The Open UniversitySkip to content
 

Robustness of fossil fish teeth for seawater neodymium isotope reconstructions under variable redox conditions in an ancient shallow marine setting

Huck, Claire E.; van de Flierdt, Tina; Jiménez-Espejo, Francisco J.; Bohaty, Steven M.; Röhl, Ursula and Hammond, Samantha J. (2016). Robustness of fossil fish teeth for seawater neodymium isotope reconstructions under variable redox conditions in an ancient shallow marine setting. Geochemistry, Geophysics, Geosystems, 17(3) pp. 679–698.

Full text available as:
[img]
Preview
PDF (Version of Record) - Requires a PDF viewer such as GSview, Xpdf or Adobe Acrobat Reader
Download (1MB) | Preview
DOI (Digital Object Identifier) Link: https://doi.org/10.1002/2015gc006218
Google Scholar: Look up in Google Scholar

Abstract

Fossil fish teeth from pelagic open ocean settings are considered a robust archive for preserving the neodymium (Nd) isotopic composition of ancient seawater. However, using fossil fish teeth as an archive to reconstruct seawater Nd isotopic compositions in different sedimentary redox environments and in terrigenous‐dominated, shallow marine settings is less proven. To address these uncertainties, fish tooth and sediment samples from a middle Eocene section deposited proximal to the East Antarctic margin at Integrated Ocean Drilling Program Site U1356 were analyzed for major and trace element geochemistry, and Nd isotopes. Major and trace element analyses of the sediments reveal changing redox conditions throughout deposition in a shallow marine environment. However, variations in the Nd isotopic composition and rare earth element (REE) patterns of the associated fish teeth do not correspond to redox changes in the sediments. REE patterns in fish teeth at Site U1356 carry a typical mid‐REE‐enriched signature. However, a consistently positive Ce anomaly marks a deviation from a pure authigenic origin of REEs to the fish tooth. Neodymium isotopic compositions of cleaned and uncleaned fish teeth fall between modern seawater and local sediments and hence could be authigenic in nature, but could also be influenced by sedimentary fluxes. We conclude that the fossil fish tooth Nd isotope proxy is not sensitive to moderate changes in pore water oxygenation. However, combined studies on sediments, pore waters, fish teeth, and seawater are needed to fully understand processes driving the reconstructed signature from shallow marine sections in proximity to continental sources.

Item Type: Journal Item
Copyright Holders: 2016 American Geophysical Union
ISSN: 1525-2027
Academic Unit/School: Faculty of Science, Technology, Engineering and Mathematics (STEM)
Item ID: 54261
SWORD Depositor: Jisc Publications-Router
Depositing User: Jisc Publications-Router
Date Deposited: 11 Apr 2018 14:27
Last Modified: 01 May 2019 15:32
URI: http://oro.open.ac.uk/id/eprint/54261
Share this page:

Metrics

Altmetrics from Altmetric

Citations from Dimensions

Download history for this item

These details should be considered as only a guide to the number of downloads performed manually. Algorithmic methods have been applied in an attempt to remove automated downloads from the displayed statistics but no guarantee can be made as to the accuracy of the figures.

Actions (login may be required)

Policies | Disclaimer

© The Open University   contact the OU