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Introduction:  Gale crater contains two fine-

grained mudstone sedimentary units: The Sheepbed 

mudstone member, and the Murray formation mud-

stones [1,2]. These mudstones formed as part of an an-

cient fluviolacustrine system [1,2]. The NASA Curios-

ity rover has analysed these mudstone units using the 

Chemistry and Camera (ChemCam), Alpha Particle X-

ray Spectrometer (APXS) and Chemistry and Mineral-

ogy (CheMin) onboard instrument suites. Subsequent 

mineralogical analyses have uncovered a wide geo-

chemical and mineralogical diversity across and within 

these two mudstone formations [3-6]. This study aims 

to determine the principal cause (alteration or source re-

gion) of this geochemical variation through a statistical 

analysis of the ChemCam dataset up to sol 1482, includ-

ing the lower to middle Murray formation.  

The Sheepbed mudstones are >1.5 m thick [1] and 

rich in primary mafic minerals (forsterite, augite and pi-

geonite), and smectitic clays [3]. They possess relatively 

thick, poorly defined laminations and contain many di-

agenetic features such as raised ridges [7], nodules (hol-

low and filled) [8] and mineral veins [9]. Hydrous alter-

ation models of these diagenetic features suggest that 

they formed in a mostly closed system, at a low water–

rock ratio (<1000) and neutral–alkaline pH [10].  

The Murray formation mudstones are laminated 

with some interstratified, cross-bedded sandstones and 

~150 m thick within the area of our study [2]. They are 

richer in felsic minerals (plagioclase feldspar, alkali 

feldspar) and X-ray amorphous materials than the 

Sheepbed mudstones, and poorer in clays [6]. Diage-

netic features present in the Pahrump Hills region (sols 

755–944) at the base of Murray include: nodules, raised 

ridges, and both light and dark mineral veins [11]. Fur-

ther up the stratigraphic succession in the Marias Pass 

and Bridger Basin regions (sols 995–1190) fracture-as-

sociated diagenetic halos occur [12].  

Methods: ChemCam acquires major, minor and 

trace element compositions through investigating a tar-

get host rock or soil between 2.2–7 m from the rover 

mast with Laser-Induced Breakdown Spectroscopy 

[13,14]. Between 30–50 spectral analyses are collected 

per observation point (OP) and averaged to give the OP 

compositions used here. We have grouped ChemCam 

OP analyses into a “host rock” dataset according to 

stratigraphic unit (Sheepbed and Murray) and locality 

for the Murray formation (Pahrump Hills, Marias Pass, 

West and East Naukluft Plateau, and Murray Buttes). 

We have also categorised diagenetic features (raised 

ridge, nodule, vein, halo) and separated them into their 

own “alteration” dataset (Fig. 1). Target classification is 

based on RMI, MastCam, MAHLI and NavCam im-

ages. Any OP that has hit soil, float, pebbles, drill tail-

ings or dump piles have been removed. To remove tar-

gets affected by open-system weathering, we have only 

included those in the dataset with totals between 95 % 

and 105 %. As ChemCam OP compositions do not in-

clude S or H, targets extensively altered by hydrolytic 

or acid-sulfate weathering should possess lower totals 

[15] and will hence be excluded. 

Due to ChemCam’s small sample footprint (350–

550 µm), host rock bulk compositions are simulated us-

ing density contours to illustrate the focal compositions 

and geochemical trends for the dataset. Each contour 

represents an equal amount of data plotted onto the 

(x,y)-space. Alteration trends and modelled Gale crater 

mineral compositions are plotted as scatter points to 

highlight trends associated with these features (Fig. 1).  

Figure 1: ChemCam analyses showing host rock density contour 

and alteration feature scatter trends for the Gale Crater Sheepbed 

and Murray mudstone units. Alteration feature scatter trends plot 

away from mudstone contour focal compositions indicating mini-

mal influence of alteration features on host rock compositions. 

Cross at left shows accuracy (thin) and precision (wide lines).  



Hydrous alteration trend discussion: In our da-

taset, sulfate mineral veins show clear major element 

oxide depletion for everything except CaO, along with 

low totals. Fracture-associated halos demonstrate strong 

silica-enrichment (up to 80 wt%) with depletions in all 

other major elements except TiO2 (enriched) and MgO 

(unchanged [Fig. 1]). The strong deviations away from 

host rock composition (Fig. 1) and consistency in geo-

chemical trends across stratigraphic groups suggests 

that these features are the product of open-system 

weathering occurring within bedrock fractures.  

Several nodule and raised ridge analyses show enrich-

ments in MgO or CaO, with depletions in all other major 

elements (Fig. 1). The raised ridges in the Sheepbed mud-

stones are substantially more MgO-rich (Fig. 1). Other-

wise, a large proportion of the raised ridge and nodule 

features are compositionally similar to their host mud-

stone. The phyllosilicates observed by CheMin indicate 

that chemical alteration of bedrock has occurred, how-

ever we assume that it was mostly authigenic and that, 

with care in selecting the targets, the overprint of altera-

tion can be distinguished and excluded to allow the iden-

tification of igneous source compositions. 

Source region variation discussion: On average, 

the Sheepbed mudstones are more depleted in SiO2, 

Al2O3, and K2O, but enriched in MgO, Na2O and CaO 

compared to the Murray formation mudstones. These 

compositional differences and associated element cor-

relations relate to mixing proportions between mafic 

and felsic primary minerals detected in the sediments.  

The Sheepbed mudstones possess a similar, if 

slightly less mafic, bulk geochemical composition to the 

tholeiitic Adirondack basalts (Fig. 1) analysed by the 

MER Spirit rover [16] and basaltic igneous float and 

clasts in Gale crater [17].  

The Murray formation is notably richer in felsic ma-

terial, highlighted by its elevated Al2O3, alkalis and de-

pleted MgO bulk composition (Fig. 1). A higher average 

silica content (55 wt% as opposed to 48 wt% for Sheep-

bed) is also a defining feature. With a basaltic mineral-

ogy identified in Murray drill samples, and with silica-

rich diagenetic features removed along with targets that 

have experienced open system alteration, the source for 

bulk Murray is hypothesized to be dominated by a sil-

ica-saturated tholeiitic provenance. The Marias Pass lo-

cality of the Murray formation demonstrates even more 

elevated silica concentrations (up to 80 wt% SiO2), 

though here it is related to a tridymite and cristobalite-

rich mineral assemblage identified in the Buckskin drill 

hole [5]. These minerals have been associated with a 

strongly silica-rich, likely volcanic source unique to the 

rest of the Murray formation and have not been identi-

fied anywhere else in Gale’s stratigraphy.  

The lower Murray formation also possesses on av-

erage more sanidine (~5 %) according to CheMin anal-

yses [6] which likely accounts for some of its relative 

K2O-enrichment. High order sanidine associated with a 

potassic-rich volcanic provenance [4] or hydrother-

mally altered source [18] has been detected in abun-

dance within the underlying Kimberley formation sand-

stones. We hypothesize that this trachytic source may 

have continued to contribute sediment to the lower Mur-

ray formation.  

Conclusions:  The results of this study show that el-

ement remobilisation relating to veins, haloes, raised 

ridges and nodules does not affect mudstone geochem-

istry in close proximity to these features, with many 

nodule and raised ridge compositions largely dependent 

on that of the surrounding rock. As such, and with au-

thigenic alteration assumed for clay generation, geo-

chemical variation of these mudstone units with similar 

grain sizes can be linked to changing source region con-

tributions. Hence, four different volcanic/magmatic 

source regions have been identified within the Sheepbed 

mudstone and Murray formation: 

1. A subalkaline tholeiite; similar in composition to 

the Adirondack Class basalts [16] and the dominant 

source region for the Sheepbed mudstones. 

2. A more silica-rich, subalkaline basalt; the main 

contributer to the Murray formation (this work). 

3. A highly evolved, silica-rich igneous source; iden-

tified by [5] in the Marias Pass, Buckskin drill hole. 

4. A potassium-rich volcanic source; identified by [4] 

in the Kimberley sandstone, Windjana drill hole 

analysis. This may provide a minor contribution to 

the mudstones of the lower Murray formation.  
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