The efficient collection and long term storage of solar energy in the UK, using air as the working fluid

Thesis

How to cite:
Oreszczyn, Tadeusz (1985). The efficient collection and long term storage of solar energy in the UK, using air as the working fluid. PhD thesis The Open University.

For guidance on citations see FAQs.

© 1985 The Author

https://creativecommons.org/licenses/by-nc-nd/4.0/

Version: Version of Record

Link(s) to article on publisher’s website:
http://dx.doi.org/doi:10.21954/ou.ro.0000de24

Copyright and Moral Rights for the articles on this site are retained by the individual authors and/or other copyright owners. For more information on Open Research Online’s data policy on reuse of materials please consult the policies page.

oro.open.ac.uk
Tadeusz Oreszczyn

B.Sc. (Hons) Brunel

The efficient collection and long term storage of solar energy in the UK, using air as the working fluid

Thesis submitted for the degree of Doctor of Philosophy in Energy Research at the Open University, September 1984

Volume 2
CONTENTS

Volume 2

Nomenclature
References
Tables
Figures
Plates
Appendices

Appendix A: 'Sunstore' computer model.
Appendix B: Steady state computer models
Appendix C: The effect of thermal capacitance on the performance of solar collectors
Appendix D: 'TRANS', transient testing computer model.
Nomenclature

Chapter 2

A_C Collector area (m^2)

A_S Storage tank surface area (m^2)

c Appropriate specific heat ($J Kg^{-1} °C^{-1}$)

c_p Volume heat capacity at constant pressure ($J Kg^{-1} °C^{-1}$)

C_h Initial capital expenditure per house (£)

E_T Total (accumulated sum) of the radiation falling over a time period of one month on an inclined surface which is above the threshold radiation ($J m^{-2}$)

f Differential fuel inflation

F_h Fuel cost per year per house (£)

F_R Collector/heat-exchanger efficiency factor

F' Collector efficiency factor

i Discount rate

I_{th} Threshold solar irradiance ($W m^{-2}$)

K_h Repeated capital expenditure per house (£)

L Monthly total heating demand for space heating and hot water (J)

L_s Energy lost from storage tank during the month (J)

M_C Storage heat capacity ($J °C^{-1}$)

N Lifetime of hardware (years)

n Number of years

P_{VCh} Present value cost per house

Q Heat energy (J)

Q_N Net heat transferred to storage during the month (J)

Q_T Solar energy collected during the month (J)

R_h Running costs per year per house (£)

s Pebble shape factor

T_a Ambient temperature ($°C$)

T_{at} Ambient temperature averaged over periods when the radiation level is above the threshold ($°C$)

T_g Monthly average ground temperature ($°C$)

T_s Store temperature ($°C$)

\bar{T}_s Monthly average store temperature ($°C$)

T_{so} Store temperature at the beginning of the month ($°C$)
\(\Delta T \) Temperature change (°C)

\(t_m \) Total number of seconds in a month

\(t_t \) Total number of seconds collector is in operation in month, i.e. when radiation level is above threshold

\(U_L \) Collector overall loss coefficient (W m\(^{-2}\) °C\(^{-1}\))

\(U_S \) Storage tank heat loss coefficient (W m\(^{-2}\) °C\(^{-1}\))

\(V \) Volume (m\(^3\))

\(\rho \) Density (kgm\(^{-3}\))

\((\tau \alpha) \) Monthly average transmittance-absorptance product
Nomenclature

Chapter 3

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>A_C</td>
<td>Collector area (m^2)</td>
</tr>
<tr>
<td>P_R</td>
<td>Collector heat-exchanger efficiency factor</td>
</tr>
<tr>
<td>f</td>
<td>Fraction of monthly total demand met by solar energy</td>
</tr>
<tr>
<td>H_T</td>
<td>Monthly average daily radiation incident on the collector surface per unit area (Jm^{-2})</td>
</tr>
<tr>
<td>L</td>
<td>Monthly total heating demand for space heating and hot water (J)</td>
</tr>
<tr>
<td>N</td>
<td>Days in month</td>
</tr>
<tr>
<td>T_a</td>
<td>Monthly average ambient temperature ($°C$)</td>
</tr>
<tr>
<td>T_{ref}</td>
<td>An empirically derived reference temperature ($100° C$)</td>
</tr>
<tr>
<td>t_m</td>
<td>Total number of seconds in a month</td>
</tr>
<tr>
<td>U_L</td>
<td>Collector overall loss coefficient ($Wm^{-2} °C^{-1}$)</td>
</tr>
<tr>
<td>$\tau\alpha$</td>
<td>Monthly average transmittance-absorptance product</td>
</tr>
<tr>
<td>Nomenclature</td>
<td></td>
</tr>
<tr>
<td>--</td>
<td></td>
</tr>
<tr>
<td>Chapter 4</td>
<td></td>
</tr>
<tr>
<td>A Aperture area, or transparent frontal area of</td>
<td></td>
</tr>
<tr>
<td>collector (m²)</td>
<td></td>
</tr>
<tr>
<td>Cp Specific heat of transfer fluid at constant pressure</td>
<td></td>
</tr>
<tr>
<td>(J/kg-1 °C-1)</td>
<td></td>
</tr>
<tr>
<td>Dh Characteristic length (m)</td>
<td></td>
</tr>
<tr>
<td>F' Absorber plate (or collector) efficiency factor</td>
<td></td>
</tr>
<tr>
<td>FR Collector heat removal factor</td>
<td></td>
</tr>
<tr>
<td>g Acceleration of gravity (ms⁻²)</td>
<td></td>
</tr>
<tr>
<td>h₁ Convective heat transfer coefficient, duct top to heat transfer fluid</td>
<td></td>
</tr>
<tr>
<td>(W/m² °C⁻¹)</td>
<td></td>
</tr>
<tr>
<td>h₂ Convective heat transfer coefficient, duct base to heat transfer fluid</td>
<td></td>
</tr>
<tr>
<td>(W/m² °C⁻¹)</td>
<td></td>
</tr>
<tr>
<td>hr Radiative heat transfer coefficient (W/m² °C⁻¹)</td>
<td></td>
</tr>
<tr>
<td>h_w Wind heat transfer coefficient (W/m² °C⁻¹)</td>
<td></td>
</tr>
<tr>
<td>H Duct height (m)</td>
<td></td>
</tr>
<tr>
<td>I Equivalent normal solar irradiance (W/m²)</td>
<td></td>
</tr>
<tr>
<td>k Thermal conductivity (W/m⁻¹ °C⁻¹)</td>
<td></td>
</tr>
<tr>
<td>L Collector length (m)</td>
<td></td>
</tr>
<tr>
<td>m Mass flow rate of transfer fluid (Kg s⁻¹)</td>
<td></td>
</tr>
<tr>
<td>Nu Nussunt number</td>
<td></td>
</tr>
<tr>
<td>Pr Prandtl number</td>
<td></td>
</tr>
<tr>
<td>Qu Energy per unit time, useful (W)</td>
<td></td>
</tr>
<tr>
<td>Ra Rayleigh number</td>
<td></td>
</tr>
<tr>
<td>Re Reynolds number</td>
<td></td>
</tr>
<tr>
<td>T₁ Duct top, temperature (°C)</td>
<td></td>
</tr>
<tr>
<td>T₂ Duct base, temperature (°C)</td>
<td></td>
</tr>
<tr>
<td>T_a Ambient air-temperature (°C)</td>
<td></td>
</tr>
<tr>
<td>T_c Cover temperature (°C)</td>
<td></td>
</tr>
<tr>
<td>T_e Exit fluid temperature (°C)</td>
<td></td>
</tr>
<tr>
<td>T_i Inlet fluid temperature (°C)</td>
<td></td>
</tr>
<tr>
<td>T_m Mean fluid temperature (°C)</td>
<td></td>
</tr>
<tr>
<td>(Tₑ + Tᵢ)/2 (°C)</td>
<td></td>
</tr>
<tr>
<td>T_p Average absorber temperature (°C)</td>
<td></td>
</tr>
<tr>
<td>U_b Bottom loss heat transfer coefficient (W/m² °C⁻¹)</td>
<td></td>
</tr>
<tr>
<td>U_e Edge loss heat transfer coefficient (W/m² °C⁻¹)</td>
<td></td>
</tr>
<tr>
<td>U_L Collector overall heat transfer (loss) coefficient</td>
<td></td>
</tr>
<tr>
<td>(W/m² °C⁻¹)</td>
<td></td>
</tr>
</tbody>
</table>
\(U_t \) Top loss heat transfer coefficient (W m\(^{-2}\) °C\(^{-1}\))

\(V \) Wind velocity (ms\(^{-1}\))

\(W \) Collector width (m)

\(x \) Insulation thickness (m)

\(\alpha \) Absorptance of the collector absorber surface for solar radiation

\(\beta \) Volume thermal expansion coefficient (K\(^{-1}\))

\(\varepsilon_c \) Cover emissivity

\(\varepsilon_p \) Absorber plate emissivity

\(\eta \) Efficiency

\(\mu \) Absolute (dynamic) coefficient of viscosity (Kg m\(^{-1}\) s\(^{-1}\))

\(\rho \) Density (Kg m\(^{-3}\))

\(\tau \) Transmittance of the solar collector

\((\tau \alpha) \) The product of the absorptance of the collector plate and the transmittance of the cover for normal irradiance

\(\sigma \) Stefan-Boltzmann constant
Nomenclature
Chapter 5

A Aperture area, or transparent frontal area for collector (m^2)
A_c Collector area (m^2)
c_p Volume heat capacity at constant pressure (J/kg°C)
P' Absorber plate (or collector) efficiency factor
P" Collector flow factor
P_l Correction factor for partial shading of the collector
P_2 Correction factor for variation of \(\tau_a \) with the angle of incidence
P_3 Correction factor for variation in optical properties from normal for diffuse irradiance
P_R Collector heat removal factor
h_w Wind heat transfer coefficient (W/m^2°C)
I Equivalent normal solar irradiance (W/m^2)
I_b Direct solar irradiance in plane of collector (W/m^2)
I_d Diffuse solar irradiance in plane of collector (W/m^2)
I_m Measured total solar irradiation incident upon the aperture plane of the collector (W/m^2)
m Mass flow rate of transfer fluid (Kg s^{-1})
m_l Mass flow rate of leak (Kg s^{-1})
M Fluid capacity of collector (Kg)
(mc)_e Effective heat capacity of collector (J °C^{-1})
q Output power per unit aperture area conveyed by the heat transfer fluid (W/m^2)
Q_u Energy per unit time, useful (W)
(Q_u)_t Energy per unit time under transient conditions (W)
r Correlation coefficient
t Time (s)
T_a Ambient air temperature (°C)
T_b Average back plate temperature (°C)
T_e Exit fluid temperature (°C)
T_f Average temperature of the fluid in the collector (°C)
T_i Inlet fluid temperature (°C)
Measured fluid inlet temperature ($^\circ$C)
Mean fluid temperature ($T_e + T_i)/2$ ($^\circ$C)
Absorber plate temperature ($^\circ$C)
Mean absorber temperature ($^\circ$C)
Equivalent black body sky temperature ($^\circ$C)
Reduced temperature ($T_i - T_a)/I$ ($m^2 \circ C w^{-1}$)
Collector overall heat transfer (loss) coefficient ($Wm^{-2} \circ C^{-1}$)
Wind velocity (ms^{-1})
Efficiency
Product of the absorptance of the collector plate and the transmittance of the cover for normal irradiance.
Collector time constant under flow conditions (s)
Cut off time (s)
Effective transmittance absorptance product
Product of the absorptance and transmittance for normal irradiance
Time increment
Angle of incidence; degrees from normal
Nomenclature

Chapter 6

\(F_R \) Collector heat removal factor

\(h_{pc} \) Convection coefficient between absorber plate and cover (Wm\(^{-2}\)°C\(^{-1}\))

\(h_{rp-c} \) Radiation coefficient between absorber plate and cover (Wm\(^{-2}\)°C\(^{-1}\))

\(h_{rc-a} \) Radiation coefficient from the cover to sky (Wm\(^{-2}\)°C\(^{-1}\))

\(h_w \) Wind heat transfer coefficient. (Wm\(^{-2}\)°C\(^{-1}\))

\(I \) Equivalent normal solar irradiance (Wm\(^{-2}\))

\(I_{th} \) Threshold solar irradiance (Wm\(^{-2}\))

\(T_a \) Ambient air temperature (°C)

\(T_i \) Inlet fluid temperature (°C)

\(U \) Collector heat loss coefficient \(F'U_L \) (Wm\(^{-2}\)°C\(^{-1}\))

\(U_L \) Collector overall heat transfer (loss) coefficient (Wm\(^{-2}\)°C\(^{-1}\))

\(\varepsilon_t \) Thermal emissivity

\(\eta \) Efficiency steady state

\(\bar{\eta} \) Daily averaged efficiency

\(\eta_o \) Zero loss collector efficiency, \(F'(\alpha \tau) \)

\(\tau_s \) Solar transmissivity

\((\tau \alpha)\) Product of the absorptance and transmittance for normal irradiance
Nomenclature

Chapter 7

A Aspect ratio or area of main heater
a Accommodation coefficient
\bar{c} Average velocity of molecules (ms\(^{-1}\))
c\(_{p}\) Specific heat at constant pressure (J Kg\(^{-1}\) °C\(^{-1}\))
c\(_{v}\) Specific heat at constant volume (J Kg\(^{-1}\) °C\(^{-1}\))
d Molecular diameter (m)
D\(_{h}\) Hydraulic diameter (m)
g Acceleration of gravity (ms\(^{-2}\))
Gr Grashof number
h Combined heat transfer coefficient from absorber to cover (Wm\(^{-2}\) °C\(^{-1}\))
h' Heat transfer coefficient of material of known conductivity (Wm\(^{-2}\) °C\(^{-1}\))
h\(_{b}\) Heat transfer coefficient for flow across panel wall (Wm\(^{-2}\) °C\(^{-1}\))
h\(_{c}\) Heat transfer coefficient for flow across the inside of the panel due to convection and conduction (Wm\(^{-2}\) °C\(^{-1}\))
h\(_{p}\) Heat transfer coefficient for flow across panel (Wm\(^{-2}\) °C\(^{-1}\))
h\(_{r}\) Heat transfer coefficient for flow across the inside of the panel due to radiation (Wm\(^{-2}\) °C\(^{-1}\))
h\(_{s}\) Heat transfer coefficient for flow across standard insulation (Wm\(^{-2}\) °C\(^{-1}\))
k Thermal conductivity (Wm\(^{-1}\) °C\(^{-1}\))
L Linear dimension (m)
m Wall molecule mass (Kg)
m' Gas molecule mass (Kg)
M Mass of one mole (kg mol\(^{-1}\))
N\(_{A}\) Avogadro's number
Nu Nusselt number
p Gas pressure (Nm\(^{-2}\))
P\(_{c}\) Critical pressure when R\(_{a}\) = R\(_{a}\)\(_{c}\)
Pr Prandtl number
q Power dissipated in central heater (W)
\(Q \) Energy per unit time, rate of heat supply to main heater (W)

\(Q_p \) Rate of heat supply to panel from main heater (W)

\(r \) Specific gas constant (R/M)

\(R \) Gas constant

\(Ra \) Rayleigh number

\(Ra_c \) Critical Rayleigh number, for \(Ra < Ra_c \) no convection, \(Nu = 1 \)

\(Re \) Reynolds number

\(s \) Absorber plate to cover separation (m)

\(t \) Panel wall thickness (m)

\(T \) Average of plate and cover temperature (°C)

\(T_1 \) Inside panel temperature nearest to cold plate (°C)

\(T_2 \) Inside panel temperature nearest to main heater (°C)

\(T_g \) Guard ring temperature (°C)

\(T_i \) Temperature of main heater, also fluid inlet temperature (°C)

\(T_0 \) Temperature of cold plates (°C)

\(\alpha \) Thermal diffusivity (m² s⁻¹)

\(\beta \) Thermal volume expansion coefficient (= 1/T for a perfect gas), (K⁻¹)

\(\gamma \) \(c_p/c_v \)

\(\Delta \theta \) Hot plate temperature unbalance (\(T_i - T_g \)), (°C)

\(\Delta T \) Temperature difference across panel (°C)

\(\epsilon_1 \) Emissivity of surface at temperature \(T_1 \) (°C)

\(\epsilon_2 \) Emissivity of surface at temperature \(T_2 \) (°C)

\(\mu \) Viscosity (Pa s)

\(\nu \) Kinematic viscosity (\(\mu/\rho \)) (Pa s m³Kg⁻¹)

\(\rho \) Density (Kg m⁻³)

\(\sigma \) Stefan-Boltzmann constant (Wm⁻² K⁻⁴)

\(\lambda \) Mean free path (m)
REFERENCES

CHAPTER 1

[1] Elkington, J.

[2] Flood, M.

'No Deposit - No Return'. Addison-Wesley, Reading, Mass., USA, 1970.

[5] Brandt, W.
'North-South: a programme for survival'. The report of the independent commission on international development issues under the chairmanship of Willy Brandy, Pan 1980.
[6] Chapman, P.
'Fuels Paradise: Energy Options for Britain'.

'Solar thermal energy in Europe'. Vol. 3, D. Reidel

[8] Leach, G.
'A low energy strategy for the United Kingdom'.

Behrens W.W. III.
CHAPTER 2

[1] Leach, G.
'A low energy strategy for the United Kingdom'.

'Energy Technologies for the United Kingdom'.
Published by Her Majesty's Stationary Office, U.K., 1979.

[3] Raisman, J.M.
'The future for fossil fuels. A global perspective'.

'Energy inputs and outputs for nuclear power stations'. Research Report ERG 005, Open University, Milton Keynes, 1974.

[9] Lewis, C.W.

[10] Friedrich, F.J.

[12] Barrett, M. and Everett, R.
'Cost effectiveness of grouped solar heating schemes'. A joint project between the Built Environment Research Group, Polytechnic of Central London and Energy Consultative Unit, Milton Keynes Development Corporation, September 1977.

'Design and cost effectiveness of active solar space and water heating systems'. A report to ETSV, the Department of Energy contract No. ETSV - 5 - 1087, May 1982.

[14] Torrenti, R.

[17] Ashahina, T. and Kosaka, M.
'A thermal storage analysis on packed bed of alumina spheres'. Govt. Industrial Res., Nagoya 46, Japan.

[18] O'Callaghan, P.W.

[21] Flood, M.

[22] Taylor, G.
[23] Sweet, C.J.

[24] Todd, R.

[25] Ulla Save-Ofverholm

[26] Perers, B. and Roseen, R.

[27] Roseen, R. and Perers, B.
[28] Taylor, G.
'Village store'. Building Services, pp23-26, June 1981.

[29] Gleason, J.

[31] Radons, U.

[32] Lazzari, F. and Raffellini, G.
[33] Keller, L. and Bremer, P.
'Seasonal storage in a solar heating system',

[34] Makien, R and Lund, P.D.

[35] den Ouden, C.

[36] Vachaud, G. and Ausseur, J.
[37] Platell, O.B.

[38] Turrent, D. et.al.

[39] Krass, A.S. and La Viale, R.

[40] Simonson, J.R. and Coleman, J.D.

[41] Ward, I.C.
'A preliminary feasibility study into the use of solar energy to provide year-round heating for a factory unit'. 2nd International Solar Forum, pp483-508, Germany, 1978.
Horton, A. and Grove, S.

Jones, B.W.
'A solar power system (Prometheus) to provide 100 per cent of low-grade heat needs'. Applied Energy, 6, pp329-346, 1980.

Derrick, A. and Gillet, W.B.
'Recommendations for European solar collector test methods' for the Commission of the European Communities, 1980.

American society of heating, refrigerating and air-conditioning engineers.

van Galen, E.
[47] Duffie, J.A. and Beckman, W.A.

[49] Golsheskan, M.

[50] Lunde, P.J.

Sorenson, B.

Jones, B.W. and Oreszczyn, T.

Office of Technology Assessment (OTA), US Congress.

Mortimer, N.D., Jenkins, G., and Harrison, R.
[58] Symons, J.G. and Giani, R.

[59] Casper, D.A., Chapman, P.F. and Mortimer, N.D.

[60] Harrison, R., Jenkins, G. and Mortimer, N.D.

[61] Gartner, E.M. and Smith, M.A.

[62] Rogers, D.W.O.

[63] Littler, J. and Martin, C.
[64] Quigley, B., Murtagh, F. and Cash, J.

[65] Rassafi, M. et. al.

[66] Charlish, G.

[67] Margen, P.

[68] Chapman, P.

[69] Maw, R.
Polytechnic of Central London, Personal communication.
Andrews, D.C.F. and Lowe, R.J.

CHAPTER 3

[2] Everett, R.

[3] Chatfield, J.D.

[6] Leach, G.
CHAPTER 4

[1] Daniels, F. and Duffie, J.A.

'Solar Energy Today'. Published by UK-ISES, 19 Albermarle Street, London, 1981.

[7] Ford, B.

[10] Szokolay, S.V.
'Analytical predictions of liquid and air photovoltaic/thermal flat plate collector performance'.

[12] Newham, M.
'Dramatic breakthrough claimed in US solar research'.
Technology Week, No. 4, 27 February 1982.

[16] Potter, I.N.
[17] Oppenheim, D.

[18] Duffie, J.A. and Beckmann, W.A.

[20] Nussett, W. and Jurges, W.

'Effect of finite width on heat transfer and fluid flow about an inclined rectangular plate'. Transaction of the American Society of Mechanical

[23] Lloyd, J.R. and Moran, W.P.

[26] Sparrow, E.M. and Tien, K.K.
[27] Oliphant, M.V.

[28] Kind, R.J., Gladstone, D.H. and Moizer, A.D.

[29] Parker, B.F.

[31] Tan, H.M. and Charters, W.W.S.

[33] De Ron, A.J.

[34] Mather Jr., G.R.

Koizumi, H., Kawasla, K., Matsui, K. and Ariga, T.
'New air heating collector design and performance'.

Jenkins, J.P. and Hill, J.E.
'Testing of water-heating collectors according to ASHRAE '93-77'. Sun: Mankind's future source of

Garg, H.P., Rom Chandri and Usha Rani

Yusoff, M. and Close, D.J.
'Transient studies of solar air heaters'. Interregional symposium on solar energy for develop-
ment, Tokyo, Japan, 5-10 February 1979.

Jones, B.W. and Oreszcyzn, T.
'The effect of thermal capacitance on the performance of solar collectors'. International Conference 'Solar Energy at High Latitudes', Napier College, Edinburgh, Scotland, 4-6 September 1984
REFERENCES CHAPTER 5

[2] ASHRAE

[10] Mason, J.J. and Jones, P.C.

[12] Rohsenow, W.M. and Hartnett, J.P.

[16] Erb, R.A.

[17] Erb, R.A.

[22] Aranovitch, E. and Roumengous, C.

[23] Cheema, L.S. and Mannan, K.D.

[26] McAdams, W.C.
[27] Parker, B.F., Colliver, D.G. and Walton, L.R.

[28] Talarek, H.D.

[31] Klein, S., Duffie, J.A. and Beckman, W.A.
[32] Taylor, B.E.,
'The determination of the steady state performance of solar collectors under transient irradiation,
Communication to the British Standards Institution 1977

[33] Rogers, B.A.
'Transient testing of collectors'

[34] Posorski, R., Mabreyer, K., Schroer, R. and Stein, H.J.

[35] Rogers, B.A. Solar Energy Unit, Cardiff University, Personal communication, 17th October 1983.

[36] Emery, M, and Rogers, B.A.,
[37] Camm, D.M., Richards, S.L.F. and Albach, G.G.,
'A large area solar simulator construction and
performance' Solar World Forum, Proceedings of the

[38] Krusi, P. and Schmid, R.,
'The CSI 1000W lamp as a source for solar radiation
simulation', Solar Energy, Vol. 30, No.5, pp 455-462,

[39] Gillett, W.B., Rawcliffe, R.W. and Green, A.A.,
'Solar collector testing using solar simulators'.
Proceedings of conference on solar energy codes of
practice and test procedures, U.K. ISES, pp 57-71,
April 1980.

[40] Green, A.A., Kenna, J.P. and Rawcliffe, R.W.
'The influence of wind speed on flat plate solar
collector performance'. IEE Conference Proceedings

[41] Oliphant, M.V.
'Measurement of wind speed distributions across a
solar collector' Solar Energy, Vol. 24, pp403-405,
1979.
[42] Green, A.A.

[43] Kraus, K., Hahne, E., and Sohns, J.,

[44] Symons, J.G.

[45] Christie, E.A.,

[46] Smith, C.C., and Weiss, T.A.,

[48] Jenkins, J.P. and Hill, J.E.
'A comparison of test results for flat-plate water-heating solar, collectors using BSE and ASHRAE procedures',

[49] Shewen, E.C., and Hollands, K.G.T.,

[50] Cooper, P.I., Christie, E.A., and Dunkle, R.V.,

[51] Centeno, V.M.
Taylor, P.J.,
'Performance of selective and non-selective solar thermal absorbers in a working installation.'
REFERENCES CHAPTER 6

High Performance Collectors

[1] Marshall, R.H.,
'A comparison of thermal storage devices for combined space heating and domestic water system', p269, Solar World Congress, 1983, Perth.

[6] Jorgensen, G.,

[7] 3M Decorative Products,
Nextel Information Sheet,
3M House, P.O. Box 1, Bracknell, Berkshire.

[8] Jordan R.C.,
'Low temperature applications of solar energy',

'Maxorb' Section 9:11, Solar Age Magazine, June 1980.

[11] Butler B.L. and Classen, R.S.
[12] Lofving, S.

[13] Taylor, P.J.,

'High Selective absorbers utilizing electro-deposited black chrome'. AES Symposium.

'Deposition of transparent heat reflecting coatings of metal oxides using reactive planar magnetron sputtering of a Metal/Alloy', presented at Coatings on Glass, Geneva, 1980.

[17] Owens, P.
'Deposition of transparent heat reflecting coatings of metal oxides using reactive planar magnetron sputtering of a Metal/Alloy', Dept. of Physics, University of Technology, Loughborough, Leicester.

[21] Stahl, W., Wittwer, V. and Goetzberger, A.

[22] Wu Jia-qing et al

[23] Dr.Helmut Freyholdt, Personal communication, AMI-SA, 120, Avenue D'Echallens, CH-1004, Lausonne, Switzerland. 1982.
507, West Elm St., Tyler, Tx. 75702, U.S.A.

Solar Age Product Catalogue, Section 13.34, June 1980.

[26] Dancette, M.,

[27] Turrent, D. and Backer, N.

[28] Bhargava, A.K. et al
[29] Johnson, P.D.,

[31] McVeigh, J.C.

[33] Pereira, C.
[34] Szego, G. and Frazer, M.

[35] Karlsson, B., Larsson, M., and Brunstrom, C.,

[37] Rassafi, M. et al

[38] Klein, S.A., Duffie, J.A. and Beckman, W.A.

Information leaflet, AGAAB Thermia–Verken, P.O. Box 150, 5-67101, ARVIKA, Sweden.

REFERENCES CHAPTER 7

[1] Harding, G.L. and Window, B.,

Buchberg, H., Catton, I and Edwards, D.K.

Thompson, H.A. and Sagin, H.H.,

Van de Vate, J.F. and Plomp, A.,

Marshall, K.N. et al

Hollands, K.G.T.

Cane, R.L.D. et al,
[12] Smart, D.R. et al,

[13] British Standards Institution
'Methods for determining thermal insulating properties with definitions of thermal insulating terms', BS874 : November 1973.

[14] National Physical Laboratory,

[15] Gilbo, C.E.,

[16] Woodside, W. and Wilson, A.G.
[17] Redfoot, H.L. et al
'Glazing solar collectors with acrylic and double walled polycarbonate plastics'

[18] Duffie, J.A. and Beckman, W.A.

[19] Larson, D.C.
TABLE 2.1 Energy input by fuel and sector in Petajoules for U.K. low grade heat needs (~80°C) for 1976 and 2025 as predicted by Leach [1]

<table>
<thead>
<tr>
<th>Sector</th>
<th>Total 1976</th>
<th>Total 2025</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Solid</td>
<td>Liquid</td>
</tr>
<tr>
<td>Industry</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Space and Water</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Iron & Steel</td>
<td>1976</td>
<td>17.2</td>
</tr>
<tr>
<td></td>
<td>2025</td>
<td>32.8</td>
</tr>
<tr>
<td>Engineering and other metal trades</td>
<td>1976</td>
<td>0.8</td>
</tr>
<tr>
<td></td>
<td>2025</td>
<td>0.4</td>
</tr>
<tr>
<td>Chemical & Allied Trades</td>
<td>1976</td>
<td>3.2</td>
</tr>
<tr>
<td></td>
<td>2025</td>
<td>4.2</td>
</tr>
<tr>
<td>Textiles, Leather & Clothing</td>
<td>1976</td>
<td>5.1</td>
</tr>
<tr>
<td></td>
<td>2025</td>
<td>7.6</td>
</tr>
<tr>
<td>Paper, Printing & Stationary</td>
<td>1976</td>
<td>1.9</td>
</tr>
<tr>
<td></td>
<td>2025</td>
<td>1.7</td>
</tr>
<tr>
<td>Building Materials</td>
<td>1976</td>
<td>0.9</td>
</tr>
<tr>
<td></td>
<td>2025</td>
<td>1.9</td>
</tr>
<tr>
<td>Other trades</td>
<td>1976</td>
<td>7.8</td>
</tr>
<tr>
<td></td>
<td>2025</td>
<td>19.5</td>
</tr>
<tr>
<td>Process</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Agricultural</td>
<td>1976</td>
<td>0.9</td>
</tr>
<tr>
<td></td>
<td>2025</td>
<td>-</td>
</tr>
<tr>
<td>Domestic</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Space</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Water</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Commercial</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Space</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Water</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>TOTAL</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Substance</td>
<td>Density ρ (kg/m3)</td>
<td>Specific heat capacity c_p (J/kg K)</td>
</tr>
<tr>
<td>-------------------</td>
<td>---------------------------</td>
<td>--------------------------------------</td>
</tr>
<tr>
<td>Steam & Molten salt & Aluminum</td>
<td>Zero voids, MgO</td>
<td>Zero voids, MgO</td>
</tr>
</tbody>
</table>
TABLE 2.2 (Continued)

<table>
<thead>
<tr>
<th>Material</th>
<th>Density</th>
<th>Porosity</th>
<th>Cost</th>
<th>Price</th>
</tr>
</thead>
<tbody>
<tr>
<td>Concrete</td>
<td>2.74</td>
<td>0.92</td>
<td>2.26</td>
<td>38-56</td>
</tr>
<tr>
<td>Marble</td>
<td>2.70</td>
<td>0.75</td>
<td>2.39</td>
<td>350-430</td>
</tr>
<tr>
<td>Granite</td>
<td>2.70</td>
<td>0.796</td>
<td>2.12</td>
<td></td>
</tr>
<tr>
<td>Sulphur Liquid</td>
<td>2.1</td>
<td>1.0</td>
<td>2.1</td>
<td>445</td>
</tr>
<tr>
<td>Rock</td>
<td>2.5</td>
<td>0.84</td>
<td>2.09</td>
<td></td>
</tr>
<tr>
<td>Concrete (Cost)</td>
<td>2.4</td>
<td>0.8</td>
<td>1.9</td>
<td></td>
</tr>
<tr>
<td>Brick</td>
<td>2.23</td>
<td>0.84</td>
<td>1.9</td>
<td></td>
</tr>
<tr>
<td>Paraffin Oil (30% void)</td>
<td>0.8</td>
<td>2.2</td>
<td>1.8</td>
<td></td>
</tr>
<tr>
<td>Olive Oil</td>
<td>0.9</td>
<td>2.0</td>
<td>1.8</td>
<td>=10</td>
</tr>
<tr>
<td>Silica (SiO₂)</td>
<td>2.7</td>
<td>0.84</td>
<td>2.3</td>
<td>=300</td>
</tr>
<tr>
<td>Pebbles</td>
<td>3.0</td>
<td>1.0</td>
<td>3.0</td>
<td></td>
</tr>
<tr>
<td>Basalt</td>
<td>3.2</td>
<td>0.9</td>
<td>2.9</td>
<td></td>
</tr>
<tr>
<td>Sulphur (Rhombic)</td>
<td>2.1</td>
<td>0.7</td>
<td>1.5</td>
<td>119</td>
</tr>
<tr>
<td>Sodium</td>
<td>0.95</td>
<td>0.963</td>
<td>0.95</td>
<td>371</td>
</tr>
<tr>
<td>Mitec (Molten salt)</td>
<td>-</td>
<td>1.55</td>
<td>1.55</td>
<td>590</td>
</tr>
<tr>
<td>Draw salt (Molten salt)</td>
<td>-</td>
<td>1.55</td>
<td>250</td>
<td>590</td>
</tr>
<tr>
<td>Dry earth</td>
<td>1.26</td>
<td>0.8</td>
<td>1.0</td>
<td></td>
</tr>
</tbody>
</table>
TABLE 2.3 Basic Prometheus configuration to heat 100 houses

<table>
<thead>
<tr>
<th>Store</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>length</td>
<td>280 m</td>
</tr>
<tr>
<td>width</td>
<td>10 m</td>
</tr>
<tr>
<td>height</td>
<td>4 m</td>
</tr>
<tr>
<td>volume</td>
<td>11200 m³</td>
</tr>
<tr>
<td>storage material pebbles, density</td>
<td>1600 kg m⁻³</td>
</tr>
<tr>
<td>storage material pebbles; specific heat capacity</td>
<td>837 J kg⁻¹°C⁻¹</td>
</tr>
<tr>
<td>store insulation; thickness</td>
<td>0.6 m</td>
</tr>
<tr>
<td>store insulation; thermal conductivity</td>
<td>0.036 Wm⁻²°C⁻¹</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Collector</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>area</td>
<td>2,900 m²</td>
</tr>
<tr>
<td>heat transfer factor (F_R)</td>
<td>0.9</td>
</tr>
<tr>
<td>overall heat loss coefficient</td>
<td>1.0 Wm⁻²°C⁻¹</td>
</tr>
<tr>
<td>optical efficiency averaged over useful incident angles (τ_0)</td>
<td>0.8</td>
</tr>
<tr>
<td>Item</td>
<td>Description</td>
</tr>
<tr>
<td>------</td>
<td>-------------</td>
</tr>
<tr>
<td>1800</td>
<td>Energy input to cost but not included on site construction</td>
</tr>
<tr>
<td>500</td>
<td>Insulation</td>
</tr>
<tr>
<td>440</td>
<td>Collector</td>
</tr>
<tr>
<td>1200</td>
<td>Transportation</td>
</tr>
<tr>
<td>155</td>
<td>Shingle, including transport</td>
</tr>
<tr>
<td>2270</td>
<td>Glass fibre</td>
</tr>
<tr>
<td>1800</td>
<td>Concrete sections</td>
</tr>
<tr>
<td>90</td>
<td>Concrete -</td>
</tr>
<tr>
<td>103</td>
<td>Asphalt -</td>
</tr>
</tbody>
</table>

TABLE 2.4 Inventory, energy and economic of Prometheus (as described in Table 2.3)
TABLE 2.5 Present value of the costs per house of 3 space and water heating systems, N = 45 years, \(n_1 = 15 \) years, \(n_2 = 30 \) years. Domestic space and water heating requirement = 27.5 G J/yr, costs in £ 1980.

<table>
<thead>
<tr>
<th></th>
<th>Prometheus</th>
<th>Gas</th>
<th>Electricity (Economy 7)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(C_h/£)</td>
<td>5700</td>
<td>500</td>
<td>0</td>
</tr>
<tr>
<td>(K_h/£)</td>
<td>0</td>
<td>500</td>
<td>600</td>
</tr>
<tr>
<td>(F_h/£ \text{ yr}^{-1})</td>
<td>18</td>
<td>117</td>
<td>146</td>
</tr>
<tr>
<td>(R_h/£ \text{ yr}^{-1})</td>
<td>11</td>
<td>24</td>
<td>0</td>
</tr>
</tbody>
</table>

\[
i = 0.05 \quad f = 0.04 \quad 6600 \quad 6000 \quad 6300
\]

\[
\text{PVCh} \quad i = 0 \quad f = 0.04 \quad 8500 \quad 17800 \quad 20200
\]

\[
\text{PVCh} \quad i = 0 \quad f = 0.02 \quad 7500 \quad 11700 \quad 12500
\]
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Collector type</td>
<td>Flat plate</td>
<td>Evacuated</td>
<td>Concentrating</td>
<td>High</td>
</tr>
<tr>
<td></td>
<td>selective</td>
<td>tube collector</td>
<td>collector</td>
<td>performance</td>
</tr>
<tr>
<td>Collector area /m²</td>
<td>2100</td>
<td>4600</td>
<td>14000</td>
<td>2800</td>
</tr>
<tr>
<td>Storage volume /m³</td>
<td>7500</td>
<td>17700</td>
<td>38500</td>
<td>11200</td>
</tr>
<tr>
<td>Insulation thickness/m</td>
<td>1.0</td>
<td>0.4</td>
<td>0.3</td>
<td>0.6</td>
</tr>
<tr>
<td>Operating temperature of store °C</td>
<td>72-42</td>
<td>95-60</td>
<td>70-30</td>
<td>130-30</td>
</tr>
<tr>
<td>Number of houses heated by system</td>
<td>50</td>
<td>300</td>
<td>400</td>
<td>100</td>
</tr>
<tr>
<td>Energy consumption GJ/annum per house</td>
<td>32.4</td>
<td>25</td>
<td>54</td>
<td>27.5</td>
</tr>
<tr>
<td>Cost of collectors £1980/m²</td>
<td>60</td>
<td>64</td>
<td>64</td>
<td>72</td>
</tr>
<tr>
<td>Cost of store £1980/m³</td>
<td>16</td>
<td>11</td>
<td>10</td>
<td>26</td>
</tr>
<tr>
<td>Collector area/Storage volume (m²/m³)</td>
<td>0.28</td>
<td>0.26</td>
<td>0.36</td>
<td>0.25</td>
</tr>
<tr>
<td>Total system capital cost £1980</td>
<td>322900</td>
<td>659000</td>
<td>1740000</td>
<td>570000</td>
</tr>
<tr>
<td>Collector area required to heat type A5 house (27.5 GJ/annum)/m²</td>
<td>35.7</td>
<td>16.9</td>
<td>17.8</td>
<td>28</td>
</tr>
<tr>
<td>Storage volume required for type A5 house /m³</td>
<td>127</td>
<td>65</td>
<td>49</td>
<td>112</td>
</tr>
<tr>
<td>Cost per A5 house/£1980</td>
<td>5480</td>
<td>2416</td>
<td>2215</td>
<td>5700</td>
</tr>
</tbody>
</table>

[] Chapter 2 reference numbers
<table>
<thead>
<tr>
<th>Store temperature rise/(°C)</th>
<th>Cost/£1982 per Kwh recovered energy seasonal storage</th>
</tr>
</thead>
<tbody>
<tr>
<td>Steel tank</td>
<td>80</td>
</tr>
<tr>
<td>Pit storage</td>
<td>50</td>
</tr>
<tr>
<td>Rock cavern</td>
<td>70</td>
</tr>
<tr>
<td>Storage in clay</td>
<td>12</td>
</tr>
<tr>
<td>Multiple well systems in rock</td>
<td>50</td>
</tr>
<tr>
<td>Aquifers</td>
<td>15</td>
</tr>
<tr>
<td>Prometheus (pebble bed, using data from Table 2.6)</td>
<td>100</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Name</th>
<th>Location of Store/or Centre of Study</th>
<th>Design Study or Constructed</th>
<th>Storage Material</th>
<th>Number of Houses Per Store</th>
<th>% of Annual House Heating Supplied by System</th>
<th>Cost Per House £</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lambohov, Sweden</td>
<td></td>
<td>Constructed</td>
<td>Water</td>
<td>56</td>
<td>100</td>
<td>27 000</td>
</tr>
<tr>
<td>Inglestad, Sweden</td>
<td></td>
<td>Constructed</td>
<td>Water</td>
<td>52</td>
<td>50</td>
<td>19 320</td>
</tr>
<tr>
<td>Studsvik, Sweden</td>
<td></td>
<td>Design Study</td>
<td>Water</td>
<td>400</td>
<td>93</td>
<td>5 150</td>
</tr>
<tr>
<td>Lyckebo, Sweden</td>
<td></td>
<td>Design Study</td>
<td>Water</td>
<td>500</td>
<td>100</td>
<td>10 500</td>
</tr>
<tr>
<td>Arizona, USA</td>
<td></td>
<td>Design Study</td>
<td>Water</td>
<td>250</td>
<td>100</td>
<td>3 012</td>
</tr>
<tr>
<td>Northampton, USA</td>
<td></td>
<td>Design Study</td>
<td>Solar Pond</td>
<td>10 000</td>
<td>100</td>
<td>6 000</td>
</tr>
<tr>
<td>Sussex, UK</td>
<td></td>
<td>Design Study</td>
<td>Solar Pond</td>
<td>100</td>
<td>100</td>
<td>10 000</td>
</tr>
<tr>
<td>City University, London, UK</td>
<td></td>
<td>Design Study</td>
<td>Water</td>
<td>100</td>
<td>78</td>
<td>4 000</td>
</tr>
<tr>
<td>ERR, UK</td>
<td></td>
<td>Design Study</td>
<td>Water</td>
<td>300</td>
<td>100</td>
<td>2 416</td>
</tr>
<tr>
<td>PCL, UK</td>
<td></td>
<td>Design Study</td>
<td>Water</td>
<td>50</td>
<td>100</td>
<td>5 480</td>
</tr>
</tbody>
</table>
TABLE 3.1 Thermal Characteristics of Basic Type AO House

<table>
<thead>
<tr>
<th>Component</th>
<th>Area A (m²)</th>
<th>U-value (Wm⁻²°C⁻¹)</th>
<th>UA (W°C⁻¹)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Wall</td>
<td>88.5</td>
<td>1.0</td>
<td>88.5</td>
</tr>
<tr>
<td>Roof</td>
<td>48.6</td>
<td>0.6</td>
<td>29.2</td>
</tr>
<tr>
<td>Floor</td>
<td>48.6</td>
<td>0.5</td>
<td>24.3</td>
</tr>
<tr>
<td>Window</td>
<td>15.0</td>
<td>5.5</td>
<td>82.5</td>
</tr>
<tr>
<td>Total fabric specific loss</td>
<td></td>
<td></td>
<td>224 W°C⁻¹</td>
</tr>
<tr>
<td>Ventilation specific loss</td>
<td></td>
<td></td>
<td>80 W°C⁻¹</td>
</tr>
<tr>
<td>Total house specific loss</td>
<td></td>
<td></td>
<td>304 W°C⁻¹</td>
</tr>
</tbody>
</table>
TABLE 3.2 Average weather data (1969-1977) for Kew, London, Latitude 51°N

<table>
<thead>
<tr>
<th>Month</th>
<th>Days in month</th>
<th>Solar radiation on a South-facing vertical surface (KWh/m²/month)</th>
<th>Solar radiation on a South-facing surface 30° to horizontal (KWh/m²/month)</th>
<th>Ambient Temperature (°C)</th>
<th>Degree days baseline 15.5°C (°C)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Jan</td>
<td>31</td>
<td>28</td>
<td>25.2</td>
<td>5.2</td>
<td>346</td>
</tr>
<tr>
<td>Feb</td>
<td>28</td>
<td>42</td>
<td>45</td>
<td>4.6</td>
<td>304</td>
</tr>
<tr>
<td>March</td>
<td>31</td>
<td>74</td>
<td>91</td>
<td>5.7</td>
<td>282</td>
</tr>
<tr>
<td>April</td>
<td>30</td>
<td>75</td>
<td>115</td>
<td>8.2</td>
<td>197</td>
</tr>
<tr>
<td>May</td>
<td>31</td>
<td>87</td>
<td>146</td>
<td>11.8</td>
<td>113</td>
</tr>
<tr>
<td>June</td>
<td>30</td>
<td>90</td>
<td>166</td>
<td>14.9</td>
<td>-</td>
</tr>
<tr>
<td>July</td>
<td>31</td>
<td>84</td>
<td>150</td>
<td>17.2</td>
<td>-</td>
</tr>
<tr>
<td>Aug</td>
<td>31</td>
<td>78</td>
<td>123</td>
<td>16.8</td>
<td>-</td>
</tr>
<tr>
<td>Sept</td>
<td>30</td>
<td>72</td>
<td>95</td>
<td>13.9</td>
<td>56</td>
</tr>
<tr>
<td>Oct</td>
<td>31</td>
<td>59</td>
<td>66</td>
<td>10.8</td>
<td>132</td>
</tr>
<tr>
<td>Nov</td>
<td>30</td>
<td>39</td>
<td>37</td>
<td>6.7</td>
<td>256</td>
</tr>
<tr>
<td>Dec</td>
<td>31</td>
<td>25</td>
<td>22</td>
<td>5.3</td>
<td>333</td>
</tr>
</tbody>
</table>
TABLE 3.3 Thermal characteristics of new houses with different levels of insulation

<table>
<thead>
<tr>
<th>House type</th>
<th>Insulation level</th>
<th>Total house specific loss (W^0C^{-1})</th>
<th>Net annual space and water heating demand (GJ)</th>
</tr>
</thead>
<tbody>
<tr>
<td>A0</td>
<td>Basic (1975 Building Regs.)</td>
<td>304</td>
<td>46.4</td>
</tr>
<tr>
<td>A1</td>
<td>A0 + orientate house north-south</td>
<td>304</td>
<td>41.7</td>
</tr>
<tr>
<td>A2</td>
<td>A1 + 50 mm loft insulation (100 mm total)</td>
<td>291</td>
<td>39.5</td>
</tr>
<tr>
<td>A3</td>
<td>A2 + fill cavity with fibre</td>
<td>255</td>
<td>33.7</td>
</tr>
<tr>
<td>A4</td>
<td>A3 + 50 mm loft insulation (150 mm total)</td>
<td>251</td>
<td>33.0</td>
</tr>
<tr>
<td>A5</td>
<td>A4 + extra layer of glazing (i.e. double)</td>
<td>213</td>
<td>27.5</td>
</tr>
<tr>
<td>A6</td>
<td>A5 + cavity increased to 100 mm</td>
<td>186</td>
<td>23.5</td>
</tr>
<tr>
<td>A7</td>
<td>A6 + 25 mm floor edge insulation</td>
<td>182</td>
<td>22.7</td>
</tr>
<tr>
<td>A8</td>
<td>A7 + all windows on south side</td>
<td>182</td>
<td>20.2</td>
</tr>
<tr>
<td>A9</td>
<td>A8 + 100 mm of loft insulation (250 mm total)</td>
<td>177</td>
<td>19.7</td>
</tr>
<tr>
<td>A10</td>
<td>A9 + extra layer of glazing (i.e. triple)</td>
<td>164</td>
<td>18.4</td>
</tr>
<tr>
<td>A11</td>
<td>A10 + cavity increased to 200 mm</td>
<td>150</td>
<td>16.7</td>
</tr>
</tbody>
</table>
TABLE 3.4 Thermal characteristics of Basic Type BO house

<table>
<thead>
<tr>
<th>Component</th>
<th>Area A (m²)</th>
<th>U-value (Wm⁻²°C⁻¹)</th>
<th>UA (W°C⁻¹)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Wall</td>
<td>73.9</td>
<td>1.0</td>
<td>73.9</td>
</tr>
<tr>
<td>Roof</td>
<td>41.2</td>
<td>0.6</td>
<td>24.7</td>
</tr>
<tr>
<td>Floor</td>
<td>41.2</td>
<td>0.5</td>
<td>20.6</td>
</tr>
<tr>
<td>Window</td>
<td>13.3</td>
<td>5.5</td>
<td>73.2</td>
</tr>
<tr>
<td>Total fabric specific loss</td>
<td></td>
<td>192 W°C⁻¹</td>
<td></td>
</tr>
<tr>
<td>Ventilation specific loss</td>
<td></td>
<td>68 W°C⁻¹</td>
<td></td>
</tr>
<tr>
<td>Total house specific loss</td>
<td></td>
<td>260 W°C⁻¹</td>
<td></td>
</tr>
<tr>
<td>House type</td>
<td>Insulation level</td>
<td>Total house specific loss (W·°C⁻¹)</td>
<td>Net annual space heating demand (GJ)</td>
</tr>
<tr>
<td>------------</td>
<td>-----------------</td>
<td>-----------------------------------</td>
<td>-----------------------------------</td>
</tr>
<tr>
<td>B0</td>
<td>Basic (average UK housing stock)</td>
<td>260</td>
<td>34.9</td>
</tr>
<tr>
<td>B1</td>
<td>B0 + 50 mm of loft insulation (100 mm total)</td>
<td>249</td>
<td>33.1</td>
</tr>
<tr>
<td>B2</td>
<td>B1 + fibre-fill cavity (50 mm)</td>
<td>219</td>
<td>28.3</td>
</tr>
<tr>
<td>B3</td>
<td>B2 + 50 mm of loft insulation (150 mm total)</td>
<td>215</td>
<td>23.1</td>
</tr>
<tr>
<td>B4</td>
<td>B3 + extra layer of glazing (i.e. double)</td>
<td>182</td>
<td>21.7</td>
</tr>
<tr>
<td>B5</td>
<td>B4 + extra layer of glazing (i.e. triple)</td>
<td>170</td>
<td>19.6</td>
</tr>
<tr>
<td>B6</td>
<td>B5 + 100 mm external wall insulation</td>
<td>156</td>
<td></td>
</tr>
<tr>
<td>Column</td>
<td>1</td>
<td>2</td>
<td>3</td>
</tr>
<tr>
<td>--------</td>
<td>-----</td>
<td>-----</td>
<td>-----</td>
</tr>
<tr>
<td>21 June 1983</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Column</td>
<td>1209</td>
<td>67.5</td>
<td>116</td>
</tr>
<tr>
<td>25 June 1983</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Column</td>
<td>1252</td>
<td>64.7</td>
<td>632</td>
</tr>
<tr>
<td>26 June 1983</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Column</td>
<td>1243</td>
<td>63.3</td>
<td>575</td>
</tr>
<tr>
<td>5 July 1983</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Column</td>
<td>1210</td>
<td>63.4</td>
<td>566</td>
</tr>
<tr>
<td>18 Aug. 1983</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Column</td>
<td>1243</td>
<td>60.1</td>
<td>658</td>
</tr>
<tr>
<td>COLUMN INDEX</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1. Time (hrs : min)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2. Mass flow rate (kg hr⁻¹)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3. Total insolation (W/m²)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4. Air temperature rise passing through collector (Tₐ - Tₛ) (°C)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5. Ambient air temperature (°C)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6. Inlet air temperature (°C)</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Outlier temperature (°C)
Absorber temperature (°C)
Wind speed (ms⁻¹)
Efficiency (n)
Collector temperature (Tₐ - Tₛ)/Tₛ
<table>
<thead>
<tr>
<th>Test No.</th>
<th>Date</th>
<th>Time of test</th>
<th>Air mass flow rate</th>
<th>Air temp. at inlet</th>
<th>Air temp. at outlet</th>
<th>Air temp. increase $T_e - T_i$</th>
<th>Ambient Temp.</th>
<th>Total irradiance in plate of collector I_m</th>
<th>Collector efficiency</th>
<th>Wind speed</th>
<th>Absorber Temp.</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>21/6/83</td>
<td>1344-1354</td>
<td>65.5</td>
<td>51.1</td>
<td>66.0</td>
<td>14.9</td>
<td>21.1</td>
<td>788</td>
<td>0.0409</td>
<td>43.4</td>
<td>1.6</td>
</tr>
<tr>
<td>2</td>
<td>25/6/83</td>
<td>1434-1443</td>
<td>59.6</td>
<td>73.2</td>
<td>83.5</td>
<td>10.3</td>
<td>22.1</td>
<td>737</td>
<td>0.0745</td>
<td>29.2</td>
<td><0.4</td>
</tr>
<tr>
<td>3</td>
<td>26/6/83</td>
<td>1123-1132</td>
<td>79.1</td>
<td>22.9</td>
<td>39.6</td>
<td>16.7</td>
<td>22.9</td>
<td>730</td>
<td>0.0000</td>
<td>63.4</td>
<td><0.4</td>
</tr>
<tr>
<td>4</td>
<td>5/7/83</td>
<td>1151-1200</td>
<td>61.9</td>
<td>75.1</td>
<td>84.3</td>
<td>9.2</td>
<td>27.7</td>
<td>745</td>
<td>0.0684</td>
<td>26.8</td>
<td><0.4</td>
</tr>
<tr>
<td>5</td>
<td>19/8/83</td>
<td>1235-1244</td>
<td>64.7</td>
<td>60.1</td>
<td>69.9</td>
<td>9.8</td>
<td>28.6</td>
<td>624</td>
<td>0.0543</td>
<td>33.1</td>
<td>1.5</td>
</tr>
<tr>
<td>6</td>
<td>19/8/83</td>
<td>1209-1218</td>
<td>63.9</td>
<td>59.9</td>
<td>68.6</td>
<td>8.7</td>
<td>27.5</td>
<td>614</td>
<td>0.0567</td>
<td>31.7</td>
<td>2.3</td>
</tr>
<tr>
<td>7</td>
<td>19/8/83</td>
<td>1343-1352</td>
<td>63.8</td>
<td>76.1</td>
<td>80.7</td>
<td>4.6</td>
<td>28.8</td>
<td>583</td>
<td>0.0872</td>
<td>17.6</td>
<td>2.2</td>
</tr>
<tr>
<td>8</td>
<td>19/8/83</td>
<td>1430-1439</td>
<td>63.8</td>
<td>79.7</td>
<td>83.1</td>
<td>3.4</td>
<td>29.8</td>
<td>572</td>
<td>0.0938</td>
<td>13.3</td>
<td>1.6</td>
</tr>
<tr>
<td>9</td>
<td>18/8/83</td>
<td>1142-1151</td>
<td>69.1</td>
<td>24.9</td>
<td>42.0</td>
<td>17.1</td>
<td>25.2</td>
<td>667</td>
<td>-0.0005</td>
<td>62.1</td>
<td><0.4</td>
</tr>
</tbody>
</table>
TABLE 5.2(b) Results of steady state testing of structured polycarbonate collector

<table>
<thead>
<tr>
<th>Day/mon/yr.</th>
<th>Air Flow rate at inlet (m³/h)</th>
<th>Air Temp. at inlet (°C)</th>
<th>Ambient Temp. (°C)</th>
<th>Collector efficiency (m²K/W)</th>
<th>Wind speed (m/s)</th>
<th>Test Date</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>18.9</td>
<td>22.4</td>
<td>11.7</td>
<td>1.0</td>
<td>< 4</td>
<td>8/6/83</td>
</tr>
<tr>
<td>2</td>
<td>18.9</td>
<td>22.4</td>
<td>11.7</td>
<td>1.0</td>
<td>< 4</td>
<td>8/6/83</td>
</tr>
<tr>
<td>3</td>
<td>18.9</td>
<td>22.4</td>
<td>11.7</td>
<td>1.0</td>
<td>< 4</td>
<td>8/6/83</td>
</tr>
<tr>
<td>4</td>
<td>18.9</td>
<td>22.4</td>
<td>11.7</td>
<td>1.0</td>
<td>< 4</td>
<td>8/6/83</td>
</tr>
<tr>
<td>5</td>
<td>18.9</td>
<td>22.4</td>
<td>11.7</td>
<td>1.0</td>
<td>< 4</td>
<td>8/6/83</td>
</tr>
<tr>
<td>6</td>
<td>18.9</td>
<td>22.4</td>
<td>11.7</td>
<td>1.0</td>
<td>< 4</td>
<td>8/6/83</td>
</tr>
<tr>
<td>7</td>
<td>18.9</td>
<td>22.4</td>
<td>11.7</td>
<td>1.0</td>
<td>< 4</td>
<td>8/6/83</td>
</tr>
<tr>
<td>8</td>
<td>18.9</td>
<td>22.4</td>
<td>11.7</td>
<td>1.0</td>
<td>< 4</td>
<td>8/6/83</td>
</tr>
<tr>
<td>9</td>
<td>18.9</td>
<td>22.4</td>
<td>11.7</td>
<td>1.0</td>
<td>< 4</td>
<td>8/6/83</td>
</tr>
<tr>
<td>10</td>
<td>18.9</td>
<td>22.4</td>
<td>11.7</td>
<td>1.0</td>
<td>< 4</td>
<td>8/6/83</td>
</tr>
<tr>
<td>11</td>
<td>18.9</td>
<td>22.4</td>
<td>11.7</td>
<td>1.0</td>
<td>< 4</td>
<td>8/6/83</td>
</tr>
<tr>
<td>12</td>
<td>18.9</td>
<td>22.4</td>
<td>11.7</td>
<td>1.0</td>
<td>< 4</td>
<td>8/6/83</td>
</tr>
</tbody>
</table>
TABLE 5.3 Collector configuration modelled for transient analysis by RRDCT.

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Collector length (along flow)</td>
<td>4.00 m</td>
</tr>
<tr>
<td>Collector width</td>
<td>1.00 m</td>
</tr>
<tr>
<td>Cover to plate spacing</td>
<td>0.05 m</td>
</tr>
<tr>
<td>Rear Duct gap</td>
<td>0.01 m</td>
</tr>
<tr>
<td>Back insulation dry glass fibre</td>
<td>0.10 m</td>
</tr>
<tr>
<td>Edge insulation dry glass fibre</td>
<td>0.05 m</td>
</tr>
<tr>
<td>Material of plate and duct-back</td>
<td>duraluminium HB 15 TB</td>
</tr>
<tr>
<td>Plate absorbance</td>
<td>0.95 at $\theta = 0$ falling slightly as θ increases</td>
</tr>
<tr>
<td>Emissivity of upper surface of the plate (diffuse)</td>
<td>0.10</td>
</tr>
<tr>
<td>Emissivity of duct surface (diffuse)</td>
<td>0.91</td>
</tr>
<tr>
<td>Emissivity of cover (diffuse)</td>
<td>0.85</td>
</tr>
<tr>
<td>Cover polycarbonate thickness</td>
<td>2.00 mm</td>
</tr>
<tr>
<td>Mass flow rate</td>
<td>0.06 kg s$^{-1}$</td>
</tr>
<tr>
<td>Thickness of plate and of duct-back</td>
<td></td>
</tr>
<tr>
<td>DY1</td>
<td>0.2 mm</td>
</tr>
<tr>
<td>DY2</td>
<td>0.5 mm</td>
</tr>
<tr>
<td>DY3</td>
<td>1.0 mm</td>
</tr>
<tr>
<td>DY4</td>
<td>2.0 mm</td>
</tr>
<tr>
<td>DY5</td>
<td>5.0 mm</td>
</tr>
</tbody>
</table>

TABLE 5.4 Results of transient and steady state testing with multi node model

<table>
<thead>
<tr>
<th></th>
<th>Steady state</th>
<th>Transient 0.5mm (DY2)</th>
<th>Transient 2mm (DY4)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Δt/min</td>
<td>-</td>
<td>1</td>
<td>4</td>
</tr>
<tr>
<td>N</td>
<td>-</td>
<td>6</td>
<td>5</td>
</tr>
<tr>
<td>τ_C/min</td>
<td>-</td>
<td>2.8</td>
<td>9.7</td>
</tr>
<tr>
<td>$F_{RUL}/(\text{W m}^{-2}\text{K}^{-1})$</td>
<td>2.83*</td>
<td>2.768</td>
<td>2.604</td>
</tr>
<tr>
<td>$F_{R}\tau_D$</td>
<td>0.683</td>
<td>0.585</td>
<td>0.569</td>
</tr>
<tr>
<td>$K_F\tau_D$</td>
<td>0.683</td>
<td>0.706</td>
<td>0.686</td>
</tr>
<tr>
<td>$\hat{o} F_R U_L$</td>
<td>-</td>
<td>0.012</td>
<td>0.036</td>
</tr>
<tr>
<td>$\hat{o} F_R \tau_D$</td>
<td>-</td>
<td>0.0008</td>
<td>0.0025</td>
</tr>
</tbody>
</table>

$K = \text{correction factor for equivalent normal direct radiation} = \frac{(\tau_D)\text{direct}}{(\tau_D)\text{diffuse}} \approx \frac{0.830}{0.688} = 1.206$

$* = \text{at low fluid inlet temperatures}$
TABLE 5.6 Data Output from 'TRANS' for SP collector, n = 1, in the format specified in Table F.6.1 of British Standard DD 77: 1982

<table>
<thead>
<tr>
<th>n</th>
<th>$F_R(ta)k_n$</th>
<th>$dF_R(ta)k_n$</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>.43280015133</td>
<td>.01794523596</td>
</tr>
<tr>
<td>F= .513943004957</td>
<td>U= 7.98668509365</td>
<td></td>
</tr>
</tbody>
</table>

DATA SETS ACCEPTED FOR ANALYSIS: 80

<table>
<thead>
<tr>
<th>n/P*</th>
<th>n/P*</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.004</td>
<td>0.344370221325</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>$F_R(ta)k_n$</th>
<th>$dF_R(ta)k_n$</th>
</tr>
</thead>
<tbody>
<tr>
<td>.37994472678</td>
<td>.022</td>
</tr>
<tr>
<td>.39168562197</td>
<td>.022</td>
</tr>
<tr>
<td>.427494067851</td>
<td>.021</td>
</tr>
<tr>
<td>.427494067851</td>
<td>.022</td>
</tr>
<tr>
<td>.415619232633</td>
<td>.022</td>
</tr>
<tr>
<td>.415619232633</td>
<td>.022</td>
</tr>
<tr>
<td>.439368903069</td>
<td>.021</td>
</tr>
<tr>
<td>.474933408723</td>
<td>.021</td>
</tr>
<tr>
<td>.474933408723</td>
<td>.023</td>
</tr>
<tr>
<td>.463118573050</td>
<td>.023</td>
</tr>
<tr>
<td>.451247328287</td>
<td>.024</td>
</tr>
<tr>
<td>.427494067851</td>
<td>.025</td>
</tr>
<tr>
<td>.415619232633</td>
<td>.024</td>
</tr>
<tr>
<td>.415619232633</td>
<td>.02</td>
</tr>
<tr>
<td>.427494067851</td>
<td>.02</td>
</tr>
<tr>
<td>.439368903069</td>
<td>.02</td>
</tr>
<tr>
<td>.415619232633</td>
<td>.021</td>
</tr>
<tr>
<td>.166872561663</td>
<td>.062</td>
</tr>
<tr>
<td>5.93747160905E-2</td>
<td>.057</td>
</tr>
<tr>
<td>8.31238465266E-2</td>
<td>.053</td>
</tr>
<tr>
<td>8.31238465266E-2</td>
<td>.054</td>
</tr>
<tr>
<td>7.12490113086E-2</td>
<td>.051</td>
</tr>
<tr>
<td>7.12490113086E-2</td>
<td>.046</td>
</tr>
<tr>
<td>3.56x2450565452E-2</td>
<td>.044</td>
</tr>
<tr>
<td>.118743532181</td>
<td>.024</td>
</tr>
<tr>
<td>.201872198707</td>
<td>.019</td>
</tr>
<tr>
<td>.324953693053</td>
<td>.029</td>
</tr>
<tr>
<td>.24937153958</td>
<td>.049</td>
</tr>
<tr>
<td>.213747033926</td>
<td>.056</td>
</tr>
<tr>
<td>.213747033926</td>
<td>.061</td>
</tr>
<tr>
<td>1.66247693054</td>
<td>.067</td>
</tr>
<tr>
<td>1.78122528271</td>
<td>.069</td>
</tr>
<tr>
<td>5.93747160905E-2</td>
<td>.073</td>
</tr>
<tr>
<td>3.56x2450565452E-2</td>
<td>.067</td>
</tr>
<tr>
<td>3.56x2450565452E-2</td>
<td>.059</td>
</tr>
<tr>
<td>7.12490113086E-2</td>
<td>.044</td>
</tr>
<tr>
<td>7.12490113086E-2</td>
<td>.025</td>
</tr>
<tr>
<td>1.30623187399</td>
<td>.02</td>
</tr>
<tr>
<td>3.749704361</td>
<td>.044</td>
</tr>
<tr>
<td>4.64247693053</td>
<td>.053</td>
</tr>
<tr>
<td>1.30623187399</td>
<td>.052</td>
</tr>
<tr>
<td>1.06873516963</td>
<td>.028</td>
</tr>
<tr>
<td>1.4372857875</td>
<td>.02</td>
</tr>
<tr>
<td>6644199</td>
<td>.006</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>$n/P*$</th>
<th>T^*</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.55811725249</td>
<td>.004</td>
</tr>
<tr>
<td>.61749143134</td>
<td>.007</td>
</tr>
<tr>
<td>.451243738287</td>
<td>.006</td>
</tr>
<tr>
<td>.48686243941</td>
<td>.005</td>
</tr>
<tr>
<td>.48686243941</td>
<td>.005</td>
</tr>
<tr>
<td>.641241101776</td>
<td>.005</td>
</tr>
<tr>
<td>.48686243941</td>
<td>.004</td>
</tr>
<tr>
<td>.49874307916</td>
<td>.005</td>
</tr>
<tr>
<td>.49874307916</td>
<td>.005</td>
</tr>
<tr>
<td>.581686925686</td>
<td>.005</td>
</tr>
<tr>
<td>1.10435967528</td>
<td>.011</td>
</tr>
<tr>
<td>.569992090468</td>
<td>.006</td>
</tr>
<tr>
<td>.451243738287</td>
<td>.005</td>
</tr>
<tr>
<td>.86868243941</td>
<td>.004</td>
</tr>
<tr>
<td>.510617914377</td>
<td>.005</td>
</tr>
<tr>
<td>.52249729596</td>
<td>.005</td>
</tr>
<tr>
<td>.52249729596</td>
<td>.005</td>
</tr>
<tr>
<td>2.13747033926</td>
<td>.039</td>
</tr>
<tr>
<td>2.01872198707</td>
<td>.035</td>
</tr>
<tr>
<td>1.54372857635</td>
<td>.013</td>
</tr>
<tr>
<td>2.01872198707</td>
<td>.011</td>
</tr>
<tr>
<td>2.78512120016</td>
<td>.011</td>
</tr>
<tr>
<td>2.84996045234</td>
<td>.011</td>
</tr>
<tr>
<td>5.4624242003</td>
<td>.021</td>
</tr>
<tr>
<td>4.39568903049</td>
<td>.02</td>
</tr>
<tr>
<td>4.74993408723</td>
<td>.026</td>
</tr>
<tr>
<td>4.3956890307</td>
<td>.026</td>
</tr>
<tr>
<td>2.96876080452</td>
<td>.016</td>
</tr>
<tr>
<td>2.7312120016</td>
<td>.013</td>
</tr>
<tr>
<td>4.15619232632</td>
<td>.021</td>
</tr>
<tr>
<td>4.98743079159</td>
<td>.029</td>
</tr>
<tr>
<td>4.15619232633</td>
<td>.029</td>
</tr>
<tr>
<td>4.037744397415</td>
<td>.026</td>
</tr>
</tbody>
</table>

POINTS ON THERMAL PERFORMANCE CHARACTERISTIC 80 FROM LEAST SQUARES FITS EACH WAY MINIMUM ETA = .25453187816 MAXIMUM ETA = .714184616622 U = 7.33893217894 U = 13.9616808148
TABLE 5.8
Temperature distribution within DY1 collector (0.2mm thick plate and duct back) during ASHRAE steady state testing, $T_a = 293k$, $I = 700\text{um}^2$, Wind = 1m s$^{-1}$, $T\ sky = 273k$

<table>
<thead>
<tr>
<th>T_i/k</th>
<th>T_e/k</th>
<th>T_p/k</th>
<th>T_b/k</th>
<th>T_m/k</th>
<th>F_{RUL} ($Wm^{-2}^\circ C^{-1}$)</th>
<th>η</th>
<th>$F_{ave}\ U_L$ ($Wm^{-2}^\circ C^{-1}$)</th>
</tr>
</thead>
<tbody>
<tr>
<td>303</td>
<td>332.73</td>
<td>333.01</td>
<td>322.1</td>
<td>317.86</td>
<td>2.762</td>
<td>.645</td>
<td>3.111</td>
</tr>
<tr>
<td>343</td>
<td>364.98</td>
<td>365.28</td>
<td>357.16</td>
<td>354.00</td>
<td>2.902</td>
<td>.476</td>
<td>3.230</td>
</tr>
<tr>
<td>383</td>
<td>396.47</td>
<td>396.94</td>
<td>391.47</td>
<td>389.73</td>
<td>3.044</td>
<td>.293</td>
<td>3.362</td>
</tr>
<tr>
<td>423</td>
<td>427.23</td>
<td>428.06</td>
<td>425.00</td>
<td>425.11</td>
<td>3.185</td>
<td>.095</td>
<td>3.503</td>
</tr>
<tr>
<td>433</td>
<td>435.13</td>
<td>435.94</td>
<td>433.57</td>
<td>434.06</td>
<td>3.226</td>
<td>.037</td>
<td>3.564</td>
</tr>
</tbody>
</table>

TABLE 5.9
Temperature distribution and energy lost from DY1 collector (0.2mm thick plate and duct base) during zero radiation testing, $T_a = 293k$, $T\ wind = 1m s^{-1}$, $T\ sky = 273k$

<table>
<thead>
<tr>
<th>T_i/k</th>
<th>T_e/k</th>
<th>T_p/k</th>
<th>T_b/k</th>
<th>T_m/k</th>
<th>Energy lost per unit time per unit area Wm^{-2}</th>
<th>F_{RUL} ($Wm^{-2}^\circ C^{-1}$)</th>
<th>$F_{ave}\ U_L$ ($Wm^{-2}^\circ C^{-1}$)</th>
</tr>
</thead>
<tbody>
<tr>
<td>303</td>
<td>300.34</td>
<td>300.41</td>
<td>301.23</td>
<td>301.67</td>
<td>40.34</td>
<td>4.034</td>
<td>4.653</td>
</tr>
<tr>
<td>343</td>
<td>333.32</td>
<td>333.79</td>
<td>336.20</td>
<td>338.16</td>
<td>146.66</td>
<td>2.932</td>
<td>3.247</td>
</tr>
<tr>
<td>383</td>
<td>365.41</td>
<td>366.41</td>
<td>370.42</td>
<td>374.20</td>
<td>266.50</td>
<td>2.961</td>
<td>3.282</td>
</tr>
<tr>
<td>423</td>
<td>396.74</td>
<td>398.43</td>
<td>403.88</td>
<td>409.87</td>
<td>397.80</td>
<td>3.060</td>
<td>3.404</td>
</tr>
<tr>
<td>433</td>
<td>404.46</td>
<td>406.34</td>
<td>412.12</td>
<td>418.73</td>
<td>432.40</td>
<td>3.088</td>
<td>3.439</td>
</tr>
<tr>
<td>*303</td>
<td>301.62</td>
<td>301.71</td>
<td>302.03</td>
<td>302.31</td>
<td>20.98</td>
<td>2.098</td>
<td>2.035</td>
</tr>
<tr>
<td>*433</td>
<td>405.92</td>
<td>407.78</td>
<td>413.13</td>
<td>419.46</td>
<td>410.30</td>
<td>2.93</td>
<td>3.245</td>
</tr>
</tbody>
</table>

* $T\ sky = 293k$
<table>
<thead>
<tr>
<th>Collector Type</th>
<th>Theory</th>
<th>Zero Radiation</th>
<th>Transient</th>
<th>Steady State</th>
</tr>
</thead>
<tbody>
<tr>
<td>Structured Polycarbonate Collector</td>
<td>Theory</td>
<td>Zero Radiation</td>
<td>Transient</td>
<td>Steady State</td>
</tr>
<tr>
<td>D.C. Hall Collector</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>(mm²/m²)</th>
<th>(mm²/m²)</th>
<th>C₀/C_1</th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Test method</td>
<td>Summary of collector testing results</td>
<td>PRL</td>
<td>5.10</td>
<td></td>
</tr>
<tr>
<td>Material</td>
<td>Reflective index (n)</td>
<td>Solar (0.2-4.0 μm)</td>
<td>Infrared (3.0-500 μm)</td>
<td>Expansion coefficient (°C⁻¹)</td>
</tr>
<tr>
<td>--------------------------------------</td>
<td>----------------------</td>
<td>---------------------</td>
<td>------------------------</td>
<td>-----------------------------</td>
</tr>
<tr>
<td>Lexan (Polycarbonate)</td>
<td>1.586</td>
<td>125 mil</td>
<td>125 mil</td>
<td>7.98 x 10⁻⁵</td>
</tr>
<tr>
<td>Plexiglass (Acrylic)</td>
<td>1.49</td>
<td>125 mil</td>
<td>125 mil</td>
<td>8.29 x 10⁻⁵</td>
</tr>
<tr>
<td>Teflon F.F.P. (Fluorocarbon)</td>
<td>1.343</td>
<td>5 mil</td>
<td>5 mil</td>
<td>12.55 x 10⁻⁵</td>
</tr>
<tr>
<td>Tedlar P.V.F. (fluorocarbon)</td>
<td>1.46</td>
<td>4 mil</td>
<td>4 mil</td>
<td>5.95 x 10⁻⁵</td>
</tr>
<tr>
<td>Mylar (Polyester)</td>
<td>1.64-1.67</td>
<td>5 mil</td>
<td>5 mil</td>
<td>2.00 x 10⁻⁵</td>
</tr>
<tr>
<td>Sunlite (Fibre glass)</td>
<td>1.54</td>
<td>25 mil</td>
<td>25 mil</td>
<td>2.98 x 10⁻⁵</td>
</tr>
<tr>
<td>Float glass (Glass)</td>
<td>1.518</td>
<td>125 mil</td>
<td>125 mil</td>
<td>10.21 x 10⁻⁶</td>
</tr>
<tr>
<td>Temper glass (Glass)</td>
<td>1.518</td>
<td>125 mil</td>
<td>125 mil</td>
<td>10.21 x 10⁻⁶</td>
</tr>
<tr>
<td>Clear lime sheet glass (Low iron glass)</td>
<td>1.51</td>
<td>125 mil</td>
<td>125 mil</td>
<td>10.64 x 10⁻⁶</td>
</tr>
<tr>
<td>Clear lime temper glass (Low iron glass)</td>
<td>1.51</td>
<td>125 mil</td>
<td>125 mil</td>
<td>10.64 x 10⁻⁶</td>
</tr>
<tr>
<td>Sunade white crystal glass (0.01% iron glass)</td>
<td>1.50</td>
<td>125 mil</td>
<td>125 mil</td>
<td>10.00 x 10⁻⁶</td>
</tr>
</tbody>
</table>

Source: Gary, H.P. 'Treatise on solar energy'. Vol. 1, A Wiley Interscience Publication, Chichester, 1982
<table>
<thead>
<tr>
<th>Thickness (mm)</th>
<th>Coating (Z-number)</th>
<th>Supplier</th>
<th>Supporting Bracket</th>
<th>Most Selective Path</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.03</td>
<td>0.82 - 0.93</td>
<td>Syanex</td>
<td>Copper/NiAl</td>
<td>Blue stainless steel</td>
</tr>
<tr>
<td>0.15</td>
<td>0.95</td>
<td>In-house</td>
<td>Copper</td>
<td>Stainless steel</td>
</tr>
<tr>
<td>0.06 - 0.10</td>
<td>0.89</td>
<td>0.96</td>
<td>Copper oxide</td>
<td>Tin oxide coated black enamel</td>
</tr>
<tr>
<td>0.23</td>
<td>0.93 - 0.95</td>
<td>Sunpro</td>
<td>Aluminum</td>
<td>Anodic aluminum</td>
</tr>
<tr>
<td>0.13</td>
<td>0.95</td>
<td>Phillips</td>
<td>Steel</td>
<td>Black cobalt</td>
</tr>
<tr>
<td>0.08 - 0.10</td>
<td>0.77</td>
<td>Maxcoat/Mip</td>
<td>ED</td>
<td>Black nickel</td>
</tr>
<tr>
<td>0.15</td>
<td>0.90</td>
<td>Tanker black</td>
<td>ED</td>
<td>Black nickel</td>
</tr>
<tr>
<td>0.16</td>
<td>0.95 - 0.96</td>
<td>Sunseal</td>
<td>Copper oxide</td>
<td>Black cobalt</td>
</tr>
<tr>
<td>0.06 - 0.10</td>
<td>0.96</td>
<td>Realty Co. Ltd.</td>
<td>ED</td>
<td>Black nickel</td>
</tr>
<tr>
<td>0.15 - 0.16</td>
<td>0.96</td>
<td>0.96</td>
<td>Copper oxide</td>
<td>Black cobalt</td>
</tr>
<tr>
<td>0.10 - 0.11</td>
<td>0.94</td>
<td>Olytpec</td>
<td>Stainless steel</td>
<td>Black cobalt</td>
</tr>
<tr>
<td>0.10 - 0.18</td>
<td>0.94</td>
<td>Olytpec</td>
<td>Aluminum</td>
<td>Black cobalt</td>
</tr>
<tr>
<td>0.05 - 0.15</td>
<td>0.95</td>
<td>Olytpec</td>
<td>Copper oxide</td>
<td>Black cobalt</td>
</tr>
</tbody>
</table>

Table 6.2: Optical properties of selective absorber surface coatings
TABLE 6.3 Key to collector variable features, used to obtain Figure 6.19

<table>
<thead>
<tr>
<th>cover material: cover 1</th>
<th>plate glass, thickness</th>
<th>6.0 mm</th>
</tr>
</thead>
<tbody>
<tr>
<td>cover 2</td>
<td>polycarbonate, thickness</td>
<td>2.0 mm</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>thickness of the plate and of the duct-back:</th>
</tr>
</thead>
<tbody>
<tr>
<td>DY1</td>
</tr>
<tr>
<td>DY2</td>
</tr>
<tr>
<td>DY3</td>
</tr>
<tr>
<td>DY4</td>
</tr>
<tr>
<td>DY5</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>air flow in the rear-duct:</th>
</tr>
</thead>
<tbody>
<tr>
<td>flow 0</td>
</tr>
<tr>
<td>flow 1</td>
</tr>
<tr>
<td>flow 2</td>
</tr>
<tr>
<td>flow 3</td>
</tr>
</tbody>
</table>
TABLE 7.1 Some typical thermal accommodation coefficients

<table>
<thead>
<tr>
<th>Gas</th>
<th>Surface</th>
<th>Surface condition (absorbed gas)</th>
<th>Temp. (°C)</th>
<th>a</th>
</tr>
</thead>
<tbody>
<tr>
<td>Air</td>
<td>Bronze</td>
<td>Indeterminate</td>
<td>-</td>
<td>0.88 - 0.95</td>
</tr>
<tr>
<td></td>
<td>Cast Iron</td>
<td>Indeterminate</td>
<td>-</td>
<td>0.87 - 0.96</td>
</tr>
<tr>
<td></td>
<td>Aluminium</td>
<td>Indeterminate</td>
<td>-</td>
<td>0.87 - 0.97</td>
</tr>
<tr>
<td>N₂</td>
<td>W</td>
<td>Indeterminate</td>
<td>32</td>
<td>0.624</td>
</tr>
<tr>
<td></td>
<td>Pt</td>
<td>Indeterminate</td>
<td>-</td>
<td>0.5</td>
</tr>
<tr>
<td></td>
<td>Glass</td>
<td>Indeterminate</td>
<td>-170</td>
<td>0.38</td>
</tr>
<tr>
<td>O₂</td>
<td>Pt.Bright</td>
<td>Indeterminate</td>
<td>-</td>
<td>0.81</td>
</tr>
<tr>
<td></td>
<td>Pt.Black</td>
<td>Indeterminate</td>
<td>-</td>
<td>0.93</td>
</tr>
<tr>
<td></td>
<td>Pt</td>
<td>Saturated</td>
<td>30</td>
<td>0.74</td>
</tr>
<tr>
<td>CO₂</td>
<td>W</td>
<td>CO₂</td>
<td>32</td>
<td>0.990</td>
</tr>
<tr>
<td></td>
<td>Pt</td>
<td>Saturated</td>
<td>30</td>
<td>0.76</td>
</tr>
<tr>
<td>H₂</td>
<td>Pt.Bright</td>
<td>Indeterminate</td>
<td>-</td>
<td>0.32</td>
</tr>
<tr>
<td></td>
<td>Pt.Black</td>
<td>Indeterminate</td>
<td>-</td>
<td>0.74</td>
</tr>
<tr>
<td></td>
<td>Pt</td>
<td>Saturated</td>
<td>30</td>
<td>0.22</td>
</tr>
<tr>
<td></td>
<td>Glass</td>
<td>Indeterminate</td>
<td>25</td>
<td>0.29</td>
</tr>
<tr>
<td></td>
<td>Glass</td>
<td>Indeterminate</td>
<td>-170</td>
<td>1.80</td>
</tr>
<tr>
<td>He</td>
<td>W, flashed</td>
<td>Indeterminate</td>
<td>20</td>
<td>0.17</td>
</tr>
<tr>
<td></td>
<td>W, not flashed</td>
<td>Indeterminate</td>
<td>20</td>
<td>0.53</td>
</tr>
<tr>
<td></td>
<td>Clean</td>
<td>-30</td>
<td>0.0169</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Clean</td>
<td>-190</td>
<td>0.0153</td>
<td></td>
</tr>
<tr>
<td></td>
<td>K on H₂</td>
<td>25</td>
<td>0.106</td>
<td></td>
</tr>
<tr>
<td></td>
<td>H₂ on K</td>
<td>25</td>
<td>0.096</td>
<td></td>
</tr>
<tr>
<td></td>
<td>O on K</td>
<td>25</td>
<td>0.22</td>
<td></td>
</tr>
<tr>
<td></td>
<td>K on O</td>
<td>25</td>
<td>0.12</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Pt</td>
<td>Saturated</td>
<td>30</td>
<td>0.238</td>
</tr>
<tr>
<td></td>
<td>K</td>
<td>Clean</td>
<td>25</td>
<td>0.0826</td>
</tr>
<tr>
<td></td>
<td>Na</td>
<td>Clean</td>
<td>25</td>
<td>0.0895</td>
</tr>
<tr>
<td></td>
<td>Glass</td>
<td>Clean</td>
<td>29</td>
<td>0.31</td>
</tr>
<tr>
<td></td>
<td>Glass</td>
<td>Indeterminate</td>
<td>25</td>
<td>0.35</td>
</tr>
<tr>
<td>Ne</td>
<td>W</td>
<td>Clean</td>
<td>30</td>
<td>0.0412</td>
</tr>
<tr>
<td></td>
<td>W</td>
<td>Clean</td>
<td>-30</td>
<td>0.0395</td>
</tr>
<tr>
<td></td>
<td>W</td>
<td>Clean</td>
<td>-196</td>
<td>0.0495</td>
</tr>
<tr>
<td></td>
<td>W</td>
<td>H₂</td>
<td>22</td>
<td>0.17</td>
</tr>
<tr>
<td></td>
<td>W</td>
<td>N₂</td>
<td>-194</td>
<td>0.32</td>
</tr>
<tr>
<td></td>
<td>Pt</td>
<td>Saturated</td>
<td>30</td>
<td>0.57</td>
</tr>
<tr>
<td></td>
<td>K</td>
<td>Clean</td>
<td>25</td>
<td>0.1987</td>
</tr>
<tr>
<td></td>
<td>Na</td>
<td>Clean</td>
<td>25</td>
<td>0.19</td>
</tr>
<tr>
<td></td>
<td>Glass</td>
<td>Indeterminate</td>
<td>25</td>
<td>0.7</td>
</tr>
<tr>
<td>A</td>
<td>W</td>
<td>Clean</td>
<td>30</td>
<td>0.272</td>
</tr>
<tr>
<td></td>
<td>W</td>
<td>Clean</td>
<td>-30</td>
<td>0.294</td>
</tr>
<tr>
<td></td>
<td>W</td>
<td>Clean</td>
<td>-196</td>
<td>0.549</td>
</tr>
<tr>
<td></td>
<td>Pt</td>
<td>Saturated</td>
<td>30</td>
<td>0.89</td>
</tr>
<tr>
<td></td>
<td>K</td>
<td>Clean</td>
<td>25</td>
<td>0.444</td>
</tr>
<tr>
<td></td>
<td>Na</td>
<td>Clean</td>
<td>25</td>
<td>0.459</td>
</tr>
<tr>
<td>Kr</td>
<td>W</td>
<td>Clean</td>
<td>30</td>
<td>0.462</td>
</tr>
<tr>
<td></td>
<td>W</td>
<td>Clean</td>
<td>-30</td>
<td>0.498</td>
</tr>
<tr>
<td></td>
<td>W</td>
<td>Clean</td>
<td>-196</td>
<td>0.926</td>
</tr>
<tr>
<td></td>
<td>W</td>
<td>Clean</td>
<td>30</td>
<td>0.773</td>
</tr>
<tr>
<td></td>
<td>W</td>
<td>Clean</td>
<td>-30</td>
<td>0.804</td>
</tr>
<tr>
<td></td>
<td>W</td>
<td>Clean</td>
<td>-183</td>
<td>0.942</td>
</tr>
</tbody>
</table>

TABLE 7.2 Convection and conduction heat transfer coefficients for various gases at different temperatures as measured with guarded hot plate.

<table>
<thead>
<tr>
<th>Condition</th>
<th>(T_s/°C)</th>
<th>(T_i/°C)</th>
<th>(h_p/(\text{Wm}^{-2}\text{°C}^{-1}))</th>
<th>(\frac{Q}{A}/(\text{Wm}^{-2}))</th>
<th>(\frac{T_r/°C}{\text{co}})</th>
<th>(h_r/(\text{Wm}^{-2}\text{°C}^{-1}))</th>
<th>(h_c/(\text{Wm}^{-2}\text{°C}^{-1}))</th>
<th>(\Delta T/°C)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Air at atmospheric pressure</td>
<td>10</td>
<td>14</td>
<td>0.798</td>
<td>3.19</td>
<td>10.16</td>
<td>13.84</td>
<td>0.163</td>
<td>0.704</td>
</tr>
<tr>
<td></td>
<td>10.1</td>
<td>20.7</td>
<td>1.910</td>
<td>20.05</td>
<td>11.10</td>
<td>19.70</td>
<td>0.168</td>
<td>2.193</td>
</tr>
<tr>
<td></td>
<td>10.1</td>
<td>21.3</td>
<td>1.725</td>
<td>19.32</td>
<td>11.07</td>
<td>20.33</td>
<td>0.169</td>
<td>1.915</td>
</tr>
<tr>
<td></td>
<td>10.5</td>
<td>33.3</td>
<td>2.195</td>
<td>50.05</td>
<td>13.00</td>
<td>30.80</td>
<td>0.180</td>
<td>2.632</td>
</tr>
<tr>
<td>Air, (p = 82) torr</td>
<td>10.35</td>
<td>37.9</td>
<td>1.60</td>
<td>44.08</td>
<td>12.55</td>
<td>35.70</td>
<td>0.185</td>
<td>1.720</td>
</tr>
<tr>
<td></td>
<td>10.35</td>
<td>38.8</td>
<td>1.621</td>
<td>46.12</td>
<td>12.66</td>
<td>36.49</td>
<td>0.185</td>
<td>1.750</td>
</tr>
<tr>
<td>Air, (p = 81) torr</td>
<td>10.3</td>
<td>43</td>
<td>1.567</td>
<td>51.24</td>
<td>12.86</td>
<td>40.44</td>
<td>0.189</td>
<td>1.669</td>
</tr>
<tr>
<td>Air, (p = 71) torr</td>
<td>10.2</td>
<td>24.9</td>
<td>0.925</td>
<td>13.60</td>
<td>10.88</td>
<td>24.22</td>
<td>0.172</td>
<td>0.847</td>
</tr>
<tr>
<td>Freon/Air</td>
<td>10.3</td>
<td>22.1</td>
<td>1.685</td>
<td>19.88</td>
<td>11.29</td>
<td>21.11</td>
<td>0.170</td>
<td>1.856</td>
</tr>
<tr>
<td></td>
<td>10.1</td>
<td>17.8</td>
<td>1.635</td>
<td>12.59</td>
<td>10.73</td>
<td>17.17</td>
<td>0.166</td>
<td>1.789</td>
</tr>
<tr>
<td>Carbon Tet/Air</td>
<td>10.1</td>
<td>17.9</td>
<td>1.645</td>
<td>12.83</td>
<td>10.74</td>
<td>17.26</td>
<td>0.166</td>
<td>1.803</td>
</tr>
<tr>
<td></td>
<td>10.4</td>
<td>27.9</td>
<td>1.986</td>
<td>34.75</td>
<td>12.14</td>
<td>26.16</td>
<td>0.175</td>
<td>2.303</td>
</tr>
<tr>
<td></td>
<td>10.5</td>
<td>31.3</td>
<td>2.081</td>
<td>43.28</td>
<td>12.66</td>
<td>29.14</td>
<td>0.178</td>
<td>2.450</td>
</tr>
<tr>
<td></td>
<td>10.6</td>
<td>34.9</td>
<td>2.461</td>
<td>59.80</td>
<td>13.59</td>
<td>33.91</td>
<td>0.182</td>
<td>3.082</td>
</tr>
<tr>
<td></td>
<td>10.6</td>
<td>36.7</td>
<td>2.245</td>
<td>58.59</td>
<td>13.53</td>
<td>33.77</td>
<td>0.183</td>
<td>2.712</td>
</tr>
<tr>
<td>Air (p = 0.3) torr</td>
<td>10.2</td>
<td>16.6</td>
<td>0.547</td>
<td>3.504</td>
<td>10.38</td>
<td>16.42</td>
<td>0.165</td>
<td>0.414</td>
</tr>
<tr>
<td>Air (p = 0.35) torr</td>
<td>10.9</td>
<td>45.7</td>
<td>1.135</td>
<td>39.51</td>
<td>12.87</td>
<td>43.72</td>
<td>0.193</td>
<td>1.088</td>
</tr>
<tr>
<td>Air (p = 16) torr and changing</td>
<td>11.2</td>
<td>51.2</td>
<td>1.186</td>
<td>47.46</td>
<td>13.57</td>
<td>48.83</td>
<td>0.198</td>
<td>1.148</td>
</tr>
</tbody>
</table>
FIGURE 1.1a PHYSICAL QUALITY OF LIFE INDEX VERSUS ENERGY CONSUMPTION PER CAPITA FOR THE COUNTRIES OF THE WORLD. SOURCES OF DATA: PQI, 'BOOK OF WORLD RANKINGS' BY G.T. KUFIAN 1979, ENERGY CONSUMPTION 'EUROPA YEARBOOK 1983.'
FIGURE 1.1(b) HISTOGRAM OF ENERGY CONSUMPTION PER CAPITA FOR DIFFERENT PHYSICAL QUALITY OF LIFE INDEX (PQLI) FOR THE PEOPLE OF THE WORLD. THE PERCENTAGES SHOWN IN EACH BAR ARE THE PERCENTAGES WITHIN THAT RANGE OF PQLI.
FIGURE 2.1 UK low grade heat, fuel consumption and end use.

FIGURE 2.2 Domestic space and hot water demand.
Figure 2.3

DISTRIBUTION OF ANNUAL GAS CONSUMPTION FOR 90 SIMILAR HOUSES IN MILTON KEYNES, FROM 'THE PERFORMANCE OF DOMESTIC WET HEATING SYSTEMS', PICKUP, G.A.C7]

Figure 2.4

WEEKLY CONSUMPTION OF HOT WATER FOR ONE HOUSEHOLD, FROM 'THE PERFORMANCE OF DOMESTIC WET HEATING SYSTEMS', PICKUP, G.A.C7]
Total No of dwellings : 87
Overall mean weekly consumption : 0.841 m3/week
Standard deviation : 0.351 m3/week

Contribution due to OAPs flats
(10x2 occupants)

Dwelling mean weekly hot water consumption m3

Figure 2.5 MEAN WEEKLY HOT WATER CONSUMPTION FOR 87 VARIOUS SITES. FROM 'THE PERFORMANCE OF DOMESTIC WET HEATING SYSTEMS' BY G.A. RICKUP [9]

Figure 2.6 SOLAR AND THERMAL RADIATION SPECTRAL DISTRIBUTIONS. AIR MASS m = 0 IS FOR EXTRA-TERRESTRIAL RADIATION, m = 2 IS A TYPICAL CITY DISTRIBUTION.
FIGURE 2.7
ANNUAL VARIATION OF MEAN DAILY TOTALS OF DIRECT AND DIFFUSE INSOLATION ON A HORIZONTAL SURFACE.

FIGURE 2.10

FIGURE 2.11 SEASONAL HEAT STORAGE AND A CENTRAL SHORT TERM STORAGE RESERVOIR (C.S.T.) CONSTRUCTED FOR TNO DELFT [35]

ONE-FAMILY HOUSES (SMALL SCALE)

APARTMENT BUILDING (INTENSE POPULATED AREAS) (LARGE SCALE)

FIGURE 2.12 DIFFERENT APPLICATIONS FOR 'SUNSTORE' [37], SEASONAL STORAGE IN THE GROUND
FIGURE 2.13 PLAN OF PROMETHEUS RETROFITTED TO SUPPLY 83 HOUSES WITH ALL THEIR SPACE HEATING AND HOT WATER.

FIGURE 2.14 COLLECTOR MOUNTED ON TOP OF STORE, PART OF PROMETHEUS DESIGN.
PROTOTYPE OF A PROMETHEUS TYPE SOLAR AIR-COLLECTOR/HEAT STORE, INSTALLED AT THE OPEN UNIVERSITY, MILTON KEYNES, UK.

FIGURE 2.15 PROTO-PROMETHEUS
Figure 2.16 Insolation Incident on Proto-Prometheus, 28th September 1981

Figure 2.17 Collector, Store and Ambient Temperatures for Proto-Prometheus on 28th September 1981.
FIGURE 2.18 Proto-Prometheus Temperature Distribution (with Fan On), on 22nd September 1981 at 14:25 hrs.
FIGURE 2.19 FREQUENCY DISTRIBUTION OF PEBBLE SMALLEST DIMENSION.
FIGURE 2.20 FREQUENCY DISTRIBUTION OF PEBBLE LARGEST DIMENSION
Figure 2.21 Proto-Prometheus Store Temperature, from 22nd September 1981 to 2nd October 1981 under stagnation (fan off).

Figure 2.22 Energy Demand for a 3-Bedroom House Built to A75 Building Regulations (Type A) with Solar Heating Supplied by a Basic Type Prometheus.
Figure 2.23
EFFECT OF CHANGING THE COLLECTOR OVERALL HEAT LOSS COEFFICIENT ON THE % OF ANNUAL ENERGY SUPPLIED BY PROMETHEUS ON A TYPE A1 HOUSE

Figure 2.24
EFFECT OF CHANGING THE COLLECTOR AREA ON THE % OF ANNUAL ENERGY SUPPLIED BY PROMETHEUS TO A TYPE A1 HOUSE
Figure 2.25 The effect of changing the storage tank insulation thickness on the % of solar energy supplied by Prometheus to a Type A1 house.

Figure 2.26 The effect of changing the storage volume on the % of solar energy supplied by Prometheus to a Type A1 house.
FIGURE 2.27 The effect of increasing the number of houses served by a single cubic Prometheus (size, 112 m² per house and 28 m² of collector per house) for a type A1 house.

FIGURE 2.28 The effect of changing the collector overall heat loss on the % of energy supplied by a cubic Prometheus heating a type A5 house.
FIGURE 2.29 DESIGN OF COSTED PROMETHEUS TO PROVIDE 100% OF THEIR ANNUAL HEATING DEMAND (27.5 GJ) WITH SOLAR ENERGY.

FIGURE 2.30 IMPROVED COLLECTOR ORIENTATION
Figure 3.3

Useful energy saved and extra cost for various insulation options and solar systems installed while constructing a basic type A0 house.

Figure 3.4

Energy demand for a 3 bedroom terrace, built to 1975 building regulations and energy supplied by 4, 12 and 24 m² of solar collector.
Figure 3.5 ENERGY DEMAND FOR A WELL INSULATED 3 BEDROOM HOUSE, AND ENERGY SUPPLIED BY 4.12 AND 24m² OF SOLAR COLLECTOR.

Figure 3.6 COMPARISON OF PREDICTED SOLAR ENERGY SUPPLY FOR A HOUSE USING THE F-CHART METHOD WITH THE MEASURED SOLAR SUPPLY FOR THE MILTON KEYNES SOLAR HOUSE.
FIGURE 37 USEFUL ENERGY SAVED AND EXTRA COSTS FOR VARIOUS INSULATION OPTIONS AND SOLAR SYSTEMS RETROFITTED TO AN EXISTING TYPE 80 HOUSE.
Figure 4.1. Nonporous Absorber-Type Air Heaters.

Figure 4.2. Porous Absorber-Type Air Heaters.
FIGURE 4.3 HYBRID PHOTOVOLTAIC AND AIR HEATING SOLAR COLLECTOR

FIGURE 4.4 COLLECTOR HEAT LOSSES
FIGURE 4.5 REAR DUCT COLLECTOR CONFIGURATION

FIGURE 4.6 TOP DUCT COLLECTOR CONFIGURATION
The curves correspond to the following relations:

Hull-Wadman

\[h_u = 5.7 + 3.5v \]

Watmuff

\[h_u = 2.8 + 3.0v \]

Lloyd

\[h_u = 0.15 \times \frac{R_m \times k}{L + W} \]

Sparrow

\[h_u = \frac{k \times 0.86 \times R_m^k \times T_c^{0.45}}{L + W} \]

Green

\[h_u = (h_u + h_{u5})^{0.5} \]

KIND

For collector length 2.4 m, width 1.2 m, height 4.5 m, \(T_c = 25^\circ C \)

Figure 4.7 Correlations for wind heat loss coefficient
FIGURE 4.8 FLOW DIAGRAM OF 'EFCZ' (SEE APPENDIX B) A PROGRAM TO CALCULATE THE EFFICIENCY OF A FRESH DIET AIR HEATING COLLECTOR.
FIGURE 4.9 FLOW DIAGRAM OF 'EFFIC' (SEE APPENDIX B) A PROGRAM TO CALCULATE THE EFFICENCY OF A TYPICAL PV HEAT TRANSFER COLLECTOR
Figure 4.10 Response of zero and long time constant collector to changing insulation.
Figure 4.11 Nodal configuration of a flat plate, rear-duct air heating, solar collector as used in 'RRDCT'.

Figure 4.12 Comparison of air outlet temperature to predicted by the computer model (solid curve) and laboratory measurements, on a similar, though not identical, collector (crosses).
EFFICIENCY CURVE GENERATED BY TRANSIENT MODEL OPERATING UNDER STEADY STATE CONDITIONS AND STEADY STATE MODEL. FOR COLLECTOR PARAMETERS SEE TABLE 5.3.
FIGURE 5.1 PERCENTAGE OF ENERGY FALLING ABOVE A THRESHOLD
INTENSITY AVERAGED OVER A PERIOD OF ONE HOUR
EACH MONTH ON A HORIZONTAL SURFACE (AT H.W. 1966-1975)
SECTION X-X

DIRECTION OF FLUID FLOW

'CAGXORB'

ABSORBER

NEXTEL

REAR DUCT BOTTOM

INSULATION

FIGURE 5.2 D.C. HALL COLLECTOR
Figure 5.3 Angular variation of transmittance of 2mm thick polycarbonate (refractive index = 1.586, extinction coefficient = 20 m⁻¹)

Figure 5.4 Tee-pieces used for absorber fins in D.S. Hall collector
FIGURE 5.5-5.6 AIR HEATING COLLECTOR MADE OF STRUCTURED POLYCARBONATE

FIGURE 5.7 SOLAR TRANSMITTANCE OF STRUCTURED POLYCARBONATE VERSUS INCIDENT ANGLE. SOURCE: H.L. REDFORD ET AL., 'GLAZING SOLAR COLLECTORS WITH ACRYLIC AND DOUBLE WALLED POLYCARBONATE PLASTICS'
FIGURE 5.8 ORIFICE PLATE AND ITS LOCATION FOR MEASURING MASS FLOW RATE
Figure 5.9 ASHRAE STANDARD 93-77 TESTING CONFIGURATION FOR A SOLAR COLLECTOR WHEN THE TRANSFER FLUID IS AIR.

Figure 5.10 OPEN UNIVERSITY AIR COLLECTOR TESTING CONFIGURATION.
Figure 5.11: Response of structured polycarbonate collector to a step change in insolation from 750 W/m² to zero with a fluid flow rate of 7.2 kg/hr⁻¹.

Figure 5.12: Uninterrupted insolation as defined by ASHRAE standard 93-77 [2].
FIGURE 5.13 RECORD OF INCIDENT SOLAR RADIATION ON A HORIZONTAL SURFACE
AT THE OPEN UNIVERSITY ON 19/6/83.

FIGURE 5.14 RECORD OF INCIDENT SOLAR RADIATION ON A HORIZONTAL SURFACE
AND WIND SPEED ON 21/6/83 (CONTINUED ON NEXT PAGE).
FIGURE 5.14 CONTINUED
FIGURE 5.15 ANGLE OF INCIDENCE OF SOLAR RADIATION ONTO D.C. HALL COLLECTOR DURING STEADY STATE EFFICIENCY TEST. POSITION OF COLLECTOR MILTON KEYNES, LATITUDE 52°, LONGITUDE 0.75° (HORIZONTAL).

FIGURE 5.16 ANGLE CORRECTION FOR D.C. HALL COLLECTOR
FIGURE 5.17(a) Air heating collector under test with a leak at the inlet

FIGURE 5.17(b) Air heating collector under test with a leak at the outlet
Figure 5.18
The effect of air leaks on the measured value of $F_{w, ul}$, for $m = 0.5 \text{ kg/hr}^{-1}$

Figure 5.19
Calibration curve for orifice plate for air at 20°C
FIGURE 5.20 PRESSURE DISTRIBUTION WITHIN COLLECTOR TEST CONFIGURATION WITH AND WITHOUT FLUID FLOW.

TADJ
D C HALL COLLECTOR WITH MAXORB ABSORBER

FIGURE 5.21 SAMPLE OUTPUT OF D.C. HALL COLLECTOR TO TESTING OUTDOORS NOT UNDER STOPLY STATE CONDITIONS.
Figure 5.22 Steady State Efficiency Curve for D.C. Hall Collector Tested Outdoors

Figure 5.23 Steady State Efficiency Curve for Structured Polycarbonate Collector Tested Outdoors.
Figure 5.24 Uncorrected efficiency curve with variation of wind speed between 0 - 4 m/s. Source: [25].

Figure 5.25 Efficiency curve corrected for variation in wind speed using a normalizing function. Source: [25].
FIGURE 5.26 VARIATION OF MASS FLOW RATE CAUSED BY CHANGE IN WIND SPEED
Figure 5.27 Round Robin testing of liquid flat plate collectors, the combined effect of meteorological extremes and measurement uncertainty. Source: Taylor [28].

Figure 5.28 Measured dependency of F(\text{CO}_2) on the diffuse fraction for a single-glazed flat plate collector. Source: Porowski [34].
Figure 5.29: Computer generated steady state and transient efficiency curve for 0.5 mm absorber plate.
FIGURE 5.30 TRANSIENT DIFFUSE RADIATION

FIGURE 5.31 FLUID OUTLET TEMPERATURE UNDER TRANSIENT CONDITIONS.

FIGURE 5.32 INTEGRATED RESPONSE OF COLLECTOR OVER 1 AND 2 MINUTES TO TRANSIENT RADIATION.
FIGURE 5.33: The variation in F_{ul}, $F_{ul}(0\mu)$, and δF_{ul} with the number of increments used in the transient analysis.
Figure 5.34 Collector response functions for optimum values of N.

Figure 5.35 Calculated collector time constants. For different collector configurations see Table 5.3.
FIGURE 5.36 EFFICIENCY CURVE GENERATED FROM TRANSIENT TESTING RESULTS OF THE SP COLLECTOR AND PROCESSED BY 'TRANS' FOR N=1. UNCORRECTED FOR ANGLE OF INCIDENCE OF RADIATION.

FIGURE 5.37 TRANSIENT INSOLATION DURING TESTING OF SP COLLECTOR ON 17/6/83, CONTINUED ON NEXT PAGE.
FIGURE 5.37 CONTINUED. TRANSIENT INSOLATION DURING TESTING OF 3P COLLECTOR ON 16/6/83, 15/6/93.
Figure 5.38 Standard error in g_{UL} versus n the number of previous time steps influencing the collector's present performance under transient conditions for the structured polycarbonate collector.

Figure 5.39 Efficiency curve for outdoor transient testing of structured polycarbonate collector. Data generated from 'TRANS' for $n=7$, uncorrected for angle of incidence of radiation.
Figure 5.40 Collector response function for S.P. collector N=7.

Figure 5.41 Efficiency curve for outdoor transient testing of D.C. Hall collector (Manors Absorbed). Data generated from 'TRANS' for N=7, uncorrected for incident angle of radiation.
Figure 5.42 INDOOR SOLAR COLLECTOR TEST FACILITY.

Figure 5.43 RELATIVE SPECTRAL INTENSITY OF 'COOL RAY' LAMPS, TRANSMISSION OF 2mm POLYCARBONATE AND REFLECTANCE OF MAXOR8.
Figure 5.44 Intensity distribution across collector during indoor testing in W/m². Average intensity 2.11 W/m², standard deviation ± 0.9 W/m².

Figure 5.45 Wing generator.
Figure 5.46 Variation of windspeed (m/s), 5 cm above collector surface

Measured heat loss with collector operating under stagnation and assuming $\eta_{\text{K}} = 0.72$ plotted against average air velocity parallel to collector plane and measured 5 cm above collector plane.

Figure 5.47 Measured and predicted heat loss U_1 for d.c. wall collector (non-selective) with varying wind speed indoors.
Figure 5.48 Efficiency curve of structured polycarbonate collector measured indoors and outdoors.

Figure 5.49 Efficiency curve of D.C. Hall collector with non-selective absorber (Nexel). Indoor measurements and computer predictions.
FIGURE 5.5G REDESIGNED INDOOR COLLECTOR TEST FACILITY

FIGURE 5.5I STEADY STATE AND ZERO TESTING EFFICIENCY CURVES
FIGURE 5.52

3 STORY SATELLITE RADIATION CURVE PLOTTED AGAINST MAIN RECORDER PLATE TEMPERATURE (Tm)

\[(T_2 - T_1) \left(\frac{1}{T_2} - \frac{1}{T_1} \right) \]

ZERO TESTING \(T_{0} = T_{m} - 20 \)
FIGURE 5.53 STEADY STATE AND ZERO TESTING EFFICIENCY CURVE PLOTTED AGAINST MEAN FLUID TEMPERATURE (T_m) FOR SIMULATED COLLECTOR.
FIGURE 5.5.4 COLLECTOR TEMPERATURE PROFILE FOR MODEL COLLECTOR UNDER STEADY STATE AND ZERO TESTING CONDITIONS FOR THE SAME FLUID INLET TEMPERATURE (303 K).

FIGURE 5.55 COLLECTOR TEMPERATURE PROFILE FOR MODEL COLLECTOR UNDER STEADY STATE AND ZERO TESTING CONDITIONS FOR THE SAME MEAN ABSORBER PLATE TEMPERATURE (366 K).
FIGURE 5.56 TEMPERATURE OF ABSORBER AND REAR DUCT FOR THE SAME AVERAGE FLUID TEMPERATURE WITH THE COLLECTOR UNDER ZERO AND STEADY STATE TESTING

FIGURE 5.57 F_W, U Versus Mean Fluid Temperature for Collector D71 Under Zero Testing and Average Steady State Testing.
Figure 5.58 Efficiency curves for D.C. Hall collector using different test methods
Figure 5.59 Efficiency curve for structured polycarbonate collector under different test conditions.

Figure 5.60 Top loss coefficient versus absorber temperature for P-D cell type collector (maxima absorber).
FIGURE 5.61 STEADY STATE EFFICIENCY OF SOLAR COLLECTOR (BLACK CHROME) MEASURED DURING OPERATION AND INDOOR TESTING, SOURCE: TAYLOR, P.J. 'PERFORMANCE OF SELECTIVE AND NON-SELECTIVE SOLAR THERMAL ABSORBERS IN A WORKING INSTALLATION,' SOLAR WORLD CONGRESS ED BY S.V. SZONOLAY, VOL. 2, PP 1149 - 1153.
Figure 6.1 Efficiency curve for 'conventional' and 'high performance' collector.

Figure 6.2 Typical construction of a flat plate collector.
Figure 6.4
Percentage of energy falling above a threshold intensity averaged over a period of one hour each month on a horizontal surface (April-November).

Figure 6.5
Maximum improvement to flat plate collector performance by increasing γ and ω.

\[
\frac{T_i - T_a}{T} \cdot \tan \omega
\]
Figure 6.6 Reflectance of Solar Collector Coatings

Figure 6.7 Steady State Efficiency of Solar Collector Measured During Operation and Indoor Testing. Source: Taylor, P.J. 'Performance of Selective and Non-Selective Solar Thermal Absorbers in a Working Installation.' Solar World Congress Ed by S. N. Soundarraj Vol 2, Pp 1149-1153.
Figure 6.8 Efficiency curves for different methods of heat loss reduction.

FIGURE 6.10
Efficiency curve of advanced flat plate collector with xenon between the absorber and cover at a pressure of 1 Torr.
[27]

FIGURE 6.11
Efficiency versus mass flow rate for structured polycarbonate collector, $I_{in} = 2.11 \text{Wm}^{-2}$, $T_a = 28^\circ C$, $T_{in,y} > T_a$, $I e = I_a$ and air velocity $= 1.5 \text{m$s^{-1}$}$.

\[\frac{(T_e - T_a)}{I} \]
Figure 6.12 Pressure drop across S.P. collector versus mass flow rate.

Figure 6.13 Theoretical system efficiency versus mass flow rate for a fluid inlet temperature of 60°C for three duct separations z and two levels of incident insolation.
Figure 6.14 Efficiency curve for a compound parabolic concentrator compared with a flat plate collector. Source: Argonne National Laboratory Tech Report.

Figure 6.15 Global and diffuse insulation month by month at noon on a 45° south facing slope.
FIGURE 6.16
ANNUAL ENERGY COLLECTED VERSUS COLLECTOR TEMPERATURE: COMPARISON OF FIVE TYPES OF COLLECTOR. SOURCE [33].

FIGURE 6.17
INTEGRATED GLOBAL AND DIFFUSE SOLAR RADIATION FROM MARCH TO OCTOBER AS A FUNCTION OF THE GLOBAL INTENSITY. SOURCE [35] FOR SWEDEN.
Figure 6.18 Simulated ambient conditions. For further details see text in Appendix C.

WIND = 1.0 m s⁻¹

TK = TA - 20, clear skies
TK = TA - 10, overcast skies
Figure 6.19 Steady-state efficiency (η - the solid curve) and daily averaged efficiency ($\bar{\eta}$). The values of $\bar{\eta}$ are for a variety of simulated conditions (see Table 1 and Figure 3).

(i) S0J/TAJ, flow 2 (ii) S0M/TAM, flow 2 (iii) S0U/TAD1, flow 2
(iv) S0M/TAM, flow 3 (v) S1M/TAM, flow 2 (vi) S0D/TAD1, flow 3
(vii) S1D/TAD1, flow 2 (viii) S0D/TAD2, flow 3 (ix) S1D2/TAD1, flow 2
(x) S1D3/TAD1, flow 2 (xi) S1D/TAD1, flow 2.
Figure 6.20 'FMTC' air heating solar collector developed by GE [42].

Figure 6.21 Incident angle modifier for the FMTC prototype. This depends on the orientation of the cover. A - The maximum occurs when the plane of the angle of incidence is perpendicular to the cylindrical axes of the tube cover. B - The maximum value occurs when the plane of the angle of incidence is normal to the cylindrical axes of the tubes in the cover [42].
Figure 6.22 Instantaneous efficiencies of the FMTG collector and a single glazed flat plate collector and their variation with insolation. [42]
FIGURE 7.1 THERMAL CONDUCTIVITY OF VARIOUS GASES AT 20°C VERSUS MOLECULAR WEIGHT.

FIGURE 7.2 CELLULAR CONVECTION FOR A LIQUID. FOR GASES, DUE TO THEIR DIFFERENT TEMPERATURE VISCOITY RELATIONSHIP, THE GAS FALLS IN THE CENTRE OF THE CELL.
Figure 7.3 Observation of Cellular Convection

Figure 7.4 Base Flow Between Inclined Plates

FIGURE 7.6 SCHEMATIC DEPICTING EFFECT OF GAP SPACING ON CONDUCTION
FIGURE 7.2
PLOT OF h_c VERSUS PLATE SEPARATION S. $T_{wall} < 160^\circ C, T_{surf} = 325^\circ K, P = 14.7$ psia.

FIGURE 7.8
h_c VERSUS TILT ANGLE TO THE HORIZONTAL FOR AIR ABSORPTION FOR VARIOUS ABSORBER TEMPERATURES (T_a) WITH COVER TEMP = 10$^\circ C$.
\[h_r \text{ heat transfer due to radiation between a non-selective absorber (}\varepsilon = 0.9\text{) and a glass cover (}\varepsilon = 0.9\text{)} \]

\[h_c \text{ heat transfer due to convection and conduction in air at atmospheric pressure} \]

\[h_r \text{ heat transfer due to radiation between a selective absorber (}\varepsilon = 0.09\text{) and low iron glass cover (}\varepsilon = 0.88\text{)} \]

Figure 7.9 Heat transfer coefficient variation with absorber temperature for convection and radiation.
Figure 7.10 True and predicted heat loss between two parallel plates $S = 5$ cm. Cover temperature $10^\circ C$.

Predicted Heat Loss
Assuming h constant.

True Heat Loss
h varying with temperature.
FIGURE 7.11
Effective Rayleigh number versus molecular weight for different gases, at atmospheric pressure between two parallel plates, spacing 3 cm, 0.05 M, cold plate temperature 10°C, hot plate 30°C.
FIGURE 7.12

h_x HEAT TRANSFER COEFFICIENT FOR GASES OF DIFFERENT MOLECULAR WEIGHT, FOR $s = 5 \text{ cm}$, COLD PLATE TEMPERATURE 10°C, HOT PLATE TEMPERATURE 30°C.
FIGURE 7.13 COST VERSUS HEAT TRANSFER COEFFICIENT FOR DIFFERENT GASES
$S = 5 \text{cm}$, VOLUME OF GAS REQUIRED FOR EACH SQUARE METRE OF COLLECTOR IS 50 LITRES.
FIGURE 7.14 VARIATION OF HEAT TRANSFER COEFFICIENT h_c WITH PRESSURE FOR A FLAT PLATE COLLECTOR, $s = 5\, \text{cm}$, $T = 293\, \text{K}$, $T_2 = 323\, \text{K}$ FOR CURVE 1, 273\, \text{K}$ FOR CURVE 2 AND 473\, \text{K}$ FOR CURVE 3.

FIGURE 7.15 DESCRIPTION OF TWO COVER SYSTEM.
FIGURE 7.16 VARIATION OF HEAT TRANSFER WITH GAP ACROSS A TWO COVER AND A SINGLE COVER SYSTEM. SOURCE: Nouh, M. A. AND GARG, H. P.
"MINIMIZING CONVECTIVE HEAT LOSSES". SOLAR ENERGY, VOL. 25, NO. 6, p. 523.

FIGURE 7.17 REFLECTED SOLAR RAYS FOR A MULTI COVER SOLAR COLLECTOR.
Figure 7.19 Heat transfer coefficient h_e due to natural convection for air at atmospheric pressure between two parallel flat plates spacing 5 cm, $T_i = 283 K$, with a honeycomb and with slats aspect ratio 5.
Figure 7.20 Thermal conductivity versus Rayleigh number for various gases. $T_i = 10^\circ C$, $T_e = 80^\circ C$, $\delta = 5$ cm.
FIGURE 7.21 RAYLEIGH NUMBER VERSUS TEMPERATURE FOR ARGON AND AIR AT ATMOSPHERIC PRESSURE BETWEEN TWO PARALLEL FLAT PLATES SPACING $S = 5.0 \text{cm}$, COLD PLATE TEMPERATURE $T_i = 10{\degree}C$
Figure 7.22 Heat Transfer Coefficients for Several Collector Configurations

$S = 5\text{ cm}, \ T_1 = 10^\circ\text{C}$
Figure 7.23 Guard Ring Heater

Figure 7.24 Guard Ring Unbalance versus Measured Heat Transfer across a 5 cm thick 'Styrofoam' EP sample
Figure 7.25 Acrylic Test Panel

Figure 7.26 Schematic Diagram of Guarded Hot Plate Apparatus
Figure 7.27 Copper Cold Plates.
Figure 7.28 Measured and theoretical heat transfer coefficients for different gases between two parallel plates, $s = 5$ in, various temperature difference.
Figure 7.29 Theoretical and measured heat transfer h_c for air and argon.
FIGURE 7.30 THEORETICAL HEAT TRANSFER ACROSS STRUCTURED POLYCARBONATE OF VARIOUS THICKNESSES, BOTH RADIATION AND CONVECTION, ASSUMING FLAT CONVECTION AND A MEASURED EMISSIVITY OF 0.72.
PLATE 2.1 PROTO PROMETHEUS: 1. COLLECTOR 2. STORE TOP INSULATION
AND COLLECTOR RR INSULATION 3. FAN MOTOR 4. MONITORING
EQUIPMENT 5. SPACE FOR INSULATION
PLATE 2.2 PROTO PROMETHEUS STORAGE TANK FILLED WITH PEBBLES.
PLATE 5.1

SOLAR SIMULATOR TESTING A STRUCTURED POLYCARBONATE COLLECTOR.
17, STRUCTURED POLYCARBONATE COLLECTOR, 16, WIND GENERATOR,
15, COOL RAY LAMPS.
PLATE 5.2 INDOOR COLLECTOR TEST FACILITY
7. DATA LOGGER, 8. STRUCTURED POLYCARBONATE COLLECTOR,
9. PRESSURE TAPS, 10. SITE OF ORIFICE PLATE
PLATE 7.1

VIEW OF HEATED OIL FILM FROM AN INFRARED CAMERA. THE BRIGHTER THE SPOT THE HOTTER THE SPOT.
PLATE 7.2 GUARDED HOT PLATE THERMAL CONDUCTIVITY RIG
11. INSULATED GUARD RING AND TEST CELL, 12. GAS CYLINDER
13. WATER COOLER, 14. HEATER POWER SUPPLY
APPENDIX A

SUNSTORE: Computer model of interseasonal store and sample output.
1000 REM #RRR#RR
SOLAR-RADIATION-AT-N-EAV-DISTRIBUTION-OF-HOURLY-GLOBAL-IRRADIATION---

ON A HORIZONTAL SURFACE IN MJ/m^2

<table>
<thead>
<tr>
<th>JAN</th>
<th>FEB</th>
<th>MAR</th>
<th>APR</th>
<th>MAY</th>
<th>JUN</th>
<th>JUL</th>
<th>AUG</th>
<th>SEP</th>
<th>OCT</th>
<th>NOV</th>
<th>DEC</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>0.05</td>
<td>0.10</td>
<td>0.10</td>
<td>0.10</td>
<td>0.10</td>
<td>0.10</td>
<td>0.10</td>
<td>0.10</td>
<td>0.10</td>
<td>0.10</td>
</tr>
<tr>
<td>0.02</td>
</tr>
<tr>
<td>0.01</td>
</tr>
<tr>
<td>0.01</td>
</tr>
<tr>
<td>0.01</td>
</tr>
<tr>
<td>0.01</td>
</tr>
<tr>
<td>0.01</td>
</tr>
<tr>
<td>0.01</td>
</tr>
</tbody>
</table>

TOTAL ANNUAL SOLAR RADIATION = 3410.94 MJ/m^2

STORE

STORE LENGTH = 280 Meters **WIDTH** = 10 Meters **HEIGHT** = 4 Meters
VOLUME = 11200 m^3 **STORAGE MATERIAL** = PEBBLES **DENSITY** = 1600 kg/m^3 **SPECIFIC HEAT** = 0.837 KJ/kg°C
STORE INSULATION THICKNESS = 0.6 m **THERMAL CONDUCTIVITY** = 0.056 W/m°C

COLLECTOR

TOTAL COLLECTOR AREA = 2800 m^2 **F1** = HEAT TRANSFER FACTOR (Equivalent to FR heat removal factor if store has a good heat exchanger) = 0.9
UL = OVERALL HEAT LOSS COEFFICIENT = 1 **Ta = OPTICAL EFFICIENCY AVERAGED OVER USEFUL INCIDENT ANGLES** = 0.8

HOUSE

NUMBER OF HOUSES = 100 **THE MONTHLY HEATING LOAD FOR EACH HOUSE IS (heating and hot water): MJ**

<table>
<thead>
<tr>
<th>JAN</th>
<th>FEB</th>
<th>MAR</th>
<th>APR</th>
<th>MAY</th>
<th>JUN</th>
<th>JUL</th>
<th>AUG</th>
<th>SEP</th>
<th>OCT</th>
<th>NOV</th>
<th>DEC</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
</tr>
</tbody>
</table>

TOTAL ENERGY DEMAND OF HOUSE PER ANNUM = 41.69 GJ (11580.555556 kWh)

SYSTEM OPERATION

Ith = Initial Threshold Level (Collector will only operate above this minimum)
Tso = Original Store Temperature at the beginning of month
Ta = Ambient Temperature Averaged over periods of collector operation (C)
It = Time Period of Collector Operation (Ms)
It = Total Radiation which is above Threshold (MJ/m^2)
qN = Normalized Net Heat to Storage = qT*T - t - t (MJ/m^2)
tsf = Store Temperature at the end of the month (C)
qE = Useful Heat Collected = qN*It (MJ/m^2)
ls = Normalized Total Monthly Load (MJ/m^2)
lS = Normalized Total Monthly Storage Tank Losses (MJ/m^2)
gAUX = Auxiliary Heat - is + (MJ/m^2)

APR	29.00	30.00	1.296	350.7	88.	46.4	206.6	118.57	12.4	0.
MAY	25.13	48.13	1.562	477.1	209.	85.5	243.97	35.0	25.4	0.
JUN	21.13	65.16	1.728	549.9	192.	121.2	219.16	25.3	41.1	0.
JUL	18.25	120.19	1.674	513.1	116.	142.8	143.08	27.5	55.5	0.
AUG	18.38	143.18	1.562	424.4	36.	149.6	63.88	27.5	61.9	0.
SEP	21.50	150.16	1.296	306.3	21.	145.6	8.27	27.5	60.5	0.
OCT	25.25	146.12	1.116	186.0	-110.	125.0	-46.56	63.93	27.0	0.
NOV	29.50	81.8	0.864	93.3	-236.	81.0	-47.47	188.21	40.9	0.
DEC	30.50	81.7	0.670	53.0	-251.	30.0	15.06	266.07	9.1	22.
MAR	32.39	81.3	0.670	60.8	-257.	30.0	19.80	276.79	9.1	25.7
APR	32.39	81.3	0.670	60.8	-257.	30.0	60.93	231.79	8.2	171.

TOTAL = 3410.94 MJ/m^2

% OF ENERGY SUPPLIED BY SOLAR SYSTEM = 69.0%

% OF SOLAR ENERGY COLLECTED ABOVE THRESHOLD = 42.0%

% OF SOLAR ENERGY COLLECTED = 41.5%

TOTAL AUXILIARY ENERGY FOR SYSTEM = 12939.708649 MJ (3354.3351803 kWh)

TOTAL AUXILIARY ENERGY PER HOUSE = 12939.708649 MJ (3354.3351803 kWh)

197
APPENDIX B

Computer models used to predict steady state performance of air heating collectors.

TOPAIR: calculates the top heat loss U_t for different absorber temperatures.

EFFIC: Calculates the efficiency of a top duct air heating collector.

EFFIC2: Calculates the efficiency of a rear duct air heating collector.
20 REM " calculate the top loss coefficient for a single glass window"
30 REM
40 I = 1
50 FOR I = 0 TO 20
60 IF A = 185 THEN ABSORBER TEMP
70 TA = 10 : Ambient temp (C)
80 WIND = 1 : Wind speed (ms-1)
90 EP = 0.95 : Absorber emissivity
100 E = B : Cover plate emissivity
110 S = 5 : Plate separation (cm)
120 G = 9.812 : Acceleration due to gravity (ms-2) at LONDON
130 K = 0.0257 : Thermal conductivity of gas at Tave (Wm-20C)
140 B = 0 : Tilt angle (horizontal)
150 CP = 10 : heat capacity of air (J/kgK)
155 EP = 100 : heat capacity of gas between cover and absorber (kJ/kgK)
160 S = S/100 : Convert to meters
170 L = 1
180 W = 1
190 Sw = 20LW/(L+W)
200 REM " calculate the top loss coefficient"

210 TC = TA + (TP - TA) / 2 : Guess the cover temp
220 T1 = 273.15 + TC : Convert to kelvin
230 TA = 273.15 + TC : Convert to kelvin
240 TC = 273.15 + TC : Convert to kelvin
250 TP = TP + 273.15 : Convert to kelvin
260 T2 = TP : Convert to kelvin
270 DT = T2 - T1 : Temp difference Delta T
280 Tave = T1 + DT / 2 : Average gas temperature
290 DEN = 352.91 / Tave
300 h = Tave * 0.00076 + 0.034406
310 VISM = Tave * 0.0000464 + 0.000046351
320 VOL / Tave : thermal volume expansion coefficient only holds for perfect gas
330 VVISI/VEN : KINEMATIC VISCOSITY
340 Gr = (VVISI / DEN) ^ 0.5 : GRASHOF NUMBER
350 Pr = (CPVISI / K)
360 Ra = GrPr : RAYLEIGH No
370 REM " calculate nusselt number"
380 N1 = 1.70B/(Ra*Cos(B))
390 IF N1 < 0 THEN TAKE ONLY POSITIVE TERMS
400 N2 = (N1 + 1.70B/(Ra*Cos(B))) ^ 1.3
410 IF N2 < 0 THEN TAKE ONLY POSITIVE TERMS
420 N3 = (1.8816 - (1.8816 - 1.6 * 170B/(Ra*Cos(B))) ^ 0.5) : Nusselt No
430 h = h / N3 : Heat transfer coefficient
440 h = 0.00000567 * (TP - TC) / (TP - TC + 1.8816 + 170B/(Ra*Cos(B))) : RAD from plate to cover
450 hsky = 0.00000567 * (TC - TA) / (TC - TA + 1) : RAD from cover to sky
460 DT = TC - TA
470 Tave = TA + DTW / 2
480 Den = 352.91 / Tave
500 km = Tave * 0.00076 + 0.034406
510 Vism = Tave * 0.0000464 + 0.000046351
520 REM " calculate the top loss coefficient"
530 V = VVISI/VEN : KINEMATIC VISCOSITY
540 Gr = (VVISI / Sw) ^ 0.5 : GRASHOF NUMBER
545 Pr = (CPVISI / Sw)
550 IF WIND THEN GOTO 571
555 Ra = Gr * Pr : Rayleigh number
560 hwind = 1.5 * Ra : 333 k SW
570 Goto 560
571 Rem = (DEN / WIND) / VISW
572 hwind = k * 8.64 * Ra * -5 * Prw : 333 / SW
580 UT = 1 / (h (sendch) + 1 / (hwind + hsky)) : Calculate top loss U-value
590 Tc = 1.1 + (TP - TA) / (h (sendch) + 1 / (hwind + hsky)) : Calculate cover temp (C)
600 IF ABS (Tc - Tcs) > 0.1 THEN Tc = Tc ELSE GOTO 630
610 Tc = Tc
620 Goto 630
630 PRINT " TOP LOSS COEFFICIENT CALCULATION (see Duffie & Beckman pp204)"
640 PRINT " "
650 PRINT " "
660 PRINT " "
670 PRINT " "
680 PRINT " "
690 PRINT " "
700 PRINT " "
710 PRINT " "
720 PRINT " "
730 PRINT " "
740 PRINT " "
750 PRINT " "
760 PRINT " "
770 PRINT " "
780 PRINT " "
790 PRINT " RESULTS"
800 PRINT " "
810 PRINT " "
820 PRINT " "
830 PRINT " "
840 PRINT " "
850 PRINT " "
860 PRINT " "
870 PRINT " "
880 PRINT " "
890 PRINT " "
900 PRINT " "
910 PRINT USING " 7A,DDD,DD,2A,DD,DD,2A" :
920 END
10 REM **************************** EFFIC ****************************
20 REM -- THIS PROGRAM CALCULATES THE STEADY STATE EFFICIENCY OF A TOP DUCT
30 REM AIR HEATING SOLAR COLLECTOR USING EQUATIONS FROM DUFFIE AND BECKMAN
40 REM p237 Figure 6.12.1 (a)
50 REM
60 FOR J=0 TO 10
70 N+1.4*J+10 ; MASS FLOW RATE (g/kg/hr)
80 EA+16.2 ; AMBIENT TEMP. (°C)
90 T1=TA ; IN FLUID TEMPERATURE (°C)
100 T2=20.4 ; ABSORBER TEMPERATURE (°C) IF THIS CHANGES ALSO CHANGE T1
110 Ti=(T2-TA)/2+TA
120 WIND=5 ; WIND SPEED (m/s)
130 I=236 ; INTENSITY OF SOLAR RAD (W/m2)
140 E4=8 ; TRANSMISSIVITY & ABSORBIVITY OF COVER AND ABSORBER
150 E2=0.95 ; EMISIVITY OF ABSORBER
160 J=0.34 ; CONDUCTIVITY OF REAR INSULATION (W/m°C)
170 T1=0.075 ; INSULATION THICKNESS (m)
190 A=1 ; COLLECTOR AREA (m2)
200 L=2 ; COLLECTOR LENGTH IN METERS
210 W=1 ; WIDTH OF COLLECTOR IN METERS
220 S=1 ; PLATE SEPARATION IN CM
250 D=1 ; FIN SEPARATION IN CM
240 DISP "DO YOU WANT ALL THE COLLECTOR PARAMETERS PRINTED Y OR N ?????"
245 IF J=0 THEN GOTO 470
250 INPUT A$
260 IF A$="N" THEN GOTO 470
270 PRINT IS 701
280 PRINT "---------------- COLLECTOR INITIAL PARAMETERS ARE ------------------"
290 PRINT USING 930 ; "MASS FLOW RATE",M,"kg/hr"
300 PRINT USING 930 ; "AMBIENT TEMP.",TA,"°C"
310 PRINT USING 930 ; "INLET FLUID TEMP.",T1,"°C"
320 PRINT USING 930 ; "ABSORBER TEMP.",T2,"°C"
330 PRINT USING 930 ; "WIND SPEED",WIND,"m/s"
340 PRINT USING 930 ; "SOLAR RADIATION",I,"W/m2"
350 PRINT USING 930 ; "TRANSMISSIVITY & ABSORBIVITY",E4
360 PRINT USING 930 ; "EMISIVITY OF COVER",E1
370 PRINT USING 930 ; "EMISIVITY OF ABSORBER ",E2
380 PRINT USING 930 ; "INSULATION CONDUCTIVITY",K1,"W/m°C"
390 PRINT USING 930 ; "INSULATION THICKNESS",S,"cm"
400 PRINT USING 930 ; "COLLECTOR AREA",A,"m2"
410 PRINT USING 930 ; "COLLECTOR LENGTH",L,"m"
420 PRINT USING 930 ; "COLLECTOR WIDTH ",W,"m"
430 PRINT USING 930 ; "PLATE SEPARATION",S,"cm"
440 PRINT USING 930 ; "FIN SEPARATION",D,"cm"
450 PRINT "-----------------
460 REM ---------------- INPUT CONSTANT DATA -----------------
470 STE=0.000000000567 ; STEFAN-BOLTZMANN CONSTANT (w/m2K4)
480 VIS=.00000886 ; VISCOSITY OF AIR IN DUCT (N/s/m2)
500 J=0.0241 ; THERMAL CONDUCTIVITY OF AIR IN DUCT (W/m/°C)
510 C=1009 ; HEAT CAPACITY OF AIR AT CONSTANT PRESSURE (J/kg°C)
520 REM ----------------
530 T1=11.273.15 ; RHEU
APPENDIX C

A multi-node dynamic computer model of a flat-plate, rear-duct, air-heating solar collector is described, and its verification is outlined. Results from the model are then presented of the daily averaged thermal efficiencies for a variety of simulated ambient conditions pertinent to mid to high maritime latitudes. The collectors differ significantly only in their thermal capacitances. The diurnal variation of insolation produces a modest spread of thermal efficiencies, the lower the thermal capacitance of the collector the higher the efficiency. More rapid fluctuations in insolation produce only a slightly further spread in the thermal efficiencies, though such fluctuations have a more significant effect on peak temperatures.

Keywords: air-heating solar collectors; thermal capacitance effects in solar collectors.

NOMENCLATURE

- DY1-5: plate and duct-back thicknesses (5)
- f(\theta): transmittance - absorbance function of the collector
- FR: collector heat-removal factor
- HP(\theta)(I): heat-transfer coefficient plate (or duct-back) to air in the I'th segment of the duct
- M: duct air flow rate
- NI: number of duct segments
- PON: threshold power for switch on of air flow
- S: irradiance in cover plane
- S0: solar beam irradiance
- S1: diffuse irradiance on a horizontal surface
- SP: irradiance absorbed by plate
- TA: ambient temperature
INTRODUCTION

Low mass in solar collectors offers the advantage of low construction and installation costs. But the mass also influences the thermal capacitance and hence the thermal efficiency, because even a smooth diurnal variation of insolation prevents a collector from achieving a true steady-state, and the lower the mass the closer the varying conditions are followed. Earlier studies (for example {1}, {2}, {4}) have shown that lowering the mass will improve the thermal efficiency, though perhaps by not very much. However, there seem to be few data on the diurnal performance in various ambient conditions of collectors which differ only in their thermal capacitances. This is particularly the case for air-collectors.

Therefore we have developed and verified a dynamic computer model of a flat-plate, rear-duct, air-heating solar collector. We have used it to obtain daily averaged thermal efficiencies for a wide variety of simulated ambient conditions pertinent to maritime mid to high latitudes. The basic configuration of the collector was varied to yield a wide spread of thermal capacitances. The model is of the multi-node kind, because various studies (for example {1}, {3}, {4}) have shown that simple one-node models are unlikely to give accurate results in non steady-state conditions.

THE COLLECTOR MODEL

The collector is of the flat-plate rear-duct air-heating single-cover kind, with dimensions selected to give good performance. It is divided into nodes as shown in Figure 1. (This collector could be complete, or it could be a strip width \(W \) of a larger assembly.) Heat balance equations are defined at each node, and the equations are numerically integrated in sequence using the Adams-Bashforth-Moulton predictor-corrector method {5}.

The model was tested in a variety of ways, including a comparison of its predictions with the actual behaviour in the laboratory of a flat-plate rear-duct air-heating single-cover collector. In all cases the agreement between prediction and actuality was satisfactory.
RESULTS

5.1 The collectors

Table 1 specifies the collector configurations, and the rear-duct air flow conditions. The basic configuration was selected to give good steady-state performance, the configurations differing only in the thickness of the plate and duct-back (DY1 to DY5 in Table 1). The main effect of these changes in configuration is on the thermal capacitance of the components and hence of the whole collector.

Table 1 Collector configurations, and rear-duct air flow

collector length (along flow)	4.00 m
collector width (W)	1.00 m
cover to plate spacing	0.05 m
rear duct gap	0.01 m
back insulation	dry glass fibre, thickness 0.10 m
edge insulation	dry glass fibre, thickness 0.05 m
material of plate and duct-back	polycarbonate, thickness 2.00 mm
plate absorbtance	0.95 at θ=0, falling slightly as θ increases
emissivity of upper surface of the plate (diffuse)	0.10
emissivity of duct surfaces (diffuse)	0.91
emissivity of the cover (diffuse)	0.85
thermal properties of air at 283 K for ambient air, at 303 K elsewhere	
latitude	52°N
collector tilt (to horizontal)	35°
collector orientation	south-facing
thickness of plate and of duct-back	
DY1	0.2 mm
DY2	0.5 mm
DY3	1.0 mm
DY4	2.0 mm
DY5	5.0 mm
collector time-constant (flow 1)	
flow 0	stagnation (M=0)
flow 1	all TI M = 0.0600 kg s⁻¹ (PON, irrelevant)
flow 2	TI = 303 K M = 0.0600 kg s⁻¹ PON = 128 W
flow 3	TI = 323 K M = 0.0562 kg s⁻¹ PON = 124 W

The air flow rate is a compromise between attaining large values of HPA(I) and keeping low the power required to maintain the air flow in the rear-duct. At M = 0.0600 kg s⁻¹ and TI = 303 K (flow 2 in Table 1) this power is 6.4 W. The corresponding pressure drop across the duct is 12 mm water gauge. If it is
assumed that the circulation fan gives a constant volumetric flow rate then at other values of T_i the value of M will be different from 0.0600 kg s^{-1} at $T_i = 323 \text{ K}$, $M = 0.0562 \text{ kg s}^{-1}$ (flow 3 in Table 1).

It is also necessary to specify the minimum power that must be delivered by a complete array of collectors in order for the air flow to either be switched on or be sustained. This power must be some multiple of the electrical power required by the fan to circulate air around the whole system incorporating the array. We adopted a multiple of two. In order to estimate the electrical power it is necessary to allow for the efficiency of the fan and for the pressure drop in the whole system. For a modest domestic system we ended up with a minimum power per collector of the sort specified in Table 1 of 128 W for flow 2. For flow 3 PON is slightly less. The values of PON are shown in Table 1. Note that the values of PON are for a 4 m x 1 m collector, and not for the whole array. These values of PON correspond to an air temperature rise of between 2 K and 3 K for the flow conditions specified.

The collector time-constants in Table 1 vary with ambient conditions and with operating conditions, particularly with the air flow rate. The values in the Table are representative for all ambient conditions considered here, and for the various (similar) air flow rates, except for flow 0 (stagnation), in which case the time-constants in Table 1 should be multiplied by about a factor of 5. Note that the time-constants in Table 1 are the $1/e$ time-intervals following a step change in insolation. However, only in stagnation is the response very close to exponential. Note also that the thermal capacitance of the cover has a relatively small effect, because the cover is coupled to the plate via a rather large thermal resistance.

3.2 Steady-state efficiency curve

We obtained a standard steady-state thermal efficiency curve, of the form (6)

$$\eta = \frac{F_R \left(f(\theta) - U_L \frac{(T_I - T_A)}{S} \right)}{S}$$ \hspace{1cm} (1)

where $f(\theta)$ is such that

$$SP = f(\theta) \cdot S$$ \hspace{1cm} (2)

For the steady state efficiency curve S is beam irradiance normal to the cover, such that $S = 700 \text{ W m}^{-2}$. Furthermore, $T_A = 293 \text{ K}$, $T_K = 273 \text{ K}$, WIND = 1.0 m s$^{-1}$, $M = 0.0600 \text{ kg s}^{-1}$. These values lie within the ASHRAE specifications for steady-state collector testing (6).

In order to obtain the efficiency curve the value of T_I was varied, everything else remaining constant. The outcome is shown in Figure 2 for collector configuration DY1 (Table 1), though the results for DY2 to DY5 are indistinguishable from those for DY1 on the scale of Figure 2. The intercept on the η-axis, 0.683 gives $F_R \cdot f(\theta)$ (equation (1)). The program yields a value of 0.830 for $f(\theta)$, and therefore F_R is 0.823. The slope gives $-F_R \cdot U_L$, and at low values of $(T_I - T_A)/S$ this is $-2.83 \text{ W m}^{-2} \text{ K}^{-1}$, giving a value of U_L of 3.44 W m$^{-2}$ K$^{-1}$. The value of $F_R \cdot U_L$ increases as T_I increases (T_A, S constant), largely because the radiative heat transfer coefficients increase with increasing temperature differences, and though F_R decreases it does not offset the increase in U_L. These values of $f(\theta)$, F_R and U_L indicate good performance for a flat-plate rear-duct air-heating single-cover collector with a selective plate-surface.

We had a "quick look" at the effect of varying the wind speed on the steady-state
temperatures. The effect was fairly modest, because of the large thermal resistance between cover and plate. Wind speed variations will be deferred to a later study.

3.3 Daily-averaged efficiency

The collector configurations DY\textsubscript{1} to DY\textsubscript{5} were run under conditions flow 2 and flow 3 for a variety of simulated days 21 June (J), 21 March (M), 21 December (D). The simulated conditions of insolation and weather on these days are shown in Figure 3. The ambient temperature TA varies sinusoidally through the day (Figure 3(a)) with an amplitude of 5 K. Note that there are two temperature curves for 21 December, TAD\textsubscript{1} and TAD\textsubscript{2}. The irradiance S consists of a diffuse component from the ground, and of a sky component which can either correspond to clear sky conditions or to overcast diffuse conditions. Figure 3(b) shows some of the various insolations, the prefix S\textsubscript{0} denoting the clear sky irradiance normal to the beam, and the prefix S\textsubscript{1} the overcast diffuse irradiance on a horizontal surface. In the cases in Figure 3(b) the only variation in insolation is the diurnal envelope shown. By contrast in Figures 3(c) and (d) the insolation flips between the two envelopes shown, the square wave periods being indicated, the conditions remaining diffuse throughout. In clear sky conditions the sky temperature is 20 K below TA, and in overcast conditions it is 10 K below TA. In all cases the wind speed is constant at 1.0 m s-1.

For each "day" an average thermal efficiency was obtained, defined by

\[\bar{\eta} = \text{total energy extracted by the air flow in the day/integration of } S \text{ over the day}. \]

Note that a day spans the time from sunrise to sunset. In no case did a collector deliver energy before or after sunset, and therefore \(\bar{\eta} \) is never being wrongly evaluated.

In order to plot \(\bar{\eta} \) on Figure 2 it is necessary to re-define the abscissa \((T_I-T_A)/S \). TI is constant (303 K or 323 K), and for TA and S the arithmetic mean values for the period sunrise to sunset are taken. The outcome is shown in Figure 2, the results being coded in accord with Table 1 and Figure 3, except that the thermal capacitance configuration DY\textsubscript{1} to DY\textsubscript{5} is not shown. However, you can see that at each value of \((T_I-T_A)/S \) there is a column of results, and in every case DY\textsubscript{1} is at the top, then comes DY\textsubscript{2}, and so on, to DY\textsubscript{5}, though in some cases DY\textsubscript{1}-DY\textsubscript{3} merge on the scale of Figure 2. Clearly, the lower the thermal capacitance the better the performance.

Consider first those cases in which the insolation only varies over the diurnal envelope: this covers the cases (i)-(vi), (viii), (xi). The increase in \(\bar{\eta} \) is marked in going from the rather massive DY\textsubscript{5} to the rather less massive DY\textsubscript{4}. However, the improvement in going from DY\textsubscript{4} to the low mass DY\textsubscript{1} is also significant, particularly in marginal conditions (large \((T_I-T_A)/S \)). This general improvement with reducing thermal capacitance arises because with a diurnal envelope the slower warm-up of a high mass collector in the morning is not compensated by the slower cool-down in the afternoon. Note that the sinusoidal variations in TA and TK do not make an appreciable contribution to the spread of \(\bar{\eta} \) with thermal capacitance on the scale of Figure 2.

The advantage of low mass could, in principle, be more marked under intermittent insolation. SID\textsubscript{1}-SID\textsubscript{3} provide such conditions (Figure 3), the periodicities lying within the range of time-constants in Table 1. However, Figure 2 shows that, even in marginal conditions, very little further advantage in low mass is obtained, though DY\textsubscript{1}-DY\textsubscript{3} are more spread out than with the diurnal envelope alone. The
reason for such a slight improvement is that whereas a low mass collector will
"follow" the insolation, possibly switching the air flow on and off, a high
mass collector, once it has warmed to the point where the air flow switches on,
will tend to stay at a fairly constant temperature. The overall effect, for a
wide variety of conditions, is that the time-averaged temperatures of the air flow
are not very sensitive to the mass. Therefore there is very little difference in
the amount of heat extracted. A similar conclusion was reached by Klein et al (1).

Figure 2 also shows that the values of \bar{n} differ from those of n. This is
particularly the case at low thermal capacitances, as can be seen from the
performance of DYL, which is not very different from that which would have been
obtained for a collector of zero thermal capacitance. Two prominent and opposing
effects operating here are that for n in Figure 2 the value of θ is always zero,
thus raising $f(\theta)$, and, more importantly, that in insolation conditions which vary,
intermittently or otherwise, a collector can "grab" peak insolation, yet entirely
miss the corresponding steady state insolation which never reaches such peak values.
Low thermal capacitance is again an advantage.

In addition to \bar{n}, the daily average of TO was also obtained, such that only those
periods were included in which air flowed in the rear duct. In general the lower
the thermal capacitance of the collector the higher the daily average, though the
improvement from DYS to DYL never exceeded 2 K. However, the peak temperatures
for DYL can be up to about 10 K higher than for DYS, the greatest difference
occurring in intermittent conditions. In some circumstances this will be
an important advantage of low thermal capacitance.

A set of results analogous to those in Figure 2 was obtained for lower flow rates,
around 0.02 kg s$^{-1}$. This is a potentially useful domain, because in spite of the
lower thermal efficiencies the values of TO are raised and can reach values
such that useful energy can be extracted from ambient conditions which would yield
no useful energy at higher flow rates, because of the lower values of TO.
However the variation of \bar{n} with thermal capacitance (DYL-DYS) was not remarkably
different from that shown in Figure 2.

It can be concluded that collectors with low thermal capacitance can have
significantly larger thermal efficiencies at non-small daily averaged values of $(T_I-T_A)/S$
in non-steady insolation, and that this is largely because of the
diurnal variation, rather than because of more rapid fluctuations in insolation.
Peak temperatures can also be significantly larger at low thermal capacitance,
particularly when there are rapid fluctuations in insolation.

REFERENCES

1 S. A. Klein, J. A. Duffie, W. A. Beckman, Transient considerations of flat-
2 M. Yusoff and D. J. Close, Transient studies of solar air heaters, presented
at the Inter-regional symposium on solar energy for development, Tokyo
5-10 February (1979).
3 A. J. De Ron, Dynamic modelling and verification of a flat-plate solar
6 Methods of testing to determine the thermal performance of solar collectors,
Figure 1 Flat-plate, rear duct, air heating solar collector.
Figure 2 Steady-state efficiency (η - the solid curve) and daily averaged efficiency ($\bar{\eta}$). The values of η are for a variety of simulated conditions (see Table 1 and Figure 3).

(i) $S\text{OJ}/T\text{A}J$, flow 2
(ii) $S\text{OM}/T\text{AM}$, flow 2
(iii) $S\text{OD}/T\text{AD}1$, flow 2
(iv) $S\text{OM}/T\text{AM}$, flow 3
(v) $S\text{LM}/T\text{AM}$, flow 2
(vi) $S\text{OD}/T\text{AD}1$, flow 3
(vii) $S\text{ID}1/T\text{AD}1$, flow 2
(viii) $S\text{OD}/T\text{AD}2$, flow 3
(ix) $S\text{ID}2/T\text{AD}1$, flow 2
(x) $S\text{ID}3/T\text{AD}1$, flow 2
(xi) $S\text{ID}/T\text{AD}1$, flow 2.
Figure 3 Simulated ambient conditions. For further details see text.
APPENDIX D

TRANS: Computer program for analysing collector data under transient conditions.
250 FOR K=1 TO NC
260 GOTO 210
270 IF K-1 TO NC
275 IF K=1 TO NC
280 IF K=1 THEN GOTO 110
285 Z(L)*INT(X(L)/100)/10
290 NEXT K
295 NEXT K
300 NEXT K
305 NEXT K
310 NEXT K
315 NEXT K
320 NEXT K
325 NEXT K
330 NEXT K
335 NEXT K
340 NEXT K
345 NEXT K
350 NEXT K
355 NEXT K
360 NEXT K
365 NEXT K
370 NEXT K
375 NEXT K
380 NEXT K
385 NEXT K
390 NEXT K
395 NEXT K
400 NEXT K
405 NEXT K
410 NEXT K
415 NEXT K
420 IF 665 (DENOM)-1 THEN GOTO 210
425 YY=YY+YY
430 FOR K=1 TO NC
435 ZY(K)=Z(K)+Z(K)*Y
440 FOR L=1 TO NC
445 ZL(K)=Z(K)+Z(K)*L
450 FOR M=1 TO NC
455 FOR N=1 TO NC
460 P(K,L)=P(K,L)+P(K,L)*Z(K)*Z(L)
465 NEXT M
470 NEXT L
475 NEXT K
480 NEXT K
485 NEXT K
490 NEXT K
495 NEXT K
500 PT(K,L)=0
505 FOR M=1 TO NC
510 FOR L=1 TO NC
515 FOR K=1 TO NC
520 FOR N=1 TO NC
525 FOR K=1 TO NC
530 FOR M=1 TO NC
535 FOR L=1 TO NC
540 NEXT M
545 NEXT L
550 NEXT K
555 NEXT M
560 NEXT N
565 NEXT K
570 NEXT K
575 NEXT K
580 FOR F=1 TO NC
585 FOR L=1 TO NC
590 FOR K=L TO NC
595 FOR M=1 TO NC
600 P(K,L)=P(K,L)-PT(K,L)/DENOM
605 NEXT M
610 NEXT L
615 NEXT K
620 NEXT K
625 NEXT K
630 NEXT K
635 NEXT M
640 GOTO 210
645 IF NC=NC THEN STOP! STOP IF NOT ENOUGH DATA POINTS
650 REM EVALUATES ESTIMATES OF PARAMETERS AND STANDARD ERRORS
655 FOR K=1 TO NC
660 X(L)=0
665 NEXT L
670 NEXT K
675 NEXT K
680 NEXT K
685 NEXT K
690 NEXT L
695 NEXT K
700 NEXT K
705 FOR K=1 TO NC
710 NEXT K
715 NEXT K
720 YY=YY-2*YY(K)YY(K)
725 FOR L=1 TO NC
730 YY=YY+XX(K)XXX(L)LXX(L)
735 NEXT L
740 NEXT L
745 NEXT L
750 NEXT L
755 NEXT L
760 NEXT L
765 NEXT L
770 FOR K=1 TO NC
775 NEXT K
780 FOR L=1 TO NC
785 NEXT L
790 PT(K,L)=0
795 NEXT M
800 NEXT L
805 NEXT K
810 NEXT M
815 NEXT K
820 PT(K,L)=PT(K,L)+P(K,L)*Z(K)*Z(L)
825 NEXT M
830 NEXT K
835 NEXT K
840 NEXT K
845 NEXT K
850 NEXT K
855 NEXT K
860 Z(K)=SQR(PT(K,K)YY/(NP-NC))
865 NEXT K
870 NEXT K
875 NEXT K
880 PRINT "TAPE F.3"
885 NEXT K
890 FOR K=1 TO NC
895 NEXT K
900 PRINT P,K,X(K),Z(K)
905 NEXT K
910 END
214
940 NEXT K
950 NEXT K
960 ZE=SQR (ZEYY/NE-NC))
970 PRINT "ETAAP:";E,"-/+";E
980 U=X(NC)
990 PRINT "FU="U,"-/+";E(NC)
1000 PRINT "TABLE F.4"
1010 FOR K=1 TO NE
1020 C(K)=X(K)/E
1030 PRINT K,C(K)
1035 NEXT K
1040 F=-(U/(NLOG (1-U/H)))
1050 PRINT "F=";F
1060 E=E/F
1070 U=U-F
1080 PRINT "ETAPA:";U;U
1090 PRINT "DATA SETS ACCEPTED FOR ANALYSIS";I UP
1100 REM READ DATA TO GENERATE THERMAL PERFORMANCE CURVE
1110 ASSIGN 1 TO "TRANSD700"
1120 NP=0
1130 READ# 1 : I,X(NK),Y,T(NK)
1135 IF I=0 AND X(NK)=0 THEN GOTO 1570
1140 I=I+1
1150 FOR K=2 TO NK
1160 L=NP-K+1
1170 READ# 1 : I,X(L),Y,T(L)
1175 IF I=0 AND X(L)=0 THEN GOTO 1570
1180 IF I#1 THEN GOTO 1130
1190 II=I+1
1200 NEXT K
1210 GOTO 1460
1220 FOR K=2 TO NK
1230 L=NP-K+2
1240 X(L)=X(L-1)
1250 T(L)=T(L-1)
1260 NEXT K
1270 READ# 1 : I,X(I),Y,T(I)
1275 IF I=0 AND X(I)=0 THEN GOTO 1570
1280 IF I#1 THEN GOTO 1150
1290 II=I+1
1300 E=0
1310 X(NC)=0
1320 FOR K=1 TO NK
1330 E=E+X(K)*C(K)
1340 X(NC)=X(NC)+T(K)
1350 NEXT K
1360 Y=Y/(FRE)
1370 X(NC)=X(NC)/Y
1380 PRINT Y,X(NC)
1390 REM CALC LEAST SQRT TO THERMAL PERFORMANCE
1400 SX=SX+X(NC)
1410 SY=SY+Y
1420 SXY=SXY+X(NC)*Y
1430 SYY=SYY+Y^2
1440 PRINT SYX,SYY
1550 NF=NF+1
1560 GOTO 1220
1570 DNP=NE
1580 PRINT "POINTS ON THERMAL PERFORMANCE CHARACTERISTIC":NF
1590 PRINT "FROM LEAST SQUARES FITS EACH WAY"
1600 E=(SYX*SYX-SXY*X)/((DNP*SYX-SXY*SYX)
1610 U=(SX*SY-DNP*SYX)/((DNP*SYX-SXY*SYX)
1620 PRINT "MINIMUM ETAAP:";U;U
1630 E=(SYX*SYX-SXY*X)/((DNP*SYX-SXY*SYX)
1640 U=(SX*SY-DNP*SYX)/((DNP*SYX-SXY*SYX)
1650 PRINT "MAXIMUM ETAAP:";U;U
1655 NEXT NK
1660 STOP
1670 END