The Open UniversitySkip to content

Far-infrared observations of a massive cluster forming in the Monoceros R2 filament hub

Rayner, T. S. M.; Griffin, M. J.; Schneider, N.; Motte, F.; Könyves, V.; André, P.; Di Francesco, J.; Didelon, P.; Pattle, K.; Ward-Thompson, D.; Anderson, L. D.; Benedettini, M.; Bernard, J.-P.; Bontemps, S.; Elia, D.; Fuente, A.; Hennemann, M.; Hill, T.; Kirk, J.; Marsh, K.; Men’shchikov, A.; Nguyen Luong, Q.; Peretto, N.; Pezzuto, S.; Rivera-Ingraham, A.; Roy, A.; Rygl, K.; Sánchez-Monge, Á.; Spinoglio, L.; Tigé, J.; Treviño-Morales, S. P. and White, G. J. (2017). Far-infrared observations of a massive cluster forming in the Monoceros R2 filament hub. Astronomy & Astrophysics, 607 A22.

Full text available as:
PDF (Version of Record) - Requires a PDF viewer such as GSview, Xpdf or Adobe Acrobat Reader
Download (12MB) | Preview
DOI (Digital Object Identifier) Link:
Google Scholar: Look up in Google Scholar


We present far-infrared observations of Monoceros R2 (a giant molecular cloud at approximately 830 pc distance, containing several sites of active star formation), as observed at 70 μm, 160 μm, 250 μm, 350 μm, and 500 μm by the Photodetector Array Camera and Spectrometer (PACS) and Spectral and Photometric Imaging Receiver (SPIRE) instruments on the Herschel Space Observatory as part of the Herschel imaging survey of OB young stellar objects (HOBYS) Key programme. The Herschel data are complemented by SCUBA-2 data in the submillimetre range, and WISE and Spitzer data in the mid-infrared. In addition, C18O data from the IRAM 30-m Telescope are presented, and used for kinematic information. Sources were extracted from the maps with getsources, and from the fluxes measured, spectral energy distributions were constructed, allowing measurements of source mass and dust temperature. Of 177 Herschel sources robustly detected in the region (a detection with high signal-to-noise and low axis ratio at multiple wavelengths), including protostars and starless cores, 29 are found in a filamentary hub at the centre of the region (a little over 1% of the observed area). These objects are on average smaller, more massive, and more luminous than those in the surrounding regions (which together suggest that they are at a later stage of evolution), a result that cannot be explained entirely by selection effects. These results suggest a picture in which the hub may have begun star formation at a point significantly earlier than the outer regions, possibly forming as a result of feedback from earlier star formation. Furthermore, the hub may be sustaining its star formation by accreting material from the surrounding filaments.

Item Type: Journal Item
Copyright Holders: 2017 ESO
ISSN: 0004-6361
Keywords: ISM: individual objects: Mon R2; HII regions; stars: protostars; stars: formation; ISM: structure; dust, extinction
Academic Unit/School: Faculty of Science, Technology, Engineering and Mathematics (STEM) > Physical Sciences
Faculty of Science, Technology, Engineering and Mathematics (STEM)
Item ID: 52623
Depositing User: G. J. White
Date Deposited: 18 Dec 2017 10:14
Last Modified: 02 May 2019 11:13
Share this page:


Altmetrics from Altmetric

Citations from Dimensions

Download history for this item

These details should be considered as only a guide to the number of downloads performed manually. Algorithmic methods have been applied in an attempt to remove automated downloads from the displayed statistics but no guarantee can be made as to the accuracy of the figures.

Actions (login may be required)

Policies | Disclaimer

© The Open University   contact the OU