and MCF10A (ATCC CRL-10317) were obtained from ATCC, where STR profiling analysis was used to authenticate the cell lines, and were grown within six months of resuscitation. Each line was cultured according to ATCC recommendations with the following modification: no insulin was added to the media for T-47D. Cells were plated at a density of 10,000 cells/well in 96-well plates and after 24 hours Lipofectamine 3000 (Life Technologies) was used to transfect the enhancer constructs as well as pGL4.23 as a negative control. 48 hours post-transfection, each well was assayed for luminescence using Steady-Glo Luciferase Assay System (Promega) and read on a GloMax luminometer (Promega). Luminescence was background subtracted using non-transfected wells and normalized by pGL4.23 levels. T-tests were used to determine significance of expression differences between alleles.

Ethics Approvals

The women whose samples were involved in the DNAseq and RNAseq experiments described here were enrolled in studies approved by the University of Utah Institutional Review Board or South Yorkshire Research Ethics Committee. Informed consent was obtained from all research participants.

Results

Using HTS technology, we performed targeted DNAseq of all non-repetitive sequence across 1 Mb at 2q33.1 (201.57-202.57 Mb, hg19) in 38 women selected for extreme
discordance of a previously defined risk-haploype (13) (21 breast cancer cases homozygous for the risk haplotype and 17 female, cancer-Free controls with zero copies). We identified 1,134 high quality SVs that were also confirmed as SVs in the 1000 Genomes (1000G, http://www.1000genomes.org/) project data (Figure 1).

In the optimal situation, the FSV would reside on all 42 case chromosomes and no control chromosomes. In selecting cFSVs, we allowed 10% discrepancy, such that a SV was considered a candidate if RAF≥0.9 in cases and RAF≤0.1 in controls. This resulted in 18 cFSVs (15 in CASP8 and 3 in the adjacent gene ALS2CR12): one was exonic (CASP8), 16 intronic, and one in the 3' UTR of ALS2CR12 (Table 1). As expected, allele frequency differences between the cases and controls were all highly significant due to the discordant design (all p<10^{-12}). Risk alleles were all very common in the general population (1000G RAFs=0.27-0.40).

To assess the cFSV for potential functional consequences, we performed eQTL analysis using high quality RNAseq data for CASP8, CASP10, and CFLAR in 86 normal tissue and 68 tumor samples, examining expression differences based on germ-line DNA genotype data for 16/18 cFSVs (Table 1). The expression of CASP8 was significantly decreased for carriers of 12/16 cFSVs within normal breast tissue (Table 2); most significant for a group of five cFSVs at the 3' ends of CASP8 and ALS2CR12, between positions 202,143,928-202,153,920 bp (expression ratio=0.86, p=3.6×10^{-4}, Figures 2 and 3). Reduction in expression with carriage of these cFSVs was consistent in the subsets of adjacent grossly-uninvolved and breast reductions (data not shown). No significant differences based on carriage of risk alleles were found for CASP8 in tumor (although ratios were in the same direction as for
the normal tissue, but less extreme). No differential expression was apparent based on cFSVs in CASP10 or CFLAR in normal or tumor tissues. We replicated eQTL results using data from TCGA Research Network (http://cancergenome.nih.gov/) project, where RNAseq data was available for 97 normal breast and 753 tumor tissue samples, and germ-line genotypes for 3/18 cFSVs. Similarly, decreased CASP8 expression was found for risk alleles at three cFSVs in normal tissue, with the most significant association for rs6743068 (ratio=0.86, \(p=2.6 \times 10^{-4} \)), which resides in the cluster of five most significant cFSVs. As before, there was no evidence for CASP8 expression differences based on cFSVs in tumor tissues, or for CFLAR or CASP10 expressions in either tissue type.

This small, but highly focused haplotype discordant study, demonstrates that cFSVs can be identified that are associated with gene expression. However, equally important is how this information aligns and adds value to results from a traditional “fine-mapping” study. To achieve this, we aligned our cFSVs with those suggested by the fine-mapping study by the Breast Cancer Association Consortium (BCAC) that used 89,050 samples and 1,733 imputation fine-mapping SNPs across the same 1 Mb region(11). The BCAC study identified one region that achieved genome-wide significance (referred to as iCHAV1, \(p=1.1 \times 10^{-9} \))(11). The BCAC iCHAV1 SNP set corresponds closely with the set of cFSVs identified here. Nine SVs were present in both sets, seven present only in the BCAC set, and nine present only in the discordant haplotype set (Table 3). The seven SVs present only in the BCAC results were in genomic regions 1000G has designated as inaccessible to HTS technologies and were not captured by our sequencing baits. This highlights a limitation of HTS technology, but also suggests caution with imputation in this region, which is based on low coverage sequence data (6 of the 7 missed SNPs were imputed). We genotyped the
remaining SV, rs10197246, which indicated it would have passed our cFSV criteria (Table 3). Of the nine cFSVs present only in our discordant haplotype study, several only narrowly missed BCAC inclusion. For example, our set included both rs6735656 and rs10635401, but only the latter was captured in the BCAC set due to slight superiority in significance in that data. Interestingly, in a combined BCAC+9 GWAS meta-analysis, the order of significance is reversed for these two SNPs (Table 3). Hence, the discordant haplotype DNAseq study not only aligned with, but also added value to the very large BCAC fine-mapping study.

Based on the combined 25 cFSVs, we used publicly available annotations and RNAseq eQTL results to prioritize for functional follow-up (Table 3). The three most compelling cFSVs are rs3769823, rs3769821, and rs10197246. All three yield highly significant results in both the discordant haplotype and traditional fine-mapping approaches and are associated with \textit{CASP8} expression differences in normal breast tissue. The first two reside 435 bp apart in a promoter proximal region that exhibits DNAse I hypersensitivity in mammary epithelial and breast cancer cell lines, and binds multiple transcription factors (STAT3, MYC, Pol2 and CTCF) based on ENCODE data(22). Also notable are results from an eQTL study in blood(23), indicating highly significant decreased \textit{CASP8} expression associated with these cFSVs (Z=-5.44, p=5.3×10^{-8}), and suggesting the expression signature is also readily observed in blood (Table 3). The latter cFSV, rs10197246, resides in a potential distal regulatory element, 80 kb from a \textit{CASP8} promoter, that is bound by MYC in the breast cancer cell line MCF-7. Hence, MYC-triggered apoptosis may be one possible mechanism for the association, worthy of investigation.
We tested for functional differences between allelic variants of rs3769823, rs3769821 and rs10197246, by performing enhancer assays based on a luciferase reporter gene in cell lines derived from MCF10A (normal breast tissue) and T-47D (breast tumor). Figure 4 shows the enhancer activity of the risk and neutral alleles in each cell line. We found that the region containing the risk alleles of rs3769821 and rs3769823 drove significantly lower gene expression in both the normal and tumor cell lines compared to the same region harboring the neutral alleles. The region surrounding the risk allele of rs10197246 produced ~3-fold lower expression compared to the neutral allele in the normal breast cell line, but there was no difference between alleles in tumor cells. Overall, the functional results are consistent with our eQTL study, and suggest that these cFSV cause reproducible reduction of CASP8 expression in normal breast tissue.

Discussion

In our proof of principle analysis of the 2q33 locus for breast cancer, we considered our focused extreme discordant haplotype study together with the much larger BCAC traditional fine-mapping study, in addition to tissue-specific RNAseq and public annotations, to select rs3769823, rs3769821, and rs10197246 as the three most compelling cFSVs for breast cancer risk. The first two SVs are 435 bp apart in CASP8, while rs10197246 resides 81kb telomeric within the adjacent ALS2CR12 gene. Despite the 81 kb physical separation, all three cFSVs target CASP8, based on the eQTL data. While all 3 lie on the risk haplotype, LD between rs3769823/rs3769821 and rs10197246 is not particularly strong (r^2=0.66) suggesting that there may be two functional hits on the haplotype. This hypothesis is consistent with the luciferase enhancer activity results that illustrates that risk alleles at both rs3769823/rs3769821 and rs10197246 independently and significantly
decreased enhancer activity. Of particular interest was that \textit{CASP8} expression differences were consistently stronger in normal breast tissue compared to breast tumor material, both in the frozen tissue samples (RNAseq data) and the representative cell lines (enhancer assays). These observations support the hypothesis that these three variants are functionally relevant breast cancer risk variants that create an environment more conducive to tumorigenesis by reducing \textit{CASP8} gene expression (and hence levels of apoptosis) in the normal breast. Moving forward, MYC-triggered apoptosis may be one possible mechanism worthy of investigation, given rs3769823 and rs10197246 appear good functional candidates and both reside in regions bound by MYC in the breast cancer cell line MCF-7. The importance of \textit{CASP8} in breast cancer tumorigenesis was also recently underscored by its identification as one of 32 genes significantly somatically mutated in breast cancer tumors\cite{24}, and one of only 22 genes identified as significantly mutated in at least 3 different common tumor types\cite{25}, suggesting that other common cancers may follow the pattern for susceptibility that we see here.

Our interrogation of the 2q33 breast cancer risk locus implicates extremely common FSVs (RAF~0.28) with small effect sizes (~17% decreased gene expression), consistent with the common disease common variant model. The largely non-coding candidates identified and the consistent stronger significance in normal tissues suggest that greater availability of resources for gene-expression and other epigenetic data in normal tissues may prove critical in the prioritization and identification of common, low-risk variants. Initiatives such as the Roadmap Epigenomics Project and ENCODE will certainly help in this regard as they come to fruition\cite{26}. Here, we were successful in illustrating differences in 88 local
samples that could be replicated based on 97 samples from TCGA. However, in general, much larger sample sizes may be needed to generate robust findings.

Our small, focused, discordant haplotype DNAseq study identified 18 cFSVs for the CASP8/ALS2CR12 region. These results aligned with and extended the 16 cFSV suggested from a traditional fine-mapping association study almost four orders of magnitude larger, leading to a combined set of 25 cFSVs, and resulting in three variants (rs3769823, rs3769821, and rs10197246) implicated as functionally relevant breast cancer risk alleles influencing CASP8 expression. The discordant haplotype sequencing and traditional fine-mapping approaches have distinctly different strengths and weaknesses: statistically, technologically, and economically. Large population-based association studies attain good power to identify common, low-risk loci with accurate risk estimates, but fine-mapping efforts remain largely constrained to imputation because sequencing costs are prohibitive. The discordant haplotype design attains excellent power specifically for the locus for which they are optimized, and is therefore cost effective for DNAseq, but needs to be carried out separately for each association signal if there is more than one in a region. A noteworthy limitation of both approaches is the challenge posed by repetitive DNA sequences, with around 50% of the human genome consisting of repetitive elements(27). For targeted capture it is not possible to design uniquely-mapping capture baits for these regions, and for any HTS technology, alignment is difficult across repetitive elements. In our discordant haplotype study, for example, we were able to capture only 61% of the region at a read depth of ≥10× (average 76× depth across the full capture). In particular, we did not identify 7 SV that were available in the BCAC imputation study. Highly repetitive sequence impacts imputation studies differently. Repetitive regions are likely to harbor increased rates of
misalignment, leading to non-random genotype errors in the reference panel from which
imputations are made. Quality scores may not easily identify such errors. An example of
this in the exome design is the appearance of highly variable ‘promiscuous’ genes within
gene families with a high degree of identity at the nucleotide level. Additionally, the 1000G
phase 3 data, frequently used as a whole genome imputation reference panel, have only a
~4-6× average read depth across the majority of the non-coding regions of the genome
leading to low quality genotypes and an over-abundance of homozygotes. To investigate
this phenomenon, we downloaded all Caucasian 1000G whole genome .bam files that were
indicated to have passed quality control. We performed a best practice haplotypeCaller
GATK variant calling pipeline on these 191 genomes, and inspected the data for the 7 SVs
imputed in the BCAC study but not captured by baits in the current DNAseq study. As
expected, the 1000G sequencing coverage for these 7 SVs was low (median DP = 5—7×).
Call rates ranged from 83-99%. Of those called, individual-level genotype qualities were
relatively poor (median GQ=15—24; GQ<20 often considered unreliable, GQ≥30 often used
as a quality filter). Hence both designs are affected by repetitive genome sequences, albeit
in slightly different ways, adding further value to a joint-interpretation approach. We
conclude that these two approaches are extremely complementary and suggest that
DNAseq in a nested discordant haplotype design within larger case-control studies could
play an important role in identifying comprehensive short-lists for functional studies.
Acknowledgements

We gratefully acknowledge funding support. This work was supported by: The Avon Foundation (02-2009-080 to NJC); the National Cancer Institute (NCI R01 CA163353 [NJC], and a pilot grant to NJC/JG from the Cancer Control and Population Sciences and Nuclear Control Programs of the NCI Huntsman Cancer Center P30 CA42014); The Susan G. Komen Foundation (BCTR0706911[NJC]); Yorkshire Cancer Research (YCR S305PA, S295 [AC] and SPP060 [SHR]); and Cancer Research UK, CRUK C9528/A11292 [AC]). Ascertainment in Utah was made possible in part by the Utah Cancer Registry (UCR) and the Utah Population Database (UPDB). The UCR is funded by Contract No. HHSN261201300017I from the NCI with additional support from the Utah State Department of Health and the University of Utah. Partial support for all datasets within the UPDB is provided by the HCI and its NCI Cancer Center Support grant, P30 CA42014.

We would like to thank Neil Hall, Lisa Olohan and Xuan Liu of the Liverpool MRC Genomics Hub for DNA sequencing. At the University of Utah, we would like to extend thanks to Derek Warner and Michael Kline of the Genomics Core for genotyping; Brian Dalley of the High Throughput Genomics Core for RNA sequencing; David Nix and Brett Milash of the Bioinformatics Shared Resource; the Biorepository and Molecular Pathology core; Roger Edwards and the Research Informatics Core; and the Women’s Cancer Disease-Oriented Team at the Huntsman Cancer Institute. At the University of Sheffield, we would like to acknowledge Helen Cramp, Sabapathy Balasubramanian, Simon S. Cross and Sue Higham for subject recruitment and data collection. The results described are in part based upon data generated by the TCGA Research Network: http://cancergenome.nih.gov/. Finally, we
want to extend great thanks to all the participants in this multi-center study for making this research possible.
References

Tables

Table 1: Candidate Functional Sequence Variants from DNA sequencing

RAF risk allele frequency; * Allele-based chi-squared test for independence

<table>
<thead>
<tr>
<th>Position (hg:19)</th>
<th>Gene</th>
<th>Variant type</th>
<th>Risk Allele</th>
<th>Other Allele</th>
<th>1000G Background (CEU/GBR) RAF</th>
<th>Control Homozygous non-risk RAF</th>
<th>Case (Homozygous risk haplotype) RAF</th>
<th>DNAseq Haplotype Discordant p-value</th>
</tr>
</thead>
<tbody>
<tr>
<td>rs12990906</td>
<td>CASP8</td>
<td>intronic</td>
<td>T</td>
<td>C</td>
<td>0.397</td>
<td>0.85</td>
<td>1</td>
<td>0.088</td>
</tr>
<tr>
<td>rs10931934</td>
<td>CASP8</td>
<td>intronic</td>
<td>T</td>
<td>C</td>
<td>0.397</td>
<td>0.85</td>
<td>1</td>
<td>0.029</td>
</tr>
<tr>
<td>rs3769823</td>
<td>CASP8</td>
<td>exonic nonsyn</td>
<td>A</td>
<td>G</td>
<td>0.296</td>
<td>0.89</td>
<td>0.929</td>
<td>0</td>
</tr>
<tr>
<td>rs3769821</td>
<td>CASP8</td>
<td>intronic</td>
<td>C</td>
<td>T</td>
<td>0.333</td>
<td>0.97</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>rs10635401</td>
<td>CASP8</td>
<td>intronic</td>
<td>C</td>
<td>CAAGT</td>
<td>0.313</td>
<td>0.90</td>
<td>0.976</td>
<td>0.029</td>
</tr>
<tr>
<td>rs6735656</td>
<td>CASP8</td>
<td>intronic</td>
<td>G</td>
<td>T</td>
<td>0.270</td>
<td>0.81</td>
<td>0.929</td>
<td>0.094</td>
</tr>
<tr>
<td>rs6754084</td>
<td>CASP8</td>
<td>intronic</td>
<td>T</td>
<td>C</td>
<td>0.270</td>
<td>0.84</td>
<td>0.905</td>
<td>0.059</td>
</tr>
<tr>
<td>rs1861270</td>
<td>CASP8</td>
<td>intronic</td>
<td>A</td>
<td>G</td>
<td>0.270</td>
<td>0.84</td>
<td>0.905</td>
<td>0</td>
</tr>
<tr>
<td>rs6751053</td>
<td>CASP8</td>
<td>intronic</td>
<td>G</td>
<td>A</td>
<td>0.374</td>
<td>0.89</td>
<td>1</td>
<td>0.029</td>
</tr>
<tr>
<td>rs6435074</td>
<td>CASP8</td>
<td>intronic</td>
<td>A</td>
<td>C</td>
<td>0.270</td>
<td>0.84</td>
<td>0.905</td>
<td>0</td>
</tr>
<tr>
<td>rs6723097</td>
<td>CASP8</td>
<td>intronic</td>
<td>A</td>
<td>C</td>
<td>0.374</td>
<td>0.89</td>
<td>1</td>
<td>0.029</td>
</tr>
<tr>
<td>rs3769820</td>
<td>CASP8</td>
<td>intronic</td>
<td>T</td>
<td>C</td>
<td>0.374</td>
<td>0.89</td>
<td>1</td>
<td>0.029</td>
</tr>
<tr>
<td>rs2349070</td>
<td>CASP8</td>
<td>intronic</td>
<td>A</td>
<td>C</td>
<td>0.270</td>
<td>0.84</td>
<td>0.905</td>
<td>0</td>
</tr>
<tr>
<td>rs10931936</td>
<td>CASP8</td>
<td>intronic</td>
<td>T</td>
<td>C</td>
<td>0.282</td>
<td>0.80</td>
<td>0.905</td>
<td>0</td>
</tr>
<tr>
<td>rs3769818</td>
<td>CASP8</td>
<td>intronic</td>
<td>A</td>
<td>G</td>
<td>0.282</td>
<td>0.80</td>
<td>0.905</td>
<td>0</td>
</tr>
<tr>
<td>rs700635</td>
<td>ALS2CR12</td>
<td>UTR3</td>
<td>C</td>
<td>A</td>
<td>0.282</td>
<td>0.80</td>
<td>0.905</td>
<td>0</td>
</tr>
<tr>
<td>rs6714430</td>
<td>ALS2CR12</td>
<td>intronic</td>
<td>C</td>
<td>T</td>
<td>0.282</td>
<td>0.80</td>
<td>0.905</td>
<td>0</td>
</tr>
<tr>
<td>rs6743068</td>
<td>ALS2CR12</td>
<td>intronic</td>
<td>A</td>
<td>G</td>
<td>0.282</td>
<td>0.80</td>
<td>0.905</td>
<td>0</td>
</tr>
</tbody>
</table>
Table 2: Expression-QTL results for **CFLAR, CASP10** and **CASP8**

Grey font indicates that the cFSV failed to genotype on the Illumina BeadExpress platform; ‘ns’ indicates a p-value>0.2; **bold** indicates a nominal significant expression ratio (p≤0.05); *Normal includes both adjacent grossly uninvolved tissue from cancer patients and breast reduction tissue from cancer-free patients.

| rs12990906 | rs10931934 | rs3796823 | rs3796821 | rs10635401 | rs1414989 | rs8754084 | rs1861270 | rs8751053 | rs6435074 | rs8723097 | rs3796820 | rs1301313 | rs3949670 | rs10931936 | rs3796818 | rs700635 | rs8714450 | rs843068 | rs201539720 |
|------------|------------|-----------|-----------|------------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|
| 202114624 | 202114789 | 202112295 | 2021123480| 2021123717| 202114094 | 202124997 | 202114661 | 202112762 | 2021127947| 2021128818| 202130133 | 202110508 | 202114392 | 202151163 | 202153125 | 202153684 | 202153920 |
| 1.06 ns | 0.99 ns | 1.01 ns | 0.98 ns | 1.04 ns | 0.99 ns | 0.99 ns | 0.99 ns | 1.04 ns | 1.04 ns | 1.04 ns | 0.99 ns | 1.01 ns | 1.01 ns | 1.01 ns | 1.01 ns | 0.99 ns | 1.02 ns |
| 1.02 ns | 0.85 ns | 0.94 ns | 0.96 ns | 1.05 ns | 0.99 ns | 1.06 ns | 0.97 ns | 1.01 ns | 1.01 ns | 1.00 ns | 1.00 ns | 0.97 ns |
| 1.14 ns | 1.14 ns | 1.11 ns | 1.12 ns | 0.99 ns | 1.01 ns | 0.106 ns | 0.94 ns | 1.01 ns | 0.99 ns | 1.01 ns | 0.99 ns | 1.00 ns | 0.99 ns |
| 0.93 ns | 0.91 ns | 0.89 ns | 0.90 ns | 0.98 ns | 0.88 ns | 0.87 ns | 0.88 ns | 0.92 ns | 0.92 ns | 0.92 ns | 0.92 ns | 0.91 ns | 0.91 ns | 0.88 ns | 0.86 ns | 0.86 ns | 0.86 ns |
| 0.11 ns | 0.04 ns | 0.0086 | 0.023 ns | 0.0032 | 0.0032 | 0.0032 | 0.0032 | 0.01 ns |
| 1.01 ns | 0.94 ns | 0.94 ns | 0.97 ns | 0.97 ns | 0.97 ns | 0.97 ns | 0.97 ns | 0.97 ns | 0.97 ns | 0.97 ns | 0.97 ns | 0.97 ns | 0.97 ns | 0.97 ns | 0.97 ns | 0.97 ns | 0.97 ns | 0.97 ns |
Table 3: Summary of association and eQTL findings and breast-specific regulatory annotations for 25 cFSVs

'nd' indicates no data (experiment not performed); 'na' indicates not applicable (the base positions were not contained in the DNAseq bait set due to sequence inaccessible, hence there was no coverage for these variants); ** indicates association results are gained from genotyping data; BCAC indicates results from the recent Breast Cancer Association Consortium fine-mapping paper (11). HMEC= human mammary epithelial cells ("normal" breast cell line); MCF-7= mammary gland, adenocarcinoma (28) (estrogen positive breast tumor cell line); MCF-10A-Er-Src = MCF-10A parent cells (mammary gland, non-tumorigenic epithelial, inducible cell line), but containing ER-SRC, a derivative of the SRC kinase oncoprotein (v-SRC) that is fused to the ligand-binding domain of the estrogen receptor (estrogen positive breast tumor-like cell line); T-47D= human ductal breast epithelial tumor (triple negative breast tumor cell line); * indicates a statistically significant regulatory finding (as per ENCODE 'peak' tracks). Important note: not all experiments in ENCODE have been performed on all cell lines. A blank indicates no data.
Figure legends

Figure 1: DNA sequencing coverage and variants in the 1 Mb region
Eighteen genes reside in the region defined by chromosome 2 201,566,128 to 202,566,128 bp (hg19). Upper Panel: A graph of the number of variant positions identified in the DNA sequencing across the region. Lower Panel: A graph of the average depth of sequencing coverage in the 38 sequenced individuals.

Figure 2: Association and eQTL evidence and regulatory annotations for 17 candidate functional sequence variants
Seventeen cFSVs are illustrated (16 selected from DNA sequencing, plus rs10197246). These reside within 100 kb region at chromosome 2 202,110,000 – 202,210,000 bp (hg19). Two genes, *CASP8* and *ALS2CR12*, reside in this genomic region. Upper Panel: A graph showing the association evidence (-log_{10}p) for each of the 17 cFSVs in the discordant haplotype design. Middle Panel: A graph showing eQTL evidence (-log_{10}p) based on RNA sequencing data in the local tissue panel for expression of three genes: *CASP8* (red), *CASP10* (blue) and *CFLAR* (green) in normal (circle symbol) and tumor (triangle symbol) breast tissues. Lower Panel: Five regulatory annotation tracks from UCSC Genome Browser using ENCODE data(22,29). In order, from top to bottom: (1) DNaseIHS, DNase I hypersensitivity clusters in 125 cell types; (2) Tfbs, Transcription Factor ChIP-seq (161 factors); (3) H3K4Me1, Layered H3K4Me1 histone modification marks (often found near Regulatory Elements) on 7 cell lines; (4) H3K4Me3, Layered H3K4Me3 histone modification marks (often found near Promoters) on 7 cell lines; (5) H3K27Ac, Layered H3K27Ac histone modification marks (often found near active regulatory elements) on 7 cell lines.
Figure 3: Expression levels of CASP8 in normal breast tissue

The three categories on the x-axis indicate genotype at rs10931936, rs3769818, rs700635, rs6714430, or rs6743068 (all 5 of these cFSV are identical for genotype in our RNAseq panel of women). These cFSVs exhibited the most significant evidence for association with CASP8 expression in normal breast tissue (ratio=0.85, p=5×10⁻⁴) Genotype=1 includes women homozygous for the common allele; Genotype=2 includes heterozygous women; and Genotype=3 includes women homozygous for the risk allele.

Figure 4: Allele specific enhancer activity for rs3769821/rs3769823 and rs10197246

The bar graph shows the log₂ of the relative expression of the risk allele to the neutral allele, within a cell type, as measured by luciferase output in an enhancer assay. Expression of the neutral allele was used to normalize each pair of experiments. Expression measured in MCF10A is shown in blue and expression measured in T-47D is shown in red. Significance level is indicated above each pair. ‘ns’ indicates not significant. Neutral/risk alleles as follows: rs3769821, A/G; rs3769823, C/T; and rs10197246, C/T
Type of file: figure
Label: Fig 2
Filename: Camp.Figure2.REVISION2.tif
Type of file: figure
Label: Fig 3
Filename: Camp.Figure3.REVISION2.tif