The efficient collection and long term storage of solar energy in the UK, using air as the working fluid

Thesis

How to cite:
Oreszczyn, Tadeusz (1985). The efficient collection and long term storage of solar energy in the UK, using air as the working fluid. PhD thesis The Open University.

For guidance on citations see FAQs.

© 1985 The Author

https://creativecommons.org/licenses/by-nc-nd/4.0/

Version: Version of Record

Link(s) to article on publisher’s website:
http://dx.doi.org/doi:10.21954/ou.ro.0000de24
Tadeusz Oreszczyn

B.Sc. (Hons) Brunel

The efficient collection and long term storage of solar energy in the UK, using air as the working fluid

Thesis submitted for the degree of Doctor of Philosophy in Energy Research at the Open University, September 1984

Volume 2
CONTENTS

Volume 2

Nomenclature
References
Tables
Figures
Plates
Appendices

Appendix A: 'Sunstore' computer model.
Appendix B: Steady state computer models
Appendix C: The effect of thermal capacitance on the performance of solar collectors
Appendix D: 'TRANS', transient testing computer model.
Nomenclature

Chapter 2

\(A_c \) Collector area (m²)

\(A_s \) Storage tank surface area (m²)

\(c \) Appropriate specific heat (J Kg⁻¹ °C⁻¹)

\(c_p \) Volume heat capacity at constant pressure (J Kg⁻¹ °C⁻¹)

\(C_h \) Initial capital expenditure per house (£)

\(E_T \) Total (accumulated sum) of the radiation falling over a time period of one month on an inclined surface which is above the threshold radiation (J m⁻²)

\(f \) Differential fuel inflation

\(F_h \) Fuel cost per year per house (£)

\(F_R \) Collector/heat-exchanger efficiency factor

\(F' \) Collector efficiency factor

\(i \) Discount rate

\(I_{th} \) Threshold solar irradiance (W m⁻²)

\(K_h \) Repeated capital expenditure per house (£)

\(L \) Monthly total heat demand for space heating and hot water (J)

\(L_s \) Energy lost from storage tank during the month (J)

\(M_C \) Storage heat capacity (J °C⁻¹)

\(N \) Lifetime of hardware (years)

\(n \) Number of years

\(P_{VCh} \) Present value cost per house

\(Q \) Heat energy (J)

\(Q_N \) Net heat transferred to storage during the month (J)

\(Q_T \) Solar energy collected during the month (J)

\(R_h \) Running costs per year per house (£)

\(s \) Pebble shape factor

\(T_a \) Ambient temperature (°C)

\(T_{at} \) Ambient temperature averaged over periods when the radiation level is above the threshold (°C)

\(T_g \) Monthly average ground temperature (°C)

\(T_s \) Store temperature (°C)

\(\bar{T}_s \) Monthly average store temperature (°C)

\(T_{so} \) Store temperature at the beginning of the month (°C)
ΔT \hspace{1cm} Temperature change ($^\circ\text{C}$)

t_m \hspace{1cm} Total number of seconds in a month

t_t \hspace{1cm} Total number of seconds collector is in operation in month, i.e. when radiation level is above threshold

U_L \hspace{1cm} Collector overall loss coefficient ($\text{W m}^{-2} \cdot \text{°C}^{-1}$)

U_S \hspace{1cm} Storage tank heat loss coefficient ($\text{W m}^{-2} \cdot \text{°C}^{-1}$)

V \hspace{1cm} Volume (m^3)

p \hspace{1cm} Density (kg m^{-3})

$(\overline{\tau \alpha})$ \hspace{1cm} Monthly average transmittance-absorptance product
Nomenclature

Chapter 3

- A_C Collector area (m^2)
- F_R Collector heat-exchanger efficiency factor
- f Fraction of monthly total demand met by solar energy
- H_T Monthly average daily radiation incident on the collector surface per unit area ($J m^{-2}$)
- L Monthly total heating demand for space heating and hot water (J)
- N Days in month
- T_a Monthly average ambient temperature ($°C$)
- T_{ref} An empirically derived reference temperature ($100° C$)
- t_m Total number of seconds in a month
- U_L Collector overall loss coefficient ($W m^{-2} °C^{-1}$)
- $(\tau\alpha)$ Monthly average transmittance-absorptance product
Nomenclature

Chapter 4

A Aperture area, or transparent frontal area of collector (m²)

Cₚ Specific heat of transfer fluid at constant pressure (Jkg⁻¹ °C⁻¹)

Dₜ Characteristic length (m)

F' Absorber plate (or collector) efficiency factor

Fₚ Collector heat removal factor

g Acceleration of gravity (ms⁻²)

h₁ Convective heat transfer coefficient, duct top to heat transfer fluid (Wm⁻² °C⁻¹)

h₂ Convective heat transfer coefficient, duct base to heat transfer fluid (Wm⁻² °C⁻¹)

hᵣ Radiative heat transfer coefficient (Wm⁻² °C⁻¹)

hₜ Wind heat transfer coefficient (Wm⁻² °C⁻¹)

H Duct height (m)

I Equivalent normal solar irradiance (Wm⁻²)

k Thermal conductivity (Wm⁻¹ °C⁻¹)

L Collector length (m)

m Mass flow rate of transfer fluid (Kg s⁻¹)

Nu Nusselt number

Pr Prandtl number

Qu Energy per unit time, useful (W)

Ra Rayleigh number

Re Reynolds number

T₁ Duct top, temperature (°C)

T₂ Duct base, temperature (°C)

Tₐ Ambient air-temperature (°C)

Tₖ Cover temperature (°C)

Tₑ Exit fluid temperature (°C)

Tᵢ Inlet fluid temperature (°C)

Tₘ Mean fluid temperature (Tₑ + Tᵢ)/2 (°C)

Tₚ Average absorber temperature (°C)

Uᵦ Bottom loss heat transfer coefficient (Wm⁻² °C⁻¹)

Uₑ Edge loss heat transfer coefficient (Wm⁻² °C⁻¹)

Uₙ Collector overall heat transfer (loss) coefficient (Wm⁻² °C⁻¹)
U_t Top loss heat transfer coefficient (Wm$^{-2} \cdot ^\circ C^{-1}$)
V Wind velocity (ms$^{-1}$)
W Collector width (m)
x Insulation thickness (m)
α Absorptance of the collector absorber surface for solar radiation
β Volume thermal expansion coefficient (K$^{-1}$)
ϵ_c Cover emission
ϵ_p Absorber plate emissivity
η Efficiency
μ Absolute (dynamic) coefficient of viscosity (Kg m$^{-1}$ s$^{-1}$)
ρ Density (Kgm$^{-3}$)
τ Transmittance of the solar collector
$(\tau \alpha)$ The product of the absorptance of the collector plate and the transmittance of the cover for normal irradiance
σ Stefan-Boltzmann constant
Nomenclature
Chapter 5

A = Aperture area, or transparent frontal area for collector (m²)
A_c = Collector area (m²)
C_p = Volume heat capacity at constant pressure (JKg⁻¹°C⁻¹)
P' = Absorber plate (or collector) efficiency factor
P" = Collector flow factor
P_1 = Correction factor for partial shading of the collector
P_2 = Correction factor for variation of τα with the angle of incidence
P_3 = Correction factor for variation in optical properties from normal for diffuse irradiance
P_R = Collector heat removal factor
h_w = Wind heat transfer coefficient (Wm⁻²°C⁻¹)
I = Equivalent normal solar irradiance (Wm⁻²)
I_b = Direct solar irradiance in plane of collector (Wm⁻²)
I_d = Diffuse solar irradiance in plane of collector (Wm⁻²)
I_m = Measured total solar irradiation incident upon the aperture plane of the collector (Wm⁻²)
m = Mass flow rate of transfer fluid (Kg s⁻¹)
m_t = Mass flow rate of leak (Kg s⁻¹)
M = Fluid capacity of collector (Kg)
(mc)_e = Effective heat capacity of collector (J °C⁻¹)
q = Output power per unit aperture area conveyed by the heat transfer fluid (Wm⁻²)
Q_u = Energy per unit time, useful (W)
(Q_u)_t = Energy per unit time under transient conditions (W)
r = Correlation coefficient
t = Time (s)
T_a = Ambient air temperature (°C)
T_b = Average back plate temperature (°C)
T_e = Exit fluid temperature (°C)
T_f = Average temperature of the fluid in the collector (°C)
T_i = Inlet fluid temperature (°C)
<table>
<thead>
<tr>
<th>Symbol</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>T_{im}</td>
<td>Measured fluid inlet temperature (°C)</td>
</tr>
<tr>
<td>T_m</td>
<td>Mean fluid temperature $(T_e + T_i)/2$ (°C)</td>
</tr>
<tr>
<td>T_p</td>
<td>Absorber plate temperature (°C)</td>
</tr>
<tr>
<td>T_{sky}</td>
<td>Equivalent black body sky temperature (°C)</td>
</tr>
<tr>
<td>T^*</td>
<td>Reduced temperature $(T_i - T_a)/I$ ($m^2 \cdot °C \cdot w^{-1}$)</td>
</tr>
<tr>
<td>U_L</td>
<td>Collector overall heat transfer (loss) coefficient ($Wm^{-2} \cdot °C^{-1}$)</td>
</tr>
<tr>
<td>V</td>
<td>Wind velocity (ms⁻¹)</td>
</tr>
<tr>
<td>η</td>
<td>Efficiency</td>
</tr>
<tr>
<td>τ_a</td>
<td>Product of the absorptance of the collector plate and the transmittance of the cover for normal irradiance.</td>
</tr>
<tr>
<td>τ_c</td>
<td>Collector time constant under flow conditions (s)</td>
</tr>
<tr>
<td>τ_d</td>
<td>Cut off time (s)</td>
</tr>
<tr>
<td>$(\tau a)_e$</td>
<td>Effective transmittance absorptance product</td>
</tr>
<tr>
<td>$(\tau a)_s$</td>
<td>Product of the absorptance and transmittance for normal irradiance</td>
</tr>
<tr>
<td>ΔT^*</td>
<td>Time increment</td>
</tr>
<tr>
<td>θ</td>
<td>Angle of incidence; degrees from normal</td>
</tr>
</tbody>
</table>
Nomenclature

Chapter 6

F_R Collector heat removal factor

h_{p-c} Convection coefficient between absorber plate and cover ($Wm^{-2} °C^{-1}$)

h_{r-p-c} Radiation coefficient between absorber plate and cover ($Wm^{-2} °C^{-1}$)

h_{r-c-a} Radiation coefficient from the cover to sky ($Wm^{-2} °C^{-1}$)

h_w Wind heat transfer coefficient. ($Wm^{-2} °C^{-1}$)

I Equivalent normal solar irradiance (Wm^{-2})

I_{th} Threshold solar irradiance (Wm^{-2})

T_a Ambient air temperature ($°C$)

T_i Inlet fluid temperature ($°C$)

U Collector heat loss coefficient $F'U_L$ ($Wm^{-2} °C^{-1}$)

U_L Collector overall heat transfer (loss) coefficient ($Wm^{-2} °C^{-1}$)

ϵ_t Thermal emissivity

η Efficiency steady state

$\bar{\eta}$ Daily averaged efficiency

η_o Zero loss collector efficiency, $F'(aT)$.

τ_s Solar transmissivity

(τ_a). Product of the absorptance and transmittance for normal irradiance
Nomenclature

Chapter 7

A Aspect ratio or area of main heater
a Accommodation coefficient
\(\bar{c} \) Average velocity of molecules (ms\(^{-1}\))
\(c_p \) Specific heat at constant pressure (J Kg\(^{-1}\) °C\(^{-1}\))
\(c_v \) Specific heat at constant volume (J Kg\(^{-1}\) °C\(^{-1}\))
d Molecular diameter (m)
\(D_h \) Hydraulic diameter (m)
g Acceleration of gravity (ms\(^{-2}\))
Gr Grashof number
h Combined heat transfer coefficient from absorber to cover (Wm\(^{-2}\) °C\(^{-1}\))
\(h' \) Heat transfer coefficient of material of known conductivity (Wm\(^{-2}\) °C\(^{-1}\))
\(h_b \) Heat transfer coefficient for flow across panel wall (Wm\(^{-2}\) °C\(^{-1}\))
\(h_c \) Heat transfer coefficient for flow across the inside of the panel due to convection and conduction (Wm\(^{-2}\) °C\(^{-1}\))
\(h_p \) Heat transfer coefficient for flow across panel (Wm\(^{-2}\) °C\(^{-1}\))
\(h_r \) Heat transfer coefficient for flow across the inside of the panel due to radiation (Wm\(^{-2}\) °C\(^{-1}\))
\(h_s \) Heat transfer coefficient for flow across standard insulation (Wm\(^{-2}\) °C\(^{-1}\))
k Thermal conductivity (Wm\(^{-1}\) °C\(^{-1}\))
L Linear dimension (m)
m Wall molecule mass (Kg)
m' Gas molecule mass (Kg)
M Mass of one mole (kg mol\(^{-1}\))
\(N_A \) Avogadro's number
Nu Nussult number
p Gass pressure (Nm\(^{-2}\))
\(P_c \) Critical pressure when Ra = Ra\(_c\)
Pr Prandtl number
q Power dissipated in central heater (W)
Q Energy per unit time, rate of heat supply to main heater (W)
Qp Rate of heat supply to panel from main heater (W)
r Specific gas constant (R/M)
R Gas constant
Ra Rayleigh number
Rac Critical Rayleigh number, for Ra < Rac no convection, Nu = 1
Re Reynolds number
s Absorber plate to cover separation (m)
t Panel wall thickness (m)
T Average of plate and cover temperature (°C)
T1 Inside panel temperature nearest to cold plate (°C)
T2 Inside panel temperature nearest to main heater (°C)
Tg Guard ring temperature (°C)
Tı Temperature of main heater, also fluid inlet temperature (°C)
To Temperature of cold plates (°C)
α Thermal diffusivity (m² s⁻¹)
β Thermal volume expansion coefficient (= 1/T for a perfect gas), (K⁻¹)
γ cp/cv
Δθ Hot plate temperature unbalance (Tı - Tg), (°C)
ΔT Temperature difference across panel (°C)
ε₁ Emissivity of surface at temperature T₁ (°C)
ε₂ Emissivity of surface at temperature T₂ (°C)
µ Viscosity (Pa s)
ν Kinematic viscosity (µ/ρ) (Pa s m³Kg⁻¹)
ρ Density (Kg m⁻³)
σ Stefan-Boltzmann constant (Wm⁻² K⁻⁴)
λ Mean free path (m)
REFERENCES

CHAPTER 1

[1] Elkington, J.

[2] Flood, M.

'No Deposit - No Return'. Addison-Wesley, Reading, Mass., USA, 1970.

[5] Brandt, W.
'North-South: a programme for survival'. The report of the independent commission on international development issues under the chairmanship of Willy Brandt, Pan 1980.
[6] Chapman, P.
'Fuels Paradise: Energy Options for Britain'.

'Solar thermal energy in Europe'. Vol. 3, D. Reidel

[8] Leach, G.
'A low energy strategy for the United Kingdom'.

Behrens W.W. III.
CHAPTER 2

[1] Leach, G.
'A low energy strategy for the United Kingdom'.

'Energy Technologies for the United Kingdom'.
Published by Her Majesty's Stationary Office, U.K., 1979.

[3] Raisman, J.M.
'The future for fossil fuels. A global perspective'.

'Energy inputs and outputs for nuclear power stations'. Research Report ERG 005, Open University, Milton Keynes, 1974.

[9] Lewis, C.W.

[10] Friedrich, F.J.

[12] Barrett, M. and Everett, R.
'Cost effectiveness of grouped solar heating schemes'. A joint project between the Built Environment Research Group, Polytechnic of Central London and Energy Consultative Unit, Milton Keynes Development Corporation, September 1977.

'Design and cost effectiveness of active solar space and water heating systems'. A report to ETSV, the Department of Energy contract No. ETSV - 5 - 1087, May 1982.

[14] Torrenti, R.

[17] Ashahina, T. and Kosaka, M.
'A thermal storage analysis on packed bed of alumina spheres'. Govt. Industrial Res., Nagoya 46, Japan.

[18] O'Callaghan, P.W.

[21] Flood, M.

[22] Taylor, G.
[23] Sweet, C.J.

[24] Todd, R.

[25] Ulla Save-Ofverholm

[26] Perers, B. and Roseen, R.

[27] Roseen, R. and Perers, B.
[28] Taylor, G.

[29] Gleason, J.

[31] Radons, U.

[32] Lazzari, F. and Raffellini, G.
[33] Keller, L. and Bremer, P.
'Seasonal storage in a solar heating system',

[34] Makien, R and Lund, P.D.

[35] den Ouden, C.

[36] Vachaud, G. and Ausseur, J.
[37] Platell, O.B.
'The sunstore - deep ground heat storage, low
temperature collectors and indoor heaters'. Solar
World Forum, pp777-785, Vol 1, ed. by D.O. Hall and

[38] Turrent, D. et.al.
'Solar Thermal Energy in Europe'. Solar Energy R + D
in the European Community, Series A, Volume 3, Solar
Energy Applications to Dwellings, D. Reidel

[39] Krass, A.S. and La Viale, R.
'Community solar ponds'. Environment, Vol 22, No. 6,
pp25-33, July/August, 1980.

[40] Simonson, J.R. and Coleman, J.D.
'A theoretical investigation of interseasonal solar
energy storage in the ground'. Solar World Forum,
Vol. 1, pp765-771, Edited by D.O. Hall and J. Morton,

[41] Ward, I.C.
'A preliminary feasibility study into the use of
solar energy to provide year-round heating for a
factory unit'. 2nd International Solar Forum, pp483-
508, Germany, 1978.

[43] Jones, B.W.
'A solar power system (Prometheus) to provide 100 per cent of low-grade heat needs'. Applied Energy, 6, pp329-346, 1980.

[44] Derrick, A. and Gillet, W.B.
'Recommendations for European solar collector test methods' for the Commission of the European Communities, 1980.

[46] van Galen, E.
[47] Duffie, J.A. and Beckman, W.A.

[49] Golshekan, M.

[50] Lunde, P.J.

Sorenson, B.

Jones, B.W. and Oreszczyn, T.

Office of Technology Assessment (OTA), US Congress.

Mortimer, N.D., Jenkins, G., and Harrison, R.
[58] Symons, J.G. and Giani, R.

[59] Casper, D.A., Chapman, P.F. and Mortimer, N.D.

[60] Harrison, R., Jenkins, G. and Mortimer, N.D.

[61] Gartner, E.M. and Smith, M.A.

[62] Rogers, D.W.O.

[63] Littler, J. and Martin, C.
[64] Quigley, B., Murtagh, P. and Cash, J.

[65] Rassafi, M. et.al.

[66] Charlish, G.

[67] Margen, P.

[68] Chapman, P.

[69] Maw, R.
Polytechnic of Central London, Personal communication.
Andrews, D.C.F. and Lowe, R.J.

CHAPTER 3

[2] Everett, R.

[3] Chatfield, J.D.

[6] Leach, G.
CHAPTER 4

[1] Daniels, F. and Duffie, J.A.

'Solar Energy Today'. Published by UK-ISES, 19 Albermarle Street, London, 1981.

[7] Ford, B.

[10] Szokolay, S.V.
'Analytical predictions of liquid and air photovoltaic/thermal flat plate collector performance'.

[12] Newham, M.
'Dramatic breakthrough claimed in US solar research'.
Technology Week, No. 4, 27 February 1982.

[16] Potter, I.N.
[17] Oppenheim, D.

[18] Duffie, J.A. and Beckmann, W.A.

[20] Nussett, W. and Jurges, W.

'Effect of finite width on heat transfer and fluid flow about an inclined rectangular plate'. *Transaction of the American Society of Mechanical*
[23] Lloyd, J.R. and Moran, W.P.

[26] Sparrow, E.M. and Tien, K.K.
[27] Oliphant, M.V.

[28] Kind, R.J., Gladstone, D.H. and Moizer, A.D.

[29] Parker, B.F.

[31] Tan, H.M. and Charters, W.W.S.

[33] De Ron, A.J.

[34] Mather Jr., G.R.

'New air heating collector design and performance'.

[37] Jenkins, J.P. and Hill, J.E.
'Testing of water-heating collectors according to

[38] Garg, H.P., Rom Chandri and Usha Rani
'Transient analysis of solar air heaters using a

'Transient studies of solar air heaters'.
Interregional symposium on solar energy for development, Tokyo, Japan, 5-10 February 1979.

[40] Jones, B.W. and Oreszczyn, T.
'The effect of thermal capacitance on the performance
of solar collectors'. International Conference 'Solar Energy at High Latitudes', Napier College, Edinburgh, Scotland, 4-6 September 1984
REFERENCES CHAPTER 5

[2] ASHRAE

[10] Mason, J.J. and Jones, P.C.

[12] Rohsenow, W.M. and Hartnett, J.P.

[16] Erb, R.A.

[17] Erb, R.A.

Aranovitch, E. and Roumengous, C.

Cheema, L.S. and Mannan, K.D.

Elkin, R. and Mitchell, C.

Wernick, B. and Tully. N.

McAdams, W.C.
[27] Parker, B.F., Colliver, D.G. and Walton, L.R.

[28] Talarek, H.D.

[31] Klein, S., Duffie, J.A. and Beckman, W.A.
[32] Taylor, B.E.,
'The determination of the steady state performance of solar collectors under transient irradiation,
Communication to the British Standards Institution 1977

[33] Rogers, B.A.
'Transient testing of collectors'

[34] Posorski, R., Mabreyer, K., Schroer, R. and Stein, H.J.

[35] Rogers, B.A. Solar Energy Unit, Cardiff University, Personal communication, 17th October 1983.

[36] Emery, M, and Rogers, B.A.,
[37] Camm, D.M., Richards, S.L.F. and Albach, G.G.,

[38] Krusi, P. and Schmid, R.,

[39] Gillett, W.B., Rawcliffe, R.W. and Green, A.A.,

[40] Green, A.A., Kenna, J.P. and Rawcliffe, R.W.

[41] Oliphant, M.V.
[42] Green, A.A.

[43] Kraus, K., Hahne, E., and Sohns, J.,

[44] Symons, J.G.

[45] Christie, E.A.,

[46] Smith, C.C., and Weiss, T.A.,
B.S.E. Guidelines and Directions for Determining the Usability of Solar Collectors, 'A solar collector efficiency test BSE, Kruppstrasse 5, 4300 Essen 1, Federal Republic of Germany, May 1978.

Jenkins, J.P. and Hill, J.E.
'A comparison of test results for flat-plate water-heating solar, collectors using BSE and ASHRAE procedures',

Shewen, E.C., and Hollands, K.G.T.,

Cooper, P.I., Christie, E.A., and Dunkle, R.V.,

Centeno, V.M.
Taylor, P.J.,

REFERENCES CHAPTER 6

High Performance Collectors

[1] Marshall, R.H.,
'A comparison of thermal storage devices for combined space heating and domestic water system', p269,

[6] Jorgensen, G.,
'Long-term glazing performance' Proceedings of
'Solar Glazing: 1979 Topical Conference' Stockton

[7] 3M Decorative Products,
Nextel Information Sheet,
3M House, P.O. Box 1, Bracknell, Berkshire.

[8] Jordan R.C.,
'Low temperature applications of solar energy',

'Kerva Solar Village - a solar assisted heat pump
system with long-term heat storage'. Solar World
Congress, Vol.2, pp1342-1346. Ed. by S.V.Szokolay,

'Maxorb' Section 9:11, Solar Age Magazine, June 1980.

[11] Butler B.L. and Classen, R.S.
'Survey of Solar materials', Transcript of the ASME,
[12] Lofving, S.

[13] Taylor, P.J.,

'High Selective absorbers utilizing electro-deposited black chrome'. AES Symposium.

[17] Owens, P.
'Deposition of transparent heat reflecting coatings of metal oxides using reactive planar magnetron sputtering of a Metal/Alloy'. Dept. of Physics, University of Technology, Loughborough, Leicester.

'Development of plastic honeycomb flat-plate solar collectors'. Lockheed Report, SAN/1081-76/1, 1976.

[21] Stahl, W., Wittwer, V. and Goetzberger, A.

[22] Wu Jia-qing et al

[23] Dr.Helmut Freyholdt, Personal communication, AMI-SA, 120, Avenue D'Echallens, CH-1004, Lausonne, Switzerland. 1982.
50

507, West Elm St., Tyler, Tx. 75702, U.S.A.
Solar Age Product Catalogue, Section 13.34, June 1980.

[26] Dancette, M.,

[27] Turrent, D. and Backer, N.

[28] Bhargava, A.K. et al
[29] Johnson, P.D.,

[31] McVeigh, J.C.

[33] Pereira, C.
[34] Szego, G. and Frazer, M.

[35] Karlsson, B., Larsson, M., and Brunstrom, C.,

[37] Rassafi, M. et al

[38] Klein, S.A., Duffie, J.A. and Beckman, W.A.
53

[39] ASHRAE,
'Methods of testing to determine the thermal
performance of solar collectors', ASHRAE Standard 93-
77, 1977.

[40] Greenes, T.W. et al
'Comparison of collector performance in two large
active solar water heating systems', Solar World

[41] Information leaflet, AGAAB Thermia-Verken,
P.O. Box 150, 5-67101, ARVIKA, Sweden.

[42] Herrick, C.S.
'An air-cooled solar collector using all-cylindrical
elements in a low-loss body'. Solar Energy, Vol. 30,

[43] Godolphin, D.
'Rising Hopes for Vacuum tube collectors'
REFERENCES CHAPTER 7

[1] Harding, G.L. and Window, B.,

Buchberg, H., Catton, I and Edwards, D.K.

Thompson, H.A. and Sagin, H.H.,

Van de Vate, J.F. and Plomp, A.,

Marshall, K.N. et al

Hollands, K.G.T.

Cane, R.L.D. et al,

British Standards Institution

'Methods for determining thermal insulating properties with definitions of thermal insulating terms', BS874: November 1973.

National Physical Laboratory

Gilbo, C.E.,

Woodside, W. and Wilson, A.G.

[17] Redfoot, H.L. et al
'Glazing solar collectors with acrylic and double walled polycarbonate plastics'

[18] Duffie, J.A. and Beckman, W.A.

[19] Larson, D.C.
<table>
<thead>
<tr>
<th>Sector</th>
<th>Fuel</th>
<th>Total</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Solid</td>
<td>Liquid</td>
<td>Gas</td>
</tr>
<tr>
<td>Industry</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Space and Water</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Iron & Steel</td>
<td>1976</td>
<td>0.9</td>
<td>4.9</td>
</tr>
<tr>
<td></td>
<td>2025</td>
<td>0.2</td>
<td>0.2</td>
</tr>
<tr>
<td>Engineering and other</td>
<td>1976</td>
<td>17.2</td>
<td>71.4</td>
</tr>
<tr>
<td>metal trades</td>
<td>2025</td>
<td>32.8</td>
<td>14.1</td>
</tr>
<tr>
<td>Chemical & Allied Trades</td>
<td>1976</td>
<td>0.8</td>
<td>4.2</td>
</tr>
<tr>
<td></td>
<td>2025</td>
<td>0.4</td>
<td>-</td>
</tr>
<tr>
<td>Food, Drink & Tobacco</td>
<td>1976</td>
<td>3.2</td>
<td>18.1</td>
</tr>
<tr>
<td></td>
<td>2025</td>
<td>7.2</td>
<td>3.9</td>
</tr>
<tr>
<td>Textiles, Leather & Clothing</td>
<td>1976</td>
<td>5.1</td>
<td>21.3</td>
</tr>
<tr>
<td></td>
<td>2025</td>
<td>7.6</td>
<td>4.2</td>
</tr>
<tr>
<td>Paper, Printing & Stationary</td>
<td>1976</td>
<td>1.9</td>
<td>5.4</td>
</tr>
<tr>
<td></td>
<td>2025</td>
<td>1.7</td>
<td>0.3</td>
</tr>
<tr>
<td>Building Materials</td>
<td>1976</td>
<td>0.9</td>
<td>4.6</td>
</tr>
<tr>
<td></td>
<td>2025</td>
<td>1.9</td>
<td>1.2</td>
</tr>
<tr>
<td>Other trades</td>
<td>1976</td>
<td>7.8</td>
<td>61.2</td>
</tr>
<tr>
<td></td>
<td>2025</td>
<td>19.5</td>
<td>14.2</td>
</tr>
<tr>
<td>Process</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Agricultural</td>
<td>1976</td>
<td>0.9</td>
<td>22.1</td>
</tr>
<tr>
<td>Heating & Drying</td>
<td>2025</td>
<td>-</td>
<td>16.1</td>
</tr>
<tr>
<td>Domestic</td>
<td>Space</td>
<td>995</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Water</td>
<td>320</td>
<td></td>
</tr>
<tr>
<td>Commercial</td>
<td>Space</td>
<td>375</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Water</td>
<td>120</td>
<td></td>
</tr>
<tr>
<td>TOTAL</td>
<td></td>
<td>2323</td>
<td></td>
</tr>
<tr>
<td>Substance</td>
<td>Comments</td>
<td>Density ρ/Kg m$^{-3} \times 10^3$</td>
<td>Specific heat capacity C_p/JK$^{-1}$ K$^{-1} \times 10^3$</td>
</tr>
<tr>
<td>--------------------</td>
<td>---------------------------------</td>
<td>--</td>
<td>---</td>
</tr>
<tr>
<td>Chabazite tuff</td>
<td>Common beolite in Italy</td>
<td>1.4</td>
<td>1.09</td>
</tr>
<tr>
<td>Water</td>
<td></td>
<td>1.0</td>
<td>4.19</td>
</tr>
<tr>
<td>Iron shot</td>
<td></td>
<td>7.86</td>
<td>0.54</td>
</tr>
<tr>
<td>Scrap Iron</td>
<td>Zero voids (at 30% void $\rho C_p = 2.8$)</td>
<td>7.90</td>
<td>0.53</td>
</tr>
<tr>
<td>Steel</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Magnetite, Fe$_2$O$_3$</td>
<td>Zero voids (at 30% void $\rho C_p = 2.7$)</td>
<td>7.9</td>
<td>0.5</td>
</tr>
<tr>
<td>Fe$_2$O$_3$</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Wet earth</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Water and salt</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(brine)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Alumina (Al$_2$O$_3$)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Scrap Aluminium</td>
<td>Zero voids (30% void $\rho C_p = 1.8$)</td>
<td>4.0</td>
<td>0.9</td>
</tr>
<tr>
<td>Therminol 55 (oil)</td>
<td>Cracking occurs at high temperature</td>
<td>2.74</td>
<td>0.963</td>
</tr>
<tr>
<td>Caloria HT43 (oil)</td>
<td>Cracking occurs at high temperature</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Oils</td>
<td>Cracking occurs at high temp.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>MgCO$_3$·6H$_2$O</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>MgCO$_3$</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Concrete</td>
<td>Zero voids (30% void $\rho C_p = 1.7$)</td>
<td>2.25</td>
<td>1.13</td>
</tr>
<tr>
<td>Stone</td>
<td>Zero voids (30% void $\rho C_p = 1.7$)</td>
<td>2.74</td>
<td>0.88</td>
</tr>
</tbody>
</table>
TABLE 2.2 (Continued)

<table>
<thead>
<tr>
<th>Material</th>
<th>Density</th>
<th>Porosity</th>
<th>Cost (1980) £25/m³</th>
<th>38-56</th>
<th>50-300</th>
</tr>
</thead>
<tbody>
<tr>
<td>Concrete</td>
<td>2.74</td>
<td>0.92</td>
<td>2.26</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Marble</td>
<td>2.70</td>
<td>0.75</td>
<td>2.39</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Granite</td>
<td>2.70</td>
<td>0.796</td>
<td>2.12</td>
<td>-</td>
<td>445</td>
</tr>
<tr>
<td>Sulphur Liquid</td>
<td>2.1</td>
<td>1.0</td>
<td>2.1</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Rock</td>
<td>2.5</td>
<td>0.84</td>
<td>2.09</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Concrete (30% void pCp=1.35)</td>
<td>2.4</td>
<td>0.8</td>
<td>1.9</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Brick</td>
<td>2.23</td>
<td>0.84</td>
<td>1.9</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Paraffin Oil</td>
<td>0.8</td>
<td>2.2</td>
<td>1.8</td>
<td>38-56</td>
<td>350-430</td>
</tr>
<tr>
<td>Olive Oil</td>
<td>0.9</td>
<td>2.0</td>
<td>1.8</td>
<td>=10</td>
<td>=300</td>
</tr>
<tr>
<td>Silica (SiO₂)</td>
<td>2.7</td>
<td>0.84</td>
<td>2.3</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Pebbles</td>
<td>3.0</td>
<td>1.0</td>
<td>3.0</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Basalt</td>
<td>3.2</td>
<td>0.9</td>
<td>2.9</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Sulphur</td>
<td>2.1</td>
<td>0.7</td>
<td>1.5</td>
<td>119</td>
<td>-</td>
</tr>
<tr>
<td>Sodium</td>
<td>0.95</td>
<td>0.963</td>
<td>0.95</td>
<td>371</td>
<td>-</td>
</tr>
<tr>
<td>Mitec Molten salt</td>
<td>-</td>
<td>1.55</td>
<td>150</td>
<td>590</td>
<td></td>
</tr>
<tr>
<td>Draw salt Molten salt</td>
<td>-</td>
<td>1.55</td>
<td>250</td>
<td>590</td>
<td></td>
</tr>
<tr>
<td>Dry earth</td>
<td>1.26</td>
<td>0.8</td>
<td>1.0</td>
<td>-</td>
<td>-</td>
</tr>
</tbody>
</table>
TABLE 2.3 Basic Prometheus configuration to heat 100 houses

Store

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>length</td>
<td>280 m</td>
</tr>
<tr>
<td>width</td>
<td>10 m</td>
</tr>
<tr>
<td>height</td>
<td>4 m</td>
</tr>
<tr>
<td>volume</td>
<td>11200 m³</td>
</tr>
<tr>
<td>storage material pebbles, density</td>
<td>1600 kgm⁻³</td>
</tr>
<tr>
<td>storage material pebbles; specific heat capacity</td>
<td>837 J kg⁻¹°C⁻¹</td>
</tr>
<tr>
<td>store insulation; thickness</td>
<td>0.6 m</td>
</tr>
<tr>
<td>store insulation; thermal conductivity</td>
<td>0.036 Wm⁻²°C⁻¹</td>
</tr>
</tbody>
</table>

Collector

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>area</td>
<td>2,800 m²</td>
</tr>
<tr>
<td>heat transfer factor (FR)</td>
<td>0.9</td>
</tr>
<tr>
<td>overall heat loss coefficient</td>
<td>1.0 Wm⁻²°C⁻¹</td>
</tr>
<tr>
<td>optical efficiency averaged over useful incident angles ((\tau_a))</td>
<td>0.8</td>
</tr>
</tbody>
</table>
Table 2.1: Inventory, Energy and Economic Costs of Prometone (as described in Table 2.3)

<table>
<thead>
<tr>
<th>Item</th>
<th>Description</th>
<th>Quantities</th>
<th>Energy Intensity</th>
<th>Energy Input</th>
<th>Per Unit</th>
<th>Total (1978)</th>
<th>From E798</th>
<th>Cost per Unit</th>
<th>Energy Input</th>
</tr>
</thead>
<tbody>
<tr>
<td>100</td>
<td>Energy input in cost but not in actual cost</td>
<td>151.4%</td>
<td>46.0 m²</td>
<td>352.6 m³</td>
<td>720 m³</td>
<td>6.5 m³</td>
<td>0.85 m³</td>
<td>570 m³</td>
<td>0.95 m³</td>
</tr>
<tr>
<td>200</td>
<td>Energy input in cost but not in actual cost</td>
<td>151.4%</td>
<td>90.0 m³</td>
<td>352.6 m³</td>
<td>720 m³</td>
<td>6.5 m³</td>
<td>0.85 m³</td>
<td>570 m³</td>
<td>0.95 m³</td>
</tr>
<tr>
<td>250</td>
<td>Energy input in cost but not in actual cost</td>
<td>151.4%</td>
<td>112.5 m³</td>
<td>352.6 m³</td>
<td>720 m³</td>
<td>6.5 m³</td>
<td>0.85 m³</td>
<td>570 m³</td>
<td>0.95 m³</td>
</tr>
<tr>
<td>500</td>
<td>Energy input in cost but not in actual cost</td>
<td>151.4%</td>
<td>225.0 m³</td>
<td>352.6 m³</td>
<td>720 m³</td>
<td>6.5 m³</td>
<td>0.85 m³</td>
<td>570 m³</td>
<td>0.95 m³</td>
</tr>
<tr>
<td>0.9</td>
<td>Energy input in cost but not in actual cost</td>
<td>151.4%</td>
<td>343.7 m³</td>
<td>352.6 m³</td>
<td>720 m³</td>
<td>6.5 m³</td>
<td>0.85 m³</td>
<td>570 m³</td>
<td>0.95 m³</td>
</tr>
<tr>
<td>6.9</td>
<td>Energy input in cost but not in actual cost</td>
<td>151.4%</td>
<td>649.0 m³</td>
<td>352.6 m³</td>
<td>720 m³</td>
<td>6.5 m³</td>
<td>0.85 m³</td>
<td>570 m³</td>
<td>0.95 m³</td>
</tr>
</tbody>
</table>

Refer to chapter 2 references.
TABLE 2.5 Present value of the costs per house of 3 space and water heating systems, $N = 45$ years, $n_1 = 15$ years, $n_2 = 30$ years. Domestic space and water heating requirement = 27.5 G J/yr, costs in £ 1980.

<table>
<thead>
<tr>
<th></th>
<th>Prometheus</th>
<th>Gas</th>
<th>Electricity (Economy 7)</th>
</tr>
</thead>
<tbody>
<tr>
<td>$C_h/£$</td>
<td>5700</td>
<td>500</td>
<td>0</td>
</tr>
<tr>
<td>$K_h/£$</td>
<td>0</td>
<td>500</td>
<td>600</td>
</tr>
<tr>
<td>$F_h/£ yr^{-1}$</td>
<td>18</td>
<td>117</td>
<td>146</td>
</tr>
<tr>
<td>$R_h/£ yr^{-1}$</td>
<td>11</td>
<td>24</td>
<td>0</td>
</tr>
</tbody>
</table>

\[i=0.05 \quad f=0.04 \quad 6600 \quad 6000 \quad 6300 \]

\[PVC_h \quad i=0 \quad f=0.04 \quad 8500 \quad 17800 \quad 20200 \]

\[i=0 \quad f=0.02 \quad 7500 \quad 11700 \quad 12500 \]
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Collector type</td>
<td>Flat plate selective</td>
<td>Evacuated tube collector</td>
<td>Concentrating collector</td>
<td>High performance evacuated</td>
</tr>
<tr>
<td>Collector area /m²</td>
<td>2100</td>
<td>4600</td>
<td>14000</td>
<td>2800</td>
</tr>
<tr>
<td>Storage volume /m³</td>
<td>7500</td>
<td>17700</td>
<td>38500</td>
<td>11200</td>
</tr>
<tr>
<td>Insulation thickness/m</td>
<td>1.0</td>
<td>0.4</td>
<td>0.3</td>
<td>0.6</td>
</tr>
<tr>
<td>Operating temperature of store/°C</td>
<td>72-42</td>
<td>95-60</td>
<td>70-30</td>
<td>130-30</td>
</tr>
<tr>
<td>Number of houses heated by system</td>
<td>50</td>
<td>300</td>
<td>400</td>
<td>100</td>
</tr>
<tr>
<td>Energy consumption GJ/annum per house</td>
<td>32.4</td>
<td>25</td>
<td>54</td>
<td>27.5</td>
</tr>
<tr>
<td>Cost of collectors £1980/m²</td>
<td>60</td>
<td>64</td>
<td>64</td>
<td>72</td>
</tr>
<tr>
<td>Cost of store £1980/m³</td>
<td>16</td>
<td>11</td>
<td>10</td>
<td>26</td>
</tr>
<tr>
<td>Collector area/Storage volume (m²/m³)</td>
<td>0.28</td>
<td>0.26</td>
<td>0.36</td>
<td>0.25</td>
</tr>
<tr>
<td>Total system capital cost £1980</td>
<td>322900</td>
<td>659000</td>
<td>1740000</td>
<td>5700000</td>
</tr>
<tr>
<td>Collector area required to heat type A5 house (27.5 GJ/annum)/m²</td>
<td>35.7</td>
<td>16.9</td>
<td>17.8</td>
<td>28</td>
</tr>
<tr>
<td>Storage volume required for type A5 house /m³</td>
<td>127</td>
<td>65</td>
<td>49</td>
<td>112</td>
</tr>
<tr>
<td>Cost per A5 house/£1980</td>
<td>5480</td>
<td>2416</td>
<td>2215</td>
<td>5700</td>
</tr>
</tbody>
</table>

[] Chapter 2 reference numbers
TABLE 2.7 Specific investment costs for water storage systems as reported by Per-Olov Karlsson*

<table>
<thead>
<tr>
<th>Store type</th>
<th>Temperature rise/°C</th>
<th>Cost/£1982 per KWh recovered energy seasonal storage</th>
</tr>
</thead>
<tbody>
<tr>
<td>Steel tank</td>
<td>80</td>
<td>0.28 - 0.39</td>
</tr>
<tr>
<td>Pit storage</td>
<td>50</td>
<td>0.19 - 0.30</td>
</tr>
<tr>
<td>Rock cavern</td>
<td>70</td>
<td>0.11 - 0.21</td>
</tr>
<tr>
<td>Storage in clay</td>
<td>12</td>
<td>0.07 - 0.13</td>
</tr>
<tr>
<td>Multiple well systems</td>
<td>50</td>
<td>0.07 - 0.12</td>
</tr>
<tr>
<td>in rock</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Aquifers</td>
<td>15</td>
<td>0.025 - 0.08</td>
</tr>
<tr>
<td>Prometheus (pebble bed,</td>
<td>100</td>
<td>0.43</td>
</tr>
<tr>
<td>using data from Table 2.6)</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Name Location of Store/or Centre of Study</th>
<th>Design Study or Constructed</th>
<th>Storage Material</th>
<th>Number of Houses Per Store</th>
<th>% of Annual House Heating Supplied by System</th>
<th>Cost Per House £</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lambohov, Sweden</td>
<td>Constructed</td>
<td>Water</td>
<td>56</td>
<td>100</td>
<td>27 000</td>
</tr>
<tr>
<td>Inglestad, Sweden</td>
<td>Constructed</td>
<td>Water</td>
<td>52</td>
<td>50</td>
<td>19 320</td>
</tr>
<tr>
<td>Studsvik, Sweden</td>
<td>Design Study</td>
<td>Water</td>
<td>400</td>
<td>93</td>
<td>5 150</td>
</tr>
<tr>
<td>Lyckebo, Sweden</td>
<td>Design Study</td>
<td>Water</td>
<td>500</td>
<td>100</td>
<td>10 500</td>
</tr>
<tr>
<td>Arizona, USA</td>
<td>Design Study</td>
<td>Water</td>
<td>250</td>
<td>100</td>
<td>3 012</td>
</tr>
<tr>
<td>Northampton, USA</td>
<td>Design Study</td>
<td>Solar Pond</td>
<td>10 000</td>
<td>100</td>
<td>6 000</td>
</tr>
<tr>
<td>Sussex, UK</td>
<td>Design Study</td>
<td>Solar Pond</td>
<td>100</td>
<td>100</td>
<td>10 000</td>
</tr>
<tr>
<td>City University, London, UK</td>
<td>Design Study</td>
<td>Water</td>
<td>100</td>
<td>78</td>
<td>4 000</td>
</tr>
<tr>
<td>ERR, UK</td>
<td>Design Study</td>
<td>Water</td>
<td>300</td>
<td>100</td>
<td>2 416</td>
</tr>
<tr>
<td>PCL, UK</td>
<td>Design Study</td>
<td>Water</td>
<td>50</td>
<td>100</td>
<td>5 480</td>
</tr>
<tr>
<td>Component</td>
<td>Area A (m²)</td>
<td>U-value (Wm⁻²°C⁻¹)</td>
<td>UA (W°C⁻¹)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>---------------------------</td>
<td>-------------</td>
<td>---------------------</td>
<td>------------</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Wall</td>
<td>88.5</td>
<td>1.0</td>
<td>88.5</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Roof</td>
<td>48.6</td>
<td>0.6</td>
<td>29.2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Floor</td>
<td>48.6</td>
<td>0.5</td>
<td>24.3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Window</td>
<td>15.0</td>
<td>5.5</td>
<td>82.5</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total fabric specifics loss</td>
<td></td>
<td></td>
<td>224W°C⁻¹</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ventilation specific loss</td>
<td></td>
<td></td>
<td>80W°C⁻¹</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total house specific loss</td>
<td></td>
<td></td>
<td>304W°C⁻¹</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Month</td>
<td>Days in month</td>
<td>Solar radiation on a South-facing vertical surface (KWh/m²/month)</td>
<td>Solar radiation on a South-facing surface 30° to horizontal (KWh/m²/month)</td>
<td>Ambient Temperature (°C)</td>
<td>Degree days baseline 15.5°C</td>
</tr>
<tr>
<td>-------</td>
<td>---------------</td>
<td>---</td>
<td>---</td>
<td>-------------------</td>
<td>--------------------------</td>
</tr>
<tr>
<td>Jan</td>
<td>31</td>
<td>28</td>
<td>25.2</td>
<td>5.2</td>
<td>346</td>
</tr>
<tr>
<td>Feb</td>
<td>28</td>
<td>42</td>
<td>45</td>
<td>4.6</td>
<td>304</td>
</tr>
<tr>
<td>March</td>
<td>31</td>
<td>74</td>
<td>91</td>
<td>5.7</td>
<td>282</td>
</tr>
<tr>
<td>April</td>
<td>30</td>
<td>75</td>
<td>115</td>
<td>8.2</td>
<td>197</td>
</tr>
<tr>
<td>May</td>
<td>31</td>
<td>87</td>
<td>146</td>
<td>11.8</td>
<td>113</td>
</tr>
<tr>
<td>June</td>
<td>30</td>
<td>90</td>
<td>166</td>
<td>14.9</td>
<td>-</td>
</tr>
<tr>
<td>July</td>
<td>31</td>
<td>84</td>
<td>150</td>
<td>17.2</td>
<td>-</td>
</tr>
<tr>
<td>Aug</td>
<td>31</td>
<td>78</td>
<td>123</td>
<td>16.8</td>
<td>-</td>
</tr>
<tr>
<td>Sept</td>
<td>30</td>
<td>72</td>
<td>95</td>
<td>13.9</td>
<td>56</td>
</tr>
<tr>
<td>Oct</td>
<td>31</td>
<td>59</td>
<td>66</td>
<td>10.8</td>
<td>132</td>
</tr>
<tr>
<td>Nov</td>
<td>30</td>
<td>39</td>
<td>37</td>
<td>6.7</td>
<td>256</td>
</tr>
<tr>
<td>Dec</td>
<td>31</td>
<td>25</td>
<td>22</td>
<td>5.3</td>
<td>333</td>
</tr>
<tr>
<td>House type</td>
<td>Insulation level</td>
<td>Total house specific loss (W°C⁻¹)</td>
<td>Net annual space and water heating demand (GJ)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>------------</td>
<td>-----------------</td>
<td>-----------------------------------</td>
<td>---</td>
<td></td>
<td></td>
</tr>
<tr>
<td>A0</td>
<td>Basic (1975 Building Regs.)</td>
<td>304</td>
<td>46.4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>A1</td>
<td>A0 + orientate house north-south</td>
<td>304</td>
<td>41.7</td>
<td></td>
<td></td>
</tr>
<tr>
<td>A2</td>
<td>A1 + 50 mm loft insulation (100 mm total)</td>
<td>291</td>
<td>39.5</td>
<td></td>
<td></td>
</tr>
<tr>
<td>A3</td>
<td>A2 + fill cavity with fibre</td>
<td>255</td>
<td>33.7</td>
<td></td>
<td></td>
</tr>
<tr>
<td>A4</td>
<td>A3 + 50 mm loft insulation (150 mm total)</td>
<td>251</td>
<td>33.0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>A5</td>
<td>A4 + extra layer of glazing (i.e. double)</td>
<td>213</td>
<td>27.5</td>
<td></td>
<td></td>
</tr>
<tr>
<td>A6</td>
<td>A5 + cavity increased to 100 mm</td>
<td>186</td>
<td>23.5</td>
<td></td>
<td></td>
</tr>
<tr>
<td>A7</td>
<td>A6 + 25 mm floor edge insulation</td>
<td>182</td>
<td>22.7</td>
<td></td>
<td></td>
</tr>
<tr>
<td>A8</td>
<td>A7 + all windows on south side</td>
<td>182</td>
<td>20.2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>A9</td>
<td>A8 + 100 mm of loft insulation (250 mm total)</td>
<td>177</td>
<td>19.7</td>
<td></td>
<td></td>
</tr>
<tr>
<td>A10</td>
<td>A9 + extra layer of glazing (i.e. triple)</td>
<td>164</td>
<td>18.4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>A11</td>
<td>A10 + cavity increased to 200 mm</td>
<td>150</td>
<td>16.7</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
TABLE 3.4 Thermal characteristics of Basic Type BO house

<table>
<thead>
<tr>
<th>Component</th>
<th>Area A (m²)</th>
<th>U-value (W m⁻²°C⁻¹)</th>
<th>UA (W⁰°C⁻¹)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Wall</td>
<td>73.9</td>
<td>1.0</td>
<td>73.9</td>
</tr>
<tr>
<td>Roof</td>
<td>41.2</td>
<td>0.6</td>
<td>24.7</td>
</tr>
<tr>
<td>Floor</td>
<td>41.2</td>
<td>0.5</td>
<td>20.6</td>
</tr>
<tr>
<td>Window</td>
<td>13.3</td>
<td>5.5</td>
<td>73.2</td>
</tr>
<tr>
<td>Total fabric specific loss</td>
<td>192 W⁰°C⁻¹</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ventilation specific loss</td>
<td>68 W⁰°C⁻¹</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total house specific loss</td>
<td>260 W⁰°C⁻¹</td>
<td></td>
<td></td>
</tr>
<tr>
<td>House type</td>
<td>Insulation level</td>
<td>Total house specific loss (W^0C^{-1})</td>
<td>Net annual space water heating demand (GJ)</td>
</tr>
<tr>
<td>------------</td>
<td>------------------</td>
<td>--</td>
<td>--</td>
</tr>
<tr>
<td>B0</td>
<td>Basic (average UK housing stock)</td>
<td>260</td>
<td>34.9</td>
</tr>
<tr>
<td>B1</td>
<td>BO + 50 mm of loft insulation (100 mm total)</td>
<td>249</td>
<td>33.1</td>
</tr>
<tr>
<td>B2</td>
<td>B1 + fibre-fill cavity (50 mm)</td>
<td>219</td>
<td>28.3</td>
</tr>
<tr>
<td>B3</td>
<td>B2 + 50 mm of loft insulation (150 mm total)</td>
<td>215</td>
<td>27.7</td>
</tr>
<tr>
<td>B4</td>
<td>B3 + extra layer of glazing (i.e. double)</td>
<td>182</td>
<td>23.1</td>
</tr>
<tr>
<td>B5</td>
<td>B4 + extra layer of glazing (i.e. triple)</td>
<td>170</td>
<td>21.7</td>
</tr>
<tr>
<td>B6</td>
<td>B5 + 100 mm external wall insulation</td>
<td>156</td>
<td>19.6</td>
</tr>
</tbody>
</table>

TABLE 3.5 Thermal Characteristics of existing houses with different levels of retrofitted insulation.
<table>
<thead>
<tr>
<th>Date</th>
<th>Collector</th>
<th>CI/RIE</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>07-05-1980</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>06-16-1980</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>11-12-1980</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>01-22-1981</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>02-22-1981</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>03-05-1981</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>03-15-1981</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>04-05-1981</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>04-15-1981</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>05-05-1981</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>05-15-1981</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>06-05-1981</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>06-15-1981</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>07-05-1981</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>07-15-1981</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>08-05-1981</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>08-15-1981</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
</tbody>
</table>

Table 4.1: Art collector, test facilities and material systems in the United Kingdom.
TABLE 5.2(a) Results of steady state testing on D.C.Hall collector

<table>
<thead>
<tr>
<th>Test No.</th>
<th>Date</th>
<th>Time of test</th>
<th>Air mass flow rate</th>
<th>Air temp. at inlet</th>
<th>Air temp. at outlet</th>
<th>Air temp. increase ($T_e - T_i$)</th>
<th>Ambient Temp.</th>
<th>Total irradiance in plate of collector (I_m)</th>
<th>Collector efficiency</th>
<th>Wind speed</th>
<th>Absorber Temp.</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Day/mth./yr.</td>
<td>hrs.</td>
<td>Kg/hr</td>
<td>°C</td>
<td>°C</td>
<td>°C</td>
<td>W/m²</td>
<td>m²°C/W</td>
<td>m/s</td>
<td>°C</td>
</tr>
<tr>
<td>1</td>
<td>21/6/83</td>
<td>1344-1354</td>
<td>65.5</td>
<td>51.1</td>
<td>66.0</td>
<td>14.9</td>
<td>21.1</td>
<td>788</td>
<td>0.0409</td>
<td>43.4</td>
<td>1.6</td>
</tr>
<tr>
<td>2</td>
<td>25/6/83</td>
<td>1434-1443</td>
<td>59.6</td>
<td>73.2</td>
<td>83.5</td>
<td>10.3</td>
<td>22.1</td>
<td>737</td>
<td>0.0745</td>
<td>29.2</td>
<td><0.4</td>
</tr>
<tr>
<td>3</td>
<td>26/6/83</td>
<td>1123-1132</td>
<td>79.1</td>
<td>22.9</td>
<td>39.6</td>
<td>16.7</td>
<td>22.9</td>
<td>730</td>
<td>0.0000</td>
<td>63.4</td>
<td><0.4</td>
</tr>
<tr>
<td>4</td>
<td>5/7/83</td>
<td>1151-1200</td>
<td>61.9</td>
<td>75.1</td>
<td>84.3</td>
<td>9.2</td>
<td>27.7</td>
<td>745</td>
<td>0.0684</td>
<td>26.8</td>
<td><0.4</td>
</tr>
<tr>
<td>5</td>
<td>19/8/83</td>
<td>1235-1244</td>
<td>64.7</td>
<td>60.1</td>
<td>69.9</td>
<td>9.8</td>
<td>28.6</td>
<td>624</td>
<td>0.0543</td>
<td>33.1</td>
<td>1.5</td>
</tr>
<tr>
<td>6</td>
<td>19/8/83</td>
<td>1209-1218</td>
<td>63.9</td>
<td>59.9</td>
<td>68.6</td>
<td>8.7</td>
<td>27.5</td>
<td>614</td>
<td>0.0567</td>
<td>31.7</td>
<td>2.3</td>
</tr>
<tr>
<td>7</td>
<td>19/8/83</td>
<td>1343-1352</td>
<td>63.8</td>
<td>76.1</td>
<td>80.7</td>
<td>4.6</td>
<td>28.8</td>
<td>583</td>
<td>0.0872</td>
<td>17.6</td>
<td>2.2</td>
</tr>
<tr>
<td>8</td>
<td>19/8/83</td>
<td>1430-1439</td>
<td>63.8</td>
<td>79.7</td>
<td>83.1</td>
<td>3.4</td>
<td>29.8</td>
<td>572</td>
<td>0.0938</td>
<td>13.3</td>
<td>1.6</td>
</tr>
<tr>
<td>9</td>
<td>18/8/83</td>
<td>1142-1151</td>
<td>69.1</td>
<td>24.9</td>
<td>42.0</td>
<td>17.1</td>
<td>25.2</td>
<td>667</td>
<td>-0.0005</td>
<td>62.1</td>
<td><0.4</td>
</tr>
<tr>
<td>Test</td>
<td>Wind</td>
<td>Speed</td>
<td>Airflow</td>
<td>Collector</td>
<td>Collector in place of (\text{in })</td>
<td>(\text{Total})</td>
<td>(\text{Inlet})</td>
<td>(\text{Outlet})</td>
<td>(\text{Total})</td>
<td>(\text{Inlet})</td>
<td>(\text{Outlet})</td>
</tr>
<tr>
<td>------</td>
<td>------</td>
<td>-------</td>
<td>---------</td>
<td>-----------</td>
<td>--------------------------</td>
<td>----------------</td>
<td>-------------</td>
<td>--------------</td>
<td>----------------</td>
<td>-------------</td>
<td>--------------</td>
</tr>
<tr>
<td>1</td>
<td>3.2</td>
<td>5.2</td>
<td>800</td>
<td>0.0033</td>
<td>0.0033</td>
<td>0.0033</td>
<td>0.0033</td>
<td>0.0033</td>
<td>0.0033</td>
<td>0.0033</td>
<td>0.0033</td>
</tr>
</tbody>
</table>
TABLE 5.3 Collector configuration modelled for transient analysis by RRDCT.

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Collector length (along flow)</td>
<td>4.00 m</td>
</tr>
<tr>
<td>Collector width</td>
<td>1.00 m</td>
</tr>
<tr>
<td>Cover to plate spacing</td>
<td>0.05 m</td>
</tr>
<tr>
<td>Rear Duct gap</td>
<td>0.01 m</td>
</tr>
<tr>
<td>Back insulation dry glass fibre</td>
<td>0.10 m</td>
</tr>
<tr>
<td>Edge insulation dry glass fibre</td>
<td>0.05 m</td>
</tr>
<tr>
<td>Material of plate and duct-back duraluminium HS 15 TB</td>
<td></td>
</tr>
<tr>
<td>Plate absorbance</td>
<td>0.95 at $\theta = 0$ falling slightly as θ increases</td>
</tr>
<tr>
<td>Emissivity of upper surface of the plate (diffuse)</td>
<td>0.10</td>
</tr>
<tr>
<td>Emissivity of duct surface (diffuse)</td>
<td>0.91</td>
</tr>
<tr>
<td>Emissivity of cover (diffuse)</td>
<td>0.85</td>
</tr>
<tr>
<td>Cover polycarbonate thinkness</td>
<td>2.00 mm</td>
</tr>
<tr>
<td>Mass flow rate</td>
<td>0.06 kg s$^{-1}$</td>
</tr>
<tr>
<td>Thickness of plate and of duct-back DY1</td>
<td>0.2 mm</td>
</tr>
<tr>
<td>DY2</td>
<td>0.5 mm</td>
</tr>
<tr>
<td>DY3</td>
<td>1.0 mm</td>
</tr>
<tr>
<td>DY4</td>
<td>2.0 mm</td>
</tr>
<tr>
<td>DY5</td>
<td>5.0 mm</td>
</tr>
</tbody>
</table>

TABLE 5.4 Results of transient and steady state testing with multi node model

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Steady state</th>
<th>Transient 0.5mm (DY2)</th>
<th>Transient 2mm (DY4)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Δt/ (min)</td>
<td>-</td>
<td>1</td>
<td>4</td>
</tr>
<tr>
<td>N</td>
<td>-</td>
<td>6</td>
<td>5</td>
</tr>
<tr>
<td>τ_C/ (min)</td>
<td>-</td>
<td>2.8</td>
<td>9.7</td>
</tr>
<tr>
<td>F_{RUL}/ (Wm$^{-2}$K$^{-1}$)</td>
<td>2.83*</td>
<td>2.768</td>
<td>2.604</td>
</tr>
<tr>
<td>F_{R}</td>
<td>0.683</td>
<td>0.585</td>
<td>0.569</td>
</tr>
<tr>
<td>KFR τ</td>
<td>0.683</td>
<td>0.706</td>
<td>0.686</td>
</tr>
<tr>
<td>$\hat{\sigma}$ F_{RUL}</td>
<td>-</td>
<td>0.012</td>
<td>0.036</td>
</tr>
<tr>
<td>$\hat{\sigma}$ F_{R} τ</td>
<td>0.0008</td>
<td>0.0025</td>
<td></td>
</tr>
</tbody>
</table>

$K = \text{correction factor for equivalent normal direct radiation} = \frac{(\tau_{o})_{\text{direct}}}{(\tau_{o})_{\text{diffuse}}} = \frac{0.830}{0.688} = 1.206$

$* = \text{at low fluid inlet temperatures}$
Table 5.6

Data Output from 'TRANS' for SP collector, \(n = 1 \), in the format specified in Table F.6.1 of British Standard DD 77: 1982

<table>
<thead>
<tr>
<th>(n)</th>
<th>(F_{R}(\text{f} \text{a}, k))</th>
<th>(n/\Phi)</th>
<th>(T*)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>(0.432800115133)</td>
<td>(0.558117255249)</td>
<td>(0.004)</td>
</tr>
<tr>
<td>2</td>
<td>(0.432800115133)</td>
<td>(0.61749143134)</td>
<td>(0.007)</td>
</tr>
<tr>
<td>3</td>
<td>(0.432800115133)</td>
<td>(0.61749143134)</td>
<td>(0.006)</td>
</tr>
<tr>
<td>4</td>
<td>(0.48866243941)</td>
<td>(0.48866243941)</td>
<td>(0.005)</td>
</tr>
<tr>
<td>5</td>
<td>(0.48866243941)</td>
<td>(0.48866243941)</td>
<td>(0.005)</td>
</tr>
<tr>
<td>6</td>
<td>(0.48866243941)</td>
<td>(0.48866243941)</td>
<td>(0.005)</td>
</tr>
<tr>
<td>7</td>
<td>(0.48866243941)</td>
<td>(0.48866243941)</td>
<td>(0.005)</td>
</tr>
</tbody>
</table>

- ETA= \(0.513943004957 \) U= \(7.89668509365 \)
- DATA SETS ACCEPTED FOR ANALYSIS 80
- \(n/\Phi= 0.343700221325 \)
- \(T* = 0.002 \)
- \(0.37994272678 \) .022
- \(0.39186562197 \) .022
- \(0.427494067851 \) .021
- \(0.427494067851 \) .022
- \(0.415619232633 \) .022
- \(0.415619232633 \) .022
- \(0.439368903069 \) .021
- \(0.474993408723 \) .021
- \(0.474993408723 \) .023
- \(0.463118573505 \) .023
- \(0.451243738287 \) .024
- \(0.427494067851 \) .025
- \(0.415619232633 \) .024
- \(0.415619232633 \) .02
- \(0.427494067851 \) .02
- \(0.439368903069 \) .02
- \(0.415619232633 \) .021
- \(0.106872315693 \) .062
- \(0.937417609050 \) .057
- \(0.813238652688 \) .053
- \(0.813238652688 \) .054
- \(0.712490113068 \) .051
- \(0.712490113068 \) .046
- \(0.56245056542 \) .044
- \(0.11074352181 \) .024
- \(0.20182198707 \) .019
- \(0.33249586106 \) .029
- \(0.24937153958 \) .049
- \(0.213747033926 \) .056
- \(0.213747033926 \) .061
- \(0.166247693054 \) .067
- \(0.178122528721 \) .069
- \(0.539741760904 \) .073
- \(0.56245056542 \) .067
- \(0.56245056542 \) .067
- \(0.312490113068 \) .044
- \(0.130623187399 \) .02
| \(0.3749704341 \) .044
| \(0.46247693053 \) .053
| \(0.130623187399 \) .052
| \(0.106873516963 \) .028
| \(0.4537457875 \) .02

POINTS ON THERMAL PERFORMANCE CHARACTERISTIC 80
FROM LEAST SQUARES FITS EACH WAY
MINIMUM ETA= \(0.325453187816 \)
MAXIMUM ETA= \(0.714184616622 \)
U= \(7.33893217894 \)
U= \(13.9816808418 \)
Table 5.8
Temperature distribution within DYL collector (0.2mm thick plate and duct back) during ASHUAE steady state testing, \(T_a = 293 \text{ K}, \) \(I = 700 \text{ W/m}^2, \) Mind = 1m/s, \(T_sky = 273 \text{ K} \)

<table>
<thead>
<tr>
<th>(T_e / \text{K})</th>
<th>(T_{l} / \text{K})</th>
<th>(T_{m} / \text{K})</th>
<th>(F_{ave \ U})</th>
<th>(F_{R \ U})</th>
</tr>
</thead>
<tbody>
<tr>
<td>303</td>
<td>322.1</td>
<td>317.86</td>
<td>2.722</td>
<td>1.611</td>
</tr>
<tr>
<td>313</td>
<td>357.16</td>
<td>354.00</td>
<td>2.902</td>
<td>3.230</td>
</tr>
<tr>
<td>323</td>
<td>391.47</td>
<td>390.73</td>
<td>3.041</td>
<td>3.363</td>
</tr>
<tr>
<td>333</td>
<td>425.11</td>
<td>424.86</td>
<td>3.185</td>
<td>3.503</td>
</tr>
<tr>
<td>343</td>
<td>459.57</td>
<td>459.06</td>
<td>3.326</td>
<td>3.644</td>
</tr>
</tbody>
</table>

Table 5.9
Temperature distribution and energy lost from DYL collector (0.2mm thick plate and duct base) during zero radiation testing, \(T_a = 293 \text{ K}, \) \(T_{wind} = 1 \text{ m/s}, \) \(T_sky = 273 \text{ K} \)

<table>
<thead>
<tr>
<th>(T_e / \text{K})</th>
<th>(T_{l} / \text{K})</th>
<th>(T_{m} / \text{K})</th>
<th>(F_{ave \ U})</th>
<th>(F_{R \ U})</th>
</tr>
</thead>
<tbody>
<tr>
<td>300</td>
<td>333.79</td>
<td>336.41</td>
<td>2.932</td>
<td>3.282</td>
</tr>
<tr>
<td>301</td>
<td>370.42</td>
<td>374.20</td>
<td>3.060</td>
<td>3.404</td>
</tr>
<tr>
<td>302</td>
<td>408.69</td>
<td>412.12</td>
<td>3.088</td>
<td>3.439</td>
</tr>
<tr>
<td>303</td>
<td>448.78</td>
<td>452.40</td>
<td>3.100</td>
<td>3.464</td>
</tr>
</tbody>
</table>

*\(T_sky = 293 \text{ K} \)
<table>
<thead>
<tr>
<th>Structured Polycarbonate Collector</th>
<th>Indoor</th>
<th>Transient</th>
<th>Steady State</th>
<th>ASHRAE 2010 D.C. Hall Collector</th>
<th>Theory</th>
</tr>
</thead>
<tbody>
<tr>
<td>-----------------------------------</td>
<td>-------</td>
<td>-----------</td>
<td>--------------</td>
<td>--------------------------------</td>
<td>--------</td>
</tr>
<tr>
<td>Indoor</td>
<td>2H</td>
<td>1.0</td>
<td>0.5</td>
<td>0.3</td>
<td>2.5</td>
</tr>
<tr>
<td>Transient</td>
<td>8.4</td>
<td>8.4</td>
<td>0.5</td>
<td>0.3</td>
<td>2.5</td>
</tr>
<tr>
<td>Steady State</td>
<td>7.3</td>
<td>7.3</td>
<td>0.5</td>
<td>0.3</td>
<td>2.5</td>
</tr>
<tr>
<td>ASHRAE 2010 D.C. Hall Collector</td>
<td>9.2</td>
<td>9.2</td>
<td>0.5</td>
<td>0.3</td>
<td>2.5</td>
</tr>
<tr>
<td>Theory</td>
<td>2.4</td>
<td>2.4</td>
<td>0.5</td>
<td>0.3</td>
<td>2.5</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>(mm²)/W</th>
<th>(mm²)/W</th>
<th>C/๐° C</th>
<th>C/๐° C</th>
<th>ρ/๐° C</th>
<th>(mm²)/W</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.1</td>
<td>1.1</td>
<td>1.1</td>
<td>1.1</td>
<td>1.1</td>
<td>1.1</td>
</tr>
</tbody>
</table>

Test method: Summary of collector testing results

Table 5.10
TABLE 6.1 Thermal and radiative properties of cover materials

<table>
<thead>
<tr>
<th>Material</th>
<th>Reflective index (n)</th>
<th>Solar Transmittance (0.2-4.0μm)</th>
<th>Infrared Transmittance (3.0-500μm)</th>
<th>Expansion Coefficient (°C⁻¹)</th>
<th>Temperature Limits (°C)</th>
<th>Weatherability (comments)</th>
<th>Chemical Resistance (comments)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lexan (Polycarbonate)</td>
<td>1.586</td>
<td>125 mil</td>
<td>125 mil</td>
<td>7.98 x 10⁻⁵</td>
<td>120-130</td>
<td>Good</td>
<td>Good</td>
</tr>
<tr>
<td>Plexiglass (Acrylic)</td>
<td>1.49</td>
<td>125 mil</td>
<td>125 mil</td>
<td>8.29 x 10⁻⁵</td>
<td>80-90</td>
<td>Average</td>
<td>Good to excellent</td>
</tr>
<tr>
<td>Teflon F.F.P. (Fluorocarbon)</td>
<td>1.343</td>
<td>5 mil</td>
<td>5 mil</td>
<td>12.55 x 10⁻⁵</td>
<td>200-220</td>
<td>Good to excellent</td>
<td>Excellent</td>
</tr>
<tr>
<td>Tedlar P.V.F. (fluorocarbon)</td>
<td>1.46</td>
<td>4 mil</td>
<td>4 mil</td>
<td>5.95 x 10⁻⁵</td>
<td>110-170</td>
<td>Good to excellent</td>
<td>Excellent</td>
</tr>
<tr>
<td>Mylar (Polyester)</td>
<td>1.64-1.67</td>
<td>5 mil</td>
<td>5 mil</td>
<td>2.00 x 10⁻⁵</td>
<td>150-200</td>
<td>Poor</td>
<td>Good to excellent</td>
</tr>
<tr>
<td>Sunlite (Fibre glass)</td>
<td>1.54</td>
<td>25 mil</td>
<td>25 mil</td>
<td>2.98 x 10⁻⁵</td>
<td>95-100</td>
<td>Fair to good</td>
<td>Good</td>
</tr>
<tr>
<td>Float glass (Glass)</td>
<td>1.518</td>
<td>125 mil</td>
<td>125 mil</td>
<td>10.21 x 10⁻⁶</td>
<td>230</td>
<td>Excellent</td>
<td>Good to excellent</td>
</tr>
<tr>
<td>Temper glass (Glass)</td>
<td>1.518</td>
<td>125 mil</td>
<td>125 mil</td>
<td>10.21 x 10⁻⁶</td>
<td>230-250</td>
<td>Excellent</td>
<td>Good to excellent</td>
</tr>
<tr>
<td>Clear limesheet glass (Low iron glass)</td>
<td>1.51</td>
<td>125 mil</td>
<td>125 mil</td>
<td>10.64 x 10⁻⁶</td>
<td>200</td>
<td>Excellent</td>
<td>Good to excellent</td>
</tr>
<tr>
<td>Clear lime temper glass (Low iron glass)</td>
<td>1.51</td>
<td>125 mil</td>
<td>125 mil</td>
<td>10.64 x 10⁻⁶</td>
<td>200</td>
<td>Excellent</td>
<td>Good to excellent</td>
</tr>
<tr>
<td>Sunade white crystal glass (0.01% iron glass)</td>
<td>1.50</td>
<td>125 mil</td>
<td>125 mil</td>
<td>10.00 x 10⁻⁶</td>
<td>200</td>
<td>Excellent</td>
<td>Good to excellent</td>
</tr>
</tbody>
</table>

Source: Gary, H.P. 'Treatise on solar energy' Vol.1, A Wiley Interscience Publication, Chichester, 1982
<table>
<thead>
<tr>
<th>Source: Helios 14, Cardiff University</th>
</tr>
</thead>
<tbody>
<tr>
<td>Material</td>
</tr>
<tr>
<td>Graded metal carbide film</td>
</tr>
<tr>
<td>Stainless Steel</td>
</tr>
<tr>
<td>Aluminum</td>
</tr>
<tr>
<td>Steel</td>
</tr>
<tr>
<td>Stainless Steel</td>
</tr>
<tr>
<td>Aluminum</td>
</tr>
<tr>
<td>Black Chromoly (BC)</td>
</tr>
</tbody>
</table>

TABLE 6.2: Optional properties of Selective Absorber Surface coatings
TABLE 6.3 Key to collector variable features, used to obtain Figure 6.19

<table>
<thead>
<tr>
<th>Cover Material</th>
<th>Feature</th>
<th>Thickness</th>
</tr>
</thead>
<tbody>
<tr>
<td>cover 1</td>
<td>plate glass, thickness</td>
<td>6.0 mm</td>
</tr>
<tr>
<td>cover 2</td>
<td>polycarbonate, thickness</td>
<td>2.0 mm</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Thickness of the plate and of the duct-back:</th>
</tr>
</thead>
<tbody>
<tr>
<td>DY1</td>
</tr>
<tr>
<td>DY2</td>
</tr>
<tr>
<td>DY3</td>
</tr>
<tr>
<td>DY4</td>
</tr>
<tr>
<td>DY5</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Air Flow in the Rear-duct:</th>
</tr>
</thead>
<tbody>
<tr>
<td>flow 0</td>
</tr>
<tr>
<td>flow 1</td>
</tr>
<tr>
<td>flow 2</td>
</tr>
<tr>
<td>flow 3</td>
</tr>
</tbody>
</table>
TABLE 7.1 Some typical thermal accommodation coefficients

<table>
<thead>
<tr>
<th>Gas</th>
<th>Surface</th>
<th>Surface condition (absorbed gas)</th>
<th>Temp. (°C)</th>
<th>a</th>
</tr>
</thead>
<tbody>
<tr>
<td>Air</td>
<td>Bronze</td>
<td>Indeterminate</td>
<td>-</td>
<td>0.88 - 0.95</td>
</tr>
<tr>
<td></td>
<td>Cast Iron</td>
<td>Indeterminate</td>
<td>-</td>
<td>0.87 - 0.96</td>
</tr>
<tr>
<td></td>
<td>Aluminium</td>
<td>Indeterminate</td>
<td>-</td>
<td>0.87 - 0.97</td>
</tr>
<tr>
<td>N₂</td>
<td>W</td>
<td>Indeterminate</td>
<td>32</td>
<td>0.624</td>
</tr>
<tr>
<td></td>
<td>Pt</td>
<td>Indeterminate</td>
<td>-</td>
<td>0.5</td>
</tr>
<tr>
<td></td>
<td>Glass</td>
<td>Indeterminate</td>
<td>-170</td>
<td>0.38</td>
</tr>
<tr>
<td>O₂</td>
<td>Pt.Bright</td>
<td>Indeterminate</td>
<td>-</td>
<td>0.81</td>
</tr>
<tr>
<td></td>
<td>Pt.Black</td>
<td>Indeterminate</td>
<td>-</td>
<td>0.93</td>
</tr>
<tr>
<td></td>
<td>Pt. Saturated</td>
<td>30</td>
<td>0.74</td>
<td></td>
</tr>
<tr>
<td>CO₂</td>
<td>W</td>
<td>CO₂</td>
<td>32</td>
<td>0.990</td>
</tr>
<tr>
<td></td>
<td>Pt</td>
<td>Saturated</td>
<td>30</td>
<td>0.76</td>
</tr>
<tr>
<td>H₂</td>
<td>Pt.Bright</td>
<td>Indeterminate</td>
<td>-</td>
<td>0.32</td>
</tr>
<tr>
<td></td>
<td>Pt. Black</td>
<td>Indeterminate</td>
<td>-</td>
<td>0.74</td>
</tr>
<tr>
<td></td>
<td>Pt. Saturated</td>
<td>30</td>
<td>0.22</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Glass</td>
<td>Indeterminate</td>
<td>25</td>
<td>0.29</td>
</tr>
<tr>
<td></td>
<td>Glass</td>
<td>Indeterminate</td>
<td>-170</td>
<td>1.0</td>
</tr>
<tr>
<td>He</td>
<td>W, flashed</td>
<td>Indeterminate</td>
<td>20</td>
<td>0.17</td>
</tr>
<tr>
<td></td>
<td>W, not flashed</td>
<td>Indeterminate</td>
<td>20</td>
<td>0.53</td>
</tr>
<tr>
<td></td>
<td>W, clean</td>
<td>30</td>
<td>0.0169</td>
<td></td>
</tr>
<tr>
<td></td>
<td>W</td>
<td>clean</td>
<td>-30</td>
<td>0.0153</td>
</tr>
<tr>
<td></td>
<td>W</td>
<td>clean</td>
<td>-190</td>
<td>0.0151</td>
</tr>
<tr>
<td></td>
<td>W</td>
<td>K on H₂</td>
<td>25</td>
<td>0.106</td>
</tr>
<tr>
<td></td>
<td>W</td>
<td>H₂ on K</td>
<td>25</td>
<td>0.096</td>
</tr>
<tr>
<td></td>
<td>W</td>
<td>O on K</td>
<td>25</td>
<td>0.22</td>
</tr>
<tr>
<td></td>
<td>W</td>
<td>K on O</td>
<td>25</td>
<td>0.12</td>
</tr>
<tr>
<td></td>
<td>Pt</td>
<td>Saturated</td>
<td>30</td>
<td>0.238</td>
</tr>
<tr>
<td></td>
<td>K</td>
<td>clean</td>
<td>25</td>
<td>0.0826</td>
</tr>
<tr>
<td></td>
<td>Na</td>
<td>clean</td>
<td>25</td>
<td>0.0895</td>
</tr>
<tr>
<td></td>
<td>Glass</td>
<td>clean</td>
<td>29</td>
<td>0.31</td>
</tr>
<tr>
<td></td>
<td>Glass</td>
<td>Indeterminate</td>
<td>25</td>
<td>0.35</td>
</tr>
<tr>
<td>Ne</td>
<td>W</td>
<td>clean</td>
<td>30</td>
<td>0.0412</td>
</tr>
<tr>
<td></td>
<td>W</td>
<td>clean</td>
<td>-30</td>
<td>0.0395</td>
</tr>
<tr>
<td></td>
<td>W</td>
<td>clean</td>
<td>-196</td>
<td>0.0495</td>
</tr>
<tr>
<td></td>
<td>W</td>
<td>H₂</td>
<td>22</td>
<td>0.17</td>
</tr>
<tr>
<td></td>
<td>W</td>
<td>N₂</td>
<td>-194</td>
<td>0.32</td>
</tr>
<tr>
<td></td>
<td>Pt</td>
<td>Saturated</td>
<td>30</td>
<td>0.57</td>
</tr>
<tr>
<td></td>
<td>K</td>
<td>clean</td>
<td>25</td>
<td>0.1987</td>
</tr>
<tr>
<td></td>
<td>Na</td>
<td>clean</td>
<td>25</td>
<td>0.19</td>
</tr>
<tr>
<td></td>
<td>Glass</td>
<td>Indeterminate</td>
<td>25</td>
<td>0.7</td>
</tr>
<tr>
<td>A</td>
<td>W</td>
<td>clean</td>
<td>30</td>
<td>0.272</td>
</tr>
<tr>
<td></td>
<td>W</td>
<td>clean</td>
<td>-30</td>
<td>0.294</td>
</tr>
<tr>
<td></td>
<td>W</td>
<td>clean</td>
<td>-196</td>
<td>0.549</td>
</tr>
<tr>
<td></td>
<td>Pt</td>
<td>Saturated</td>
<td>30</td>
<td>0.89</td>
</tr>
<tr>
<td></td>
<td>K</td>
<td>clean</td>
<td>25</td>
<td>0.444</td>
</tr>
<tr>
<td></td>
<td>Na</td>
<td>clean</td>
<td>25</td>
<td>0.459</td>
</tr>
<tr>
<td>Kr</td>
<td>W</td>
<td>clean</td>
<td>30</td>
<td>0.462</td>
</tr>
<tr>
<td></td>
<td>W</td>
<td>clean</td>
<td>-30</td>
<td>0.498</td>
</tr>
<tr>
<td></td>
<td>W</td>
<td>clean</td>
<td>-196</td>
<td>0.926</td>
</tr>
<tr>
<td></td>
<td>W</td>
<td>clean</td>
<td>30</td>
<td>0.773</td>
</tr>
<tr>
<td></td>
<td>W</td>
<td>clean</td>
<td>-30</td>
<td>0.804</td>
</tr>
<tr>
<td></td>
<td>W</td>
<td>clean</td>
<td>-183</td>
<td>0.942</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Condition</th>
<th>$T_{1}/^\circ C$</th>
<th>$T_{2}/^\circ C$</th>
<th>$\Delta T/^\circ C$</th>
<th>h_{c}</th>
<th>h_{t}</th>
<th>$\frac{\rho_{g} \cdot C_{p}}{\kappa_{g}}$</th>
</tr>
</thead>
<tbody>
<tr>
<td>Air at atmosphere</td>
<td>10.1</td>
<td>1.17</td>
<td>8.94</td>
<td>1.043</td>
<td>1.032</td>
<td>7.83 (W/m2·K)</td>
</tr>
<tr>
<td>P = 92 torr</td>
<td>10.0 35</td>
<td>1.17</td>
<td>8.88</td>
<td>1.047</td>
<td>1.036</td>
<td>7.73 (W/m2·K)</td>
</tr>
<tr>
<td>P = 41 torr</td>
<td>10.2</td>
<td>1.17</td>
<td>8.86</td>
<td>1.050</td>
<td>1.038</td>
<td>7.64 (W/m2·K)</td>
</tr>
<tr>
<td>P = 91 torr</td>
<td>10.3</td>
<td>1.17</td>
<td>8.88</td>
<td>1.043</td>
<td>1.032</td>
<td>7.83 (W/m2·K)</td>
</tr>
<tr>
<td>P = 40 torr</td>
<td>10.4</td>
<td>1.17</td>
<td>8.86</td>
<td>1.050</td>
<td>1.038</td>
<td>7.64 (W/m2·K)</td>
</tr>
<tr>
<td>P = 0.3 torr</td>
<td>10.5</td>
<td>1.17</td>
<td>8.88</td>
<td>1.043</td>
<td>1.032</td>
<td>7.83 (W/m2·K)</td>
</tr>
<tr>
<td>P = 0.25 torr</td>
<td>10.6</td>
<td>1.17</td>
<td>8.86</td>
<td>1.050</td>
<td>1.038</td>
<td>7.64 (W/m2·K)</td>
</tr>
<tr>
<td>P = 0.16 torr</td>
<td>10.7</td>
<td>1.17</td>
<td>8.88</td>
<td>1.043</td>
<td>1.032</td>
<td>7.83 (W/m2·K)</td>
</tr>
<tr>
<td>P = 0.13 torr</td>
<td>10.8</td>
<td>1.17</td>
<td>8.86</td>
<td>1.050</td>
<td>1.038</td>
<td>7.64 (W/m2·K)</td>
</tr>
</tbody>
</table>

Note: The table shows the convective and conductive heat transfer coefficients for various gases at different temperatures as measured with guarded hot plate.
FIGURE 1.1(a) PHYSICAL QUALITY OF LIFE INDEX VERSUS ENERGY CONSUMPTION PER CAPITA FOR THE COUNTRIES OF THE WORLD. SOURCES OF DATA: PQI, 'BOOK OF WORLD RANKINGS' BY G.T. KURIAN 1979, ENERGY CONSUMPTION 'EUROPA YEARBOOK 1983'.

ENERGY CONSUMPTION PER CAPITA IN KJ OF COAL EQUIVALENT

0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10 000

0 10 20 30 40 50 60 70 80 90 100

COUNTRY:...

USA -

SOUTH AFRICA

SAUDI ARABIA
FIGURE 1.1(b) HISTOGRAM OF ENERGY CONSUMPTION PER CAPITA FOR DIFFERENT PHYSICAL QUALITY OF LIFE INDEX (PQLI) FOR THE PEOPLE OF THE WORLD. THE PERCENTAGES SHOWN IN EACH BAR ARE THE PERCENTAGES WITHIN THAT RANGE OF PQLI.
Figure 2.1 UK low grade heat, fuel consumption and end use.

Figure 2.2 Domestic space and hot water demand.
Figure 2.3

DISTRIBUTION OF ANNUAL GAS CONSUMPTION FOR 90 SIMILAR HOUSES IN MILTON KEYNES, FROM 'THE PERFORMANCE OF DOMESTIC WET HEATING SYSTEMS', PICKUP, G.A. [7]

Figure 2.4

WEEKLY CONSUMPTION OF HOT WATER FOR ONE HOUSEHOLD, FROM 'THE PERFORMANCE OF DOMESTIC WET HEATING SYSTEMS', PICKUP, G.A. [7]
Total No of dwellings: 87
Overall mean weekly consumption: 0.841 m³/week
Standard deviation: 0.351 m³/week

Contribution due to OAPs flats (for 2 occupants)

Dwelling mean weekly hot water consumption m³

FIGURE 2.5 MEAN WEEKLY HOT WATER CONSUMPTION FOR 87 VARIOUS SITES. FROM, 'THE PERFORMANCE OF DOMESTIC WET HEATING SYSTEMS,' BY G.A. RICKUP.[7]

FIGURE 2.6 SOLAR AND THERMAL RADIATION SPECTRAL DISTRIBUTIONS. AIR MASS m=0 IS FOR EXTRA-TERRESTRIAL RADIATION, m=2 IS A TYPICAL CITY DISTRIBUTION.
FIGURE 2.7
ANNUAL VARIATION OF MEAN DAILY TOTALS OF DIRECT AND DIFFUSE INSOLATION ON A HORIZONTAL SURFACE.

FIGURE 2.8
AVGAGE GLOBAL SOLAR RADIATION ON A HORIZONTAL SURFACE

FIGURE 2.9 DEMONSTRATION PROJECT IN STUDSVIK. [26]

FIGURE 2.10

Figure 2.11 Seasonal Heat Storage and a Central Short Term Storage Reservoir (C.S.T.) Constructed for TNO Delft [35]

One-Family Houses (Small Scale)

- With heat storage in preferably soft ground or clay solid rock

Apartment Building (Intense Populated Areas) (Large Scale)

- With heat storage in
 - Preferably solid rock
 - Most types of ground

Figure 2.12 Different Applications for 'SimStore' [37], Seasonal Storage in the Ground
FIGURE 2.13 PLAN OF PROMETHEUS RETROFITTED TO SUPPLY 83 HOUSES WITH ALL THEIR SPACE HEATING AND HOT WATER.

FIGURE 2.14 COLLECTOR MOUNTED ON TOP OF STORE, PART OF PROMETHEUS DESIGN.
PROTOTYPE OF A PROMETHEUS TYPE SOLAR AIR-COLLECTOR/HEAT STORE, INSTALLED AT THE OPEN UNIVERSITY, MILTON KEYNES, UK.

FIGURE 2.15 PROTO-PROMETHEUS
Figure 2.16 Insolation Incident on Proto-Prometheus, 28th September 1981

Figure 2.17 Collector, Store and Ambient Temperatures for Proto-Prometheus on 28th September 1981.
FIGURE 2.19 PROTO-PROMETHEUS TEMPERATURE DISTRIBUTION (WITH FAN ON), ON 22ND SEPTEMBER 1981 AT 14:25 HRS.
SAMPLE SIZE 204
AVERAGE 1.6 cm.
STANDARD DEVIATION 0.7 cm.

FIGURE 2.19 FREQUENCY DISTRIBUTION OF PEBBLE SMALLEST DIMENSION.
FIGURE 2.20 FREQUENCY DISTRIBUTION OF PEBBLE LARGEST DIMENSION

SAMPLE SIZE 204
AVERAGE 3.8 cm
STANDARD DEVIATION 0.95 cm
Figure 2.21 Proto-Prometheus Store Temperature, from 2nd September 1981 to 2nd October 1981 under stagnation (fan off).

Figure 2.22 Energy Demand for a 3-Bedroom House Built to R75 Building Regulations (Type A) with Solar Heating Supplied by a Basic Type Prometheus.
Figure 2.23: Effect of changing the collector overall heat loss coefficient on the % of annual energy supplied by Prometheus on a Type A1 house.

Figure 2.24: Effect of changing the collector area on the % of annual energy supplied by Prometheus to a Type A1 house.
Figure 2.25
The effect of changing the storage tank insulation thickness on the % of solar energy supplied by Prometheus to a Type A1 house.

Figure 2.26
The effect of changing the storage volume on the % of solar energy supplied by Prometheus to a Type A1 house.
FIGURE 2.27 THE EFFECT OF INCREASING THE NUMBER OF HOUSES SERVED BY A SINGLE CUBIC PROMETHEUS (SIZE, 112 m² PER HOUSE AND 28 m² OF COLLECTOR PER HOUSE) FOR A TYPE 1 HOUSE.

FIGURE 2.28 THE EFFECT OF CHANGING THE COLLECTOR OVERALL HEAT LOSS ON THE % OF ENERGY SUPPLIED BY A CUBIC PROMETHEUS HEATING A TYPE A'S HOUSE.
Figure 2.29 Design of Costed Prometheus to provide 100% of their annual heating demand (27.5 GJ) with solar energy.

Figure 2.30 Improved collector orientation
FIGURE 3.1 DESIGN OF BASIC TYPE A0 HOUSE

FIGURE 3.2 NET SPACE HEATING DEMAND FOR TYPE A0, A5 AND A11 3 BEDROOM END OF TERRACE HOUSE.
FIGURE 3.3

Useful energy saved and extra cost for various insulation options and solar systems installed while constructing a basic Type A0 house.

FIGURE 3.4

Energy demand for a 3 bedroom terrace built to 1975 building regulations and energy supplied by 4, 12, and 24 m² of solar collector.
Figure 3.5 Energy demand for a well insulated 3 bedroom house, and energy supplied by, 4, 12, and 24 m² of solar collector.

Figure 3.6 Comparison of predicted solar energy supply for a house using the F-chart method with the measured solar supply for the Milton Keynes solar house.
Insulation measures

Active solar system with short term storage

Figure 3.7

Useful energy saved and extra costs for various insulation options and solar systems retrofitted to an existing type B0 house.
FIGURE 4.1 NONPOROUS ABSORBER-TYPE AIR HEATERS.

FIGURE 4.2 POROUS ABSORBER-TYPE AIR HEATERS.
FIGURE 4.3 HYBRID PHOTOVOLTAIC AND AIR HEATING SOLAR COLLECTOR

FIGURE 4.4 COLLECTOR HEAT LOSSES
FIGURE 4.5 REAR DUCT COLLECTOR CONFIGURATION

FIGURE 4.6 TOP DUCT COLLECTOR CONFIGURATION
The curves correspond to the following relations:

McAdams

\[h_w = 5.7 + 3.5v \]

Watmuff

\[h_w = 2.8 + 3.0v \]

Lloyd

\[h_w = 0.15 \times 0.06^{0.6} \times k \frac{2.5 \times W}{L + W} \] for \(T_a = 10\degree C, T_e = 15\degree C, L = 1m, W = 1m \)

Sparrow

\[h_w = k 	imes 0.86 \times R_e^{0.6} \times T_e^{0.4} \] for \(T_a = 10\degree C, T_e = 15\degree C, L = 8m, W = 1m \)

Green

\[h_w = (h_a + h_f)^{0.5} \] for \(a = 1.4m, 45\degree inclination \)

Kind

\[h_w = \frac{6}{7} \times \frac{h_a + h_f}{0.86} \] for collector length 2.4m, width 1.2m, height 4.5m, \(T_e = 25\degree C \)

Figure 4.7 Correlations for Wind Heat Loss Coefficient
Figure 4.8 Flow diagram of 'EFFICZ' (see Appendix B) a program to calculate the efficiency of a parabolic dish air heating collector.
Figure 4.9
Flow diagram of 'EFFIC' (see Appendix B) a program to calculate the efficiency of a top duct air-heating collector.
FIGURE 4.10 RESPONSE OF ZERO AND LONG TIME CONSTANT COLLECTOR TO CHANGING INSOLATION
FIGURE 4.11 NODAL CONFIGURATION OF A FLAT PLATE, REAR-DUCT AIR HEATING, SOLAR COLLECTOR WE USED IN 'RRDCT'.

FIGURE 4.12 COMPARISON OF AIR OUTLET TEMPERATURE TO PREDICTED BY THE COMPUTER MODEL (SOLID CURVE) AND LABORATORY MEASUREMENTS, ON A SIMILAR, THOUGH NOT IDENTICAL, COLLECTOR (CROSSES).
Figure 4.13 Efficiency curve generated by transient model operating under steady state conditions and steady state model. For collector parameters see Table 5.3.
Figure 5.1 Percentage of energy falling above a threshold intensity averaged over a period of one hour. Each month on a horizontal surface (at HW 1966-1975)
SECTION X-X

DIRECTION OF FLUID FLOW

'MAXORB'

ABSORBER

WEXTEL

REH DUCT BOTTOM

INSULATION

FIGURE 5.2 D. C. HALL COLLECTOR
FIGURE 5.3 ANGULAR VARIATION OF TRANSMITTANCE OF 2mm THICK POLYCARBONATE (REFRACTIVE INDEX = 1.586, EXTINCTION COEFFICIENT * 20 m\(^{-1}\))

FIGURE 5.4 TEE-PIECES USED FOR ABSORBER FINS IN D.C. HALL COLLECTOR
Figure 5.5-5.6 Air heating collector made of structured polycarbonate

Figure 5.7 Solar transmittance of structured polycarbonate versus incident angle. Source: H.L. Redfoot et al., "Glazing solar collectors with acrylic and double walled polycarbonate plastics."
FIGURE 5.8 ORIFICE PLATE AND ITS LOCATION FOR MEASURING MASS FLOW RATE
FIGURE 5.9 ASHRAE STANDARD 93-77 TESTING CONFIGURATION FOR A SOLAR COLLECTOR WHEN THE TRANSFER FLUID IS AIR.

FIGURE 5.10 OPEN UNIVERSITY AIR COLLECTOR TESTING CONFIGURATION.
EXPERIMENTAL

Theoretical ($\tau_e = 0.8$, $F_r = 0.6$, $c' = 0.9$ $U_e = 8\text{Wm}^{-2}$)

(h_c = 3500 J/m^2)

FIGURE 5.11 Response of structured polycarbonate collector to a step change in insolation from 7.50 Wm^2 to zero with a fluid flow rate of 7.2 kg/hr.$^{-1}$

FIGURE 5.12 Uninterrupted insolation as defined by ASHRAE standard 93-77 [2].
FIGURE 5.13 RECORD OF INCIDENT SOLAR RADIATION ON A HORIZONTAL SURFACE AT THE OPEN UNIVERSITY ON 19/6/83.

FIGURE 5.14 RECORD OF INCIDENT SOLAR RADIATION ON A HORIZONTAL SURFACE AND WIND SPEED ON 21/6/83 (CONTINUED ON NEXT PAGE).
FIGURE 5.14 CONTINUED
Figure 5.15 Angle of incidence of solar radiation onto D.C. Hall collector during steady state efficiency test. Position of collector, Milton Keynes, latitude 52°, longitude 0.75° (horizontal).

Figure 5.16 Angle correction for D.C. Hall collector.
FIGURE 5.17(a) Air heating collector under test with a leak at the inlet

FIGURE 5.17(b) Air heating collector under test with a leak at the outlet
Figure 5.18

The effect of air leaks on the measured value of $F_{v,UL}$, for $V = 0.5 \text{ m}^3/\text{hr}$

Figure 5.19

Calibration curve for periflow orifice plate for air at 20°C
FIGURE 5.20 PRESSURE DISTRIBUTION WITHIN COLLECTOR TEST CONFIGURATION
WITH AND WITHOUT Fluid FLOW.

FIGURE 5.21 SAMPLE OUTPUT OF D.C. HALL COLLECTOR TO TESTING
OUTDOORS NOT UNDER STEADY STATE CONDITIONS.
Figure 5.22 Steady State Efficiency Curve for D.C. Hall Collector Tested Outdoors

Figure 5.23 Steady State Efficiency Curve for Structured Polycarbonate Collector Tested Outdoors.
Figure 5.24 Uncorrected efficiency curve with variation of wind speed between 0 - 4 m/s. Source: [25].

Figure 5.25 Efficiency curve corrected for variation in wind speed using a normalizing function. Source: [25].
FIGURE 5.26 VARIATION OF MASS FLOW RATE CAUSED BY CHANGE IN WIND SPEED
FIGURE 5.27 ROUND ROBIN TESTING OF LIQUID FLAT PLATE COLLECTORS. THE COMBINED EFFECT OF METEOROLOGICAL EXTREMES AND MEASUREMENT UNCERTAINTY. SOURCE: TAYLOR [28].

FIGURE 5.28 MEASURED DEPENDENCY OF $F(CO_2)$ ON THE DIFFUSE FRACTION FOR A SINGLE-GLAZED FLAT-PLATE COLLECTOR. SOURCE: FORGERI [34].
Figure 5.29 Computer generated steady state and transient efficiency curve for 0.5 mm absorber plate
Figure 5.30 Transient Diffuse Radiation

Figure 5.31 Fluid Outlet Temperature Under Transient Conditions

Figure 5.32 Integrated Response of Collector Over 1 and 2 Minutes to Transient Radiation
Figure 5.33

The variation in F_{uL}, $F_{uL}(\phi a)$, and δF_{uL} with the number of increments used in the transient analysis.
FIGURE 5.34 COLLECTOR RESPONSE FUNCTIONS FOR OPTIMUM VALUES OF N.

FIGURE 5.35 CALCULATED COLLECTOR TIME CONSTANTS. FOR DIFFERENT COLLECTOR CONFIGURATIONS SEE TABLE 5.3.
FIGURE 5.36 EFFICIENCY CURVE GENERATED FROM TRANSIENT TESTING RESULTS OF THE 8P COLLECTOR AND PROCESSED BY 'TRANS' FOR N=1, UNCORRECTED FOR ANGLE OF INCIDENCE OF RADIATION.

FIGURE 5.37 TRANSIENT INSOLATION DURING TESTING OF 8P COLLECTOR ON 17/6/83, CONTINUED ON NEXT PAGE.
FIGURE 5.37 CONTINUED. TRANSIENT INSOLATION DURING TESTING OF 3P COLLECTOR ON 14/6/83, 15/6/83.
Figure 5.38 Standard error in $\frac{\theta_{F,UL}}{F_{t,UL}}$ versus N (minutes) in the number of previous time steps influencing the collector's present performance under transient conditions for the structured polycarbonate collector.

Figure 5.39 Efficiency curve for outdoor transient testing of structured polycarbonate collector. Data generated from 'TRANS' for N° 7, uncorrected for angle of incidence of radiation.
Figure 5.40 Collector response function for s.p. collector N=7.

Figure 5.41 Efficiency curve for outdoor transient testing of D.C. Hall collector (Manara Revised). Data generated from "TRANS" for N=7, uncorrected for incident angle of radiation.
Figure 5.42 Indoor Solar Collector Test Facility.

Figure 5.43 Relative Spectral Intensity of 'Cool Ray' Lamps, Transmittance of Polycarbonate and Reflectance of Invar.
Figure 5.44
Intensity Distribution Across Collector During Indoor Testing in Wm⁻², Average Intensity 2.11 Wm⁻², Standard Deviation ± 0.4 Wm⁻².

Figure 5.45
Wing Generator.
Figure 5.46 Variation of wind speed (m/s), 5 mm above collector surface

Figure 5.47 Measured and predicted heat loss U, for D.C. Wall collector (non-selective) with varying wind speed indoors.
Figure 5.48 Efficiency curve of structured polycarbonate collector measured indoors and outdoors.

Figure 5.49 Efficiency curve of D.C. null collector with non-selective absorber (Nextel). Indoor measurements and computer predictions.
FIGURE 5.50 REDESIGNED INDOOR COLLECTOR TEST FACILITY

FIGURE 5.51 STEADY STATE AND ZERO TESTING EFFICIENCY CURVES.
Figure 5.52: Steady state and efficiency curve plotted against mean absorber plate temperature (T_p) for simulated collector.
FIGURE 5.53 STEADY STATE AND ZERO TESTING EFFICIENCY CURVE PLOTTED
AGAINST MEAN FLUID TEMPERATURE (T_m) FOR SIMULATED COLLECTOR.
Figure 5.54 Collector temperature profile for model collector under steady state and zero testing conditions for the same fluid inlet temperature (303°C).

Figure 5.55 Collector temperature profile for model collector under steady state and zero testing conditions for the same mean absorber plate temperature (366°C).
FIGURE 5.56 TEMPERATURE OF ABSORBER AND REAR DUCT FOR THE SAME AVERAGE FLUID TEMPERATURE WITH THE COLLECTOR UNDER ZERO AND STEADY STATE TESTING

FIGURE 5.57 F_{wU} VERSUS MEAN FLUID TEMPERATURE FOR COLLECTOR D1 UNDER ZERO TESTING AND ASHARE STEADY STATE TESTING.
Figure 5.58 Efficiency curves for D.C. Hall collector using different test methods.
Figure 5.59 Efficiency curve for structured polycarbonate collector under different test conditions.

Figure 5.60 Top loss coefficient versus absorber temperature for A & D Chall type collector (maxors absorber).
FIGURE 5.41 STEADY STATE EFFICIENCY OF SOLAR COLLECTOR (BLACK CHROME) MEASURED DURING OPERATION AND INDOOR TESTING. SOURCE: TAYLOR, P.J. 'PERFORMANCE OF SELECTIVE AND NON-SELECTIVE SOLAR THERMAL ABSORBERS IN A WORKING INSTALLATION,' SOLAR WORLD CONGRESS ED BY S.V. SZÖKÖLLY, VOL 2, PP 1149 - 1153.
Figure 6.1 Efficiency curve for conventional and high performance collector.

Figure 6.2 Typical construction of a flat plate collector.
Figure 6.4
Percentage of energy falling above a threshold intensity averaged over a period of one hour each month on a horizontal surface (April 1963-1965).

Figure 6.5
Maximum improvement to flat plate collector performance by increasing \(\tau \) and \(\alpha \).
Figure 6.6 Reflectance of Solar Collector Coatings

Figure 6.8: Efficiency curves for different methods of heat loss reduction.

FIGURE 6.10 EFFICIENCY CURVE OF ADVANCED FLAT PLATE COLLECTOR WITH XENON BETWEEN THE ABSORBER AND COVER AT A PRESSURE OF 1 TORR. [27]

FIGURE 6.11 EFFICIENCY VERSUS MASS FLOW RATE FOR STRUCTURED POLYCARBONATE COLLECTOR. $I_{in} = 211 \text{Wm}^{-2}$, $T_x = 28^\circ C$, $T_{300} > T_x$, $T_e = T_q$ and AIR VELOCITY = 1.5 m s$^{-1}$.
Figure 6.12 Pressure drop across S.P. collector versus mass flow rate

Figure 6.13 Theoretical system efficiency versus mass flow rate for a fluid inlet temperature of 60°C, for three duct separations \(z \), and two levels of incident insolation.
Figure 6.14 Efficiency Curve for a Combined Parabolic Concentrator Compared with a Flat Plate Collector. Source: Argonne National Laboratory Tech Report.

Figure 6.15 Global and Diffuse Insolation Month by Month at 90°N on a 45° South Facing Slope.
Figure 6.16
Annual energy collected versus collector temperature. Comparison of five types of collector. Source [33].

Figure 6.17
FIGURE 6.18 Simulated ambient conditions. For further details see text in Appendix C.

WIND = 1.0 m s⁻¹

TK = TA - 20, clear skies
TK = TA - 10, overcast skies
Figure 6.19 Steady-state efficiency ($\bar{\eta}$ - the solid curve) and daily averaged efficiency ($\bar{\eta}$). The values of $\bar{\eta}$ are for a variety of simulated conditions (see Table 1 and Figure 3).'

(i) S1J/TAJ, flow 2 (ii) S1M/TAM, flow 2 (iii) S1D/TAD1, flow 2
(iv) S1M/TAM, flow 3 (v) S1M/TAM, flow 2 (vi) S1D/TAD1, flow 3
(vii) S1D1/TAD1, flow 2 (viii) S1D/TAD2, flow 3 (ix) S1D2/TAD1,
flow 2 (x) S1D3/TAD1, flow 2 (xi) S1D/TAD1, flow 2.
FIGURE 6.20 'FMT C' AIR HEATING SOLAR COLLECTOR DEVELOPED BY GE [42]

FIGURE 6.22 Instantaneous efficiencies of the FMTC collector and a single glazed flat plate collector and their variation with insolation. [42]
FIGURE 7.1
Thermal conductivity of various gases at 20°C versus molecular weight.

FIGURE 7.2
Cellular convection for a liquid. For gases, due to their different temperature viscosity relationship, the gas falls in the centre of the cell.
FIGURE 7.3 OBSERVATION OF CELLULAR CONVECTION

FIGURE 7.4 BASE FLOW BETWEEN INCLINED PLATES

FIGURE 7.6 SCHEMATIC DEPICTING EFFECT OF GAP SPACING ON CONDUCTANCE
Figure 7.2
Plot of h_c versus plate separation s. $T_{air} < 10^\circ C$, $T_{wall} = 335^\circ C$, 0.5 to 20 cm.

Figure 7.8
h_c versus tilt angle to the horizontal for air with $T_{air} = 150^\circ C$, 70$^\circ C$, 30$^\circ C$, various absorber temperatures (T_a) with cover temp $= 10^\circ C$.
Figure 7.9: Heat Transfer Coefficient Variation with Absorber Temperature for Convection and Radiation.
Figure 7.10 True and predicted heat loss between two parallel plates, $s = 5\, \text{cm}, \text{cover temperature } 10\, \text{°C}$
FIGURE 7.11 EFFECTIVE RAYLEIGH NUMBER VersUS MOLEcular WeIGHT FOR DIFFERENT GASES, AT ATMOSPHERIC PRESSURE BETWEEN TWO PARALLEL PLATES, SEPARATION 2.0 OSM, COLD PLATE TEMPERATURE 10°C, HOT PLATE 30°C.
Figure 7.12

Heat transfer coefficient for gases of different molecular weight, for $S = 5$ cm, cold plate temperature $10^\circ C$, hot plate temperature $30^\circ C$.

Molecular Weight (g mol$^{-1}$)

- **O$_3$**
- **H$_2$**
- **CH$_3$CH$_2$CH$_3$**
- **C$_3$H$_6$**
- **C$_2$H$_6$**
- **C$_2$H$_4$**
- **CH$_4$**
- **C$_2$H$_2$**
- **NH$_3$**
- **N$_2$**
- **Ar**
- **O$_2$**
- **CO**
- **H$_2$S**
- **HCl**
- **K**
- **Xe**

Heat Transfer Coefficient (W m$^{-2}$K$^{-1}$)

- 6.5
- 5.0
- 4.5
- 4.0
- 3.5
- 3.0
- 2.5
- 2.0
- 1.5
- 1.0
- 0.5
- 0.0
Figure 7.13

Cost versus heat transfer coefficient for different gases.
- $L = 5 \text{cm}$, volume of gas required for each square metre of collector is 50 litres.
FIGURE 7.14 VARIATION OF HEAT TRANSFER COEFFICIENT h_c WITH PRESSURE FOR A FLAT PLATE COLLECTOR, $s = 5 \text{ cm}$, $T_0 = 293 \text{ K}$, $T_2 = 323 \text{ K}$ FOR CURVE 1, 273 K FOR CURVE 2 AND 473 K FOR CURVE 3.

FIGURE 7.15 DESCRIPTION OF TWO COVER SYSTEM.
Figure 7.16 Variation of heat transfer with gap across a two cover and a single cover system. Source: Holmstrom, A. and Garg, H.P. \[1\]

Figure 7.17 Reflected solar rays for a multi cover solar collector.
FIGURE 7.19 HEAT TRANSFER COEFFICIENT h_c DUE TO NATURAL CONVECTION FOR AIR AT ATMOSPHERIC PRESSURE BETWEEN TWO PARALLEL FLAT PLATES SPACING 5 cm, $T_i = 293 K$, WITH A HONEYCOMB PAD WITH SLATS ASPECT RATIO 5
Figure 7.20 Thermal Conductivity versus Rayleigh Number for various gases $T_1 = 10^\circ C$, $T_2 = 30^\circ C$, $S = 5$ cm.
Figure 7.21: Rayleigh number versus temperature for argon and air at atmospheric pressure between two parallel flat plates spacing s = 5 cm, cold plate temperature T, = 10°C.
Figure 7.22 Heat Transfer Coefficients for Several Collector Configurations

\[h = 5 \text{ cm}, \quad T = 10^\circ \text{C} \]
Figure 7.23: Guard Ring Heater

Figure 7.24: Guard Ring Unbalance Versus Measured Heat Transfer Across a 5 cm Thick 'Styrofoam' SP Sample
FIGURE 7.25 ACRYLIC TEST PANEL

FIGURE 7.26 SCHEMATIC DIAGRAM OF GUARDED HOT PLATE APPARATUS
FIGURE 7.27 COPPER COLD PLATES.
Figure 7.28 Measured and theoretical heat transfer coefficients for different gases between two parallel plates, $s = 5$ cm versus temperature difference.
FIGURE 7.29 THEORETICAL AND MEASURED HEAT TRANSFER hC FOR AIR AND ARGON
FIGURE 7.30 THEORETICAL HEAT TRANSFER ACROSS STRUCTURED POLYCARBONATE OF VARIOUS THICKNESSES. BOTH RADIATION AND CONVECTION, ASSUMING FLAT CONVECTION AND A MEASURED EMISSIVITY OF 0.72.
PLATE 2.1 PROTO PROMETHEUS - 1. COLLECTOR 2. STORE TOP INSULATION AND COLLECTOR RGR INSULATION 3. FAN MOTOR 4. MONITORING EQUIPMENT 5. SPACE FOR INSULATION
PLATE 2.2 PROTO PROMETHEUS STORAGE TANK FILLED WITH PEBBLES.
PLATE 5.1

PLATE 5.2 INDOOR COLLECTOR TEST FACILITY
7. DATA LOGGER 8. STRUCTURED POLYCARBONATE COLLECTOR
9. PRESSURE TAPS 10. SITE OF ORIFICE PLATE
PLATE 7.1

VIEW OF HEATED OIL FILM FROM AN INFRARED CAMERA.
THE BRIGHTER THE SPOT THE HOTTER THE SPOT.
PLATE 7.2 GUARDED HOT PLATE THERMAL CONDUCTIVITY RIG.
11. INSULATED GUARD RING AND TEST CELL, 12. GAS CYLINDER
13. WATER COOLER, 14. HEATER POWER SUPPLY
APPENDIX A

SUNSTORE: Computer model of interseasonal store and sample output.
10 REM DDSUNSTORE
20 DATA 0.55, 0.60, 0.65, 0.70, 0.75, 0.80, 0.85, 0.90, 0.95
30 REM DDSUNSTORE
40 REM DDSUNSTORE
50 REM DDSUNSTORE
60 REM DDSUNSTORE
70 REM DDSUNSTORE
80 REM DDSUNSTORE
90 REM DDSUNSTORE
100 REM DDSUNSTORE
110 REM DDSUNSTORE
120 REM DDSUNSTORE
130 REM DDSUNSTORE
140 REM DDSUNSTORE
150 REM DDSUNSTORE
160 REM DDSUNSTORE
170 REM DDSUNSTORE
180 REM DDSUNSTORE
190 REM DDSUNSTORE
200 REM DDSUNSTORE
210 REM DDSUNSTORE
220 REM DDSUNSTORE
230 REM DDSUNSTORE
240 REM DDSUNSTORE
250 REM DDSUNSTORE
260 REM DDSUNSTORE
270 REM DDSUNSTORE
280 REM DDSUNSTORE
290 REM DDSUNSTORE
300 REM DDSUNSTORE
310 REM DDSUNSTORE
320 REM DDSUNSTORE
330 REM DDSUNSTORE
340 REM DDSUNSTORE
350 REM DDSUNSTORE
360 REM DDSUNSTORE
370 REM DDSUNSTORE
380 REM DDSUNSTORE
390 REM DDSUNSTORE
400 REM DDSUNSTORE
410 REM DDSUNSTORE
420 REM DDSUNSTORE
430 REM DDSUNSTORE
440 REM DDSUNSTORE
450 REM DDSUNSTORE
460 REM DDSUNSTORE
470 REM DDSUNSTORE
480 REM DDSUNSTORE
490 REM DDSUNSTORE
500 REM DDSUNSTORE
510 REM DDSUNSTORE
1000 REM ***
1010 PRINT TAB(10);"MONTHS(T)";"='-'DEMAND",1; 'print heating demand each mont
1020 TOD=SUM(DEMAND) ; calculate total annual heating dem.
1030 DEMAND=DEMAND/100000 ; heating demand per m2 of collector
1040 ' print
1050 PRINT "TOTAL ENERGY PER ANNUM =";1;"TOTAL/TOD);";691;";(";SUM(TODI
1060 PRINT "--"
1070 PRINT USING 1;80; 1080 IMAGE //# SYSTEM OPERATION
1090 PRINT "ITH = Threshold Level (collector will only operate above this int
1100 PRINT "Tso = Original Store Temperature at the beginning of month (C)
1110 PRINT "Ta = Ambient Temperature Averaged over periods of collector Oper
1120 PRINT "Tt = Time Period of Collector Operation (Ms)
1130 PRINT "It = Time that is above Threshold (M/J/m2)
1140 PRINT "qN = Normalized Net Heat to Storage =qT-Tm-1s(J/m2)
1150 PRINT "qT = Useful Heat Collected = qN+1m (J/m2)
1160 PRINT "qM = Normalized Total Monthly Load (M/J/m2)
1170 PRINT "qL = Normalized Total Monthly Store Losses (M/J/m2)
1180 PRINT "qAX = Useful Heat - aux heat
1190 PRINT "quate = qN / qM
1200 PRINT "quate = qN / qM
1210 M=ITH Tso Ta Tt It qN ts4 qT im
1220 PRINT "quate = qN / qM
1230 FOR i=1 TO 12
1240 TIM=0
1250 TSOL=0
1260 TEMP=0
1270 FOR J=1 TO 24
1280 TSH=IT/(J+1);";FROM GOTO 1330 ! test if radiation level is above
1290 IF ITH=0.1;.";FROM GOTO 1330 ! time col on on hr/s di
1300 TIM=IT/(J+1);";FROM GOTO 1330 ! total radi while col is on each day
1310 TSOL=IT/(J+1);";FROM GOTO 1330 ! average ambient temp while col
1320 TEMP=IT/(J+1);";FROM GOTO 1330 !
1330 NEXT J
1340 IF TIM=0 THEN GOTO 1360 ;
1350 TEMP=TIM/TIM
1360 TIM=TIM*3600/DAYS(I)
1370 TSOL=TSOL*3600/DAYS(I)
1380 IF TIM=0 AND COUNT=0 THEN GOTO 1770 ; check which month to turn system
1390 t=3600*24*DAY(I);";FROM GOTO 100000 ; which
1400 qT=FILL(IT/TSOL-TSH-TMI/100000)
1410 qT=FILL(IT/TSOL-TSH-TMI/100000)
1420 qN=qT+1S;";FROM GOTO 1300 ! net heat to storag
1430 qT=qN/(qT+1S) ! net heat to storage
1440 qT=qN/(qT+1S) ! net heat to storage
1450 IF qT=300 THEN GOTO 1530 ;
1460 IF qT=300 THEN GOTO 1530 ;
1470 TSOL=30 ;
1480 IF COUNT=300 THEN GOTO 1530 ;
1490 IF NUT=1 THEN GOTO 1520 ;
1500 EXTR=qT-TM;";FROM GOTO 100000 ;
1510 NUTE=qT-TM;";FROM GOTO 100000 ;
1520 GOTO 1540
1530 qN=qT-TM;";FROM GOTO 100000 ;
1540 qN=qT-TM;";FROM GOTO 100000 ;
1550 qN=qT-TM;";FROM GOTO 100000 ;
1560 qN=qT-TM;";FROM GOTO 100000 ;
1570 qN=qT-TM;";FROM GOTO 100000 ;
1580 qN=qT-TM;";FROM GOTO 100000 ;
1590 qN=qT-TM;";FROM GOTO 100000 ;
1600 qN=qT-TM;";FROM GOTO 100000 ;
1610 IF TSOL=0 THEN qNUT=0 ;
1620 IF TSOL=0 THEN qNUT=0 ;
1630 PRINT USING 1;80; 1640 IMAGE //# SYSTEM OPERATION
1650 PRINT "annual heat when collector is on
1660 PRINT "annual energy collected
1670 PRINT "annual net heat collected
1680 PRINT "annual useful heat collected
1690 PRINT "annual solar energy collected
1700 PRINT "annual storage tank losses
1710 PRINT "annual auxiliary energy per m2 col
1720 PRINT "annual stop prog when run for n years
1730 PRINT "annual total temp=initial temp I
1740 PRINT "annual total temp=initial temp I
1750 PRINT "annual total temp=initial temp I
1760 PRINT "annual total temp=initial temp I
1770 PRINT "annual total temp=initial temp I
1780 PRINT "annual total temp=initial temp I
1790 PRINT "annual total temp=initial temp I
1800 PRINT "annual total temp=initial temp I
1810 PRINT USING 1970 ;";FROM GOTO 100000 ;
1820 PRINT "annual total temp=initial temp I
1830 PRINT "annual total temp=initial temp I
1840 PRINT "annual total temp=initial temp I
1850 PRINT "annual total temp=initial temp I
1860 PRINT "annual total temp=initial temp I
1870 PRINT "annual total temp=initial temp I
1880 PRINT "annual total temp=initial temp I
1890 PRINT "annual total temp=initial temp I
1900 PRINT "annual total temp=initial temp I
1910 ASSIGN# 1 TO *
1920 ASSIGN# 2 TO *
1930 ASSIGN# 3 TO *
1940 ASSIGN# 4 TO *
Computer models used to predict steady state performance of air heating collectors.

TOPAIR: calculates the top heat loss U_t for different absorber temperatures.

EFFIC: Calculates the efficiency of a top duct air heating collector.

EFFIC2: Calculates the efficiency of a rear duct air heating collector.
1.0 V=V/100 K=K/100
2.0 T=0.01T
3.0 V=V/300 K=K/300
4.0 T=0.001T
5.0 V=V/500 K=K/500
6.0 T=0.0001T
APPENDIX C

THE EFFECT OF THERMAL CAPACITANCES ON THE PERFORMANCE OF SOLAR COLLECTORS

Barrie W. Jones and Tadj Oreszczyn
The Open University, Milton Keynes MK7 6AA, UK

A multi-node dynamic computer model of a flat-plate, rear-duct, air-heating solar collector is described, and its verification is outlined. Results from the model are then presented of the daily averaged thermal efficiencies for a variety of simulated ambient conditions pertinent to mid to high maritime latitudes. The collectors differ significantly only in their thermal capacitances. The diurnal variation of insolation produces a modest spread of thermal efficiencies, the lower the thermal capacitance of the collector the higher the efficiency. More rapid fluctuations in insolation produce only a slightly further spread in the thermal efficiencies, though such fluctuations have a more significant effect on peak temperatures.

Keywords: air-heating solar collectors; thermal capacitance effects in solar collectors.

NOMENCLATURE

\(DY_{1-5}\)
\(f(\theta)\)
\(F_R\)
\(HPA(I)\)
\(M\)
\(NI\)
\(PON\)
\(S\)
\(S0\)
\(S1\)
\(SP\)
\(TA\)

plate and duct-back thicknesses (5)
transmittance - absorbtance function of the collector
collector heat-removal factor
heat-transfer coefficient plate (or duct-back) to air in the I'th segment of the duct
duct air flow rate
number of duct segments
threshold power for switch on of air flow
irradiance in cover plane
solar beam irradiance
diffuse irradiance on a horizontal surface
irradiance absorbed by plate
ambient temperature
1 INTRODUCTION

Low mass in solar collectors offers the advantage of low construction and installation costs. But the mass also influences the thermal capacitance and hence the thermal efficiency, because even a smooth diurnal variation of insolation prevents a collector from achieving a true steady-state, and the lower the mass the closer the varying conditions are followed. Earlier studies (for example {1}, {2}, {4}) have shown that lowering the mass will improve the thermal efficiency, though perhaps by not very much. However, there seem to be few data on the diurnal performance in various ambient conditions of collectors which differ only in their thermal capacitances. This is particularly the case for air-collectors.

Therefore we have developed and verified a dynamic computer model of a flat-plate, rear-duct, air-heating solar collector. We have used it to obtain daily averaged thermal efficiencies for a wide variety of simulated ambient conditions pertinent to maritime mid to high latitudes. The basic configuration of the collector was varied to yield a wide spread of thermal capacitances. The model is of the multi-node kind, because various studies (for example {1}, {3}, {4}) have shown that simple one-node models are unlikely to give accurate results in non steady-state conditions.

2 THE COLLECTOR MODEL

The collector is of the flat-plate rear-duct air-heating single-cover kind, with dimensions selected to give good performance. It is divided into nodes as shown in Figure 1. (This collector could be complete, or it could be a strip width W of a larger assembly.) Heat balance equations are defined at each node, and the equations are numerically integrated in sequence using the Adams-Bashforth-Moulton predictor-corrector method {5}.

The model was tested in a variety of ways, including a comparison of its predictions with the actual behaviour in the laboratory of a flat-plate rear-duct air-heating single-cover collector. In all cases the agreement between prediction and actuality was satisfactory.
RESULTS

5.1 The collectors

Table 1 specifies the collector configurations, and the rear-duct air flow conditions. The basic configuration was selected to give good steady-state performance, the configurations differing only in the thickness of the plate and duct-back (DY1 to DY5 in Table 1). The main effect of these changes in configuration is on the thermal capacitance of the components and hence of the whole collector.

Table 1 Collector configurations, and rear-duct air flow

collector length (along flow)	4.00 m
collector width (W)	1.00 m
cover to plate spacing	0.05 m
rear duct gap	0.01 m
back insulation	dry glass fibre, thickness 0.10 m
edge insulation	dry glass fibre, thickness 0.05 m
material of plate and duct-back	duralumin HS15TB
cover	polycarbonate, thickness 2.00 mm
plate absorbance	0.95 at θ=0, falling slightly as θ increases
emissivity of upper surface of the plate (diffuse)	0.10
emissivity of duct surfaces (diffuse)	0.91
emissivity of the cover (diffuse)	0.85
thermal properties of air at 283 K for ambient air, at 303 K elsewhere	
latitude	52°N
collector tilt (to horizontal)	35°
collector orientation	south-facing
thickness of plate and of duct-back	collector time-constant (flow 1)
DY1	0.2 mm
DY2	0.5 mm
DY3	1.0 mm
DY4	2.0 mm
DY5	5.0 mm

Air flow in the rear-duct

flow 0	stagnation (M=0)
flow 1	all TI M = 0.0600 kg s⁻¹ (PON irrelevant)
flow 2	TI = 303 K M = 0.0600 kg s⁻¹ PON = 128 W
flow 3	TI = 323 K M = 0.0562 kg s⁻¹ PON = 124 W

The air flow rate is a compromise between attaining large values of HPA(I) and keeping low the power required to maintain the air flow in the rear-duct. At M = 0.0600 kg s⁻¹ and TI = 303 K (flow 2 in Table 1) this power is 6.4 W. The corresponding pressure drop across the duct is 12 mm water gauge. If it is
assumed that the circulation fan gives a constant volumetric flow rate then at other values of T_i the value of M will be different from 0.0600 kg s^{-1}: at $T_i = 323 \text{ K}$, $M = 0.0562 \text{ kg s}^{-1}$ (flow 3 in Table 1).

It is also necessary to specify the minimum power that must be delivered by a complete array of collectors in order for the air flow to either be switched on or be sustained. This power must be some multiple of the electrical power required by the fan to circulate air around the whole system incorporating the array. We adopted a multiple of two. In order to estimate the electrical power it is necessary to allow for the efficiency of the fan and for the pressure drop in the whole system. For a modest domestic system we ended up with a minimum power per collector of the sort specified in Table 1 of 128 W for flow 2. For flow 3 PON is slightly less. The values of PON are shown in Table 1. Note that the values of PON are for a 4 m x 1 m collector, and not for the whole array. These values of PON correspond to an air temperature rise of between 2 K and 3 K for the flow conditions specified.

The collector time-constants in Table 1 vary with ambient conditions and with operating conditions, particularly with the air flow rate. The values in the Table are representative for all ambient conditions considered here, and for the various (similar) air flow rates, except for flow 0 (stagnation), in which case the time-constants in Table 1 should be multiplied by about a factor of 5. Note that the time-constants in Table 1 are the $1/e$ time-intervals following a step change in insolation. However, only in stagnation is the response very close to exponential. Note also that the thermal capacitance of the cover has a relatively small effect, because the cover is coupled to the plate via a rather large thermal resistance.

3.2 Steady-state efficiency curve

We obtained a standard steady-state thermal efficiency curve, of the form \(\eta \)

\[
\eta = F_R \left\{ f(\theta) - U_L \frac{(T_i - T_A)}{S} \right\} \quad (1)
\]

where $f(\theta)$ is such that

\[
SP = f(\theta) \cdot S \quad (2)
\]

For the steady state efficiency curve S is beam irradiance normal to the cover, such that $S = 700 \text{ W m}^{-2}$. Furthermore, $T_A = 293 \text{ K}$, $T_K = 273 \text{ K}$, $WIND = 1.0 \text{ m s}^{-1}$, $M = 0.0600 \text{ kg s}^{-1}$. These values lie within the ASHRAE specifications for steady-state collector testing \(6\).

In order to obtain the efficiency curve the value of T_i was varied, everything else remaining constant. The outcome is shown in Figure 2 for collector configuration DY1 (Table 1), though the results for DY2 to DY5 are indistinguishable from those for DY1 on the scale of Figure 2. The intercept on the η-axis, 0.683 gives $F_R \cdot f(\theta)$ (equation (1)). The program yields a value of 0.830 for $f(\theta)$, and therefore F_R is 0.823. The slope gives $-F_R \cdot U_L$, and at low values of $(T_i-T_A)/S$ this is $-2.83 \text{ W m}^{-2} \text{ K}^{-1}$, giving a value of U_L of 3.44 W m$^{-2}$ K$^{-1}$. The value of $F_R \cdot U_L$ increases as T_i increases (T_A, S constant), largely because the radiative heat transfer coefficients increase with increasing temperature differences, and though F_R decreases it does not offset the increase in U_L. These values of $f(\theta)$, F_R and U_L indicate good performance for a flat-plate rear-duct air-heating single-cover collector with a selective plate-surface.

We had a "quick look" at the effect of varying the wind speed on the steady-state
temperatures. The effect was fairly modest, because of the large thermal resistance between cover and plate. Wind speed variations will be deferred to a later study.

3.3 Daily-averaged efficiency

The collector configurations DY1 to DY5 were run under conditions flow 2 and flow 3 for a variety of simulated days 21 June (J), 21 March (M), 21 December (D). The simulated conditions of insolation and weather on these days are shown in Figure 3. The ambient temperature TA varies sinusoidally through the day (Figure 3(a)) with an amplitude of 5 K. Note that there are two temperature curves for 21 December, TAD1 and TAD2. The irradiance S consists of a diffuse component from the ground, and of a sky component which can either correspond to clear sky conditions or to overcast diffuse conditions. Figure 3(b) shows some of the various insolations, the prefix S0 denoting the clear sky irradiance normal to the beam, and the prefix S1 the overcast diffuse irradiance on a horizontal surface. In the cases in Figure 3(b) the only variation in irradiance is the diurnal envelope shown. By contrast in Figures 3(c) and (d) the insolation flips between the two envelopes shown, the square wave periods being indicated, the conditions remaining diffuse throughout. In clear sky conditions the sky temperature is 20 K below TA, and in overcast conditions it is 10 K below TA. In all cases the wind speed is constant at 1.0 m s⁻¹.

For each "day" an average thermal efficiency was obtained, defined by

$$\eta = \frac{\text{total energy extracted by the air flow in the day/integration of } S \text{ over the day.}}{}$$

(3)

Note that a day spans the time from sunrise to sunset. In no case did a collector deliver energy before or after sunset, and therefore η is never being wrongly evaluated.

In order to plot η on Figure 2 it is necessary to re-define the abscissa $(T_I-T_A)/S$. T_I is constant (303 K or 323 K), and for T_A and S the arithmetic mean values for the period sunrise to sunset are taken. The outcome is shown in Figure 2, the results being coded in accord with Table 1 and Figure 3, except that the thermal capacitance configuration DY1 to DY5 is not shown. However, you can see that at each value of $(T_I-T_A)/S$ there is a column of results, and in every case DY1 is at the top, then comes DY2, and so on, to DY5, though in some cases DY1-DY3 merge on the scale of Figure 2. Clearly, the lower the thermal capacitance the better the performance.

Consider first those cases in which the insolation only varies over the diurnal envelope: this covers the cases (i)-(vi), (viii), (xi). The increase in η is marked in going from the rather massive DY5 to the rather less massive DY4. However, the improvement in going from DY4 to the low mass DY1 is also significant, particularly in marginal conditions (large $(T_I-T_A)/S$). This general improvement with reducing thermal capacitance arises because with a diurnal envelope the slower warm-up of a high mass collector in the morning is not compensated by the slower cool-down in the afternoon. Note that the sinusoidal variations in T_A and T_K do not make an appreciable contribution to the spread of η with thermal capacitance on the scale of Figure 2.

The advantage of low mass could, in principle, be more marked under intermittent insolation. SID1-SID3 provide such conditions (Figure 3), the periodicities lying within the range of time-constants in Table 1. However, Figure 2 shows that, even in marginal conditions, very little further advantage in low mass is obtained, though DY1-DY3 are more spread out than with the diurnal envelope alone. The
reason for such a slight improvement is that whereas a low mass collector will "follow" the insolation, possibly switching the air flow on and off, a high mass collector, once it has warmed to the point where the air flow switches on, will tend to stay at a fairly constant temperature. The overall effect, for a wide variety of conditions, is that the time-averaged temperatures of the air flow are not very sensitive to the mass. Therefore there is very little difference in the amount of heat extracted. A similar conclusion was reached by Klein et al. {1}.

Figure 2 also shows that the values of $\bar{\eta}$ differ from those of η. This is particularly the case at low thermal capacitances, as can be seen from the performance of DY1, which is not very different from that which would have been obtained for a collector of zero thermal capacitance. Two prominent and opposing effects operating here are that for η in Figure 2 the value of θ is always zero, thus raising $f(\theta)$, and, more importantly, that in insolation conditions which vary, intermittently or otherwise, a collector can "grab" peak insolation, yet entirely miss the corresponding steady state insolation which never reaches such peak values. Low thermal capacitance is again an advantage.

In addition to $\bar{\eta}$, the daily average of T_0 was also obtained, such that only those periods were included in which air flowed in the rear duct. In general the lower the thermal capacitance of the collector the higher the daily average, though the improvement from DY5 to DY1 never exceeded 2 K. However, the peak temperatures for DY1 can be up to about 10 K higher than for DY5, the greatest difference occurring in intermittent conditions. In some circumstances this will be an important advantage of low thermal capacitance.

A set of results analogous to those in Figure 2 was obtained for lower flow rates, around 0.02 kg s$^{-1}$. This is a potentially useful domain, because in spite of the lower thermal efficiencies the values of T_0 are raised and can reach values such that useful energy can be extracted from ambient conditions which would yield no useful energy at higher flow rates, because of the lower values of T_0. However the variation of $\bar{\eta}$ with thermal capacitance (DY1-DY5) was not remarkably different from that shown in Figure 2.

It can be concluded that collectors with low thermal capacitance can have significantly larger thermal efficiencies at non-small daily averaged values of $(T_1-T_A)/S$ in non-steady insolation, and that this is largely because of the diurnal variation, rather than because of more rapid fluctuations in insolation. Peak temperatures can also be significantly larger at low thermal capacitance, particularly when there are rapid fluctuations in insolation.

REFERENCES

2 M. Yusoff and D. J. Close, Transient studies of solar air heaters, presented at the Inter-regional symposium on solar energy for development, Tokyo 5-10 February (1979).

Figure 1 Flat-plate, rear duct, air heating solar collector.
Figure 2 Steady-state efficiency (η_- - the solid curve) and daily averaged efficiency ($\bar{\eta}$). The values of $\bar{\eta}$ are for a variety of simulated conditions (see Table 1 and Figure 3).

(i) SOJ/TAJ, flow 2 (ii) SOM/TAM, flow 2 (iii) $\text{SOD}/\text{TAD1}$, flow 2
(iv) SOM/TAM, flow 3 (v) $\text{S1M}/\text{TAM}$, flow 2 (vi) $\text{SOD}/\text{TAD1}$, flow 3
(vii) $\text{S1D1}/\text{TAD1}$, flow 2 (viii) $\text{SOD}/\text{TAD2}$, flow 3 (ix) $\text{S1D2}/\text{TAD1}$, flow 2
(x) $\text{S1D3}/\text{TAD1}$, flow 2 (xi) $\text{S1D}/\text{TAD1}$, flow 2 .
Figure 3 Simulated ambient conditions. For further details see text.
APPENDIX D

TRANS: Computer program for analysing collector data under transient conditions.
25 OPTION BASE 1
20 DIM F(16,16), X(16), Y(16), Z(16), PT(16,16), XY(16), XY(16)
40 DIM Y(16,16), Z(16,16), C(16)
44 FOR N=1 TO 8
45 A$SIGN# 1 TO "PLOT: 800"
50 FOR ZT=1 TO 16
52 FOR Z=1 TO 16
53 P(2T,2S)*= P(TZ,2Z) *%= XY(2T,2Z)=0 & ZZ(2T,2Z)=0
54 NEXT ZS
55 X(2T,Z)*= Z(2T)*%= XY(2T,Z)=0 & XY(2Z)=0 & C(2Z)=0
56 NEXT ZT
60 M=22.3 ' MC/A
61 YY=0
62 NF=0
63 ZE=0
64 E=0
65 SIX=0
66 SY=0
67 SIX=0
68 SY=0
69 SIX=0
70 NC=NC+1
75 DNN=NNK
80 FOR K=1 TO NC
90 P(K,K)=1
100 NEXT K
110 READ #1 I,X(NK),Y,T(NK)
115 IF I=0 AND X(NK)=0 THEN GOTO 650
120 I=I+1
130 FOR K=2 TO NK
140 L=NNK-K+1
150 READ #1 I,X(L),Y,T(L)
155 IF I=0 AND X(L)=0 THEN GOTO 650
160 IF I=I THEN GOTO 110
170 I=I+1
180 Z(L)=INT (X(L)/100)/10
190 NEXT K
200 GOTO 300
210 FOR K=2 TO NK
220 L=NNK-K+2
230 X(L)=X(L-1)
240 Z(L)=Z(L-1)
250 T(L)=T(L-1)
260 NEXT K
270 READ #1 I,X(1),Y,T(1)
275 IF I=0 AND X(1)=0 THEN GOTO 650
280 IF I=I THEN GOTO 110
290 I=I+1
295 Z(I)=INT (X(1)/100)/10
300 X(NC)=0
310 FOR K=1 TO NK
320 X(NC)=X(NC)+T(F)
330 NEXT K
340 Y(NC)=X(NC)/T(F)
350 Z(NC)=INT (X(NC)/Z(NC)/50)
360 DENOM=1
279 FOR I=1 TO NC
279 FOR L=1 TO NC
280 P=INT (T(L)*P(F)*K,L,F%)/2
400 NEXT L
410 NEXT K
420 IF ABS (DENUM)= 1 THEN GOTO 210
430 YY=YY+YY
440 FOR K=1 TO NC
450 ZY(K)=ZK(K)+Z(K)*Y
460 ZY(K)=ZY(K)+X(K)*Y
470 FOR L=1 TO NC
480 XX(X(L),K)L=XX(X,L)+XX(X,L)*X(K)*Y(L)
490 ZZ(Z,L)=ZZ(Z,L)+Z(L)*Z(L)
500 PT(L,K)=0
510 FOR M=1 TO NC
520 FOR N=1 TO NC
530 PT(L,K)=PT(L,K)+P(K,M)*X(N)*Z(M)*P(N,L)
540 NEXT N
550 NEXT M
560 NEXT L
570 NEXT K
580 FOR Y=1 TO NC
590 FOR L=1 TO NC
600 P(K,L)=P(K,L)-PT(K,L)/DENUM
610 NEXT L
620 NEXT K
630 NP=NF+1
640 GOTO 210
650 IF NF=NC THEN STOP 1 STOP IF NOT ENOUGH DATA POINTS
651 REM EVALUATES ESTIMATES OF PARAMETERS AND STANDARD ERRORS
655 FOR K=1 TO NC
660 X(K)=0
670 FOR L=1 TO NC
680 XX(X,L)=XX(X,L)+P(K,L)*Z(L)
690 NEXT L
700 NEXT K
710 FOR K=1 TO NC
720 YY=YY-2*XX(K)+XY(K)
730 FOR L=1 TO NC
740 YY=YY+XX(K)+XX(L)+XY(L)
750 NEXT L
760 NEXT K
770 FOR K=1 TO NC
780 FOR L=1 TO NC
790 PT(L,K)=0
800 FOR M=1 TO NC
810 B10 FOR N=1 TO NC
820 PT(L,K)=PT(L,K)+P(K,M)*X(N)*Z(M)*P(N,L)
830 NEXT N
840 NEXT M
850 NEXT L
860 Z(K)=SQR (PT(K,K)+XY(NP-NC))
870 NEXT K
880 PRINT "TABLE F.3"
890 FOR L=1 TO NK
900 PRINT K,X(K),Z(K)
910 L=L+1
920 FOR L=1 TO NK.
214
940 NEXT K
950 NEXT I
960 Z*SOR (ZIYY/(NP-NC))
970 PRINT "ETAQ"="E,"+";2E
980 U=-X(NC)
990 PRINT "FU"="U","-";2(NC)
1000 PRINT "TABLE F.4"
1010 FOR K=1 TO NP
1020 C(K)=X(h)/E
1030 PRINT K,C(K)
1035 NEXT K
1040 F=-(U/(1-LOG (1-U/H)))
1050 PRINT "F"=F
1060 E=E/F
1070 U=U+F
1080 PRINT "ETAC="E,"U";U
1090 PRINT "DATA SETS ACCEPTED FOR ANALYSIS";NP
1100 REM READ DATA TO GENERATE THERMAL PERFORMANCE CURVE
1110 ASSIGN 1 TO "TRANSD700"
1120 NP=0
1130 READ# 1 : I,X(NL),Y,T(NL)
1135 IF I<0 AND X(NL)<0 THEN GOTO 1570
1140 I=I+1
1150 FOR K=2 TO NP
1160 L=NL+K-1
1170 READ# 1 : I,X(L),Y,T(L)
1175 IF I=0 AND X(L)=0 THEN GOTO 1570
1180 IF I#1 THEN GOTO 1130
1190 GL=1
1200 NEXT K
1210 GOTO 1460
1220 FOR K=2 TO NP
1230 L=NL+K-2
1240 X(L)=X(L-1)
1250 T(L)=T(L-1)
1260 NEXT K
1270 READ# 1 : I,X(I),Y,T(I)
1275 IF I=0 AND X(I)=0 THEN GOTO 1570
1280 IF I#1 THEN GOTO 1150
1290 I=I+1
1300 E=0
1310 X(NC)=0
1320 FOR K=1 TO NP
1330 E=E+X(K)*C(K)
1340 X(NC)=X(NC)+T(K)
1350 NEXT K
1360 Y=Y/(FRE)
1370 X(NC)=X(NC)*C(K)/"NP";E
1380 PRINT Y,X(NC)
1390 REM CALC LEAST SOR TO THERMAL PERFORMANCE
1400 SX=SX+X(NC)
1410 SY=SY+Y
1420 SY=SY+X(NC)*X(NC)
1430 SY=SY+Y*Y
1440 SY=SY+X(NC)*Y
1550 NP=NP+1
1560 GOTO 1220
1570 NP=NP
1580 PRINT "POINTS ON THERMAL PERFORMANCE CHARACTERISTIC";NP
1590 PRINT "FROM LEAST SQUARES FITS EACH WAY"
1600 E=(SY*SXY-SX*SY)/(DNF*SNX-SX*SY)
1610 U=(SNX-DFP*SNY)/(DNF*SNX-SX*SY)
1620 PRINT "MINIMUM ETAQ="E,"U";U
1630 E=(SY*SXY-SX*SY)/(DNF*SNX-SX*SY)
1640 U=(SNX-DFP*SNY)/(DNF*SNX-SX*SY)
1650 PRINT "MAXIMUM ETAQ="E,"U";U
1655 NEXT NP
1660 STOP
1670 END