The Open UniversitySkip to content
 

Martian dust devils: laboratory simulations of particle threshold

Greeley, Ronald; Balme, Matthew R.; Iversen, James D.; Metzger, Stephen; Mickelson, Robert; Phoreman, Jim and White, Bruce (2003). Martian dust devils: laboratory simulations of particle threshold. Journal of Geophysical Research: Planets, 108(E5) p. 5041.

DOI (Digital Object Identifier) Link: http://dx.doi.org/10.1029/2002JE001987
Google Scholar: Look up in Google Scholar

Abstract

An apparatus has been fabricated to simulate terrestrial and Martian dust devils. Comparisons of surface pressure profiles through the vortex core generated in the apparatus with both those in natural dust devils on Earth and those inferred for Mars are similar and are consistent with theoretical Rankine vortex models. Experiments to
determine particle threshold under Earth ambient atmospheric pressures show that sand (particles > 60 mm in diameter) threshold is analogous to normal boundary-layer shear, in which the rotating winds of the vortex generate surface shear and hence lift. Lowerpressure experiments down to 65 mbar follow this trend for sand-sized particles.
However, smaller particles (i.e., dust) and all particles at very low pressures (10–60 mbar) appear to be subjected to an additional lift function interpreted to result from the strong decrease in atmospheric pressure centered beneath the vortex core. Initial results suggest that the wind speeds required for the entrainment of grains 2 mm in diameter (i.e., Martian dust sizes) are about half those required for entrainment by boundary layer winds on both Earth and Mars.

Item Type: Journal Article
ISSN: 1934-8843
Extra Information: Some of the symbols may not have transferred correctly into this bibliographic record and/or abstract.
Keywords: Mars; planetary atmospheres; Boundary layer processes, dust devils
Academic Unit/Department: Science > Environment, Earth and Ecosystems
Interdisciplinary Research Centre: Centre for Earth, Planetary, Space and Astronomical Research (CEPSAR)
Item ID: 5489
Depositing User: Matthew Balme
Date Deposited: 05 Oct 2006
Last Modified: 02 Dec 2010 19:54
URI: http://oro.open.ac.uk/id/eprint/5489
Share this page:

Actions (login may be required)

View Item
Report issue / request change

Policies | Disclaimer

© The Open University   + 44 (0)870 333 4340   general-enquiries@open.ac.uk