Tracing the Initiation of the Tribeč Mountain Exhumation by Laser-Probe 40Ar/39Ar Dating of Seismogenic Pseudotachylytes (Western Carpathians, Slovakia)

How to cite:

For guidance on citations see FAQs.

© 2016 The University of Chicago

Link(s) to article on publisher’s website:
http://dx.doi.org/doi:10.1086/684443

Copyright and Moral Rights for the articles on this site are retained by the individual authors and/or other copyright owners. For more information on Open Research Online’s data policy on reuse of materials please consult the policies page.
Tracing the Initiation of the Tribeč Mountain Exhumation by Laser-Probe 40Ar/39Ar Dating of Seismogenic Pseudotachylytes (Western Carpathians, Slovakia)

Milan Kohút1,* and Sarah C. Sherlock2

1. Earth Science Institute, Slovak Academy of Sciences, Dubravská cesta 9, 840 05 Bratislava, Slovakia; 2. Centre for Earth, Planetary, Space and Astronomical Research (CEPSAR), Department of Environment, Earth and Ecosystems, Open University, Milton Keynes MK2 2PE, United Kingdom

ABSTRACT

The seismogenic pseudotachylytes from the Tribeč Mountains (Western Carpathians, Slovakia) were dated by means of the laser microprobe 40Ar/39Ar method. The Tribeč Mountain crystalline basement was buried to 5–7.5-km depths, where it experienced approximately $>110^\circ$C and $<210^\circ$C thermal conditions. The dated pseudotachylytes have spot ages between 58±1 and 46±1 Ma with a weighted mean age of 49.7±1.3 Ma, indicating that seismic activity caused their origin, the propagation of subvertical basement marginal faults, and/or the inception of basement unroofing processes in the southern part of the Central Carpathian Paleogene Basin. The extensional tectonics were responsible for the exhumation of basement highs and the opening of the intramontane depressions on the northwest margin of the Pannonian Basin.

Introduction

The evolution of relief and topography mirrors the endogenic and exogenic processes that are responsible for the uplift, erosion, and exhumation of rock blocks in mountain belts [e.g., England and Molnar 1990; Ring et al. 1999]. Generally, the dynamic interaction of processes controlling deformation of the lithosphere and those operating at its surface can be investigated as exhumation histories of mountains and sedimentary records in neighboring depressions. The spatial coincidence between the location of enhanced erosion, maximum crustal uplift rates, and lowest steepness indices suggests a positive feedback between erosional unloading and tectonic forcing [England and Molnar 1990]. Understanding the tectonic evolution of the relief-forming processes depends on our ability to determine the age of tectonic features—for example, ductile shear zones and brittle faults—on a variety of crustal scales. There are a number of isotopic dating methods suitable for dating shear zones that formed under mid- to lower-crustal conditions due to the higher temperatures of mineral formation and consequent isotopic equilibration of the Sm-Nd, U-Pb, and Rb-Sr systems, for example. It is difficult to determine the ages of brittle faults, formed in upper-crustal conditions ($\leq 300^\circ$C), and where sedimentary or volcanic markers are absent. If fault movements cause differential vertical movements of crustal blocks that exceed a few hundred meters, it may be possible to determine the age of the fault movement by fission track and ($\text{U-Th})$/He thermochronology [Wagner and Van den Haute 1992; Reiners and Brandon 2006], but where only minor or strike-slip displacement has taken place there is a paucity of tools for dating such structures. However, where pseudotachylytes occur they may be used to date fault movements. Small melt volumes generated during flash friction connected to the seismic/tectonic events in Earth’s upper crust play a significant role in our ability to determine the age of the tectonic processes in orogenic belts and intracratonic areas. Pseudotachylyte (dark aphanitic fault-related rock composed of friction-derived melt material interspersed with refractory clasts and crystals from the host rock) is thought to have formed in response to seismic activity during the collapse phase of meteorite impact craters and rapid tectonic faulting or landslides [e.g., Philpotts 1964; Sibson...
1975; Magloughlin and Spray 1992; Reimold 1995). The high potassium content of the melt material derived from the host-rock micas and/or amphiboles makes pseudotachylite an ideal candidate for 40Ar/39Ar dating (e.g., Reimold et al. 1990; Sherlock and Hetzel 2001; see also Sherlock et al. 2008, 2009). In this study, 40Ar/39Ar laser-probe dating has been applied to pseudotachylites from the Tribeč Mountains of the Western Carpathians.

The European Alpides (Alps and Carpathians) terminated outward expansion approximately during the Eocene-Miocene interval, and tectonic uplift and exhumation shifted into the orogen interior (e.g., Csontos et al. 1992; Kováč et al. 1994, Kováč 2000, Froitzheim et al. 2008; Minár et al. 2011). This transfer is consistent with a change from orogenic construction to orogenic destruction, reflecting an increase in the ratio of erosional flux to accretionary flux. 40Ar/39Ar ages of pseudotachylites from the Tatra Mountains reflect initial basement exhumation of these mountains [Kohút and Sherlock 2003] in the Western Carpathians. Although pseudotachylites were recently described from another Western Carpathian area—the Tribeč Mountains [Madarás et al. 2004]—their age was unknown. The aim of this article is to present 40Ar/39Ar laser microprobe data from these pseudotachylites and to discuss Eocene-Miocene tectonic activity within the Tribeč Mountains and sediment supply to the surrounding areas—the southern margin of the Central Carpathian Paleogene Basin (CCPB) and the northwestern margin of the Pannonian Basin.

Geological Setting

The Western Carpathians are the northernmost part of the Carpathian orogenetic belt, joining the Eastern Alps in the west, continuing eastward to the Eastern Carpathians, and bordered to the north by the European Platform and to the south by the Neogene Pannonian Basin. The Western Carpathians record a complex history that includes Variscan and Alpine orogeny. Three orogen-parallel pre-Alpine principal structural zones form the internal parts of the Western Carpathians [Inner Western Carpathians (IWC)] from the north to the south: the Tatra, the Veporic, and the GENERIC Superunits [fig. 1a; Andrusov 1968; Plašienka 1999]. These principal superunits comprise Variscan crystalline basement and its sedimentary cover and are defined as thick-skinned crustal sheets that were tectonically juxtaposed through north-directed thrusting in the early Late Cretaceous [Andrusov 1968]. Cenozoic evolution of Western Carpathian basement areas is problematic because of a lack of suitable data [Kováč 2000]. Recent ideas are based on the work of Kováč et al. [1994], who concluded from geochronological, stratigraphic, and fission track data that internal [southern] parts of Tatric domains were exhumed and cooled to near surface conditions in the course of postorogenic unroofing during early Paleogene times [55–35 Ma], with gradual [35–20 and 20–10 Ma] waning toward the external border to the north. Contrary to this, Kázmér et al. [2003] and Danišák et al. [2004, 2008, 2010, 2011], based on sedimentological, fission track, and thermal modeling data, pointed out that the CCPB forearc basin played a more important role in the geodynamic evolution of the IWC than was previously thought. These authors proposed that during the Eocene period the pre-Cenozoic basement of the IWC underwent maximum burial, when it was loaded by a thick pile of CCPB sediments. While Kováč et al. [1994] favor a progressive exhumation and simple cooling of crystalline complexes migrating from internal parts of the belt toward the orogenic front, Danišák et al. [2004, 2008, 2010, 2011] argued for a complex thermal history with at least one phase of reheating related to a Paleogene sedimentary burial and/or the Miocene mantle upwelling associated with volcanic activity that caused increased heat flow (the Miocene thermal event; Danišák et al. 2008) and gradual Miocene sedimentation.

The Tribeč Mountains represent the western part of the core mountain inner belt of the Tatric Superunit [fig. 1] of the Central Western Carpathians [Andrusov 1968; Plašienka 1999]. The Tribeč Mountain crystalline basement comprises pre-Mesozoic metamorphic and granitic rocks overlain by Mesozoic sedimentary cover sequences and nappes. The Tribeč Mountains form an asymmetric horst structure that trends northeast-southwest and dips toward the southeast and is flanked by two Neogene depressions, the Komjatice Depression on the east and the Rišňovce Depression on the west. These two Neogene depressions form the northern margin of the Pannonian [Danube] Basin. The geological structure of the Tribeč Mountains is relatively simple: crystalline basement is predominantly a deeply eroded Variscan granitic pluton that is well exposed in the central core of the range, whereas the Mesozoic cover complexes, locally affected by Alpine metamorphism, are preserved in the marginal parts. The Mesozoic nappe units are sparsely conserved in northeastern and southwestern marginal parts. Borehole RAO-3 was drilled in the central part of the mountains [GPS coordinates: N48°26'52.80", E18°14'07.52"] in which pseudotachylite veins were discovered at depths of 108–111 m [Madarás et al. 2004], in medium- to coarse-grained I-type biotite granodiorites and tonalites.
Figure 1. Simplified geological maps and positions of studied samples. a, Position of the Tribeč Mountains within the Western Carpathians in Slovakia. b, Simplified geological map of the Tribeč Mountains and their surroundings (modified after Elečko et al. 2008). BD = Bánovce Depression; HD = Handlová Depression; HnD = Horná Nitra Depression; IWC = Inner Western Carpathians; OWC = Outer Western Carpathians. A color version of this figure is available online.
These granitic rocks were recently dated by the secondary-ion mass spectrometry (SIMS) U-Pb zircon method to be ca. 368 ± 2.5 to 358 ± 2.9 Ma (Broska et al. 2013), and biotite ⁴⁰Ar/³⁹Ar step-heating ages demonstrated that the biotites had been thermally disturbed, with cooling ages between ca. 380 and 334 Ma (Kráľ et al. 2002). The studied pseudotachylytes form veins between 0.5 and 2.5 cm in thickness and branched dendritic injection veins of <0.5 cm in thickness. The pseudotachylytes are typically dark gray; the matrix comprises hematite (5%–45%), albite, and K-feldspar, whereas frequent host-rock clasts are formed by feldspars and quartz (fig. 2).

The Tribeč Mountains and neighboring intramontane depressions—Rišňovce and Komjatice—originated as a result of extensional tectonics during the Cenozoic in the IWC. The Miocene sediments of these two depressions overlie eroded and tectonically disrupted pre-Cenozoic substratum that has been drilled in several boreholes (fig. 5). It is noteworthy that there were no Paleogene sedimentary remnants identified in the vicinity of the Tribeč Mountains, and the nearest surface appearances of the Paleogene strata are ~20 km north from the Tribeč Mountains, in the Bánovce Depression (fig. 1a). Indeed, the Paleogene superficial occurrences are not extensive because of the Miocene cover. Up to 1300 m of the

Figure 2. Photographs of typical structures and textures of the host granitic rocks and pseudotachylytes. a, Drill core from a depth of 110.5 m; tonalite sample with major pseudotachylyte and small injection veins (in natural size). b, Identical sample cross-cutting. c, Sample RAO-3/108 m with distribution of large host-rock porphyroclasts. d, Enlarged detail from c; sharp contact of pseudotachylyte dominated by dark aphanitic melt, with host-rock tonalite. e, Back-scattered electron (BSE) image showing distribution of microporphyroclasts in the pseudotachylyte melt. Sample RAO-3/110.5 m. f, BSE image showing dendritic texture, suggesting rapid crystallization from frictional melt. g, BSE image detail documenting intergrowth of principal mineral phases; view from identical sample RAO-3/110.5 m. K-fls = K-feldspar. A color version of this figure is available online.
Eocene [Bartonian to Priabonian] carbonaceous breccias and conglomerates, sandstones, bioclastic limestones, clays and claystones, and flysch sequences were drilled in borehole BnB-1, located in the center of a fault-bonded irregular structure, due to hydrothermal exploration, according to Gross in Elečko et al. [2008]. The Lower Miocene [Eggenburgian to Karpatian] marine to brackish sedimentary fill and the Middle Miocene [Badenian to Sarmatian] brackish to limnic or lacustrine sediments of the Bánovce Depression reach up to 2500 m, whereas in the adjacent [southwest-continued] Rišňovce Depression these strata reach up to 3500 m in thickness (e.g., Biela 1978; fig. 5). The Neogene sediments of the Komjatice Depression have a stratigraphic range of the Middle Badenian [Middle Miocene] to Pliocene reaching up to 3000 m [Biela 1978]. The sedimentary fill during the Miocene megacycle was characterized by a gradual decrease in salinity of the depositional environment. There are three lower-order shallowing-upward cycles in the sedimentary record, while the depositional environment changed from marine to brackish, brackish, and lacustrine swamp, with coal deposition in the northwestern margin of the Panonian Basin. This succession is overlain by a Pliocene deposit composed of deltaic and fluvial deposits (Hők et al. 1999).

Analytical Methods

In situ laser microprobe 40Ar/39Ar spot analyses were performed at the Open University [Milton Keynes, United Kingdom] using a New Wave 213-nm UV laser coupled with a Nu Instruments Noblesse noble gas mass spectrometer. Pieces of polished thick sections (~300-μm thick) were cleaned in alternate methanol and deionized water prior to being packaged in aluminium foil. Samples were irradiated at McMaster [Canada] for 50 h, and neutron flux was monitored using biotite standard GA1550, with an age of 98.8 ± 0.5 Ma [Renne et al. 1998] and a calculated I value of 0.0121 ± 0.000064. All analyses were performed on areas of friction melt [pseudotachylyte], taking particular care to avoid entrained or refractory mineral clasts and to avoid regions at the vein margin that could be ultracataclasite rather than melt (e.g., Sherlock et al. 2009). Results were corrected for blanks on either side of two consecutive analyses, 37Ar decay and neutron-induced interference reactions. The correction factors used were 36Ar/37Ar$_{ca}$ = 0.00065, 39Ar/37Ar$_{ca}$ = 0.000264, and 40Ar/39Ar$_{k}$ = 0.0085, based on analyses of Ca and K salts. See Sherlock and Hetzel (2001) for further details.

Results

One representative pseudotachylyte sample from a depth of 108 m (fig. 2d) was selected for laser microprobe 40Ar/39Ar analysis; data are presented in table 1. The 19 spot ages range from 79 ± 1 to 46 ± 1 Ma; excluding the oldest age, the weighted mean of the remaining 18 data points is 49.7 ± 1.3 Ma. Plotting the ages as a function of probability (fig. 3) identifies a common pattern of decreasing probability with age. There are two possible interpretations: (1) the incorporation of refractory host-rock minerals and clasts provide an older 40Ar/39Ar age component that is subordinate to the “pristine” melt component [e.g., Kohút and Sherlock 2003; Sherlock et al. 2004] or (2) the pseudotachylyte veins are partially overprinted by a subsequent thermal event, giving rise to a heterogeneous resetting of the vein material. Plotting 37Ar/39Ar versus age is used as one test for the possible incorporation of refractory clasts and host-rock pieces in a pseudotachylyte (e.g., Kohút and Sherlock 2003; Sherlock et al. 2009), but in this case the measured 37Ar/39Ar values are very low, indicating an overall Ca-poor pseudotachylyte. 39Ar/39Ar ratios (fig. 4), which can be interpreted as the incorporation of refractory mineral pieces that have a precursor excess 40Ar component trapped in fluid inclusions [e.g., Sherlock et al. 2009]. The weighted mean age of 49.7 ± 1.3 Ma coincides with the highest probability age in figure 3. This pseudotachylyte-forming event is most likely connected to the Middle Paleogene–Eocene (ca. 49–46 Ma) seismic/tectonic events suggested for the southern part of the CCPB. However, we suppose propagation of the subvertical basement marginal faults during this time in the Tribeč Mountains to be a consequence of the continent-continent collision between the European and the Adriatic promontory as a result of the lateral extrusion model [Ratschbacher et al. 1989]. These marginal faults facilitated subsequent unroofing of Tribeč Mountain basement during the Eocene-Miocene extensional and transpressional processes (fig. 5).

Discussion

The Western Carpathian pre-Cenozoic substratum in the Tatric Unit comprises pre-Mesozoic crystalline basement (dominated by Variscan granitic rocks and metamorphites, with scarce remnants of older metaigneous and metasedimentary rocks)—parautochthonous sedimentary units that represent the Mesozoic cover sequence, mainly carbonate.
<table>
<thead>
<tr>
<th>Analysis no.</th>
<th>^{40}Ar</th>
<th>^{39}Ar</th>
<th>^{38}Ar</th>
<th>^{37}Ar</th>
<th>^{36}Ar</th>
<th>$^{40}\text{Ar}^* / ^{39}\text{Ar}$</th>
<th>Age</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>15,148.292 ± 167.989</td>
<td>2632.540 ± 20.895</td>
<td>34.714 ± 2.518</td>
<td>111.027 ± 11.103</td>
<td>.033 ± .119</td>
<td>5.751 ± .080</td>
<td>79.0 ± 1.1</td>
</tr>
<tr>
<td>2</td>
<td>7735.171 ± 311.108</td>
<td>2111.532 ± 44.168</td>
<td>24.119 ± 1.103</td>
<td>7.519 ± 12.532</td>
<td>.123 ± .108</td>
<td>3.646 ± .167</td>
<td>50.5 ± 2.3</td>
</tr>
<tr>
<td>3</td>
<td>3842.023 ± 52.060</td>
<td>1116.984 ± 25.307</td>
<td>12.220 ± 0.758</td>
<td>10.030 ± 220.667</td>
<td>.196 ± .091</td>
<td>3.388 ± .093</td>
<td>47.0 ± 1.3</td>
</tr>
<tr>
<td>4</td>
<td>4136.530 ± 19.757</td>
<td>1233.782 ± 9.029</td>
<td>14.647 ± 0.669</td>
<td>10.043 ± 55.236</td>
<td>.388 ± .190</td>
<td>3.446 ± .054</td>
<td>47.8 ± 8.6</td>
</tr>
<tr>
<td>5</td>
<td>4926.578 ± 26.294</td>
<td>1385.551 ± 10.059</td>
<td>15.548 ± 0.759</td>
<td>221.170 ± 5.027</td>
<td>.076 ± .099</td>
<td>3.539 ± .038</td>
<td>49.1 ± 6.6</td>
</tr>
<tr>
<td>6</td>
<td>2927.688 ± 14.024</td>
<td>856.103 ± 12.422</td>
<td>9.623 ± 0.521</td>
<td>276.565 ± 15.085</td>
<td>.060 ± .088</td>
<td>3.441 ± .061</td>
<td>47.7 ± 9.2</td>
</tr>
<tr>
<td>7</td>
<td>6134.755 ± 164.964</td>
<td>1841.523 ± 27.610</td>
<td>18.881 ± 0.910</td>
<td>173.584 ± 22.641</td>
<td>.057 ± .139</td>
<td>3.340 ± .105</td>
<td>46.3 ± 1.5</td>
</tr>
<tr>
<td>8</td>
<td>3544.322 ± 156.088</td>
<td>786.745 ± 16.971</td>
<td>9.947 ± 1.226</td>
<td>226.532 ± 110.749</td>
<td>.339 ± .278</td>
<td>4.378 ± .243</td>
<td>60.5 ± 3.3</td>
</tr>
<tr>
<td>9</td>
<td>6256.756 ± 44.359</td>
<td>1629.985 ± 20.717</td>
<td>19.170 ± 1.364</td>
<td>217.998 ± 15.128</td>
<td>.087 ± .320</td>
<td>3.854 ± .081</td>
<td>53.4 ± 1.1</td>
</tr>
<tr>
<td>10</td>
<td>12,492.558 ± 470.951</td>
<td>3367.904 ± 81.483</td>
<td>39.018 ± 1.587</td>
<td>226.034 ± 291.229</td>
<td>.038 ± .153</td>
<td>3.706 ± 1.067</td>
<td>51.3 ± 2.3</td>
</tr>
<tr>
<td>11</td>
<td>19,260.624 ± 557.175</td>
<td>5534.804 ± 51.684</td>
<td>63.724 ± 1.904</td>
<td>17.919 ± 58.875</td>
<td>.085 ± .072</td>
<td>3.486 ± .104</td>
<td>48.3 ± 1.5</td>
</tr>
<tr>
<td>12</td>
<td>18,531.879 ± 327.125</td>
<td>5240.887 ± 18.250</td>
<td>61.297 ± 1.830</td>
<td>957.917 ± 215.147</td>
<td>.216 ± .105</td>
<td>3.548 ± .064</td>
<td>49.2 ± 9.2</td>
</tr>
<tr>
<td>13</td>
<td>23,186.107 ± 74.921</td>
<td>6849.430 ± 37.747</td>
<td>79.677 ± 2.181</td>
<td>584.347 ± 35.881</td>
<td>.167 ± .061</td>
<td>3.392 ± .022</td>
<td>47.0 ± 4.0</td>
</tr>
<tr>
<td>14</td>
<td>15,300.797 ± 172.424</td>
<td>4134.695 ± 66.595</td>
<td>52.760 ± 2.951</td>
<td>1323.268 ± 15.387</td>
<td>.315 ± .135</td>
<td>3.723 ± .074</td>
<td>51.6 ± 1.0</td>
</tr>
<tr>
<td>15</td>
<td>14,557.360 ± 30.068</td>
<td>3803.191 ± 13.377</td>
<td>42.436 ± 0.991</td>
<td>38.493 ± 7.699</td>
<td>.147 ± .070</td>
<td>3.816 ± .016</td>
<td>52.8 ± 3.0</td>
</tr>
<tr>
<td>16</td>
<td>20,616.544 ± 124.405</td>
<td>5696.613 ± 47.086</td>
<td>64.169 ± 1.673</td>
<td>182.277 ± 156.605</td>
<td>.151 ± .090</td>
<td>3.611 ± .037</td>
<td>50.0 ± 2.6</td>
</tr>
<tr>
<td>17</td>
<td>15,472.963 ± 511.086</td>
<td>3914.675 ± 95.226</td>
<td>46.219 ± 1.734</td>
<td>38.024 ± 66.419</td>
<td>.285 ± .089</td>
<td>3.931 ± .162</td>
<td>54.4 ± 2.2</td>
</tr>
<tr>
<td>18</td>
<td>9052.087 ± 89.039</td>
<td>2148.224 ± 41.114</td>
<td>31.026 ± 2.954</td>
<td>119.065 ± 91.375</td>
<td>.018 ± .068</td>
<td>4.211 ± .091</td>
<td>58.2 ± 1.3</td>
</tr>
<tr>
<td>19</td>
<td>11,316.934 ± 18.635</td>
<td>3207.108 ± 26.929</td>
<td>34.714 ± 1.166</td>
<td>83.117 ± 38.788</td>
<td>.052 ± .106</td>
<td>3.533 ± .032</td>
<td>49.0 ± 0.5</td>
</tr>
</tbody>
</table>
lithologies that are Lower Triassic to Albian in age. The Upper Mesozoic nappe structure is represented by the Fatricum and Hronicum nappes. Fatricum is generally built by similar Triassic to Cretaceous carbonate lithologies comparable to the cover sequence, with a minor contribution from clastics, and have comparable stratigraphic span (Lower Triassic to the Albian), whereas pre-Alpine basement fragments are present only locally (Hók et al. 1994; Froitzheim et al. 2008). Hronicum is the uppermost large cover nappe system, and at its base it has a thick pile of Late Paleozoic volcanics and clastics, followed by a huge Triassic carbonate succession and scattered Jurassic and Lower Cretaceous remnants. It is noteworthy that the Mesozoic rock successions do not exceed 4.5–5 km in thickness, including local internal imbrications. However, the Gosau Upper Cretaceous (postnappe stacking sedimentary sequence) has not been identified near the study area, and because the Gosau posttectonics sediments are only known close to the Klippen Belt at present day. The Paleogene sedimentation around the Tribeč Mountains [southern branch of the CCPB, according Chmelík in Buday et al. 1967] started ~10 m.yr. later, in the Lutetian, similarly over the Hronicum base, from which coarse-grained clastics were also derived. The maximum thickness of the Paleogene sediments beneath the Miocene strata in the Bánovce Depression and neighboring the Horná Nitra Depression and the Handlová Depression do not exceed 1500 m today. Interestingly, the first Paleogene conglomerates containing pebbles and boulders from the surrounding crystalline basement appeared in the Horná Nitra Depression containing pebbles and boulders from the surrounding crystalline basement at the Bartonian-Priabonian boundary (ca. 37 Ma) as intraformation breccias, the Podremata conglomerates (Zlinská and Gross 2013). Although Danišík et al. (2004) suggest that the Tribeč Mountains were uplifting during the Eocene and massive contemporaneous sedimentary records in the Bánovce Depression, the Horná Nitra Depression, and the Handlová Depression indicate progressive subsidence in neighboring areas, we cannot exclude possible Lower Eocene sedimentation over the Tribeč Mountains before their uplift. However, variegated georrelief must have already existed in the Paleogene, and depositional basins were separated from eroded denudation planation surfaces by normal faults at the beginning of the Eocene-Miocene extensional exhumation tectonics in the IWC.

Figure 3. Cumulative probability plot for analyzed pseudotachylyte ages constructed using Isoplot [Ludwig 1999]. The pseudotachylyte age is best explained by the main peak, whereas the incorporation of refractory host-rock minerals and clasts have provided older ages. A color version of this figure is available online.

Figure 4. 36Ar/39Ar versus age for pseudotachylytes. The uncertainties are smaller than the sizes of the ornament used on the plot. A color version of this figure is available online.
Quantifying the integrated erosion and sink processes raises the question of how deep the pseudotachylytes formed in the studied area. Pseudotachylytes are produced at shallow (2–10 km) and midcrustal (10–20 km) levels (Di Toro et al. 2009 and citations therein) as a consequence of the intermediate and deep earthquakes from greater depth. Field and theoretical studies as well as petrological and structural studies demonstrate that the pseudotachylytes were generated by relatively high-stress seismic faulting in crystalline sialic crust at a depth of \(\sim 4 \)–\(5 \) km (Sibson 1975; Toyoshima 1990) linked to brittle regimes. Other pseudotachylytes are closely linked to plastic-ductile regimes associated with greenschist, amphibolite, and/or granulitic facies mylonites (Sibson 1980; Passchier 1982; Clarke and Norman 1993; White 1996). When trying to constrain the depth of pseudotachylyte formation, it is necessary to take into account the eroded rock pile: \(\sim 0.5 \)–\(1 \) km of the eroded crystalline basement, 4.5–5 km of the Mesozoic cover and nappe sediment sequences, and 0.5–1 km of the Paleogene uncertain sediments. This implies that Tribeč Mountain pseudotachylytes were derived at depths of no more than 5.5 to 7 km. This is a minimum estimate for the depth of their burial and their present position, close to the surface, and it suggests the magnitude of their exhumation.

While the pseudotachylyte \(^{40}\text{Ar}/^{39}\text{Ar}\) age dating presented here is new in the Tribeč Mountains, the earlier Alpine tectonic deformation of the Tribeč Mountain granitic rocks has been documented on white micas from shear zone mylonites, with \(^{40}\text{Ar}/^{39}\text{Ar}\) staircase spectra indicating that mylonitization occurred before ca. 71–63 Ma (Král’ et al. 2002). Additional Tribeč Mountain thermochronological data can be found in the work of Kováč et al. (1994), who presented one zircon fission track (ZFT) age of 53 ± 12 Ma and one apatite fission track (AFT) age

![Figure 5](image1.png)

Figure 5. Geological cross section of the studied area. The situation in the Rišnovce Depression is modified from Elečko et al. (2008), and that in the Komjatice Depression is modified from Hók et al. (1999). A color version of this figure is available online.

![Figure 6](image2.png)

Figure 6. Thermal history of the Tribeč Mountain pseudotachylytes. The time-temperature path is derived from zircon fission track [Kováč et al. 1994] and apatite fission track [Danišlík et al. 2004] analysis. Thermal modeling results of apatite fission track analysis are taken from Danišlík et al. (2004). Pst = pseudotachylyte. A color version of this figure is available online.
of 28 ± 1 Ma determined using an old population method [POP], whereas Danišík et al. (2004) reported four AFT ages from the Tribeč Mountain crystalline basement ranging from 43.7 ± 2.9 to 34.8 ± 1.9 Ma determined using a modern external detector method. These data suggest that Tribeč Mountain pseudotachylites originated between 53 ± 12 and 43.7 ± 2.9 Ma in host-rock granodiorites between 210°C and ~110°C and/or indicate a significant and widespread Eocene exhumation event (fig. 6). It is notable that our previous pseudotachylite dating from the Tatra Mountains (Kohút and Sherlock 2003) yield similar ages varying between 58 and 31 Ma, with a weighted mean of 43.6 ± 1.4 Ma. However, thermochronological dating has yielded other results for the surrounding Tatra Mountain granodiorites: ZFT ages varying from 73.1 to 62.6 Ma (Králková 2013), zircon U-Th/He [ZHe] ages varying from 45 to 40 Ma (Smigielski et al. 2012), and AFT ages varying from 20.3 to 9.3 Ma (Smigielski et al. 2012; Králková 2013). There is good correlation with the model of Kirpatrick et al. (2012) in low-temperature geochronology, where the timing of pseudotachylite formation was the same as the ZHe age. Assuming a geothermal gradient of 30°C/km and ZHe closure temperatures of ~190°C ± 10°C (Reiners et al. 2004) implies that the Tatra Mountain pseudotachylites might have formed at a similar depth of ~6 km. It is apparent that both occurrences of well-documented pseudotachylites in the IWC originated from seismic activity following a period of quiescence in the sedimentary record and mirrored inception phases of the Paleogene extensional tectonics in the Western Carpathians.

Conclusions

Taking into account the recent geological situation, the Paleogene and Neogene sedimentation, modern ZFT and AFT data, and our pseudotachylite dating, we can conclude the following.

1. The study area is part of the CCPB. Its sedimentation began at the Paleocene–Eocene boundary (proximal-northern part near the Klippen Belt in Ypresian) or at the Eocene Bartonian–Priabonian boundary (southern part of the CCPB surrounding the Tribeč Mountains, e.g., the Bánovce Depression, the Horná Nitra Depression, and the Handlová Depression).

2. The maximal burial of the southern part of the CCPB (surrounding the Tribeč Mountains) is likely to have occurred ca. 50–46 Ma, although the sedimentary record is missing in neighboring intramontane basins—the Rišňovce and Komjatice Depressions.

3. The seismogenic pseudotachylites document tectonic activity from the Tribeč Mountains (weighted mean age: 49.7 ± 1.3 Ma) and indicate the beginning of the Eocene exhumation due to extensional tectonics of the broad southern part of the CCPB rather than prolonged progressive burial, given the general absence of Paleogene sediments in surrounding areas.

4. During the Miocene, the Tribeč Mountain crystalline basement progressively eroded, and the neighboring Neogene Rišňovce and Komjatice Depressions at the northwestern margin of the Pannonian Basin were filled by contemporaneous strata.

ACKNOWLEDGMENTS

This work was supported by the Slovak Research and Development Agency under contract APVV 0549-07 to M. Kohút. S. C. Sherlock gratefully acknowledges support from Natural Environment Research Council (NERC) grant NER/F020066/1. The manuscript benefited from constructive reviews by J. Hók (Comenius University, Bratislava, Slovakia) and D. B. Rowley (University of Chicago), which is greatly appreciated. We thank D. B. Rowley for editorial handling and suggested improvements to the manuscript.

REFERENCES CITED

Danišík, M., Dunkl, I., Putis, M., Frisch, W., and Kráľ, J. 2004. Tertiary burial and exhumation history of basement highs along the NW margin of the Pannonian

of standards, absolute ages and uncertainties in Ar/Ar
Ring, U.; Brandon, M. T.; Willett, S. D.; and Lister, G. S.
Lister, G. S., and Willett S., eds. Exhumation
processes: normal faulting, ductile flow and erosion.
39Ar study of pseudotachylite from the Tambach Fault
Zone, Kenya: direct isotopic dating of brittle faults.
J. Struct. Geol. 23:33–44.
Grenville-age pseudotachylite in the Lewisian: laser-
High spatial resolution 40Ar/39Ar dating of pseudo-
tachylites: geochronological evidence for multiple
phases of faulting within basement gneisses of the Outer
Sherlock, S. C.; Watts, L. M.; Holdsworth, R. E.; and
Roberts, D. 2004. Dating fault reactivation by Ar/Ar
laserprobe: an example from the More-Trøndelag Fault
Sibson, R. H. 1975. Generation of pseudotachylite by ancient
———. 1980. Transient discontinuities in ductile shear
Śmigielski, M.; Stuart, F. M.; Krzywiec, P.; Persano, C.;
Sinclair, H. D.; Pisaniec, K.; and Sobien, K. 2012. Neo-
gene exhumation of the Northern Carpathians revealed
14:EGU2012-12063.
Toyoshima, T. 1990. Pseudotachylite from the main zone
of the Hidaka metamorphic belt, Hokkaido, northern
White, J. C. 1996. Transient discontinuities revisited:
pseudotachylyte, plastic instability and the influence
of low pore fluid pressure on the deformation pro-
Zlinská, A., and Gross, P. 2013. Age and lithology deter-
mination in the Handlovska kotlina Basin Palaeogene
deposits, based on the FGHn-1 (Handlova) well rein-
terpretation. Acta Geol. Slov. 5:141–153 (in Slovak
with English summary).