Evidence for Recent Wet-Based Crater Glaciation in Tempe Terra, Mars.

Conference or Workshop Item

How to cite:

For guidance on citations see FAQs.

© 2018 The Authors

Version: Poster

Link(s) to article on publisher’s website:

Copyright and Moral Rights for the articles on this site are retained by the individual authors and/or other copyright owners. For more information on Open Research Online’s data policy on reuse of materials please consult the policies page.
Evidence for recent wet-based crater glaciation in Tempe Terra, Mars?

Frances E.G. Butcher\(^1\), M.R. Balme\(^1\), C. Gallagher\(^2\), N.S. Arnold\(^3\), S.J. Conway\(^4\), R.D. Storrar\(^5\), A. Hagermann\(^1\), S.R. Lewis\(^1\)

\(^1\)The Open University, UK (frances.butcher@open.ac.uk). \(^2\)University College Dublin, Ireland. \(^3\)University of Cambridge, UK. \(^4\)CNRS, Laboratoire de Planétologie et Géodynamique, Nantes, France. \(^5\)Sheffield Hallam University, UK.

Evidence for basal melting of putative debris-covered glaciers in Mars’ mid-latitudes is extremely rare.

- The glaciers are currently frozen to their beds, but has this always been the case?

- Eskers (Fig 1) emerging from two mid-latitude glaciers [1-2] indicate at least two localized melting events beneath existing glaciers ~110-150 Myr ago (Fig 2).

Eskers indicate past glacial melting.

Ice at glacier bed melts.

Meltwater deposits sediment in the tunnel.

Eskers are linked sinuous ridges in Chukhung Crater?

The two sinuous ridge populations are morphologically distinct, supporting different origins.

- The esker-like ridges are younger, more sinuous, and have sharper crests than the inverted channel-like ridges (Fig 5).

- However, the ridges have similar dimensions, so differences in crest morphology could be due to differences in degradation state rather than formation mechanism.

The esker-like ridges ascend valley walls.

- Esker-forming meltwater can ascend bed slopes under hydraulic pressure in subglacial tunnels [8]. Ascent of valley walls (Fig 6b) is inconsistent with deposition under gravity-driven flow in subaerial fluvial channels.

- However, ascent of slopes could be inherited from differential erosion under the alternative inverted channel hypothesis, rather than a primary feature.

There are challenges for the esker hypothesis.

- The esker-like ridges could be a second population of inverted channels.

- Glacial deposits (Vff, Gtr, Rpu) covering the southern crater floor hinder scrutiny of the relationship of the esker-like ridges to pre-glacial fluvial deposits.

- Eskers are ice-contact deposits but there is no additional evidence for past glaciation northward of the moraine-like deposits (Gtr & Rpu).

- There is one esker-like ridge system on the northern floor, where there is no evidence for glaciation.

Lessons from Chukhung Crater.

- Even where sinuous ridges emerge from existing glaciers, and where they have esker-like non-slope-conforming topographic signatures, conclusive identification as eskers is complicated by similarities in form between inverted channels and eskers [e.g. 8].

- Regional mapping and quantitative 3D morphometric analyses [e.g. 2, 9] should always be performed before an esker origin can be concluded. Such analyses are ongoing for Chukhung Crater.

References:

Acknowledgements: We thank Cotebe-Fossarit, Edwin Kho and David Mayer for drawing our attention to the study site (C7 & E11), and providing DEMs (EK & DM). The Royal Astronomical Society and the British Society for Geomorphology funded FEGB to attend this conference. This work was funded by STFC grants ST/N00421X/1 (FEGB) and ST/1001777/1 (MR/M015319/1). BSC is supported by the French Space Agency (CNES).