The Open UniversitySkip to content
 

A reanalysis of ozone on Mars from assimilation of SPICAM observations

Holmes, James; Lewis, Stephen; Patel, Manish and Lefèvre, Franck (2017). A reanalysis of ozone on Mars from assimilation of SPICAM observations. Icarus, 302 pp. 308–318.

Full text available as:
[img]
Preview
PDF (Accepted Manuscript) - Requires a PDF viewer such as GSview, Xpdf or Adobe Acrobat Reader
Download (4MB) | Preview
[img]
Preview
PDF (Version of Record) - Requires a PDF viewer such as GSview, Xpdf or Adobe Acrobat Reader
Download (3MB) | Preview
DOI (Digital Object Identifier) Link: https://doi.org/10.1016/j.icarus.2017.11.026
Google Scholar: Look up in Google Scholar

Abstract

We have assimilated for the first time SPICAM retrievals of total ozone into a Martian global circulation model to provide a global reanalysis of the ozone cycle. Disagreement in total ozone between model prediction and assimilation is observed between 45°S–10°S from LS=135–180° and at northern polar (60°N–90°N) latitudes during northern fall (LS=150–195°). Large percentage differences in total ozone at northern fall polar latitudes identified through the assimilation process are linked with excessive northward transport of water vapour west of Tharsis and over Arabia Terra. Modelling biases in water vapour can also explain the underestimation of total ozone between 45°S–10°S from LS=135–180°. Heterogeneous uptake of odd hydrogen radicals are unable to explain the outstanding underestimation of northern polar total ozone in late northern fall.

Assimilation of total ozone retrievals results in alterations of the modelled spatial distribution of ozone in the southern polar winter high altitude ozone layer. This illustrates the potential use of assimilation methods in constraining total ozone where SPICAM cannot observe, in a region where total ozone is especially important for potential investigations of the polar dynamics.

Item Type: Journal Item
Copyright Holders: 2017 The Authors
ISSN: 0019-1035
Project Funding Details:
Funded Project NameProject IDFunding Body
Case for Support for Modelling and Data Assimilation Science Co-I on the ExoMars Trace Gas Orbiter. (SP-10-073-SL)ST/I003096/1STFC (Science & Technology Facilities Council)
Astronomy and Planetary Sciences at the Open UniversityST/L000776/1STFC (Science & Technology Facilities Council)
Support for Science Co-I's on the ExoMars Trace Gas Orbiter Instruments. (SM-10-074-MP)ST/I003061/1STFC (Science & Technology Facilities Council)
Modelling and retrieval of martian dust, ice and ozone from ExoMars NOMAD dataST/P001262/1UKSA UK Space Agency
UPWARDSUPWARDS-633127Horizon 2020
Keywords: Martian atmosphere; Mars; data assimilation; atmospheres; atmospheric chemistry
Academic Unit/School: Faculty of Science, Technology, Engineering and Mathematics (STEM) > Physical Sciences
Faculty of Science, Technology, Engineering and Mathematics (STEM)
Research Group: Space
Item ID: 52475
Depositing User: James Holmes
Date Deposited: 27 Nov 2017 09:48
Last Modified: 23 May 2018 09:05
URI: http://oro.open.ac.uk/id/eprint/52475
Share this page:

Metrics

Altmetrics from Altmetric

Citations from Dimensions

Download history for this item

These details should be considered as only a guide to the number of downloads performed manually. Algorithmic methods have been applied in an attempt to remove automated downloads from the displayed statistics but no guarantee can be made as to the accuracy of the figures.

Actions (login may be required)

Policies | Disclaimer

© The Open University   contact the OU