Evidence for Recent Wet-Based Crater Glaciation in Tempe Terra, Mars.

Conference or Workshop Item

How to cite:

For guidance on citations see FAQs.

© 2018 The Authors

Version: Poster

Link(s) to article on publisher’s website:

Copyright and Moral Rights for the articles on this site are retained by the individual authors and/or other copyright owners. For more information on Open Research Online’s data policy on reuse of materials please consult the policies page.
Evidence for recent wet-based crater glaciation in Tempe Terra, Mars?
Frances E.G. Butcher¹, M.R. Balme¹, C. Gallagher², N.S. Arnold³, S.J. Conway⁴, R.D. Storrar⁵, A. Hagemann¹, S.R. Lewis¹

¹The Open University, UK (frances.butcher@open.ac.uk), ²University College Dublin, Ireland, ³University of Cambridge, UK, ⁴CNRS, Laboratoire de Planétologie et Géodynamique, Nantes, France, ⁵Sheffield Hallam University, UK.

Evidence for basal melting of putative debris-covered glaciers in Mars’ mid-latitudes is extremely rare.

- The glaciers are currently frozen to their beds, but has this always been the case?

Eskers (Fig 1) emerging from two mid-latitude glaciers [1-2] indicate at least two localized melting events beneath existing glaciers ~110-150 Myr ago (Fig 2).

Eskers indicate past glacial melting.

1. Ice at glacier bed melts.
2. Meltwater carves a tunnel through the ice.
3. Meltwater deposits sediment in the tunnel.
4. A ridge of sediment (an esker) is left when the ice retreats.

Are glacier-linked sinuous ridges in Chukhung Crater eskers?


The two sinuous ridge populations are morphologically distinct, supporting different origins.

- The esker-like ridges are younger, more sinuous, and have sharper crests than the inverted channel-like ridges (Fig 5).

However, the ridges have similar dimensions, so differences in crest morphology could be due to differences in degradation state rather than formation mechanism.

The esker-like ridges ascend valley walls.

- Esker-forming meltwater can ascend bed slopes under hydraulic pressure in subglacial tunnels [8]. Ascent of valley walls (Fig 6b) is inconsistent with deposition under gravity-driven flow in subaerial fluvial channels.

However, ascent of slopes could be inherited from differential erosion under the alternative inverted channel hypothesis, rather than a primary feature.

There are challenges for the esker hypothesis.

- The esker-like ridges could be a second population of inverted channels.
- Glacial deposits (Vff, Gtr, Rpu) covering the southern crater floor hinder scrutiny of the relationship of the esker-like ridges to pre-glacial fluvial deposits.
- Eskers are ice-contact deposits but there is no additional evidence for past glaciation northward of the moraine-like deposits (Gtr & Rpu).
- There is one esker-like ridge system on the northern floor, where there is no evidence for glaciation.

Lessons from Chukhung Crater.

- Even where sinuous ridges emerge from existing glaciers, and where they have esker-like non-slope-conforming topographic signatures, conclusive identification as eskers is complicated by similarities in form between inverted channels and eskers [e.g. 8].
- Regional mapping and quantitative 3D morphometric analyses [e.g. 2, 9] should always be performed before an esker origin can be concluded. Such analyses are ongoing for Chukhung Crater.


Acknowledgements: We thank Caleb Fassett, Edwin Kho and David Mayer for drawing our attention to the study site (C7 & E8), and providing DLMs (E8 & D7). The Royal Astronomical Society and the British Society for Geomorphology funded FESB to attend this conference. This work was funded by STFC grants ST/N00421X/1 (FESB) and ST/1000777/1 (MR8/W093). STFC is supported by the French Space Agency CNES.