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A NOTE ON SHELLING

MICHAEL BAAKE AND UWE GRIMM

Abstract. The radial distribution function is a characteristic geometric quantity of a point

set in Euclidean space that reflects itself in the corresponding diffraction spectrum and

related objects of physical interest. The underlying combinatorial and algebraic structure is

well understood for crystals, but less so for non-periodic arrangements such as mathematical

quasicrystals or model sets. In this note, we summarise several aspects of central versus

averaged shelling, illustrate the difference with explicit examples, and discuss the obstacles

that emerge with aperiodic order.

1. Introduction

One characteristic geometric feature of a discrete point set Λ ⊂ Rd, which might be thought
of as the set of atomic positions of a solid, say, is the number of points of Λ on shells of radius
r around an arbitrary, but fixed centre in Rd. Of particular interest are special centres, such
as points of Λ itself, or other points that are fixed under non-trivial symmetries of Λ. This
leads to the so-called shelling structure of Λ. Here, we consider infinite point sets only. In
general, one obtains different answers for different centres, and one is then also interested in
the average over all points of Λ as centres, called the averaged shelling.

The spherical shelling of lattices and crystallographic point sets (i.e., periodic point sets
whose periods span ambient space) is well studied, and many results are known in terms of
generating functions. If Λ is a lattice, the number of points on spheres of radius r centre 0
(central shelling) is usually encapsulated in terms of the lattice theta function [16, Ch. 2.2.3]

(1) ΘΛ(z) =
∑

x∈Λ

qx·x =
∑

k

c(k) qk

where q = eπiz and c(k) is the number of lattice points of Euclidean square norm (= square
length) k. A closed expression for the latter can be given in many cases, see [16, Ch. 4]
for details on root and weight lattices and various related packings, and [8] for an explicit
example. There are many related lattice point problems, see [24] and references therein for
recent developments.

One special feature of a lattice is that the shelling generating function is independent of the
lattice point which is chosen as the centre – and, consequently, central and averaged shelling
give the same result. Similarly, for uniformly discrete point sets that are crystallographic,
the average is only over finitely many points in a fundamental domain and can often be
calculated explicitly. For general uniformly discrete point sets, however, the situation is more
complicated in that no two centres might give the same shelling function, or that the average
may not be well defined. But there is one important class of point sets, the so-called model sets

(also called cut-and-project sets, see [31, 4, 41, 43, 28, 14, 15] and references therein), which
provide a high degree of order and coherence so that an extension of the shelling problem
to these cases is possible, and has indeed been pursued. The original motivation for the
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investigation of model sets came from applications in physics. Meanwhile, due to interesting
connections with several branches of mathematics, they are also studied in their own right,
see [30, 37, 11] and [5] for details and further references. Below, we shall summarise the key
properties of model sets needed for this article.

One of the earliest attempts to the shelling of model sets, to our knowledge, is that of Sadoc
and Mosseri [40] who investigated the 4D Elser-Sloane quasicrystal [18] and then conjectured
a formula for the central shelling of a close relative of it which was obtained by replacing the
highly symmetric 4D polytype used in [18] by a 4D ball as a window. The conjecture was put
right and proved in [33] by means of algebraic number theory revolving around the arithmetic
of the icosian ring I, a maximal order in the quaternion algebra H(Q(

√
5 )). Recently, the

central shelling was extended to the much more involved 3D case of icosahedral symmetry [46].
Also, some results exist on planar cases, e.g., for special eightfold and twelvefold symmetric
cases with circular windows [34, 35].

The common aspect of all these extensions to model sets (or mathematical quasicrystals) is
that only the central shelling of a highly symmetric representative has been considered, with
a ball as window in internal space. This is a rather special situation which appears slightly
artificial in view of the fact that the most relevant and best studied model sets usually have
polytopes rather than balls as window, or, more generally, even compact sets with fractal
boundary, cf. [4]. Also mathematically, the classical examples such as the rhombic Penrose or
the Ammann-Beenker tiling are very attractive due to their rather intricate and unexpected
topological nature [3, 19].

A more natural approach to model sets seems to be the averaged shelling, and it is the
aim of this article to start to develop this idea. As we shall see, the topological structure will
be manifest in the examples discussed below. On the other hand, the central shelling does
have a universal meaning, too, if one considers it first for modules rather than for model sets.
The window condition can then be imposed afterwards, see [8, 6, 7] for some examples. This
approach is implicit in [33], but does not seem to have attracted much notice. It is important,
though, because it leads to a separation of universal and non-universal aspects.

2. Central shelling

Many of the well studied planar tilings with non-crystallographic symmetries share the
property that their vertices (or other typical point set representatives) form a discrete subset
of rings of cyclotomic integers. This gives a nice and powerful link to results of algebraic
number theory, which has, in fact, been used to construct model sets [38], and which also
appeared before in a different context [29]. Let us thus first explain the situation of central
shelling for these underlying dense point sets.

Let ξn be a primitive n-th root of unity (with n ≥ 3), e.g., ξn = e2πi/n, and Q(ξn) the
corresponding cyclotomic field. Then, Q(ξn + ξn) is its maximal real subfield. From now on,
we will use the following notation

(2) K = Q(ξn) , k = Q(ξn + ξn) , O = Z[ξn] , O = Z[ξn + ξn] ,

where O is the ring of cyclotomic integers, which is the maximal order of K, and O is the ring
of algebraic integers of k, see [45].
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Note that O is a Z-module of rank ϕ(n), where ϕ denotes Euler’s totient function. The set
O, seen as a (generally dense) point set in R2, has N -fold rotational symmetry, where

(3) N = N(n) =

{

n if n is even,

2n if n is odd.

This also means that O has precisely N units on the unit circle, which are actually all roots of
unity of K. Also, K is a totally complex field extension of k of degree 2. It is known that, in
this cyclotomic situation, the unique prime factorisation property of O (i.e., class number one)
implies that of O, and this happens in precisely 29 cases, compare [45, Thm. 11.1], namely for

n ∈ {3, 4, 5, 7, 8, 9, 11, 12, 13, 15, 16, 17, 19, 20, 21,
24, 25, 27, 28, 32, 33, 35, 36, 40, 44, 45, 48, 60, 84} ,(4)

where n 6≡ 2 mod 4 to avoid double counting. Note that n = 1 (N = 2) is excluded here
because it corresponds to K = Q with O = Z, which is only one-dimensional.

Now, let p be a prime of O. Then, in going from O to O, precisely one of the following
cases applies, see [36, Ch. I] and [45, Ch. 4]:

(1) p ramifies, i.e., p = PP with P a prime and P/P a root of unity in O.
(2) p is inert, i.e., p is also prime in O.
(3) p is a splitting prime of O/O, i.e., p = PP with P/P not a unit in O.

Up to units, all primes of O appear this way.
Prime factorisation in O versus O can now be employed to find the combinatorial structure

of the shells. We encode this into the central shelling function c(r2) which counts the number
of points on shells (circles) of radius r. By convention, c(0) = 1.

Theorem 1. Let O = Z[ξn] be any of the 29 planar Z-modules that consist of the integers

of a cyclotomic field with class number one. Then, for r2 > 0, the function c(r2) vanishes

unless r2 ∈ O and all inert prime factors of r2 occur with even powers only. In this case,

(5) c(r2) = N ·
∏

p|r2

p splits

(

t(p) + 1
)

,

where p runs through a representative set of the primes of O. Here, t(p) is the maximal power

t such that pt divides r2. The prefactor, N = N(n) of Eq. (3), reflects the point symmetry

of the module. Furthermore, r2 is then a totally positive number in O, i.e., all its algebraic

conjugates are positive as well.

Proof. Since c(0) = 1 by convention, consider r2 > 0. If there exists a number x ∈ O on the
shell of radius r around 0, we must have r2 = xx, hence r2 ∈ O. In this case, any inert prime
factor p of r2 (in O) necessarily divides both x and x (in O). Consequently, the maximal
power t = t(p) such that pt divides r2 must be even.

Conversely, assume r2 > 0 and t(p) even for all inert primes of O. If a ramified or a
splitting prime p = PP divides r2, we know that equal powers of P and P occur in the prime
factorisation of r2 in O. Consequently, we can group the prime factors of r2 in O into two
complex conjugate numbers, i.e., we have at least one solution of the equation r2 = xx with
x ∈ O, so c(r2) > 0.
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Consider a non-empty shell with r2 > 0, i.e., r2 = xx for some 0 6= x ∈ O. Consider the

prime factorisation r2 = e · pt
1

1 · . . . · p
ts
s in O, with e a unit. If pi is not a splitting prime, the

distribution of the corresponding primes in O to x and x is unique, up to units of O.
If, however, pj = PjP j is a splitting prime, we have to distribute (PjP j)

tj over x and x.

In view of P j being the complex conjugate of Pj , but not an algebraic conjugate, we have the

options of (Pj)
s(P j)

tj−s as factor of x and (P j)
s(Pj)

tj−s as factor of x, for any 0 ≤ s ≤ tj .

This amounts to tj + 1 different possibilities, which gives the corresponding factor in (5).
As mentioned above, there are N units of O on the unit circle. This means that, as soon

as r2 > 0, points on the shells come in sets of N , which gives the prefactor in (5). Together
with the previous arguments, this explains the multiplicative structure of c/N .

Finally, assume r2 = xx for some 0 6= x ∈ O and let σ be any Galois automorphism of K

over Q. Then we have

0 < σ(x)σ(x) = σ(x)σ(x) = σ(xx) = σ(r2)

so also all algebraic conjugates of r2 are positive. This shows that r2 is totally positive. �

Remark: It is clear that Theorem 1 can be generalised to the situation that K is a totally
complex field extension of a totally real field k whenever K has class number one, with sets of
integers O and O as above, compare [45, Thm. 4.10]. In this case, the prefactor in Eq. (5) has
to be replaced by the number of elements in the unit group of O that lie on the unit circle.

Let us consider the cyclotomic case in more detail. If V (r2) = {x ∈ O | xx = r2}, and
σ is any Galois automorphism of K/Q, then σ(O) = O and V (r2) is mapped bijectively to
V (σ(r2)). This means that c(r2) = c(σ(r2)).

Moreover, consider the situation that two totally positive numbers of O, r2 and R2, are
related by R2 = er2, with e a unit in O. Clearly, e is then also totally positive. If e is of the
form e = uu, with u a unit in O, the mapping x 7→ ux gives a bijection between V (r2) and
V (R2), hence c(r2) = c(R2). If all totally positive units of O are of this form, which includes
the case that e is the square of a unit in O, we may conclude that the central shelling function
c only depends on the principal ideal of O generated by r2.

In general cyclotomic fields, this factorisation property of totally positive units need not
be satisfied (e.g., it fails for n = 29). However, it is true for all class number one cases. More
precisely, if n is a power of 2, all totally positive units of O are squares of units of O, which is
known as Weber’s theorem, compare [21, Cor. 1 and Rem. 2]. The same statement holds if n
is an odd prime below 100, except for n = 29, see [21, Ex. 2]. We checked explicitly, using the
KANT program package [17, 26], that this remains true for all n from our list (4) that are
prime powers. All remaining cases of (4) are composite integers. Here, not all totally positive
units of O are squares in O, but they are of the form e = uu, with u a unit in O. This was
again checked using KANT. The difference to the other cases comes from the additional unit
u = 1− ξn, compare [45, Cor. 4.13].

We may conclude as follows.

Fact 1. Let O = Z[ξn] be any of the 29 planar Z-modules that consist of the integers of

a cyclotomic field with class number one, and O = Z[ξn + ξn]. Then, the central shelling

function c for O depends on r2 ∈ O only via the principal ideal r2O generated by it. �

This allows us to reformulate the result of Theorem 1 by means of ideals and characters
of the field extension K/k. By a character χ 6≡ 0, we here mean a totally multiplicative real
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function of the ideals of O, i.e., χ(ab) = χ(a)χ(b) for all ideals a and b of O, see [36, Ch. VII.6]
for background material. In particular, χ(O) = 1. It suffices to specify the values of χ for all
prime ideals p of O. We define

(6) χ(p) =











0 if p ramifies

−1 if p is inert

1 if p splits

where the property of the prime ideal p refers to the behaviour under the field extension from
k to K. This leads to the following result.

Corollary 1. Under the assumptions of Theorem 1, the central shelling function c is propor-

tional to the summatory function of the character χ of Eq. (6), i.e.,

(7) c(r2O) = N ·
∑

a|(r2
O)

χ(a),

with N given by Eq. (3).

Proof. Due to unique prime factorisation in O and the multiplicative structure of c/N accord-
ing to Eq. (5), it is sufficient to verify the claim for prime powers, i.e., for r2O = p`. Clearly,
if p ramifies, the sum in Eq. (7) gives c(p`) = 1 for all ` ≥ 0. The alternating sign of χ(p`)
for inert p implies c(p`) = 0 for odd ` and c(p`) = 1 otherwise. If p splits, the right hand side
of Eq. (7) adds up to ` + 1. Invoking Fact 1 and a comparison with Eq. (5) completes the
proof. �

The explicit use of Theorem 1 and Corollary 1 requires the knowledge of the splitting
structure of the primes. Examples can be found in [39, 6, 7], see also [34, 35]. If one is
interested in the central shelling of a model set rather than that of the underlying (dense)
module, one has to take the window into account as a second step. A model set Λ(Ω) in
“physical space” Rd is defined within the following cut-and-project scheme [31, 4]

(8)

Rd π←−−− Rd ×H
π

H−−−→ H

∪ ∪ ∪ dense

L
1−1←−−− Γ −−−→ L∗

where the “internal space” H is a locally compact Abelian group, and Γ ⊂ Rd × H is a
lattice, i.e., a co-compact discrete subgroup. The projection L∗ = πH(Γ ) is assumed to be
dense in internal space, and the projection into physical space has to be one-to-one on Γ .

Consequently, the mapping ∗: L −→ L∗ ⊂ H, with ∗ = πH ◦
(

π|Γ
)−1

, is well defined. It is
called the ∗-map of the cut-and-project formalism, compare [31]. Note that the ∗-map need
not be injective, i.e., its kernel can be a nontrivial subgroup of L.

A model set Λ(Ω) is now defined as

(9) Λ(Ω) = {x ∈ L | x∗ ∈ Ω} = {π(y) | y ∈ Γ, πH(y) ∈ Ω} ⊂ Rd,

where the window Ω ⊂ H is a relatively compact set with non-empty interior. Usually, one
either takes an open set or a compact set that is the closure of its interior. Note that the
∗-map is well defined on Λ(Ω), with

(

Λ(Ω)
)∗ ⊂ Ω. More generally, also sets of the form

t + Λ(Ω) with t ∈ Rd are called model sets. If t ∈ L, one has t + Λ(Ω) = Λ(t∗ + Ω) and is
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back to the case of Eq. (9), which is sufficient for our discussion. For the above example of a
cyclotomic field K = Q(ξn), we need d = ϕ(n) to construct model sets with n-fold symmetry,
compare [10, App. A].

In order to compute the central shelling for a model set Λ(Ω), one first determines all
points of the module L = π(Γ ) on the shell of a given radius r. Then, the window Ω decides,
according to the filtering process of Eq. (9), which of these points actually appear in the
model set, and the shelling formula is modified accordingly. As long as we are dealing with a
one-component model set (i.e., as long as all points are in one translation class), the formula of
Theorem 1 thus gives an upper bound on the shelling number in the model set. As mentioned
above, the central shelling of a few model sets with spherical windows [40, 33, 34, 35, 46] has
been considered in detail.

3. Averaged shelling

A moment’s reflection reveals that the averaged shelling is considerably more involved. In
order to determine the averages, one would need to know all possible local configurations
up to a given diameter together with their frequencies, provided the latter are well defined.
In general, this is not the case, as cluster or patch frequencies in general Delone sets need
not exist. However, regular model sets are particularly nice in this respect because all patch
frequencies exist uniformly [41], which is equivalent to unique ergodicity of the corresponding
dynamical system [44, 42] (under the translation action of Rd). Moreover, due to existence
of the cut-and-project scheme (8) and Weyl’s theorem, compare [32], it is possible to transfer
the averaging part of the combinatorial problem to one of analysis.

Let us also point out that Eq. (1) for a model set does not make much sense as it would
depend on the representative chosen, rather than being a quantity attached to an entire
local indistinguishability (LI) class, compare [43, 4]. If Λ is a lattice, Λ − Λ = Λ, and
we could equally well sum over the difference set in (1). Using this for model sets would
give

∑

x∈Λ−Λ qx·x which is constant on the LI class. However, this still does not reflect the
statistical aspects of the (local) shells, because each x ∈ Λ − Λ is counted with weight one.
Let us thus introduce the averaged shelling function a(r2) as the number of points on a shell
of radius r, averaged over all points of Λ as possible centres of the shells.

Now, let Λ = Λ(Ω) be a regular, generic model set, in the terminology of [31], with window
Ω, i.e., Ω is a relatively compact set in H with non-empty interior, boundary of measure 0,
and ∂Ω ∩ πH(Γ ) = ∅. For simplicity, we also assume that H = Rm, though a generalisation
of what we say below to the case of general locally compact Abelian groups is possible. In
analogy to Eq. (1), a generalised theta series could be defined ad hoc as

(10) ΘΛ(z) :=
∑

r∈R
a(r2) qr2

where q = eπiz and R = {r ∈ R≥0 | |y| = r for some y ∈ Λ−Λ} is the set of possible radii as
obtained from the set of difference vectors between points of Λ. The coefficient a(r2) is now
meant as the averaged quantity defined above, which we will now calculate.

Let ν(y) denote the relative frequency of the difference y between two points of the model
set (hence y ∈ Λ− Λ). Up to the overall density of the model set, ν(y) is an autocorrelation
coefficient of the point set Λ. This quantity exists uniformly for all y as a consequence of the
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model set structure [23, 41, 32]. But then, we obviously obtain

(11) a(r2) =
∑

y∈Λ−Λ
|y|=r

ν(y) .

On the other hand, if Λs = {x ∈ Λ | |x| < s}, one has

ν(y) = lim
s→∞

1

|Λs|
∑

x∈Λs
x+y∈Λ

1 = lim
s→∞

1

|(Λs)∗|
∑

x∗∈(Λs)∗

(x+y)∗∈Ω

1

=
1

vol(Ω)

∫

Rm

1Ω(z)1Ω(z + y∗) dz(12)

where 1Ω is the characteristic function of the window. Note that, as the ∗-map need not be
injective, the second equality may only hold in the limit s → ∞ (this step is implicit in the
proof of [41, Thm. 1]). We add it here because it shows how the counting is transfered to
internal space, in particular in the cases where the ∗-map is one-to-one, which is the situation
we will meet in the examples.

The last step in (12) is now a direct application of Weyl’s theorem on uniform distribution.
This is justified here because (Λs)

∗, for increasing s, gives a sequence of points in Ω that
are uniformly distributed, see [23, 32] and [41, Thm. 1], and because ∂Ω has measure 0 by
assumption. In this situation, the averaged quantities are the same for generic and singular
members of the LI class [41, 4]. Moreover, it also does not change if ∂Ω ∩ L∗ 6= ∅, so that
the corresponding assumption can be dropped. Consequently, the averaged shelling function
is constant on LI classes of regular model sets. We combine Eqs. (11) and (12) to obtain

Theorem 2. Let Λ be a regular model set in the sense of Moody [31], obtained from a cut-

and-project scheme (8) with internal space H = Rm and window Ω. Then, the averaged

shelling function a(r2) exists, and is given by

(13) a(r2) =
1

vol(Ω)

∑

y∈Λ−Λ
|y|=r

vol
(

Ω ∩ (Ω − y∗)
)

.

In particular, a(r2) vanishes if there is no y ∈ Λ− Λ with y · y = r2. �

Remark: This result allows the calculation of the shelling function, for any possible radius
r, by evaluating finitely many volumes in internal space. This is so because a model set Λ
has the additional property that also its difference set, Λ − Λ, is uniformly discrete, so that
there are only finitely many different solutions of |y| = r with y ∈ Λ− Λ.

4. Examples

Let us first consider a well-known model set in one dimension, the Fibonacci chain, which
can be described as

(14) ΛF =
{

x ∈ Z[τ ] | x∗ ∈ [−1, τ − 1]
}

= Λ
(

[−1, τ − 1]
)

,

where Z[τ ] = {m + nτ | m, n ∈ Z} is the ring of integers in the quadratic field Q(τ) and
τ = (1+

√
5 )/2 is the golden ratio. The ∗-map in this setting is algebraic conjugation in Q(τ),
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defined by
√

5 7→ −
√

5. The 2D lattice behind this formulation is Γ = {(x, x∗) | x ∈ Z[τ ]}. A
short calculation results in ΛF − ΛF = Λ

(

[−τ, τ ]
)

, and

(15) ν(y) = ν(−y) = fF(y∗) =

{

0 if |y∗| > τ

1− |y∗|/τ if |y∗| ≤ τ

so that the averaged shelling function for the Fibonacci chain (and thus also for its entire LI
class) is a(0) = 1 and a(r2) = 2fF(y∗) for any non-zero distance r that is the absolute value
of a number y ∈ ΛF − ΛF ⊂ Z[τ ]. Also, all shelling numbers a(r2) are elements of Z[τ ], as
can easily be seen from formula (15). This has a topological interpretation, as we will briefly
explain below for a more significant example.

In internal space, the function fF has a piecewise linear continuation, but the function a(r2)
looks rather erratic, compare [8] for a similar example. This is a consequence of the properties
of the ∗-map, being algebraic conjugation in this case. As a mapping, it is totally discontinuous
on L∗ (and also on its rational span) when the latter is given the induced topology of the
ambient space H. In a different topology, however, this map becomes uniformly continuous,
and it is this alternative setting, compare [12], which explains the appearance of the internal
space from intrinsic data of a model set Λ.

As another example, let us once more look at the circular shelling in the plane, i.e., at a
2D model set with an open disk (radius R, centre 0) as window in 2D internal space. So,
Ω = BR(0) and, consequently, Ω − Ω = B2R(0). We have ν(y) = f2(y

∗), where, due to
rotational symmetry of the window, the function f2 only depends on s = |y∗|. Explicitly, it
is given by

(16) f2(s) =
vol

(

BR(0) ∩BR(s)
)

vol
(

BR(0)
) =

2

π
arccos

( s

2R

)

− s

πR

√

1−
( s

2R

)2

0.0

0.5

1.0

0.0 0.5 1.0

fm(s)

s
2R

m=1m=2m=3m=5m
=10

m
=50

Figure 1. Radial component of the frequency functions fm(s) of Eqs. (16),
(19) and (20) for dimensions m = 1, 2, 3, 5, 10, 50 of internal space.
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for 0 ≤ s < 2R and f2(s) = 0 otherwise. Fig. 1 contains a graph of f2(s). This function, often
called the covariogram of the disk, is a radially symmetric positive definite function known
as Euclid’s hat, see [22, p. 100].

To calculate a(r2), one has to sum finitely many terms of this kind, according to Eq. (11).
This situation of a 2D internal space shows up for planar model sets with n ∈ {5, 8, 12},
because these are the cases with ϕ(n) = 4. Here, one simply obtains

(17) a(r2) = c(r2) f2(s)

where c(r2) is the central shelling function of Eq. (5) and s = |y∗| for any y on the shell of
radius r. This is so because the window is a disk and the ∗-map sends all cyclotomic integers
on a circle to a single circle in internal space. Consequently, the central shelling provides an
upper bound for the average shelling in this case.

Part of this result can be extended to arbitrary dimension. For two intersecting m-
dimensional balls of radius R, the overlap consists of two congruent ball segments. The
corresponding volume can be calculated by integrating slices (which are balls of dimension
m− 1). Dividing by the volume of the m-ball, the covariogram becomes

(18) fm(s) =
2 Γ(m

2 + 1)
√

π Γ(m+1
2 )

arccos( s
2R

)
∫

0

sinm(α) dα.

The integral can be expanded in terms of Chebyshev polynomials. For even m = 2`, this
yields

f2`(s) =
Γ(` + 1)

22`−1
√

π Γ(` + 1
2)

[

(

2`

`

)

arccos
( s

2R

)

+

√

1−
( s

2R

)2 ∑̀

k=1

(−1)k

k

(

2`

`− k

)

U2k−1

( s

2R

)

]

(19)

where Uk(x) = sin
(

(k + 1) arccos(x)
)

/ sin
(

arccos(x)
)

are the Chebyshev polynomials of the
second kind [1, Ch. 22]. For odd dimension, m = 2` + 1, one obtains the following expression

(20) f2`+1(s) = 1− Γ(` + 3
2)

22`−1
√

π Γ(` + 1)

∑̀

k=0

(−1)k

2k + 1

(

2` + 1

`− k

)

T2k+1

( s

2R

)

in terms of the Chebyshev polynomials Tk(x) = cos
(

k arccos(x)
)

of the first kind [1, Ch. 22].
Eqs. (18)–(20) are valid for 0 ≤ s < 2R; for distances larger than the diameter, the overlap
vanishes, hence fm(s) = 0 for s ≥ 2R. Eq. (16) is recovered from (19) for ` = 1. The functions
fm(s) for various dimensions m are shown in Fig. 1. Unfortunately, for m > 2, there is no
simple generalisation of Eq. (17), because the ∗-map is then more complicated.

Let us finally consider an eightfold symmetric model set in the plane, based on the clas-
sical Ammann-Beenker or octagonal tiling, compare [2, 8, 9] and references therein. It is
usually described by projection from four dimensions, where we use the lattice Γ =

√
2 Z4.

The projections π and πH of (8) are essentially determined by compatibility with eightfold
symmetry. In a convenient coordinatisation [9], the images aj , j ∈ {1, 2, 3, 4}, of the standard
basis vectors of the lattice have unit length in physical space, and the same is true of the cor-
responding projections a

∗
j in internal space. Observing that Za1 + Za2 + Za3 + Za4 = Z[ξ8],
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Figure 2. A patch of the Ammann-Beenker tiling with vertex set ΛAB (left)
and the ∗-image of ΛAB inside the octagonal window in internal space (right),
with relative scale as described in the text.

we can continue with a formulation based on the cyclotomic integers, compare [38]. For the
Ammann-Beenker tiling, the window is then a regular octagon O of unit edge length, see
Fig. 2. Note that the window is invariant under the symmetry group D8 of order 16.

Explicitly, the corresponding point set in the plane is given by

(21) ΛAB =
{

z ∈ Z[ξ8] | z∗ ∈ O
}

,

where ∗ is the Galois automorphism defined by ξ8 7→ ξ3
8 . If we choose ξ8 = ξ = e2πi/8 and

identify R2 with C, this gives aj = ξj−1, 1 ≤ j ≤ 4, while the ∗-images satisfy a
∗
j = ξ3(j−1),

compare Fig. 3.
A somewhat tedious, but elementary calculation on the basis of Fig. 4 gives

Fact 2. The covariogram of the regular octagon of edge length one is

(22) fAB(s, α) =























0 if λ ≤ x
(λ−2)(x+y)x

2 + λ(1−x)
2 + (1−y)

2 if λ− y ≤ x ≤ λ
(λ−2)(x2−y2)

4 − (λ−1)x
2 + λ+2

4 if 1 + y ≤ x ≤ λ− y
(λ−2)(x−y−1)y

2 − x
2 + 1 if 0 ≤ x ≤ 1 + y

where λ = 1 +
√

2,

x = s cos α′ ∈
[

s
2

√

2 +
√

2, s
]

, y = s sin α′ ∈
[

0, s
2

√

2−
√

2
]

,
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a1

a2

a3

a4

a1
*

a2
*

a3
*

a4
*

Figure 3. Vectors aj in physical and a
∗
j in internal space related by the ∗-map.

and where α′ is the unique angle in the interval [0, π
8 ] that is related to α by the D8 symmetry

of the octagon. �

A contour map of fAB(s, α) is shown in Fig. 5. It demonstrates that the previous consider-
ation of a circular window is actually a reasonable approximation to this case. It is sufficient
for most applications concerning (powder) diffraction, compare [25, Ch. 3].

We can now calculate the averaged shelling coefficient a(r2) of (11) explicitly for any
distance r in ΛAB. The results for all distances with 0 < r2 ≤ 5 are summarised in Table 1.
They confirm the results of [8] which had been obtained numerically.

As an explicit example, let us consider the shortest distance in the model set. This is

r =
√

2−
√

2 = 2 sin(π
8 ) which is realised by the short diagonal of the rhomb. In this case,

there are eight numbers z ∈ ΛAB − ΛAB that contribute to Eq. (11). They form a single
D8 orbit; one representative is listed in Table 1. Due to the symmetry of the window, the
contribution of each member of the orbit is the same, so it suffices to consider a representative
and to multiply the result by the corresponding orbit length. Choosing z = 1 − ξ, we find

(0,0)

(x,y)
s α

1 1

Figure 4. Two overlapping regular octagons at distance s.
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-2 -1 0 1 2

-2

-1

0

1

2

Figure 5. Contour map of the function fAB(s, α) of (22) in internal space.
The contours show the decrease of fAB from its maximum value fAB(0, 0) = 1
to fAB(s, α) = 0 outside the outer octagonal contour.

z∗ = 1 − ξ3, hence |z∗| =
√

2 +
√

2 = 2 cos(π
8 ); the corresponding angle is α = −π

8 , hence
α′ = π

8 . The distance in internal space is rather large and the overlap area correspondingly

small. Fact 2 yields x = 1 + y =
(

2 +
√

2
)

/2; hence the coefficient is given by

(23) a
(

2−
√

2
)

= 8 fAB

(

2 cos (π
8 ), π

8

)

= 8
(

1− x
2

)

= 4− 2
√

2,

compare Table 1.
The other entries in Table 1 are calculated along the same lines. Note that s can be

calculated from r directly via s2 = (r2)
∗
, where ∗ coincides with algebraic conjugation in

Q(
√

2 ), defined by
√

2 7→ −
√

2. Continuing the calculations, one faces increasing complication
with growing distance r, and, in general, one has to expect contributions from several D8

orbits. For r =
√

3, there is still only a single orbit, this time of length 16. Hence it again
suffices to consider a single representative, for instance z = 1 − ξ − ξ2 whose ∗-image is
z∗ = 1

2

(

(2 +
√

2 ) + i (2−
√

2 )
)

. More generally, the standard orbit analysis reduces the sum
in (11) to a formula with one contribution per D8-orbit, weighted with the corresponding orbit
length. The latter is 8 whenever the corresponding angle α of Fact 2 is an integer multiple of
π
8 (which corresponds to symmetry directions of the octagon), and 16 otherwise.

The averaged shelling numbers a(r2) of Table 1, as well as the numerically determined
values in [8, Tab. 2], are always elements of 2Z[

√
2 ], i.e., numbers of the form 2k + 2`

√
2

with k, ` ∈ Z. The formula (13) for the covariogram of the regular octagon only implies a(r2)
to be in Q(

√
2 ). However, Eqs. (11) and (12) show that the averaged shelling number a(r2)

is expressed as a finite sum of cluster frequencies. The latter are elements of the so-called
frequency module FAB of the Ammann-Beenker model set ΛAB, i.e., the integer span of the
frequencies of finite clusters of ΛAB (i.e., of all intersections ΛAB ∩C with C ⊂ R2 compact).
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Table 1. The averaged shelling numbers for distances r with 0 < r2 ≤ 5 in
ΛAB. Representatives z are given in terms of ξ = e2πi/8. The examples listed
comprise a single D8 orbit each.

r z orbit length s α′ a(r2)

√

2−
√

2 1− ξ 8
√

2 +
√

2 π
8 4− 2

√
2

1 1 8 1 0 4

√
2 1 + ξ2 8

√
2 0 6

√
2− 6

√
3 1− ξ − ξ2 16

√
3 arctan

(

2−
√

2
2+

√
2

)

20− 12
√

2

√

2 +
√

2 1 + ξ 8
√

2−
√

2 π
8 36− 22

√
2

2 2 8 2 0 2
√

2− 2

√
5 2 + ξ2 16

√
5 arctan

(

1
3

)

40
√

2− 56

Since ΛAB is a Delone set of finite local complexity [27, 38], there are only countably many
different clusters up to translations, and only finitely many up to a given diameter.

The frequency module has originally been calculated by means of C∗-algebraic K-theory
[13, 19], but can also be obtained from simpler cohomological considerations [20]. For our
case, the result can be simplified, by a short calculation, as follows.

Fact 3. [13, 20] The frequency module of the Ammann-Beenker vertex set ΛAB is

FAB =
{k + `

√
2

8

∣

∣ k, ` ∈ Z, k + ` even
}

.

Thus, 8FAB is an index 2 submodule of Z[
√

2 ]. �

Since the window of ΛAB is a regular octagon, each cluster that contributes to the sum
in Eq. (11) occurs in either 8 or 16 orientations with the same frequency. Consequently,
the averaged shelling numbers a(r2) are elements of 8FAB, though we presently do not know
whether they generate the full frequency module or a subset thereof. This is consistent with
the findings of Table 1 and [8, Tab. 2], and establishes an interesting link between geometric
and topological properties of model sets [3, 19].

A similar treatment is possible for other examples, such as the tenfold symmetric rhombic
Penrose [8] and Tübingen triangle [6] tilings, or the twelvefold symmetric shield tiling [7].
However, it is clear that, for the standard model sets, the calculation becomes rather involved,
and we presently do not know how to determine the averaged shelling function via a generating
function such as (10) in closed form, or even whether that is the most promising way to
proceed. For physical applications, however, often the first few terms are sufficient, and they
can be calculated exactly from the projection method, see [8, 6, 7] for some tables and further
results.
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