Investigating learning strategies in a dispositional learning analytics context: the case of worked examples

Tempelaar, Dirk; Rienties, Bart and Nguyen, Quan (2018). Investigating learning strategies in a dispositional learning analytics context: the case of worked examples. In: Proceedings of the 8th International Conference on Learning Analytics and Knowledge, ACM, New York, pp. 201–205.

DOI: https://doi.org/10.1145/3170358.3170385

Abstract

This study aims to contribute to recent developments in empirical studies on students' learning strategies, whereby the use of trace data is combined with self-report data to distinguish profiles of learning strategy use [3--5]. We do so in the context of an application of dispositional learning analytics in a large introductory course mathematics and statistics, based on blended learning. Building on our previous work which showed marked differences in how students used worked examples as a learning strategy [7, 11], this study compares different profiles of learning strategies with learning approaches, learning outcomes, and learning dispositions. One of our key findings is that deep learners were less dependent on worked examples as a resource for learning, and that students who only sporadically used worked examples achieved higher test scores.

Viewing alternatives

Metrics

Public Attention

Altmetrics from Altmetric

Number of Citations

Citations from Dimensions

Item Actions

Export

About

Recommendations