Geological Mapping of the Debussy Quadrangle (H-14) Preliminary Results

How to cite:


For guidance on citations see FAQs.

Version: Version of Record

Link(s) to article on publisher's website:

Copyright and Moral Rights for the articles on this site are retained by the individual authors and/or other copyright owners. For more information on Open Research Online's data policy on reuse of materials please consult the policies page.

oro.open.ac.uk
Introduction: Geological mapping of Mercury is crucial to build an understanding of the history of the planet and to set the context for BepiColombo’s observations [1]. Geological mapping of the Debussy quadrangle (H-14) is now underway as part of a program to map the entire planet at a scale of 1:3M using MESSENGER data [2]. The quadrangle is located in the southern hemisphere of Mercury at 0° – 90° E and 22.5° – 65° S. This will be the first high resolution map of the quadrangle as it was not imaged by Mariner 10.

Data and Methods: Mapping began in October 2017 using the MESSENGER 166 mpp mosaic as a base map supplemented with additional images from MESSENGER’s Mercury Dual Imaging System. Line work is currently underway. Craters larger than 5 km have been outlined. Ejecta, where observed, is being traced for craters larger than 20 km. Craters are classified based on crater degradation on both 3 class [3] and a 5 class [4] schemes. Tectonic features are shown by linework and extensive plains are being mapped as Intercrater or Smooth plains.

Features of Debussy Quadrangle: There are several large-scale features within the Debussy quadrangle that are of particular interest during mapping:

Rembrandt Basin: This 720 km diameter impact crater is the largest well-preserved basin in Mercury’s southern hemisphere [5]. Smooth volcanic plains (lavas), which postdate the impact, partially fill the basin. Rembrandt hosts many of the features characteristic of large basins including wrinkle ridges, grabens, and ghost craters [6].

Enterprise Rupes: The cooling and contraction of Mercury has led to the formation of thrust faults [7]. Enterprise Rupes cuts across Rembrandt basin. It can thus play an important part in building understanding of the tectonic history of the planet [5]. The interaction of the lobate scarps with other landforms illustrates the structural controls that pre-existing landforms can have on the morphology of scarps [8]. Other rupes in the quadrangle include the east-west trending Belgica Rupes and the north-south Nautilus Rupes.