Copy the page URI to the clipboard
Herique, A.; Agnus, B.; Asphaug, E.; Barucci, A.; Beck, P.; Bellerose, J.; Biele, J.; Bonal, L.; Bousquet, P.; Bruzzone, L.; Buck, C.; Carnelli, I.; Cheng, A.; Ciarletti, V.; Delbo, M.; Du, J.; Du, X.; Eyraud, C.; Fa, W.; Gil Fernandez, J.; Gassot, O.; Granados-Alfaro, R.; Green, S. F.; Grieger, B.; Grundmann, J.T.; Grygorczuk, J.; Hahnel, R.; Heggy, E.; Ho, T-M.; Karatekin, O.; Kasaba, Y.; Kobayashi, T.; Kofman, W.; Krause, C.; Kumamoto, A.; Küppers, M.; Laabs, M.; Lange, C.; Lasue, J.; Levasseur-Regourd, A. C.; Mallet, A.; Michel, P.; Mottola, S.; Murdoch, N.; Mütze, M.; Oberst, J.; Orosei, R.; Plettemeier, D.; Rochat, S.; RodriguezSuquet, R.; Rogez, Y.; Schaffer, P.; Snodgrass, C.; Souyris, J-C.; Tokarz, M.; Ulamec, S.; Wahlund, J-E. and Zine, S.
(2018).
DOI: https://doi.org/10.1016/j.asr.2017.10.020
Abstract
Our knowledge of the internal structure of asteroids is, so far, indirect – relying entirely on inferences from remote sensing observations of the surface, and theoretical modeling of formation and evolution. What are the bulk properties of the regolith and deep interior? And what are the physical processes that shape asteroid internal structures? Is the composition and size distribution observed on the surface representative of the bulk? These questions are crucial to understand small bodies’ history from accretion in the early Solar System to the present, and direct measurements are needed to answer these questions for the benefit of science as well as for planetary defense or exploration.
Radar is one of the main instruments capable of sounding asteroids to characterize internal structure from sub-meter to global scale. In this paper, we review the science case for direct observation of the deep internal structure and regolith of a rocky asteroid of kilometer size or smaller. We establish the requirements and model dielectric properties of asteroids to outline a possible instrument suite, and highlight the capabilities of radar instrumentation to achieve these observations. We then review the expected science return including secondary objectives contributing to the determination of the gravitational field, the shape model, and the dynamical state. This work is largely inherited from MarcoPolo-R and AIDA/AIM studies
Viewing alternatives
Download history
Metrics
Public Attention
Altmetrics from AltmetricNumber of Citations
Citations from DimensionsItem Actions
Export
About
- Item ORO ID
- 52225
- Item Type
- Journal Item
- ISSN
- 0273-1177
- Project Funding Details
-
Funded Project Name Project ID Funding Body Consolidated Grant - Solar Studies and Planetary Studies (SS & PL 2016) ST/P000657/1 STFC (Science & Technology Facilities Council) - Keywords
- near-Earth asteroid; radar tomography; dielectric properties; asteroid deep internal structure; asteroid regolith
- Academic Unit or School
-
Faculty of Science, Technology, Engineering and Mathematics (STEM) > Physical Sciences
Faculty of Science, Technology, Engineering and Mathematics (STEM) - Research Group
- Space
- Copyright Holders
- © 2017 COSPAR
- Depositing User
- Simon Green