Numerical models of P–T, time and grain-size controls on Ar diffusion in biotite: an aide to interpreting \(^{40}\text{Ar}/^{39}\text{Ar}\) ages

Journal Item

How to cite:

For guidance on citations see FAQs.

© 2018 Elsevier

Version: Accepted Manuscript

Link(s) to article on publisher’s website:
http://dx.doi.org/doi:10.1016/j.chemgeo.2018.06.005

Copyright and Moral Rights for the articles on this site are retained by the individual authors and/or other copyright owners. For more information on Open Research Online’s data policy on reuse of materials please consult the policies page.
Numerical models of P–T, time and grain-size controls on Ar diffusion in biotite: an aide to interpreting $^{40}\text{Ar}/^{39}\text{Ar}$ ages

D.R. Skiptona, C.J. Warrenb, F. Hankec

aGeological Survey of Canada, Natural Resources Canada, Ottawa, Ontario, K1A 0E8, Canada
bSchool of Environment, Earth and Ecosystem Sciences, The Open University, Walton Hall, Milton Keynes, MK7 6AA, United Kingdom
cDassault Systèmes BIOVIA, 334 Science Park, Cambridge, CB4 0WN, United Kingdom

*corresponding author: diane.skipton@canada.ca

Abstract

Dating of biotite using the $^{40}\text{Ar}/^{39}\text{Ar}$ method is used extensively to determine the timing of cooling and exhumation in metamorphic rocks. Interpretations of $^{40}\text{Ar}/^{39}\text{Ar}$ dates commonly assume that ^{40}Ar diffuses out of biotite through temperature-dependent volume diffusion, and therefore that the date represents the time at which biotite cooled through a closure temperature. Several processes, however, may perturb Ar systematics such that the $^{40}\text{Ar}/^{39}\text{Ar}$ date does not uniquely represent the timing of cooling through a closure temperature, including incomplete resetting of Ar systematics, incorporation of excess Ar, crystal defects acting as Ar traps or fast-pathways, or fluid-present recrystallization/dissolution. We present a series of numerical diffusion model results that show the percentage of radiogenic Ar that should theoretically be retained in biotite with different grain radii residing for various periods over a range of P–T conditions, in a perfect open system that loses Ar via volume diffusion alone. A second set of models demonstrates the effects of different cooling rates on biotite $^{40}\text{Ar}/^{39}\text{Ar}$ dates and intra-grain Ar distributions in a perfect open system. The model results are useful for constraining cooling and exhumation histories from $^{40}\text{Ar}/^{39}\text{Ar}$ biotite data in a variety of metamorphic
settings. They also provide baseline data for biotite 40Ar retention, 40Ar/39Ar ages and intra-grain age distributions that would theoretically be produced from volume diffusion acting alone. Consequently, the models can help evaluate the plausibility of alternative scenarios that may have affected biotite 40Ar/39Ar dates, including extraneous Ar contamination or Ar loss via processes other than diffusion. In conjunction with well-constrained petrogenetic histories, numerical diffusion models are a powerful tool for interpreting 40Ar/39Ar biotite ages, especially when linked with intra-grain 40Ar/39Ar age profiles.

Keywords

40Ar/39Ar thermochronology, biotite, diffusion, numerical model, pressure-temperature, crustal residence

1. **Introduction**

Radioactive decay of 40K produces 40Ar, which has been shown to diffuse in biotite at temperatures above ~300°C in a direction parallel to cleavage over length scales comparable to mineral grain dimensions (e.g., 0.15 mm; Harrison et al., 1985). It is assumed that Ar strongly partitions from minerals into the grain boundary (fluid-bearing) network, consistent with open-system behaviour (e.g., Kelley, 2002). Therefore, 40Ar/39Ar dates yielded by metamorphic biotite are typically assumed to relate to temperature-dependent diffusional Ar loss and thus constrain the timing of cooling following metamorphism. The dating of biotite using the 40Ar/39Ar technique has been used for decades to constrain the timing of cooling, exhumation and low-temperature geological events worldwide (e.g., Berger, 1975; Hanson et al., 1975; Steltenpohl et al., 1993; Hodges and Bowring, 1995; McDougall and Harrison, 1999; Schneider et al., 1999, 2013; Willigers et al., 2001). For detailed discussion and calculations of Ar diffusion in biotite
and the closure temperature concept, we refer the reader to previous studies (Dodson, 1973, 1986; Harrison et al., 1985; Wheeler, 1996; McDougall and Harrison, 1999).

Several studies have identified complexities of 40Ar concentrations in biotite that call into question traditional interpretations of metamorphic 40Ar/39Ar dates as resulting solely from temperature-controlled volume diffusion (Heizler and Harrison, 1988; Lee, 1995; Kelley, 2002; Villa, 2010; Warren et al., 2011; Camacho et al., 2012; Cossette et al., 2015; Mottram et al., 2015; Stübner et al., 2017). These studies suggest that alternative processes or scenarios affected the 40Ar concentrations in biotite. Dates yielded by the 40Ar/39Ar method that are older than the timing of cooling through the closure temperature of 40Ar ($T_c \approx 280-345^\circ$C; Harrison et al., 1985; McDougall and Harrison, 1999) can be produced by: (i) incomplete re-setting of mica during metamorphism, resulting in retention of “inherited” (pre-thermal peak) 40Ar (Warren et al., 2012a; Mottram et al., 2015); (ii) incorporation and retention of excess Ar (40Ar$_e$), which refers to parentless 40Ar that is incorporated in the grain via diffusion from an Ar-rich grain boundary fluid network or contained within mineral/fluid inclusions (Kelley, 2002); (iii) planar defects in the crystal structure serving as 40Ar traps (proposed in trioctohedral mica; Camacho et al., 2012); or (iv) recrystallization in a closed Ar-rich system, adding 40Ar to grain rims (Warren et al., 2011). Dates yielded by the 40Ar/39Ar technique that are younger than the age of cooling through T_c can result from: (i) crystallization of the grain at or below T_c (e.g., Warren et al. 2012); (ii) planar defects in the crystal structure, such as those produced during deformation, serving as fast-pathways through which 40Ar can escape (Lee, 1995; Hodges and Bowring, 1995; Cosca et al., 2011); and (iii) isotopic resetting (40Ar loss) due to fluid-present retrograde reactions / recrystallization / dissolution (Villa, 2010).
Metamorphic biotite is infamous for yielding 40Ar/39Ar dates that are older than those expected from volume diffusion during residence at high temperatures or cooling through the estimated Ar T_c. Despite the higher Ar T_c for muscovite (~420–450°C; Harrison et al., 2009), biotite in some cases yields 40Ar/39Ar dates that are substantially older than those of muscovite from the same rock, and may also pre-date U/Pb ages of metamorphic monazite or zircon. Such age relationships have been documented in several orogens, including the Paleoproterozoic Trans-Hudson (Skipton et al., 2017), Mesoproterozoic Grenville (Dallmeyer and Rivers, 1983; Cosca et al., 1991; Smith et al., 1994), Neoproterozoic Capricorn (Occhipinti and Reddy, 2009), Mesozoic Alpine (Brewer, 1969; Pickles et al., 1997) and Himalayan orogens (Mottram et al., 2015; Stübner et al., 2017).

In the event that biotite yields a 40Ar/39Ar date that defies independent geological or isotopic evidence, the anomalous 40Ar/39Ar ratio is typically attributed to processes other than (or in addition to) volume diffusion, involving inherited or excess 40Ar, crystal defects, recrystallization, dissolution, as described above, or dehydroxylation during vacuum heating (Foland, 1983; Harrison et al., 1985; Gaber et al., 1988; McDougall and Harrison, 1999). The degree of potential interpretational inaccuracy in such biotite ages is difficult to quantify, especially without models of Ar retention for different biotite radii and P–T histories. This has resulted in non-uniform interpretations of biotite 40Ar/39Ar data – which may be arbitrary without conclusive evidence for the process being invoked – and a general distrust and avoidance of biotite 40Ar/39Ar dating in recent metamorphic studies.

Here we present numerical models for volume diffusive loss of 40Ar out of biotite over a range of geologically relevant temperatures (200–650°C) and pressures (0–2 GPa), and for different grain radii (0.1–5 mm) and residence times (1–1000 Myr). These models provide a
baseline for ideal 40Ar diffusion behaviour in biotite, according to experimentally established diffusion parameters, and demonstrate theoretical 40Ar retentivity for various P–T scenarios to help interpret cooling/exhumation histories. Our models also enable comparisons with equivalent models for muscovite (Warren et al., 2012a) to aid age interpretations in cases of co-existing biotite and muscovite. By calculating percentages of 40Ar retention in biotite that would be expected from volume diffusion acting alone, the models provide constraints on whether or not alternative processes may have affected the sample 40Ar/39Ar date. The models illustrate the significance of grain size, P–T and crustal residence time on 40Ar diffusion, and demonstrate that extraneous Ar or changes to mica structure do not necessarily have to be invoked to explain 40Ar/39Ar dates that seem to conflict with other geochronometers. Our models also help to rule-in or rule-out certain scenarios, such as whether or not a 40Ar/39Ar result could reflect the timing of biotite growth, or the retention of pre-thermal peak radiogenic 40Ar. Argon loss via dissolution-recrystallization would be faster than via diffusion, and assessing Ar retention as a function of temperature in biotite affected by dissolution-recrystallization would be invalid (Villa, 2010). Our models still apply in these cases, but only if the initial (“starting”) temperature of the model is taken to be the temperature of recrystallization.

2. Methodology: numerical modeling of 40Ar diffusion in biotite

Numerical models of 40Ar diffusion in biotite were run using the program DiffArgP (Wheeler, 1996; Warren et al., 2012a) in GNU Octave. The following parameters were used for the models (excluding uncertainties): activation energy (E_a) = 47 ± 2 kcal mol$^{-1}$ (196 648 J mol$^{-1}$; Harrison et al., 1985); diffusion coefficient (D_0) = $0.077^{+0.21}_{-0.06}$ cm2 s$^{-1}$ (Harrison et al., 1985); and
activation volume \((V_{\text{act}}) = 14 \text{ cm}^3 \text{ mol}^{-1} \) (Harrison et al., 1985; Grove and Harrison, 1996; Harrison et al., 2009).

The models were run using a cylindrical geometry because diffusive Ar loss in mica mainly occurs through cleavage-parallel diffusion in the crystal, which is typically modeled using cylindrical symmetry (Giletti, 1974; Giletti and Tullis, 1977). There has been some debate about the geometry used to model these systems, but detailed analysis of diffusion coefficients has shown that the symmetry effects (e.g. cylindrical vs. spherical) on diffusion coefficients (refer to Forster and Lister, 2014) are substantially smaller than the uncertainties on the measured diffusion parameters listed above. A Crank-Nicholson solver was used for the time integration with a time step that is 10 times larger than that required for the fully explicit model (Wheeler, 1996; Warren et al., 2012a). It was assumed that volume diffusion occurred in an open system where the Ar concentration at the grain boundary was negligible (i.e., no \(^{40}\text{Ar}_e\) in the grain boundary network) and the grain radius was equivalent to the diffusion radius. To achieve full numerical precision on the model ages, we ran each model at four different mesh lengths and then plotted the four integrated, or "bulk", ages against mesh spacing (grain radius/mesh length). These data define a linear function for which the intercept of the regression line at zero mesh spacing yields the bulk age of the model with an infinitely dense integration mesh, and, therefore, with the highest numerical precision possible (Warren et al., 2012a, 2012b). Representative model output data (bulk \(^{40}\text{Ar}/^{39}\text{Ar}\) age and core-to-rim \(^{40}\text{Ar}/^{39}\text{Ar}\) age profile) and bulk age linear regression plots are shown in Supplementary File 1.

Models were run for a range of biotite grain radii (0.1, 0.5, 1, 2 and 5 mm) that are representative of the grain sizes typically analyzed for \(^{40}\text{Ar}/^{39}\text{Ar}\) thermochronology. The models simulated crustal residence times of 1, 5 and 20 Myr, characteristic residence timescales for
metamorphism in both modern and ancient orogens (e.g., 1–10 Myr, ca. 470 Ma Grampian Orogen, Scotland, Viete et al., 2011; 20–40 Myr, ca. 1830 Ma Trans-Hudson Orogen, Canada, Skipton et al., 2016; ≤1–5 Myr, ca. 21–10.5 Ma Sikkim Himalaya, Mottram et al., 2015).

Residence times of 100, 500 and 1000 Myr were also modeled for grain radii of 0.1 to 1 mm to illustrate how Ar retention might be affected by long-term crustal residence, which is likely in Precambrian orogens. For a given biotite grain radius and residence time, models were run for a range of temperatures at 10°C increments to cover the full spectrum of Ar retention from 0% (complete 40Ar loss) to 100% (all 40Ar retained). Models were run using a pressure of 0.5 GPa; Ar retention at different pressures (0–2 GPa) was calculated using established values of E_a, P_0 and V_{act} (above) to map out equivalent diffusion coefficients across the entire pressure range. These model results were used to construct P–T diagrams showing %Ar retention in biotite for temperatures of 200–650°C and pressures up to 2 GPa (Figs. 1–3).

A second set of models was run to simulate the effects of various cooling/exhumation histories on Ar retention in a biotite grain with a 0.5 mm radius (Figs. 4–6). For these models, biotite was first maintained at a temperature of 250°C, 350°C or 450°C and pressure of 0.7 GPa for different residence times (1, 20, 100, 500 or 1000 Myr). These conditions correspond to the red, blue and intermediate zones in the P-T-% retention plots in Figs. 1–3. Following the defined residence periods, the modeled biotite was cooled at rates of 1.5, 10 or 30°C/Myr, which are representative of cooling rates documented/suggested in Proterozoic and modern orogens (e.g., Dunlap, 2000). Decompression was modelled linearly with cooling, such that 0°C and 0 GPa were attained simultaneously in each model. A start time of 1500 Ma was used for this set of models to present all the modeled residence periods, temperatures and cooling rates from a common point in time, enabling straightforward comparison between models results shown in
Figs. 4–6. The start time is otherwise arbitrary. The key detail is the amount of time that went unrecorded in the mica due to low Ar retention, i.e., the difference between the time at which the model started and the bulk age calculated by DiffArgP. In effect, the models can be applied to any period of geological interest.

3. Model results

3.1. Plots of pressure–temperature–%Ar retention

Model results are shown on pressure–temperature plots with colour shading corresponding to percentages of 40Ar retention (Figs. 1–3). As with equivalent models constructed for muscovite (Warren et al., 2012a), the blue zones represent P–T conditions of low Ar retention, the red zones represent conditions of high Ar retention, and orange-to-light blue zones reflect conditions of intermediate or partial Ar retention.

The plots illustrate the significant dependence of 40Ar retention in biotite on grain size and residence time, even for relatively short residence times of 1–20 Myr (Figs. 1, 2). For a given set of crustal residence conditions (temperature, pressure, time) within the intermediate zone, biotite with a 0.1 mm radius (Fig. 2d-f) is ~35% less retentive of Ar than biotite with a 1 mm radius (Fig. 1g-i), which is ~25% less retentive than biotite with a 5 mm radius (Fig. 1a-c). For a biotite grain with a given radius residing at fixed P–T conditions in the intermediate zone, a grain residing for 20 Myr (Figs. 1c, f, i; 2c, f) is ~35% less retentive than biotite residing for 1 Myr (Figs. 1a, d, g; 2a, d).

The plots simulating long-term crustal residence of 100–1000 Myr demonstrate the effects of geologic time on 40Ar concentrations in biotite, especially in Precambrian orogens (Fig. 3). For a 1 mm-radius biotite residing for 20 Myr at set P-T conditions within the partial Ar
retention zone (Fig. 1i), Ar retention is ~20, 40 or 60% lower for residence times of 100, 500 or 1000 Myr, respectively (Fig. 3a-c). Time exerts the most extreme effects on Ar systematics in fine-grained, 0.1 mm-radius biotite: during 1 Gyr residence at upper-crustal conditions of 250°C (<T_c) and P ≤ 0.5 GPa, models suggest that the grain would lose at least ~50% radiogenic Ar through diffusion (Fig. 3i) before exhumation starts.

3.2. Models of cooling and exhumation histories for biotite with a 0.5 mm radius

Model results are shown as core-to-rim ⁴⁰Ar/⁴⁰Ar age profiles with corresponding bulk ages, calculated using a model start time of 1500 Ma (Figs. 4–6). For models in which biotite resided at 250°C for 1–100 Myr prior to cooling, bulk ages are ≤1 Myr younger than the onset of crustal residence (i.e., the model start time), and core-to-rim age profiles are relatively flat regardless of cooling rate (Figs. 4a–b, 5a). For residence times of 500 Myr and 1 Gyr at 250°C, however, modelled core-to-rim age profiles exhibit diffusive Ar loss at outer grain edges and yield bulk ages that are 28–30 Myr and 81–84 Myr, respectively, younger than the onset of crustal residence (Figs. 5b, 6a).

For models in which biotite crystallised and resided at relatively cool temperatures of 350°C for various periods prior to cooling, slower cooling rates produce younger bulk ages and greater core-to-rim age decreases than those produced by faster cooling rates. For a residence time of 1 Myr at 350°C, model ages are up to 10 Myr younger than the onset of cooling below 350°C in each model (Fig. 4c). However, for all other residence periods modeled (20 Myr to 1 Gyr; Figs. 4d, 5d, 6b), resultant ages are older than the onset of cooling or, in the case of cooling at 1.5°C after 20 Myr residence (Fig. 4d), only 4 Myr younger than the onset of cooling.
Models of biotite crystallising then residing at higher temperatures (e.g., 450°C) for various periods followed by cooling at different rates all yielded ages younger than the onset of cooling (Fig. 4e, f; 5e, f; 6c). The slower the cooling rate, the younger the bulk age and the steeper the core-to-rim age profile, with all ages younger than those of equivalent models run with 350°C residence conditions. Notably, for residence periods of 20 Myr and longer, core-to-rim age profile slopes of the 350°C models are steeper than those of 450°C models with equivalent cooling rates.

4. Discussion

4.1. Applicability of experimentally-determined Ar diffusion parameters to natural samples

Few studies have successfully conducted experimental measurements of 40Ar diffusivity in biotite, in part due to the difficulty of maintaining the stability of hydroxyl-bearing minerals over the necessary temperature range. Harrison et al. (1985) addressed this issue by measuring radiogenic 40Ar loss from biotite samples after hydrothermal-isothermal treatment; for each temperature run, biotite was heated at constant temperature in the presence of water to help maintain the mineral’s stability. The biotite samples were ~56% annite, with radii of 56–202 µm, typical of biotite in granite and in most metamorphic rocks dated using 40Ar/39Ar (e.g., meta-granite, pelite, psammite). Equivalent experiments conducted on Fe-rich biotite provided nearly identical diffusion parameters (Grove and Harrison, 1996). For these reasons, in the absence of other reliable experimental values, and to be consistent with most interpretations of 40Ar/39Ar biotite data we used the E_a and D_0 of Harrison et al. (1985) here (a comprehensive review is provided by McDougall and Harrison, 1999).
It has been argued that lab-measured diffusivities of hydrous minerals (biotite, phlogopite, muscovite) are too high compared to those affecting natural resetting of geochronometers due to greater artificially-induced 40Ar loss during heating experiments (Villa, 1994, 2010). During initial heating, insufficient water activity in the experimental capsule leads to dehydroxylation, whereas excessive water activity can result in aqueous dissolution. Both processes may create pathways through which 40Ar can escape more rapidly than in nature, resulting in overestimation of the measured volume diffusivities (Villa, 2010). Corrected activation energies and diffusion coefficients have been estimated for phlogopite (Villa, 2010), however, correction factors are based on an assumed percentage (~6%) of initial fast-pathway 40Ar loss required to fit lines through measured data. As such, the amount of fast-pathway 40Ar loss from biotite during diffusion experiments is not reliably quantifiable, and corrections for fast-pathway 40Ar loss in experimentally determined E_a and D_0 are not built into our models. This may represent a source of uncertainty in the calculated percentages of 40Ar retention, such that biotite may retain more 40Ar in reality than the modeled percentages. Nonetheless, 40Ar/39Ar mica dates have, in many settings, been documented to align with those predicted by measured Ar diffusivities and other isotopic systems (i.e., the 40Ar/39Ar age of biotite < muscovite < hornblende < U/Pb ages; e.g., Van Schmus et al., 2007; Schneider et al., 2013; Willigers et al., 2001), suggesting that the measured diffusivities are likely close to those operating in nature.

Uncertainties on experimentally determined diffusion parameters must also be taken into account. Inclusion of the uncertainties on D_0 and E_a (Harrison et al., 1985) in our models corresponds to uncertainty of up to ±50°C on the temperature associated with any given percentage of 40Ar retention (Figs. 1–3). This margin of error is not much more significant than the ±0.5 kbar and ±25°C uncertainties suggested for P–T estimates (Powell and Holland, 2008),
which are used to determine the metamorphic conditions experienced by the dated biotite and, therefore, where the biotite plots in P–T space in Figures 1–3.
Fig. 1: Pressure–temperature diagrams colour coded with percentages of radiogenic Ar retained in biotite, as calculated from numerical diffusion models for biotite grains with radii of 1, 2 and 5 mm residing at the given P–T conditions for periods of 1, 5 and 20 Myr. White dashed lines indicate percentages of radiogenic Ar retained in muscovite, modelled by Warren et al. (2012a). The 50% retention contour is indicated with a black solid line. Black dashed lines show the limits of diffusion parameter uncertainties on the 50% retention contour.

Nonetheless, it is significant enough that diffusion parameter uncertainties are important to consider when using these plots as an aide for interpreting biotite 40Ar/39Ar dates. Furthermore, the numerical values of 40Ar retention calculated from our models are highly dependent on the measured diffusion parameters for biotite, as well as their uncertainties. If future experiments succeed in keeping biotite stable during heating, and new measured diffusion parameters are deemed more accurate than those of Harrison et al. (1985), our models would need to be updated with the new parameters. Although the use of different diffusion parameters, and/or the application of uncertainties, would change the calculated percentages of 40Ar retention in Figures 1-3, the main concepts shown by our models remain unaffected. The models show how the metamorphic evolution and grain size will affect Ar retention in biotite: every biotite grain has a P–T region for which it would retain most, if not all of its radiogenic 40Ar. As this P–T region covers broader temperatures at higher pressures, a 40Ar/39Ar date from biotite with a low-temperature / high-pressure history may not represent a cooling age. This point remains valid for any set of diffusion parameters (D_0, E_a, V_0).
Fig. 2: Pressure–temperature diagrams colour coded with percentages of radiogenic Ar retained in biotite, as calculated from numerical diffusion models for biotite grains with radii of 0.5 and 0.1 mm residing at the given P–T conditions for periods of 1, 5 and 20 Myr. White dashed lines indicate percentages of radiogenic Ar retained in muscovite, modelled by Warren et al. (2012a). The 50% retention contour is indicated with a black solid line. Black dashed lines show the limits of diffusion parameter uncertainties on the 50% retention contour.
Fig. 3: Pressure–temperature diagrams colour coded with percentages of radiogenic Ar retained in biotite, as calculated from numerical diffusion models for biotite grains with radii of 1, 0.5 and 0.1 mm residing at the given P–T conditions for periods of 100 Myr, 500 Myr and 1 Gyr.
The 50% retention contour is indicated with a black solid line. Black dashed lines show the limits of diffusion parameter uncertainties on the 50% retention contour.

4.2. Model interpretation

The modeled P-T-% retention plots (Figs. 1-3) show that biotite that crystallized in or experienced peak metamorphism in P–T zones of low Ar retention (blue zones in Figs. 1-3) would not theoretically retain any pre-thermal peak (inherited) radiogenic Ar. It should therefore record the timing of its cooling and exhumation. Due to high Ar retention in the red P–T zones, the 40Ar/39Ar date of biotite that crystallized at these conditions should, in an ideal system, reflect the timing of its crystallization. Biotite that crystallised at lower conditions and subsequently experienced peak metamorphism in the red P–T zones would not lose its inherited (pre-thermal peak) 40Ar before cooling initiated. Even if such a grain lost some Ar during cooling, it would still yield an older 40Ar/39Ar date than a grain that had crystallised at peak conditions, potentially resulting in overestimation of interpreted cooling rates. A 40Ar/39Ar date of biotite that crystallized in or experienced peak metamorphism in the intermediate (light blue to orange) P–T zones must also be interpreted with caution due to incomplete pre-peak degassing of 40Ar.

The results of modeling different cooling and exhumation histories for biotite with a 0.5 mm radius (Figs. 4-6) show insignificant Ar diffusion in biotite that resided at 250°C for 1-100 Myr, as expected so far below the estimated T_c window. This is indicated by bulk ages that are \leq1 Myr younger than the onset of crustal residence, and consistently flat core-to-rim age profiles regardless of cooling rate (Figs. 4a–b, 5a). However, models of biotite grains with residence times of 500 Myr and 1 Gyr at 250°C exhibit diffusive Ar loss at outer grain edges and yielded
bulk ages that are up to 84 Myr younger than the onset of crustal residence (Figs. 5b, 6a). This implies that low-temperature Ar ‘leakage’ from the outermost ≤50 µm of grain edges may be possible during long-term crustal residence of 0.5 mm-radius biotite in Precambrian orogens, and may affect 40Ar/39Ar step-heating or total fusion dates beyond analytical uncertainty.

![Modelled core-to-rim 40Ar/39Ar age profiles](image)

Figure 4

Fig. 4: Modelled core-to-rim 40Ar/39Ar age profiles for 0.5 mm-radius biotite that remained at temperatures of 250°C, 350°C or 450°C for 1 Myr or 20 Myr, then cooled at rates of 1.5°C/Myr, 10°C/Myr or 30°C/Myr. All models were run with an initial pressure of 0.7 GPa, followed by decompression that occurred simultaneously with cooling. Models were run from an arbitrary starting time of 1500 Ma (see text for details), such that the onset of cooling is 1499 Ma after a 1
Myr residence period (a, c, e), and 1480 Ma following a 20 Myr residence period (b, d, f). Model bulk ages are shown in parentheses for each cooling rate.

Fig. 5: Modelled core-to-rim 40Ar/39Ar age profiles for 0.5 mm-radius biotite that remained at temperatures of 250°C, 350°C or 450°C for 100 Myr or 500 Myr, then cooled at rates of 1.5°C/Myr, 10°C/Myr or 30°C/Myr. All models were run with an initial pressure of 0.7 GPa, followed by decompression that occurred simultaneously with cooling. Models were run from an arbitrary starting time of 1500 Ma (see text for details), meaning that cooling began at 1400 Ma after a 100 Myr residence period (a, c, e) and at 1000 Ma following a 500 Myr residence period (b, d, f). Model bulk ages are shown in parentheses for each cooling rate.
Fig. 6: Modelled core-to-rim 40Ar/39Ar age profiles for 0.5 mm-radius biotite that remained at temperatures of 250°C, 350°C or 450°C for 1 Gyr, then cooled at rates of 1.5°C/Myr, 10°C/Myr or 30°C/Myr. All models were run with an initial pressure of 0.7 GPa, followed by decompression that occurred simultaneously with cooling. Models were run from an arbitrary starting time of 1500 Ma (see text for details), such that the onset of cooling occurred at 500 Ma. Model bulk ages are shown in parentheses for each cooling rate.

For models in which biotite resided at 350°C prior to cooling, slowly cooled biotite grains produced younger bulk ages and greater core-to-rim age decreases than biotite that cooled more quickly. This relationship reflects relatively efficient Ar diffusion at 350°C, particularly for grains that remained hotter for longer and/or cooled more slowly. For most residence periods at 350°C (20 Myr to 1 Gyr; Figs. 4d, 5d, 6b), the modeled ages are older than the onset of cooling, which illustrates the possible partial retention of 40Ar in biotite during residence within the ‘intermediate’ P–T zone, and the importance of knowing the P–T conditions of biotite growth as well as its subsequent P–T path for interpreting the measured 40Ar/39Ar date.
In accordance with highly efficient 40Ar diffusion at 450°C, models of biotite crystallising then residing at 450°C prior to cooling all yielded ages younger than the onset of cooling (Fig. 4e, f; 5e, f; 6c), regardless of residence time or cooling rate. The slower the cooling rate, the younger the bulk age and the steeper the core-to-rim age profile, and the ages yielded by models simulating residence at 450°C are younger than those of equivalent models run with 350°C residence conditions. These relationships are consistent with sustained diffusion of 40Ar out of biotite that remains hotter than T_c for longer. The steeper slopes of the core-to-rim age profiles for the 350°C models, relative to those of 450°C models with equivalent cooling rates, are inferred to reflect the slower diffusion of Ar at 350°C, hindering transport of Ar from the grain cores to the grain rims. Conversely, biotite residing at 450°C would experience more efficient Ar loss, such that the core-to-rim age gradient is controlled solely by the subsequent cooling rate. This is supported by our 450°C models: each cooling rate produced a distinct core-to-rim age gradient that is unaffected by residence time or when cooling began.

4.3. Interpreting exhumation and cooling

By illustrating how Ar retention in biotite varies with pressure, temperature, grain size and residence time, our modeled P–T–% retention plots can be used to help interpret cooling histories from 40Ar/39Ar data in a variety of metamorphic regions. Our modeled ages and core-to-rim age profiles of hypothetical cooling/exhumation scenarios may also inform tectonic interpretations, especially when linked with spatially-controlled 40Ar/39Ar data, such as provided by laser ablation.

Mica intra-grain age maps from UV laser spot analyses reveal abundant information, together with step-heating or total-fusion 40Ar/39Ar data for comparison (e.g., Scaillet et al., 1990; de Jong et al., 1992; Hodges and Bowring, 1995). Previous studies have matched measured core-to-rim
age profiles with diffusion model results to constrain cooling rates and cooling/exhumation histories (e.g., Hodges and Bowring, 1995; Kelley and Wartho, 2000; Wartho et al., 2003; Warren et al., 2011, 2012b; Skipton et al., 2017). Interpretations of cooling histories from UV laser age maps may be limited by the spatial resolution (at least 30–50 µm laser spot size usually required) and analytical errors of UV laser spot ages. Intra-grain age complexities and potential breakage of crystal edges during sample preparation (if analyzing mineral separates) present additional challenges, and the uncertainties inherent in DiffArgP modeling and biotite diffusion parameters (discussed above) necessitate caution when comparing 40Ar/39Ar dates with model results. Even so, we consider such comparisons to be the ideal approach for interpreting 40Ar/39Ar dates as related to cooling, crystallisation or 40Arc contamination. Additionally, application of the 40Ar/39Ar single-grain total-fusion method to biotite to reveal grain-size controls on Ar distribution, in conjunction with diffusion models, may shed further light on the geological significance of ages, as has been shown for white mica (Mottram et al., 2015; Uunk et al., 2018).

4.3.1. High-grade metamorphism

The models suggest that biotite from medium- to high-grade rocks where the thermal peak is $\geq 600^\circ$C would have completely lost any pre-peak (inherited) radiogenic Ar, even if peak metamorphism lasted for only 1 Myr (Figs. 1g, 2a, 2d). Possible exceptions include coarse-grained biotite (2–5 mm radii) residing at pressures ≥ 1 GPa (Fig. 1a, d). Efficient Ar diffusion $\geq 600^\circ$C – even during short-lived thermal maxima – is supported by analyses of Himalayan biotite grains (0.25–0.5 mm radii) metamorphosed at $\geq 650^\circ$C for ~ 5 Myr, which yielded dates consistent with cooling ages (Mottram et al., 2015). Therefore, our results indicate that biotite that experienced amphibolite- to granulite-facies metamorphism is a candidate for yielding
Ar/39Ar cooling and exhumation ages, assuming an open grain boundary system. In this, our models are in agreement with the long-held protocol for interpreting cooling ages from biotite in high-grade metamorphic rocks.

4.3.2. Low-grade and/or short-lived metamorphism

Temperatures attained during peak greenschist or sub-greenschist-facies metamorphism approach, or are lower than, previous estimates of closure temperatures of Ar in biotite (T_c ≈ 280–345°C; Harrison et al., 1985; McDougall and Harrison, 1999). Biotite that crystallised along the prograde path may therefore retain a percentage of pre-thermal peak 40Ar (i.e., its Ar systematics are not fully reset), and produce a 40Ar/39Ar date that is older than the predicted cooling age had the biotite crystallised at, and cooled from, higher peak temperatures. Our models provide graphical representation of this scenario, allowing a quantitative estimate of whether or not inherited Ar could be a factor in biotite of a range of grain sizes residing at various conditions. For example, a biotite grain with a 1 mm radius metamorphosed at 375°C (P >0.5 GPa) would need to remain at those conditions for >20 Myr to lose its pre-peak Ar (Figs. 1g–i, 3a–c). If metamorphosed at 375°C for 20 Myr, a coarser-grained crystal (2–5 mm radius) would retain at least ~50% inherited Ar, regardless of pressure (Fig. 1c, f). The models show that biotite grains with smaller radii (~0.1–0.5 mm) are the safest choice for constraining the cooling age following peak greenschist-facies metamorphism. Biotite grains that experienced thermal peak at sub-greenschist-facies (≤300–350°C) are capable of yielding 40Ar/39Ar crystallization ages, but not cooling ages. This relationship can potentially be used to date low-temperature events such as fluid-assisted biotite neo- or recrystallization, as has been demonstrated for white mica (e.g., Cossette et al., 2015; Kellett et al., 2016, 2017).
Rapid metamorphic cycles, and short residence times at peak conditions, as documented in many modern orogens, present challenges for interpreting biotite $^{40}\text{Ar}/^{39}\text{Ar}$ dates. Without sufficient time to diffuse out of biotite, pre-peak radiogenic Ar may be retained even in 0.1 mm-radius grains that experienced moderate temperatures. For instance, during 1 Myr residence at medium pressures, our models suggest that a 0.1 mm-radius biotite grain would only be fully reset (retain 0% pre-peak Ar) if temperatures were sustained at $\geq 400^\circ\text{C}$ (Fig. 2d).

In the eastern Himalaya, biotite dates from an inverted metamorphic sequence (garnet to kyanite-sillimanite grades; 0.4–0.8 GPa) provide empirical evidence of ^{40}Ar inheritance resulting from short-lived metamorphism at moderate temperatures (Mottram et al., 2015). Biotite grains with 0.25 and 0.5 mm radii were dated from the highest-grade part of the sequence, which was metamorphosed at $\geq 650^\circ\text{C}$ for ~ 5 Myr, and yielded narrow age populations indicative of cooling ages. In contrast, biotite grains with equivalent radii were analyzed from lower-grade rocks that experienced peak temperatures of 400–580$^\circ\text{C}$ for ≤ 1 Myr. These grains produced discordant heating spectra and dispersed $^{40}\text{Ar}/^{39}\text{Ar}$ dates that were both older and younger than those of co-existing muscovite (Mottram et al., 2015). The authors attributed this trend to incomplete resetting of Ar systematics (^{40}Ar inheritance) resulting from short residence times at low temperatures. In support of this interpretation, our models illustrate that a 0.5 mm-radius biotite grain experiencing peak temperatures at 400$^\circ\text{C}$ and pressures of 0.4–0.8 GPa would need to remain at those conditions for > 20 Myr to achieve complete loss of pre-peak ^{40}Ar (Fig. 2b). For a temperature of 580$^\circ\text{C}$, the same grain would lose all pre-peak ^{40}Ar if it remained at those conditions for ≥ 1 Myr (Fig. 2a).
4.3.3. Precambrian orogens

The models highlight key factors in interpreting $^{40}\text{Ar}/^{39}\text{Ar}$ dates in Precambrian orogens, where rocks are known to have resided at lower-, mid- and/or upper-crustal conditions for 10s to 100s of Myr, or even Gyr timescales. In Precambrian regions, slow cooling rates of $\leq 10^\circ\text{C}/\text{Myr}$ are typically deduced from comparisons between $^{40}\text{Ar}/^{39}\text{Ar}$ and U–Pb ages (e.g., Schneider et al., 2007; Rivers, 2008; Willigers et al., 2001; Skipton et al., 2017). Alternatively, it has been proposed that $^{40}\text{Ar}/^{39}\text{Ar}$ dates in Precambrian rocks may be artificially young due to gradual diffusive Ar loss during long-term crustal residence below the Ar closure temperature window (Dunlap, 2000). As a result, rates of cooling and exhumation in Precambrian orogens may have been faster than current estimations. Our modeled P–T–% retention plots support limited Ar loss during long-term, low-temperature crustal residence of fine-grained biotite. For instance, a 0.1 mm-radius biotite grain may lose ~25% of its Ar during 1 Gyr of residence at 200°C and 0.3 GPa, and ~70% at 275°C (Fig. 3i). However, models of 0.5 mm-radius biotite that resided at 250°C for 500 Myr and 1 Gyr exhibit flat core-to-rim age profiles with Ar loss evident only in the outermost ~50 µm of grain edges (Figs. 5b, 6a). The bulk ages of these models are up to 84 Myr younger than the onset of crustal residence at 250°C. Our modeling therefore implies that long-term crustal residence at temperatures below the commonly assumed T_c of ~300°C may produce a bulk $^{40}\text{Ar}/^{39}\text{Ar}$ date several Myr younger than the timing of cooling through ~300°C. This diffusive Ar loss may be detectable within the grain edge using UV laser $^{40}\text{Ar}/^{39}\text{Ar}$ spot core-to-rim transects with sufficiently high spatial resolution.

UV laser age transects have been compared with DiffArgP models to test cooling rates and low-temperature Ar loss in muscovite from the Paleoproterozoic Trans-Hudson Orogen (Skipton et al., 2017). In that case, core-to-rim age profiles generated by DiffArgP models of 1
Gyr isothermal residence at 220°C exhibited minor Ar loss at muscovite grain edges, which coincided with dates of UV laser spots. Due to the 50 µm UV spot size and analytical (and model) uncertainties, this relationship was not definitive, but suggests that gradual Ar loss is plausible during long-term isothermal residence at such low temperatures. Importantly, in that study, DiffArgP models simulating various initial cooling rates (1–10°C/Myr) showed that any slow Ar loss that may have occurred during a subsequent 1 Gyr isothermal period in the crust (at T = 220°C) would have been insufficient to change cooling ages beyond uncertainties, or to erase evidence of early rapid (≥10°C/Myr) cooling. Therefore, the muscovite likely cooled at 1–2.5°C/Myr following peak metamorphism, in line with ‘slow’ cooling rates determined in other Precambrian orogens (Skipton et al., 2017).

UV laser spot intra-grain \(^{40}\text{Ar}/^{39}\text{Ar}\) age maps also revealed evidence of slow cooling in biotite from a ca. 1680 Ma synorogenic monzogranite in the Yavapai orogen in the southwestern United States (Hodges and Bowring, 1995). The authors concluded that core-to-rim age decreases of ~200 Myr (from ca. 1240 to 1040 Ma) over 0.5–0.7 mm grain radii resulted from slow cooling following magmatic crystallization, in agreement with independent geological evidence. They used a closure temperature algorithm (Dodson, 1986) to estimate a cooling rate of 0.5 K/Myr. This estimate is supported by our DiffArgP models: models using a faster cooling rate of 1.5°C/Myr yielded more shallowly sloped core-to-rim age gradients (~100 Myr; Figs. 4e–f, 5e–f, 6c) than that of the Yavapai biotite.

In some Proterozoic orogens, faster cooling rates have been interpreted from \(^{40}\text{Ar}/^{39}\text{Ar}\) dates that are nearly equivalent to metamorphic U/Pb ages. Mid-crustal blocks in the Grenville orogen appear to have cooled at rates up to 11°C/Myr during late-orogenic extension (Cosca et al., 1995; Rivers, 2008; Schneider et al., 2013). Gravity-driven extensional collapse has been
proposed in the Variscan orogen, based on rapid cooling and exhumation deduced in part from
\(^{40}\text{Ar}/^{39}\text{Ar}\) ages (e.g., Steltenpohl et al., 1993). “Old” biotite dates that are similar to U/Pb ages of
peak metamorphism, suggesting fast cooling, may be reliable if Ar inheritance can be ruled out.
This can be evaluated using our model results, together with the known P–T history: the dated
biotite must have resided for sufficient time at temperatures in the ‘blue’ P–T zones (in Figs. 1–
3). Theoretically, such biotite would also exhibit a flat core-to-rim age profile indicating rapid
cooling (e.g., age profiles for cooling rates of 10°C/Myr and 30°C/Myr in Figs. 4e–f, 5e–f, 6c).
However, such an interpretation assumes no \(^{40}\text{Ar_c}\) contamination, a completely open grain
boundary and no trapping of Ar within grain defects; these assumptions are challenging to
quantify (discussed below).

4.4. Effects of extraneous Ar and fast-pathway Ar loss

By showing the ages that would be expected following volume diffusion acting alone, our
models can help determine whether a biotite \(^{40}\text{Ar}/^{39}\text{Ar}\) date is likely to represent the timing of
cooling at a particular rate or if it could have been produced or reset by other processes.

The effects on \(^{40}\text{Ar}/^{39}\text{Ar}\) dates of crystal defects serving as Ar traps (e.g., Camacho et al.
2012) or Ar-loss pathways (e.g., Lee, 1995; Hodges and Bowring, 1995) cannot be directly
tested using DiffArgP models. Instead, P–T–\% retention plots (Figs. 1–3) provide theoretical
constraints on alternative scenarios: e.g., an anomalously young biotite date may result from late,
low-temperature biotite crystallization within the ‘red zones’, and not necessarily from Ar loss
through grain defects. Ultraviolet laser spot analyses are important for investigating possible
effects of crystal defects on \(^{40}\text{Ar}/^{39}\text{Ar}\) dates; anomalously young zones within biotite may be
attributed to grain defects allowing rapid Ar loss (e.g., Hodges and Bowring, 1995; Skipton et
al., 2017).
The P–T–% retention plots (Figs. 1–3) can be used to assess the likelihood of retention of inherited Ar: biotite that experienced peak conditions within the red or intermediate P–T zones is at risk for containing pre-thermal peak radiogenic Ar, producing a 40Ar/39Ar date that may predate the timing of post-thermal peak cooling through T_c. Conversely, if biotite experienced peak P–T in the blue zone, yet yields a 40Ar/39Ar date that is older than that expected from independent data, the biotite may have been contaminated by 40Ar_e.

In some cases, 40Ar_e contamination can be identified from step-heating analyses (review in Kelley, 2002). It has been suggested that 40Ar_e contamination results in saddle-shaped gas release spectra (Lanphere and Dalrymple, 1976; Harrison and McDougall, 1981; McDougall and Harrison, 1999); the shape arising from the suggested release of 40Ar trapped in fluid or melt inclusions at low temperature and from the breakdown of solid inclusions at high temperature (Kelley, 2002).

A linear array of step-heating data on an inverse isochron plot may also show the presence of trapped 40Ar_e with a distinct non-atmospheric composition (Heizler and Harrison, 1988). However, identification of a 40Ar_e component on an isochron plot may be prevented by scattered data, which results from 40Ar_e with an inhomogeneous isotopic ratio (e.g., inclusions; Reddy et al., 1997) or, possibly, clustered data resulting from homogenization with radiogenic Ar produced in situ (at $T > T_c$). Additionally, anomalously old biotite dates are commonly calculated from flat ‘plateau’ gas release spectra (e.g., Pankhurst et al., 1973; Roddick et al., 1980; Foland, 1983; Sherlock et al., 1999; Skipton et al., 2017). In such cases, there is currently no definitive test for 40Ar_e contamination, and DiffArgP modeling does not provide one.
DiffArgP can, however, be used to model diffusion of 40Ar$_e$ from the grain boundary network into the grain, and comparisons with intra-grain UV laser age spots can shed light on how/when 40Ar$_e$ may have been incorporated. For example, in white mica from the Oman high-pressure terrane, UV laser spot transects revealed Ar enrichment in grain rims (Warren et al., 2011). The authors ran DiffArgP models in which 40Ar$_e$ was introduced to the grain boundary network (the ‘edge age’ in Wheeler, 1996) at different stages along the cooling path. When 40Ar$_e$ was introduced in the models at ‘low’ temperatures (i.e., temperatures approaching T_c), the modeled core-to-rim age profiles exhibited Ar-enriched grain rims with anomalously old bulk ages. This led the authors to conclude that the anomalously old white mica could have incorporated 40Ar$_e$ late in the cooling history from grain boundary fluids in a closed system, through diffusion or incorporation during recrystallization (Warren et al., 2011). In a similar case, 40Ar/39Ar UV laser transects conducted across biotite grains from the Italian Alps yielded dates that increased from core to rim, ranging from ca. 161 to 514 Ma in individual crystals (Pickles et al., 1997). This age pattern was attributed to diffusion of 40Ar$_e$ into the grains at temperatures less than 300°C, as supported by theoretically derived curves for volume diffusion of Ar (Pickles et al., 1997).

Incorporation of 40Ar$_e$ at high temperatures (> T_c, in blue zones in Figs. 1–3), at which Ar diffusion is highly efficient, would theoretically result in diffusive within-grain homogenization of the 40Ar$_e$ with radiogenic 40Ar produced in situ. As such, the mica would yield an anomalously old date and a smoothly decreasing core-to-rim age profile; this has been illustrated by DiffArgP models of white mica (Warren et al., 2011). Therefore, biotite that yields an anomalously old date but a smoothly decreasing core-to-rim age profile with no evidence of 40Ar-enrichment at grain rims may still contain 40Ar$_e$. In this case, biotite would have had to have incorporated 40Ar$_e$ during (or prior to) peak P–T conditions in the blue zones in Figs. 1–3, either via diffusion from
Ar-enriched metamorphic fluids, or incorporation during crystallisation in the presence of Ar-enriched fluids. In contrast, enrichment of rims is likely to have occurred at maximum P–T conditions in the red or intermediate zones, such as via low-temperature diffusion from a Ar-enriched grain boundary network in a closed system. Our P–T–% retention plots can thus be used in conjunction with the established P–T history to evaluate scenarios of contamination.

Figs. 1i, 2c and 2f compare modeled Ar retention in biotite (this study) and muscovite (Warren et al., 2012a) for grain radii of 0.1, 0.5 and 1 mm with 20 Myr residence. The model data reiterate previously established points: muscovite requires higher temperatures than biotite to achieve diffusional loss of pre-thermal peak Ar and resetting of Ar/Ar systematics, and has a higher closure temperature window. Therefore, the Ar/Ar cooling age of biotite should be younger than that of muscovite in the same rock, provided both minerals grew during the same metamorphic event within the ‘blue’ P–T zones modeled for biotite (Figs. 1–3) and muscovite (Figs. 3 and 4 in Warren et al., 2012a). Nonetheless, as discussed above, some paired biotite and muscovite dates defy this theoretical relationship. In such cases, muscovite may have crystallized or recrystallized at low temperatures, following cooling through the biotite closure temperature, i.e., within the ‘red’ P–T zones. A known P–T history is crucial for interpreting this scenario, together with petrographical evidence of late white mica growth/recrystallization. Mica chemistry can also be used to elucidate recrystallized, compositionally distinct muscovite rims (e.g., Cossette et al., 2015). Still, muscovite with no apparent evidence of low-temperature (<Tc) growth, compositional zoning or recrystallization has been shown to yield dates younger than those of co-existing biotite in some cases (e.g., Mottram et al., 2015; Skipton et al., 2017). Due to the higher solubility of Ar in biotite than muscovite, biotite may preferentially incorporate Ar (Roddick et al., 1980; Dahl, 1996; review in Kelley, 2002). Anomalously old biotite dates
may result from planar defects in the crystal acting as Ar traps (Camacho et al., 2012). In cases where biotite yields an older $^{40}\text{Ar}/^{39}\text{Ar}$ date than co-existing muscovite, obtaining UV laser spot transects on both minerals would inform considerations of $^{40}\text{Ar}_e$, particularly if localized ^{40}Ar-enriched zones were revealed. Notably, there are currently few intra-grain age data for biotite (Hodges and Bowring, 1995; Pickles et al., 1997) or for co-existing muscovite, which might otherwise be used to further constrain this discussion.

5. Conclusions

The models presented here provide numerical and visual illustration of the percentage of Ar that should theoretically be retained in metamorphic biotite with a variety of grain radii (0.1 to 5 mm) residing for various periods (1 Myr to 1 Gyr) over a range of P–T conditions (Figs. 1–3), given the most reliable currently-available diffusion parameters. The models also demonstrate the effects of different crustal residence temperatures (250–450°C) and durations (1 Myr to 1 Gyr), and of various subsequent cooling rates (1.5–30°C/Myr), on the $^{40}\text{Ar}/^{39}\text{Ar}$ age and core-to-rim age profile of biotite (Figs. 4–6). Consequently, the models are effective for interpreting metamorphic biotite $^{40}\text{Ar}/^{39}\text{Ar}$ dates and corresponding cooling/exhumation histories in modern and ancient orogens. As they represent a baseline for %Ar retention, $^{40}\text{Ar}/^{39}\text{Ar}$ ages and intra-grain age profiles of biotite that are expected from volume diffusion acting alone, the models are also useful for evaluating the likelihood of extraneous ^{40}Ar contamination and non-diffusional ^{40}Ar loss.

The models presented here demonstrate the importance of interpreting $^{40}\text{Ar}/^{39}\text{Ar}$ ages within an established P–T–t framework: the dated crystal must have attained peak P–T conditions within the ‘blue’ zones (Figs. 1–3) in order to yield a cooling age. Petrographic analyses, mineral
chemical maps and an understanding of the P–T evolution are also key to assessing whether mica recrystallization or dissolution may have reset Ar systematics. A biotite $^{40}\text{Ar}/^{39}\text{Ar}$ age should be supplemented by a thermochronological age (e.g., muscovite or hornblende $^{40}\text{Ar}/^{39}\text{Ar}$) from the same rock when possible to provide additional context for the cooling/exhumation history, especially in conjunction with P–T–% retention plots for biotite (this study) and muscovite (Warren et al., 2012a). Paired biotite–muscovite ages may also provide insights into $^{40}\text{Ar}_e$ contamination.

The modeled core-to-rim age profiles for biotite presented here strongly support incorporation of the UV laser spot technique into $^{40}\text{Ar}/^{39}\text{Ar}$ thermochronological studies. Intra-grain age maps have the potential to yield a wealth of information, including diffusional core-to-rim age profiles from which cooling histories can be interpreted, particularly when compared with diffusion models, as demonstrated in previous studies. Ultraviolet laser age maps also enable assessment of: $^{40}\text{Ar}_e$; inherited ^{40}Ar; ^{40}Ar loss via fast-diffusion pathways (anomalously young ages in grain centre); and, possibly, low-temperature (<300°C) diffusional Ar loss from grain rims during long-term crustal residence. The ideal size and distribution of UV laser spots (or rasters) depends on several factors, including the analytical set-up and the age of the grain. As shown in earlier studies, UV laser measurements should have the highest possible analytical precision and spatial resolution in a core-to-rim direction to elucidate the intra-grain ^{40}Ar distribution, and to evaluate the best-fit between measured and modeled core-to-rim age profiles.

Cooling/exhumation histories, as classically interpreted from $^{40}\text{Ar}/^{39}\text{Ar}$ data, must be grounded in theoretical diffusional behaviour, here quantified by DiffArgP modeled bulk ages and core-to-rim age profiles. The temperature, pressure, time and grain-size parameters used in our models correspond to many geological scenarios, and the models can therefore be compared
with $^{40}\text{Ar}/^{39}\text{Ar}$ biotite date to inform interpretations of cooling/exhumation. For geological
parameters beyond those modeled here, we recommend numerical diffusion modeling of
proposed cooling histories for comparisons with $^{40}\text{Ar}/^{39}\text{Ar}$ results.

The models presented here contain several sources of uncertainty. They are therefore best
used in conjunction with $^{40}\text{Ar}/^{39}\text{Ar}$ biotite data to provide approximate P–T–t constraints on
interpreted cooling/exhumation histories or to highlight alternative scenarios, rather than to
provide a single ‘answer’. Further research to improve constraints on Ar behaviour in biotite will
increase confidence in the interpretation of biotite $^{40}\text{Ar}/^{39}\text{Ar}$ dates as relating to either geological
phenomena linked to time, or contamination. In particular, new UV laser $^{40}\text{Ar}/^{39}\text{Ar}$ spot maps of
biotite from various metamorphic regions would provide a more complete library of intra-grain
Ar distributions in biotite for comparison with diffusion models, and are an important step
toward developing methodology for identifying and quantifying $^{40}\text{Ar}_t$ and Ar trapped or lost via
grain defects in biotite.

Acknowledgements

DRS acknowledges support from the Alice Wilson Postdoctoral Fellowship, Geological Survey
of Canada. Andrew Smye, Dawn Kellett and an anonymous reviewer are thanked for helpful and
constructive reviews, which improved the quality of this manuscript. Natural Resources Canada
contribution number 20180099.

References

Berger, G.W., 1975. $^{40}\text{Ar}/^{39}\text{Ar}$ step heating of thermally over-printed biotites, hornblendes, and
408.

Cossette, E., Schneider, D.A., Warren, C.J., Grasemann, B., 2015. Lithological, rheological, and fluid infiltration control on $^{40}\text{Ar}/^{39}\text{Ar}$ ages in polydeformed rocks from the West Cycladic detachment system, Greece. Lithosphere 7 (2), 189–205.

Foland, K.A., 1983. 40Ar/39Ar incremental heating plateaus for biotites with excess argon. Isotope Geoscience 1(1), 3–21.

Grove, M., Harrison, T.M., 1996. 40Ar* diffusion in Fe-rich biotite. American Mineralogist 81, 940–951.

Hanson, G.N., Simmons, K.R., Bence, A.E., 1975. 40Ar/39Ar spectrum ages for biotite, hornblende and muscovite in a contact metamorphic zone. Geochimica et Cosmochimica Acta 39, 1269–1277.

Occhipinti, S.A., Reddy, S.M., 2009. Neoproterozoic reworking of the Palaeoproterozoic Capricorn Orogen of Western Australia and implications for the amalgamation of

