The Open UniversitySkip to content
 

A divergent heritage for complex organics in Isheyevo lithic clasts

van Kooten, Elishevah M.M.E.; Nagashima, Kazuhide; Kasama, Takeshi; Wampfler, Susanne F.; Ramsey, Jon P.; Frimann, Søren; Balogh, Zoltan I.; Schiller, Martin; Wielandt, Daniel P.; Franchi, Ian A.; Jørgensen, Jes K.; Krot, Alexander N. and Bizzarro, Martin (2017). A divergent heritage for complex organics in Isheyevo lithic clasts. Geochimica et Cosmochimica Acta, 205 pp. 119–148.

Full text available as:
[img]
Preview
PDF (Version of Record) - Requires a PDF viewer such as GSview, Xpdf or Adobe Acrobat Reader
Download (5MB) | Preview
DOI (Digital Object Identifier) Link: https://doi.org/10.1016/j.gca.2017.02.002
Google Scholar: Look up in Google Scholar

Abstract

Primitive meteorites are samples of asteroidal bodies that contain a high proportion of chemically complex organic matter (COM) including prebiotic molecules such as amino acids, which are thought to have been delivered to Earth via impacts during the early history of the Solar System. Thus, understanding the origin of COM, including their formation pathway(s) and environment(s), is critical to elucidate the origin of life on Earth as well as assessing the potential habitability of exoplanetary systems. The Isheyevo CH/CBb carbonaceous chondrite contains chondritic lithic clasts with variable enrichments in 15N believed to be of outer Solar System origin. Using transmission electron microscopy (TEM-EELS) and in situ isotope analyses (SIMS and NanoSIMS), we report on the structure of the organic matter as well as the bulk H and N isotope composition of Isheyevo lithic clasts. These data are complemented by electron microprobe analyses of the clast mineral chemistry and bulk Mg and Cr isotopes obtained by inductively coupled plasma and thermal ionization mass spectrometry, respectively (MC-ICPMS and TIMS). Weakly hydrated (A) clasts largely consist of Mg-rich anhydrous silicates with local hydrated veins composed of phyllosilicates, magnetite and globular and diffuse organic matter. Extensively hydrated clasts (H) are thoroughly hydrated and contain Fe-sulfides, sometimes clustered with organic matter, as well as magnetite and carbonates embedded in a phyllosilicate matrix. The A-clasts are characterized by a more 15N-rich bulk nitrogen isotope composition (δ15N = 200–650‰) relative to H-clasts (δ15N = 50–180‰) and contain extremely 15N-rich domains with δ15N < 5000‰. The D/H ratios of the clasts are correlated with the degree of clast hydration and define two distinct populations, which we interpret as reflecting mixing between D-poor fluid(s) and distinct organic endmember components that are variably D-rich. High-resolution N isotope data of 15N-rich domains show that the lithic clast diffuse organic matter is typically more 15N-rich than globular organic matter. The correlated δ15N values and C/N ratios of nanoglobules require the existence of multiple organic components, in agreement with the H isotope data. The combined H and N isotope data suggest that the organic precursors of the lithic clasts are defined by an extremely 15N-poor (similar to solar) and D-rich component for H-clasts, and a moderately 15N-rich and D-rich component for A-clasts. In contrast, the composition of the putative fluids is inferred to include D-poor but moderately to extremely 15N-rich H- and N-bearing components. The variable 15N enrichments in H- and A-clasts are associated with structural differences in the N bonding environments of their diffuse organic matter, which are dominated by amine groups in H-clasts and nitrile functional groups in A-clasts. We suggest that the isotopically divergent organic precursors in Isheyevo clasts may be similar to organic moieties in carbonaceous chondrites (CI, CM, CR) and thermally recalcitrant organic compounds in ordinary chondrites, respectively. The altering fluids, which are inferred to cause the 15N enrichments observed in the clasts, may be the result of accretion of variable abundances of NH3 and HCN ices. Finally, using bulk Mg and Cr isotope composition of clasts, we speculate on the accretion regions of the various primitive chondrites and components and the origin of the Solar System’s N and H isotope variability.

Item Type: Journal Item
Copyright Holders: 2017 The Author(s)
ISSN: 0016-7037
Keywords: Complex organic matter, Carbonaceous chondrites, Accretion regions
Academic Unit/School: Faculty of Science, Technology, Engineering and Mathematics (STEM) > Physical Sciences
Faculty of Science, Technology, Engineering and Mathematics (STEM)
Item ID: 53829
Depositing User: ORO Import
Date Deposited: 14 Mar 2018 15:30
Last Modified: 03 May 2019 10:10
URI: http://oro.open.ac.uk/id/eprint/53829
Share this page:

Metrics

Altmetrics from Altmetric

Citations from Dimensions

Download history for this item

These details should be considered as only a guide to the number of downloads performed manually. Algorithmic methods have been applied in an attempt to remove automated downloads from the displayed statistics but no guarantee can be made as to the accuracy of the figures.

Actions (login may be required)

Policies | Disclaimer

© The Open University   contact the OU