The Open UniversitySkip to content
 

Sulfate deposition and temperature controls on methane emission and sulfur forms in peat

Gauci, Vincent; Fowler, David; Chapman, Stephen J. and Dise, Nancy B. (2004). Sulfate deposition and temperature controls on methane emission and sulfur forms in peat. Biogeochemistry, 71(2) pp. 141–162.

URL: http://www.springerlink.com.libezproxy.open.ac.uk/...
DOI (Digital Object Identifier) Link: http://dx.doi.org/10.1007/s10533-005-0681-9
Google Scholar: Look up in Google Scholar

Abstract

Natural wetlands are the single most important contributors of methane (CH4) to the atmosphere. Recent research has shown that the deposition of sulfate (SO42-) can substantially reduce the emission of this radiatively important gas from wetlands. However, the influence of temperature in regulating the extent of this effect is unclear. Peatlands also constitute an important store of S, so understanding the effect of S deposition on S dynamics within this store is important if we are to understand the interaction. The effect of enhanced SO42- deposition on CH4 fluxes and sulfur pools were investigated in peatland monoliths under controlled environment conditions. This enabled a close examination of effects at the onset of experimentally enhanced SO42- deposition while examining temperature effects on the interaction. Experimentally enhanced S deposition at rates as small as 15 kg SO42--S ha-1year-1 suppressed CH4 emissions by 30%. There was no increased suppression at larger deposition rates of simulated acid rain. Temperature affected the suppressive effect of the simulated acid rain. At low temperatures (down to 5 ºC), there was a greater proportional suppression than at higher temperatures (up to 20 ºC). Evidence suggests that populations of sulfate-reducing bacteria do not respond, as previously thought, to enhanced SO42- supply with a 'boom' followed by a 'bust' and less recalcitrant S pools (SO42- and Sº) were depleted in the SO42--treated peat, indicating enhanced S turnover. A significant proportion of the SO42- from the treatment was taken up and stored as SO42- in vascular plants, placing this mechanism as a potentially important seasonal regulator of peatland SO42- availability

Item Type: Journal Article
ISSN: 1573-515X
Extra Information: The original publication is available at www.springerlink.com ---
Some of the symbols may not have transferred correctly into this bibliographic record and/or abstract.
Academic Unit/Department: Science > Environment, Earth and Ecosystems
Interdisciplinary Research Centre: OpenSpace Research Centre (OSRC)
Centre for Earth, Planetary, Space and Astronomical Research (CEPSAR)
Item ID: 5893
Depositing User: Vincent Gauci
Date Deposited: 15 Nov 2006
Last Modified: 02 Dec 2010 19:55
URI: http://oro.open.ac.uk/id/eprint/5893
Share this page:

Altmetrics

Scopus Citations

Actions (login may be required)

View Item
Report issue / request change

Policies | Disclaimer

© The Open University   + 44 (0)870 333 4340   general-enquiries@open.ac.uk