The Open UniversitySkip to content

Scientific rationale for Uranus and Neptune in situ explorations

Mousis, O.; Atkinson, D.H.; Cavalié, T.; Fletcher, L.N.; Amato, M.J.; Aslam, S.; Ferri, F.; Renard, J.-B.; Spilker, T.; Venkatapathy, E.; Wurz, P.; Aplin, K.; Coustenis, A.; Deleuil, M.; Dobrijevic, M.; Fouchet, T.; Guillot, T.; Hartogh, P.; Hewagama, T.; Hofstadter, M.D.; Hue, V.; Hueso, R.; Lebreton, J.-P.; Lellouch, E.; Moses, J.; Orton, G.S.; Pearl, J.C.; Sánchez-Lavega, A.; Simon, A.; Venot, O.; Waite, J.H.; Achterberg, R.K.; Atreya, S.; Billebaud, F.; Blanc, M.; Borget, F.; Brugger, B.; Charnoz, S.; Chiavassa, T.; Cottini, V.; d'Hendecourt, L.; Danger, G.; Encrenaz, T.; Gorius, N.J.P.; Jorda, L.; Marty, B.; Moreno, R.; Morse, A.; Nixon, C.; Reh, K.; Ronnet, T.; Schmider, F.-X.; Sheridan, S.; Sotin, C.; Vernazza, P. and Villanueva, G.L. (2018). Scientific rationale for Uranus and Neptune in situ explorations. Planetary and Space Science, 155 pp. 12–40.

Full text available as:
PDF (Accepted Manuscript) - Requires a PDF viewer such as GSview, Xpdf or Adobe Acrobat Reader
Download (5MB) | Preview
DOI (Digital Object Identifier) Link:
Google Scholar: Look up in Google Scholar


The ice giants Uranus and Neptune are the least understood class of planets in our solar system but the most frequently observed type of exoplanets. Presumed to have a small rocky core, a deep interior comprising ∼70% heavy elements surrounded by a more dilute outer envelope of H2 and He, Uranus and Neptune are fundamentally different from the better-explored gas giants Jupiter and Saturn. Because of the lack of dedicated exploration missions, our knowledge of the composition and atmospheric processes of these distant worlds is primarily derived from remote sensing from Earth-based observatories and space telescopes. As a result, Uranus's and Neptune's physical and atmospheric properties remain poorly constrained and their roles in the evolution of the Solar System not well understood. Exploration of an ice giant system is therefore a high-priority science objective as these systems (including the magnetosphere, satellites, rings, atmosphere, and interior) challenge our understanding of planetary formation and evolution. Here we describe the main scientific goals to be addressed by a future in situ exploration of an ice giant. An atmospheric entry probe targeting the 10-bar level, about 5 scale heights beneath the tropopause, would yield insight into two broad themes: i) the formation history of the ice giants and, in a broader extent, that of the Solar System, and ii) the processes at play in planetary atmospheres. The probe would descend under parachute to measure composition, structure, and dynamics, with data returned to Earth using a Carrier Relay Spacecraft as a relay station. In addition, possible mission concepts and partnerships are presented, and a strawman ice-giant probe payload is described. An ice-giant atmospheric probe could represent a significant ESA contribution to a future NASA ice-giant flagship mission.

Item Type: Journal Item
Copyright Holders: 2017 Elsevier Ltd.
ISSN: 0032-0633
Keywords: Entry probe; Uranus; Neptune; Atmosphere; Formation; Evolution
Academic Unit/School: Faculty of Science, Technology, Engineering and Mathematics (STEM) > Physical Sciences
Faculty of Science, Technology, Engineering and Mathematics (STEM)
Item ID: 53874
Depositing User: ORO Import
Date Deposited: 16 Mar 2018 09:56
Last Modified: 30 Oct 2019 02:39
Share this page:


Altmetrics from Altmetric

Citations from Dimensions

Download history for this item

These details should be considered as only a guide to the number of downloads performed manually. Algorithmic methods have been applied in an attempt to remove automated downloads from the displayed statistics but no guarantee can be made as to the accuracy of the figures.

Actions (login may be required)

Policies | Disclaimer

© The Open University   contact the OU