The Open UniversitySkip to content

Gas flow in near surface comet like porous structures: Application to 67P/Churyumov-Gerasimenko

Christou, Chariton; Dadzie, S. Kokou; Thomas, Nicolas; Marschall, Raphael; Hartogh, Paul; Jorda, Laurent; Kührt, Ekkehard; Wright, Ian and Rodrigo, Rafael (2018). Gas flow in near surface comet like porous structures: Application to 67P/Churyumov-Gerasimenko. Planetary and Space Science, 161 pp. 57–67.

Full text available as:
PDF (Version of Record) - Requires a PDF viewer such as GSview, Xpdf or Adobe Acrobat Reader
Download (3MB) | Preview
DOI (Digital Object Identifier) Link:
Google Scholar: Look up in Google Scholar


We performed an investigation of a comet like porous surface to study how sub-surface sublimation with subsequent flow through the porous medium can lead to higher gas temperatures at the surface. A higher gas temperature of the emitted gas at the surface layer, compared to the sublimation temperature, will lead to higher gas speeds as the gas expands into the vacuum thus altering the flow properties on larger scales (kilometres away from the surface). Unlike previous models that have used modelled artificial structures, we used Earth rock samples with a porosity in the range 24 – 92 % obtained from X-ray micro computed tomography (micro-CT) scans with resolution of some μm. Micro-CT scanning technology provides 3D images of the pore samples. The direct simulation Monte Carlo (DSMC) method for the rarefied gas dynamics is directly applied on the digital rock samples in an unstructured mesh to determine the gas densities, temperatures and speeds within the porous medium and a few centimetres above the surface. The thicknesses of the rock samples were comparable to the diurnal thermal skin depth (5cm). H2O was assumed to be the outgassing species. We correlated the coma temperatures and other properties of the flow with the rock porosities. The results are discussed as an input to analysis of data from the Microwave Instrument on Rosetta Orbiter (MIRO) on the 67P/Churyumov-Gerasimenko.

Item Type: Journal Item
ISSN: 0032-0633
Academic Unit/School: Faculty of Science, Technology, Engineering and Mathematics (STEM) > Physical Sciences
Faculty of Science, Technology, Engineering and Mathematics (STEM)
Item ID: 56105
Depositing User: ORO Import
Date Deposited: 09 Aug 2018 08:00
Last Modified: 22 Jan 2020 06:39
Share this page:


Altmetrics from Altmetric

Citations from Dimensions

Download history for this item

These details should be considered as only a guide to the number of downloads performed manually. Algorithmic methods have been applied in an attempt to remove automated downloads from the displayed statistics but no guarantee can be made as to the accuracy of the figures.

Actions (login may be required)

Policies | Disclaimer

© The Open University   contact the OU