The Open UniversitySkip to content
 

Element fractionation in the petrogenesis of ocean island basalts

Elliott, Timothy Richard (1992). Element fractionation in the petrogenesis of ocean island basalts. PhD thesis The Open University.

Full text available as:
[img]
Preview
PDF (Version of Record) - Requires a PDF viewer such as GSview, Xpdf or Adobe Acrobat Reader
Download (20MB) | Preview
Google Scholar: Look up in Google Scholar

Abstract

Analytical techniques have been developed to measure the very small [230ThP32Th] atomic ratios (3-8x10-6) typical of basaltic lavas using a single focussing mass spectrometer. Compared to conventional alpha-counting methods, the technique presented typically gives a 2-5 fold improvement in reproducibility of 230 Th/232Th ratios, and furthermore uses -5x less sample, has a simpler chemical prepartion and a data aquisition time -100x shorter.

The above technique was used in investigating a suite of historic (<1000a) basanites from La Palma, Canaries. The lavas have undergone significant post melt segregration processes, involving residence in deep (>4kbar) magma chambers, that are inferred to persist for at least 30ka. The basanites show geochemical variations related to differences in the degree of partial melting, that are estimated to be between 0.3-2%. Rare earth element (REE) modelling suggests clinopyroxene, rather than garnet control during melting, contrary to expectations from recent geophysical models (McKenzie & O'Nions, in press). The La Palma mantle source is inferred to be LREE enriched, K& Rb depleted, and shows many incompatible element ratios characteristic of 'himu' basalts (Weaver 1991). In contrast, the 206pb/204pb ratios of the La Palma basanites (19.6±0.05) are lower than the isotopically defined'high p' basalts (Zindler & Hart 1986) which suggests that the La Palma source is geochemically similar, but younger than a typical 'high t' source.

A suite of young (<10,000a) high MgO tholeiites from Iceland show order of magnitude variations in highly incompatible element concentrations that correlate with FeO contents. Variations within these lavas is primarily attributable to sampling of instantaneous melts from different depths within a dynamic melting column. However, additional correlations of radiogenic isotope ratios with major and trace element contents highlights mixing of various plume melts with some 20% mid-ocean ridge basalt, derived from melting of upper mantle material entrained during plume upwelling.

Item Type: Thesis (PhD)
Copyright Holders: 1991 The Author
Academic Unit/School: Faculty of Science, Technology, Engineering and Mathematics (STEM) > Environment, Earth and Ecosystem Sciences
Item ID: 57323
Depositing User: ORO Import
Date Deposited: 25 Oct 2018 12:41
Last Modified: 09 Jul 2019 02:00
URI: http://oro.open.ac.uk/id/eprint/57323
Share this page:

Download history for this item

These details should be considered as only a guide to the number of downloads performed manually. Algorithmic methods have been applied in an attempt to remove automated downloads from the displayed statistics but no guarantee can be made as to the accuracy of the figures.

Actions (login may be required)

Policies | Disclaimer

© The Open University   contact the OU