Deep fusion of multi-channel neurophysiological signal for emotion recognition and monitoring

Li, Xiang; Song, Dawei; Zhang, Peng; Hou, Yuexian and Hu, Bin (2017). Deep fusion of multi-channel neurophysiological signal for emotion recognition and monitoring. International Journal of Data Mining and Bioinformatics, 18(1) pp. 1–27.

DOI: https://doi.org/10.1504/IJDMB.2017.086097

Abstract

How to fuse multi-channel neurophysiological signals for emotion recognition is emerging as a hot research topic in community of Computational Psychophysiology. Nevertheless, prior feature engineering based approaches require extracting various domain knowledge related features at a high time cost. Moreover, traditional fusion method cannot fully utilise correlation information between different channels and frequency components. In this paper, we design a hybrid deep learning model, in which the 'Convolutional Neural Network (CNN)' is utilised for extracting task-related features, as well as mining inter-channel and inter-frequency correlation, besides, the 'Recurrent Neural Network (RNN)' is concatenated for integrating contextual information from the frame cube sequence. Experiments are carried out in a trial-level emotion recognition task, on the DEAP benchmarking dataset. Experimental results demonstrate that the proposed framework outperforms the classical methods, with regard to both of the emotional dimensions of Valence and Arousal.

Viewing alternatives

Download history

Metrics

Public Attention

Altmetrics from Altmetric

Number of Citations

Citations from Dimensions

Item Actions

Export

About

  • Item ORO ID
  • 52877
  • Item Type
  • Journal Item
  • ISSN
  • 1748-5681
  • Project Funding Details
  • Funded Project NameProject IDFunding Body
    Chinese National Program on Key Basic Research Project (973 Program)2014CB744604Not Set
    Chinese National Program on Key Basic Research Project (973 Program)2013CB329303Not Set
    Chinese National Program on Key Basic Research Project (973 Program)2013CB329304Not Set
    Chinese 863 Program2015AA015403Not Set
    Not SetU1636203Natural Science Foundation of China
    Not Set61402324Natural Science Foundation of China
    Tianjin Research Program of Application Foundation and Advanced Technology15JCQNJC41700Not Set
  • Keywords
  • affective computing; CNN; time series data analysis; EEG; emotion recognition; LSTM; multi-channel data fusion; multi-modal data fusion; physiological signal; RNN
  • Academic Unit or School
  • Faculty of Science, Technology, Engineering and Mathematics (STEM) > Computing and Communications
    Faculty of Science, Technology, Engineering and Mathematics (STEM)
  • Research Group
  • Centre for Research in Computing (CRC)
  • Copyright Holders
  • © 2017 Inderscience Enterprises Ltd.
  • Depositing User
  • Dawei Song

Recommendations