Tin- and titanium-doped gamma-Fe2O3 (maghemite)

Helgason, Orn; Greneche, Jean-Marc; Berry, Frank J.; Morup, Steen and Mosselmans, Frederick (2001). Tin- and titanium-doped gamma-Fe2O3 (maghemite). Journal of Physics: Condensed Matter, 13(48) pp. 10785–10797.

DOI: https://doi.org/10.1088/0953-8984/13/48/305

Abstract

2.5% and 8% tin- and 8% titanium-doped gamma -Fe2O3 have been synthesized and examined by x-ray powder diffraction, EXAFS, electron microscopy and by Fe-57- and Sn-119-Mossbauer spectroscopy. The Sn- and Ti-K-edge EXAFS show that both tin and titanium adopt octahedral sites in the spinel related gamma -Fe2O3 structure. However, whereas tin substitutes for iron on one of the fully occupied sites, titanium adopts the octahedral site, which is only partially occupied. The Fe-57-Mossbauer spectra recorded in the presence of a longitudinal magnetic field of 2-8 T confirm that the tetravalent ions adopt the octahedral sites. The canting angles for both sublattices in gamma -Fe2O3 were determined from the in-field Mossbauer spectra. The Sn-119-Mossbauer spectra showed that the maximum hyperfine field sensed by the Sn4+ ions in gamma -Fe2O3 is about 2/3 of that observed in tin-doped Fe3O4 (magnetite).

Viewing alternatives

Metrics

Public Attention

Altmetrics from Altmetric

Number of Citations

Citations from Dimensions
No digital document available to download for this item

Item Actions

Export

About

Recommendations