The Open UniversitySkip to content
 

The Impact of Radiation Damage on Electron Multiplying CCD Technology for the WFIRST Coronagraph

Bush, Nathan L. (2018). The Impact of Radiation Damage on Electron Multiplying CCD Technology for the WFIRST Coronagraph. PhD thesis. The Open University.

Full text available as:
[img]
Preview
PDF (Version of Record) - Requires a PDF viewer such as GSview, Xpdf or Adobe Acrobat Reader
Download (14MB) | Preview
Google Scholar: Look up in Google Scholar

Abstract

This thesis follows an investigation into the effects of radiation damage on the e2v CCD201-20; the detector baselined for use in the WFIRST coronagraph imaging and spectroscopy camera systems (hereafter, WFIRST CGI). The CCD201 is an EM-CCD, a variant of traditional CCD technology that is well suited for operation in light starved conditions. Despite successful implementation on many ground-based instruments, the technology has yet to be used within a space environment and therefore has low technological maturity compared to the standard CCD counterpart. Improvement of the technological maturity rested upon in-depth investigations into the effect of radiation damage on the CCD201, which in turn could be used to estimate the End Of Life (EOL) performance of the instrument and de-risk the utilisation of EM-CCDs for the mission. An in-depth radiation campaign was completed whereby multiple CCD201s were irradiated to multiple fluence levels at both room temperature and the nominal operating temperature of the mission (165 K). Performance was measured prior to and following each irradiation, including measurements of low-signal Charge Transfer Inefficiency (CTI), dark current and Clock Induced Charge (CIC). Significant performance differences were noted between the room temperature and cryogenic irradiation case, indicating that cryogenic irradiations are instrumental to accurate EOL performance estimates. CTI was identified as the key limitation to CGI science performance, and so attention then turned to amelioration strategies focused on improving performance in the presence of radiation damage, including trap pumping and narrow-channel modelling. The results presented in this thesis have helped lead to the adoption of the CCD201-20 for the WFIRST mission, have provided key insight into the differences between room temperature and cryogenic irradiations, have advanced the “trap pumping” technique for use on EM-CCDs and presented the properties on the dominant traps that impact CTI for radiation damaged CCDs. The findings are not only useful for the WFIRST CGI, but for any future space mission that will utilise EM-CCD technology in an environment where radiation has the potential to degrade science performance.

Item Type: Thesis (PhD)
Copyright Holders: 2017 The Author
Keywords: electronic apparatus and appliances; CCD cameras; charge coupled devices; space environment; imaging systems in astronomy
Academic Unit/School: Faculty of Science, Technology, Engineering and Mathematics (STEM)
Faculty of Science, Technology, Engineering and Mathematics (STEM) > Physical Sciences
Item ID: 55053
Depositing User: Nathan Bush
Date Deposited: 28 Aug 2018 12:44
Last Modified: 06 Dec 2019 20:16
URI: http://oro.open.ac.uk/id/eprint/55053
Share this page:

Download history for this item

These details should be considered as only a guide to the number of downloads performed manually. Algorithmic methods have been applied in an attempt to remove automated downloads from the displayed statistics but no guarantee can be made as to the accuracy of the figures.

Actions (login may be required)

Policies | Disclaimer

© The Open University   contact the OU