The Open UniversitySkip to content
 

Reviews and syntheses: Carbonyl sulfide as a multi-scale tracer for carbon and water cycles

Whelan, Mary E.; Lennartz, Sinikka T.; Gimeno, Teresa E.; Wehr, Richard; Wohlfahrt, Georg; Wang, Yuting; Kooijmans, Linda M. J.; Hilton, Timothy W.; Belviso, Sauveur; Peylin, Philippe; Commane, Róisín; Sun, Wu; Chen, Huilin; Kuai, Le; Mammarella, Ivan; Maseyk, Kadmiel; Berkelhammer, Max; Li, King-Fai; Yakir, Dan; Zumkehr, Andrew; Katayama, Yoko; Ogée, Jérôme; Spielmann, Felix M.; Kitz, Florian; Rastogi, Bharat; Kesselmeier, Jürgen; Marshall, Julia; Erkkilä, Kukka-Maaria; Wingate, Lisa; Meredith, Laura K.; He, Wei; Bunk, Rüdiger; Launois, Thomas; Vesala, Timo; Schmidt, Johan A.; Fichot, Cédric G.; Seibt, Ulli; Saleska, Scott; Saltzman, Eric S.; Montzka, Stephen A.; Berry, Joseph A. and Campbell, J. Elliott (2018). Reviews and syntheses: Carbonyl sulfide as a multi-scale tracer for carbon and water cycles. Biogeosciences, 15(12) pp. 3625–3657.

Full text available as:
[img]
Preview
PDF (Version of Record) - Requires a PDF viewer such as GSview, Xpdf or Adobe Acrobat Reader
Download (8MB) | Preview
DOI (Digital Object Identifier) Link: https://doi.org/10.5194/bg-15-3625-2018
Google Scholar: Look up in Google Scholar

Abstract

For the past decade, observations of carbonyl sulfide (OCS or COS) have been investigated as a proxy for carbon uptake by plants. OCS is destroyed by enzymes that interact with CO2 during photosynthesis, namely carbonic anhydrase (CA) and RuBisCO, where CA is the more important one. The majority of sources of OCS to the atmosphere are geographically separated from this large plant sink, whereas the sources and sinks of CO2 are co-located in ecosystems. The drawdown of OCS can therefore be related to the uptake of CO2 without the added complication of co-located emissions comparable in magnitude. Here we review the state of our understanding of the global OCS cycle and its applications to ecosystem carbon cycle science. OCS uptake is correlated well to plant carbon uptake, especially at the regional scale. OCS can be used in conjunction with other independent measures of ecosystem function, like solar-induced fluorescence and carbon and water isotope studies. More work needs to be done to generate global coverage for OCS observations and to link this powerful atmospheric tracer to systems where fundamental questions concerning the carbon and water cycle remain.

Item Type: Journal Item
Copyright Holders: 2018 The Authors
ISSN: 1726-4189
Academic Unit/School: Faculty of Science, Technology, Engineering and Mathematics (STEM) > Environment, Earth and Ecosystem Sciences
Faculty of Science, Technology, Engineering and Mathematics (STEM)
Item ID: 56080
Depositing User: Kadmiel Maseyk
Date Deposited: 08 Aug 2018 09:44
Last Modified: 02 May 2019 01:54
URI: http://oro.open.ac.uk/id/eprint/56080
Share this page:

Metrics

Altmetrics from Altmetric

Citations from Dimensions

Download history for this item

These details should be considered as only a guide to the number of downloads performed manually. Algorithmic methods have been applied in an attempt to remove automated downloads from the displayed statistics but no guarantee can be made as to the accuracy of the figures.

Actions (login may be required)

Policies | Disclaimer

© The Open University   contact the OU