Evidence for Recent Wet-Based Crater Glaciation in Tempe Terra, Mars.

Conference or Workshop Item

How to cite:


For guidance on citations see FAQs.

© 2018 The Authors

Version: Poster

Link(s) to article on publisher’s website:

Copyright and Moral Rights for the articles on this site are retained by the individual authors and/or other copyright owners. For more information on Open Research Online’s data policy on reuse of materials please consult the policies page.

oro.open.ac.uk
Evidence for recent wet-based crater glaciation in Tempe Terra, Mars?

Frances E.G. Butcher\(^1\), M.R. Balme\(^1\), C. Gallagher\(^2\), N.S. Arnold\(^3\), S.J. Conway\(^4\), R.D. Storrar\(^5\), A. Hagemann\(^1\), S.R. Lewis\(^1\)

\(^1\)The Open University, UK, [frances.butcher@open.ac.uk], \(^2\)University College Dublin, Ireland, \(^3\)University of Cambridge, UK, \(^4\)CNRS, Laboratoire de Planétologie et Géodynamique, Nantes, France, \(^5\)Sheffield Hallam University, UK.

Evidence for basal melting of putative debris-covered glaciers in Mars’ mid-latitudes is extremely rare.

- The glaciers are currently frozen to their beds, but has this always been the case?
- Eskers (Fig 1) emerging from two mid-latitude glaciers [1-2] indicate at least two localized melting events beneath existing glaciers ~110-150 Myr ago (Fig 2).

Eskers indicate past glacial melting.

1. Ice at glacier bed melts.
2. Meltwater carves a tunnel through the ice.
3. Meltwater deposits sediment in the tunnel.
4. A ridge of sediment (an esker) is left when the ice retreats.

Are glacier-linked sinuous ridges in Chukhung Crater eskers?


Unit Interpretations

- Fresh impact material (>100 m crater)
- Highland mantled unit - ice-rich alluvial deposit?
- Miocene flow feature - mantled debris-covered glaciers.
- Glacier termini deposits - glacial-marine ridges or pre-glacial crater wall slump deposits (e.g. A).
- Pitfall deposits - ice-related ground moraines?
- Southern sinuous ridges - esker-like ridges extending from craters.
- Transverse Acréan ridges - occupying topographic lows. Material possibly sourced from top.
- Interbedded potholes and patches - patches of unknown origin: possible alluvial deposit?
- Central plough - closely spaced assemblages: material sourced from crater.
- Smooth plates and mesas - divided or lacustrine deposits (Fig 1).
- Upper smooth plates - smoothed plates continuous with inverted channel-like sinuous ridges: resistant fluvial deposit.
- Intermediate smooth plates - divided by broad sinuous valley. Crater floor material or fluvial deposits.
- Lower smooth plates - exposed within valleys dissecting crater floor. Deposits of fluvial or lacustrine origin.
- Crater wall deposits - filling topographic lows within the crater and included by subbranching valleys: fluvial deposit.
- Neotectonic material - crater rim, and central pit-walls.

Structure

Valley

Impact crater rim

Valley

Impact crater rim

Fig 3: Geomorphic map of Chukhung Crater on CTX image basemap. Inset: MOLA elevation map of Mars’ northern hemisphere showing the locations of Chukhung Crater & the two known glacier-linked eskers.

Chukhung Crater hosts two populations of sinuous ridges.

- Esker-like ridges (S, Fig 3) emerge from moraine-like deposits (Gtr & Rpu) bounding the termini of putative debris-covered glaciers (Vif, Fig 3) on the southern crater floor.
- Inverted channel-like ridges (within Usp, Fig 3) extend from fluvial valleys on the northern crater wall. They formed prior to glaciation of the crater. Their formation does not require glacial meltwater (Fig 4).

The two sinuous ridge populations are morphologically distinct, supporting different origins.

- The esker-like ridges are younger, more sinuous, and have sharper crests than the inverted channel-like ridges (Fig 5).
- However, the ridges have similar dimensions, so differences in crest morphology could be due to differences in degradation state rather than formation mechanism.

The esker-like ridges ascend valley walls.

- Esker-forming meltwater can ascend bed slopes under hydraulic pressure in subglacial tunnels [8]. Ascent of valley walls (Fig 6b) is inconsistent with deposition under gravity-driven flow in subaerial fluvial channels.
- However, ascent of slopes could be inherited from differential erosion under the alternative inverted channel hypothesis, rather than a primary feature.

There are challenges for the esker hypothesis.

- The esker-like ridges could be a second population of inverted channels.
- Glacial deposits (Vif, Gtr, Rpu) covering the southern crater floor hinder scrutiny of the relationship of the esker-like ridges to pre-glacial fluvial deposits.
- Eskers are ice-contact deposits but there is no additional evidence for past glaciation northward of the moraine-like deposits (Gtr & Rpu).
- There is an esker-like ridge system on the northern floor, where there is no evidence for glaciation.

Lessons from Chukhung Crater.

- Even where sinuous ridges emerge from existing glaciers, and where they have esker-like non-slope-conforming topographic signatures, conclusive identification as eskers is complicated by similarities in form between inverted channels and eskers [e.g. 8].
- Regional mapping and quantitative 3D morphometric analyses [e.g. 2,9] should always be performed before an esker origin can be concluded. Such analyses are ongoing for Chukhung Crater.


Acknowledgements: We thank Caleb Fassett, Edwin Kite and David Mayer for drawing our attention to the study site (C7 & EK), and providing DEMs (EK & DM). The Royal Astronomical Society and the British Society for Geomorphology funded FEGB to attend this conference. This work was funded by STFC grants ST/M00542X/1 (FEGB) and ST/I000777/1 (MR/W587585). SIC is supported by the French Space Agency CNSA.