The Open UniversitySkip to content
 

The triggering factors of the Móafellshyrna debris slide in northern Iceland: Intense precipitation, earthquake activity and thawing of mountain permafrost

Sæmundsson, Þorsteinn; Morino, Costanza; Helgason, Jón Kristinn; Conway, Susan J. and Pétursson, Halldór G (2018). The triggering factors of the Móafellshyrna debris slide in northern Iceland: Intense precipitation, earthquake activity and thawing of mountain permafrost. The Science of The Total Environment, 621 pp. 1163–1175.

Full text available as:
[img]
Preview
PDF (Accepted Manuscript) - Requires a PDF viewer such as GSview, Xpdf or Adobe Acrobat Reader
Download (2MB) | Preview
DOI (Digital Object Identifier) Link: https://doi.org/10.1016/j.scitotenv.2017.10.111
Google Scholar: Look up in Google Scholar

Abstract

On the 20th September 2012, a large debris slide occurred in the Móafellshyrna Mountain in the Tröllaskagi peninsula, central north Iceland. Our work describes and discusses the relative importance of the three factors that may have contributed to the failure of the slope: intense precipitation, earthquake activity and thawing of ground ice. We use data from weather stations, seismometers, witness reports and field observations to examine these factors. The slide initiated after an unusually warm and dry summer followed by a month of heavy precipitation. Furthermore, the slide occurred after three seismic episodes, whose epicentres were located ~60km NNE of Móafellshyrna Mountain. The main source of material for the slide was ice-rich colluvium perched on a topographic bench. Blocks of ice-cemented colluvium slid and then broke off the frontal part of the talus slope, and the landslide also involved a component of debris slide, which mobilized around 312,000-480,000m(3) (as estimated from field data and aerial images of erosional morphologies). From our analysis we infer that intense precipitation and seismic activity prior to the slide are the main preparatory factors for the slide. The presence of ice-cemented blocks in the slide's deposits leads us to infer that deep thawing of ground ice was likely the final triggering factor. Ice-cemented blocks of debris have been observed in the deposits of two other recent landslides in northern Iceland, in the Torfufell Mountain and the Árnesfjall Mountain. This suggests that discontinuous mountain permafrost is degrading in Iceland, consistent with the decadal trend of increasing atmospheric temperature in Iceland. This study highlights a newly identified hazard in Iceland: landslides as a result of ground ice thaw. Knowledge of the detailed distribution of mountain permafrost in colluvium on the island is poorly constrained and should be a priority for future research in order to identify zones at risk from this hazard.

Item Type: Journal Item
ISSN: 1879-1026
Keywords: Debris slide, Earthquake, Iceland, Permafrost, Precipitation
Academic Unit/School: Faculty of Science, Technology, Engineering and Mathematics (STEM) > Environment, Earth and Ecosystem Sciences
Faculty of Science, Technology, Engineering and Mathematics (STEM)
Faculty of Science, Technology, Engineering and Mathematics (STEM) > Physical Sciences
Item ID: 53188
SWORD Depositor: Jisc Publications-Router
Depositing User: Jisc Publications-Router
Date Deposited: 22 Feb 2018 16:14
Last Modified: 26 Jun 2019 05:07
URI: http://oro.open.ac.uk/id/eprint/53188
Share this page:

Metrics

Altmetrics from Altmetric

Citations from Dimensions

Download history for this item

These details should be considered as only a guide to the number of downloads performed manually. Algorithmic methods have been applied in an attempt to remove automated downloads from the displayed statistics but no guarantee can be made as to the accuracy of the figures.

Actions (login may be required)

Policies | Disclaimer

© The Open University   contact the OU