Symmetry breaking by quantum coherence in single electron attachment

How to cite:

For guidance on citations see FAQs.

© 2017 Springer Nature

Version: Version of Record

Link(s) to article on publisher’s website:
http://dx.doi.org/doi:10.1038/nphys4289

Copyright and Moral Rights for the articles on this site are retained by the individual authors and/or other copyright owners. For more information on Open Research Online’s data policy on reuse of materials please consult the policies page.

oro.open.ac.uk
Symmetry breaking by quantum coherence in single electron attachment

E. Krishnakumar*1, Vaibhav S. Prabhudesai1 and Nigel J. Mason2

Quantum coherence-induced effects in atomic and molecular systems are the basis of several proposals for laser-based control of chemical reactions. So far, these rely on coherent photon beams inducing coherent reaction pathways that may interfere with one another, to achieve the desired outcome. This concept has been successfully exploited for removing the inversion symmetry in the dissociation of homonuclear diatomic molecules, but it remains to be seen if such quantum coherent effects can also be generated by the interaction of incoherent electrons with such molecules. Here we show that resonant electron attachment to H2 and the subsequent dissociation into H (n = 2) + H− is asymmetric about the inter-nuclear axis, whereas the asymmetry in D2 is far less pronounced. We explain this observation as due to attachment of a single electron resulting in a coherent superposition of two resonances of opposite parity. In addition to exemplifying a new quantum coherent process, our observation of coherent quantum dynamics involves the active participation of all three electrons and two nuclei, which could provide new tools for studying electron correlations as a means to control chemical processes, and demonstrates the role of coherent effects in electron-induced chemistry.

The development of many concepts in quantum information technology depends crucially on effects induced by quantum coherence in atomic and molecular processes1. Quantum coherence forms also the basis of several proposals for controlling chemical reactions using lasers2–3, which can be achieved by exciting a molecule to a given state through more than one quantum path using coherent photon beams. To achieve the desired outcome, the ensuing interference between quantum paths can be tailored using their phase difference4. One of the most fascinating effects of these schemes is the breaking of inversion symmetry in a homonuclear diatomic molecule5. Since single-photon absorption is dominated by dipole transitions, breaking the inversion symmetry in a homonuclear diatomic system requires the simultaneous presence of two photon absorption paths. These coherent photon absorption paths, one of odd and the other of even parity, interfere with one another, and the interference changes with the phase difference between the two photon paths. An essential aspect of this process is the coherent transfer of odd and even angular momenta to a single molecule using two different sets of laser beams that are coherent with one another. Can such a phenomenon take place in particle collisions? In other words, will quantum coherence be observed in a particle collision when more than one angular momentum transfer channel can be accessed with comparable strength to create a situation similar to the two-photon interference process? If so, then such projectiles need not be coherent to invoke the quantum coherence in a system. Here we show that this indeed happens in the case of electron attachment to hydrogen molecules.

Resonant attachment of an electron to a molecule forming a negative ion resonance (NIR) and its subsequent decay through dissociation forming a stable negative ion and one or more neutral atoms or radicals is called dissociative attachment (DA). The process of DA in H2 together with its time-reversed process of H− and H combining to form a H2 molecule and a free electron, known as associative detachment (AD), are important in many areas of physics and chemistry, from cosmology6–9 to the science and technology of controlled fusion10. Resonant attachment is based upon the symmetry of the neutral state and the NIR that is formed. It has been shown11 that due to the inversion symmetry and subsequent parity conservation in homonuclear diatomic molecules such as H2+, capture of only odd or even partial waves (angular momentum quanta) of the incoming electron is allowed. Indeed, for a transition between states with the same parity, capture of only even values of angular momentum quanta, l, are allowed and for opposite parity only odd values are allowed. Also, due to the low energy of the projectiles, lower-order partial waves tend to be more dominant compared to the higher-order partial waves. Thus, in the case of H2+, where the molecule in the ground state has a Σg+ symmetry, the formation of the NIR with Σg− symmetry allows all orientations of the molecule with respect to the incoming electron (l = 0 is the dominant partial wave) and the angular distribution of H− will show little if any anisotropy, as shown in Fig. 1a. Similarly, for the negative ion states Σg+, Πg+ and Πu+, the angular distributions are expected to be as shown in Fig. 1b–d, respectively. In any such case, the distribution is always symmetric with respect to the direction of the electron beam. DA experiments on all the homonuclear diatomic molecules studied to date, including H2 (in the limited angular range), have consistently shown this symmetry12–15.

H− production from H2 through DA appears as peaks in the cross section at 4 eV and 14 eV, and as a broad peak between 7 and 13 eV (ref. 16). The threshold for the formation of H− from H2 is 3.724 eV (bond dissociation energy of H2 = 4.478 eV, electron affinity of H = 0.7545 eV). The 4 eV resonance dissociates to yield H− (1s) + H (1s) with both fragments in their respective ground states. The broad peak between 7 eV and 13 eV is due to a purely repulsive NIR state which dissociates into the ground states of H− (1s) and H(1s). The 14 eV peak leads to H− (1s) and the excited H (n = 2) atom (threshold 13.92 eV), hence the fragments are formed with very low kinetic energies, similar to that of the 4 eV...
channel. H⁻ formation is also possible at higher electron energies, with the opening of a new channel (dipolar dissociation) that has a threshold at 17.75 eV. It has been shown that between 14 eV and the channel. H⁻ threshold at 17.75 eV, and so on) does occur. We carried out a series of experiments to measure the angular distribution of H⁻ produced by the DA to H₂ and D₂ using the velocity slice imaging technique. The details of the experimental technique are given in Methods.

Velocity slice images of H⁻ at 4.5 eV and 14.5 eV are shown in Figs 2a and 2b, respectively. It can be seen that the image at 4.5 eV shows a symmetric distribution in the forward and backward directions, and based on Fig. 1b we conclude that the resonant state is of Σ⁺ symmetry. In contrast to the 4.5 eV image, the 14.5 eV image shows a noticeable forward-backward asymmetry. That the intensity distribution is parallel to the electron beam implies the contribution from a resonance of Σ⁺ symmetry. The measurements carried out at higher electron energies show a similar asymmetry in the distribution, as can be seen in Fig. 2b–d. The results for D₂ in the same energy range are shown in Fig. 2e–g. While the images of H⁻ show a marked asymmetry, the images of D₂ show much less asymmetry. The slight asymmetry that is present in the D⁻ image appears to change direction with electron energy—at 14 eV the asymmetry is opposite to that seen in H₂, at 14.5 eV the distribution is almost symmetrical, and at 15 eV it is in the same direction as that in H₂.

As discussed earlier, due to the inversion symmetry of a homonuclear diatomic molecule, DA through a single NIR will not provide any asymmetry in the angular distribution of the ions. So how might such an observed asymmetry arise? We show below that the asymmetry can be explained in terms of the interference of two dissociating quantum paths if the electron attachment leads to the coherent formation of two NIRs of opposite parity. This takes place by attachment of the s-wave (l = 1) and the p-wave (l = 0) of a free electron coherently to form NIRs of Σ⁺ and Σ⁻ symmetry, respectively. These two NIRs eventually dissociate to the same limit through their respective potential energy curves, defining two interfering quantum paths, as shown in Fig. 3. For these two coherently formed NIRs, the angular distribution of the fragment ions is given by

$$f(\theta) = \sigma_{DA} + 3\sigma_{DA} \cos^2 \theta + 2 \cos \delta \cos \theta \sqrt{|\sigma_{DA}||\sigma_{DA}|}$$

where σ_{DA} and σ_{DA} are the DA cross sections for each of the channels contributing and $\sqrt{|\sigma_{DA}||\sigma_{DA}|}$ indicate the corresponding probability amplitudes of the contributions of the two states to the DA cross section. θ is the angle of ejection of the H⁻ anion with respect to the incoming electron beam, and δ is the relative phase between the two channels at the dissociation limit.

The extent of the asymmetry, which is seen as the contrast in the interference pattern, depends on the relative phase between the two paths and the relative amplitudes of the wavepackets traversing the two paths. Phase differences between these two paths will then occur as the two NIRs evolve along the two distinct potential energy curves. The relative amplitudes of the two paths depend on the capture cross section associated with each NIR and its ‘survival probability’ against autodetachment, which is given by

$$P_l = \exp \left(-\int_{R_L}^{R_U} \frac{\Gamma(R)}{\hbar u(R)} dR\right) = \exp \left(-\int_{R_L}^{R_U} \frac{dt}{\tau(R)}\right)$$

where $\Gamma(R)$ is the width of the anion potential energy curve, $u(R)$ is the speed of separation of the dissociating atoms, R_L is the internuclear separation where the electron capture takes place and R_U is the effective inter-nuclear separation beyond which the molecular anion is considered to be dissociated. $\tau(R)$ is the corresponding lifetime of the NIR.

Effects due to survival probability are more prominent in the case of heavier isotopes, as they have longer dissociation times. As the survival probability of the NIR varies exponentially with the time for dissociation, the likelihood of a given resonance surviving against autodetachment in D₂ is considerably smaller compared to that in H₂. This has long been recognized as the basis for the strong isotope effect in DA in molecular hydrogen and its isotopomers. If one of the two coherent NIRs decays much faster compared to the other then the contrast of the interference between the two will be weakened. This situation is akin to putting an absorbing material in one arm of an optical interferometer, thereby reducing the contrast of the interference fringes.

From the momentum images we have derived the forward–backward asymmetry, $\eta = (I_f - I_b)/(I_f + I_b)$, at selected energies across the 14 eV resonance, where I_f and I_b are the forward and backward signal strengths with respect to the incoming electron beam, determined as the respective angle-integrated counts in the forward (+ve P_L) and backward (−ve P_R) directions with respect to the horizontal axis (90°). The values of η are presented in Table 1. However, it can be seen that, in the case of H₂, the asymmetry is negative at all energies due to the larger backward intensity. The asymmetry in D₂, although small, is in the opposite direction at 14 eV and changes direction as we change the electron energy.

To model the observed results quantitatively it is necessary to have detailed information on the potential energy curves and lifetimes of the NIRs that are involved. There have been several electron scattering studies on H₂ and D₂ which have provided a wealth of information on their NIRs, as reviewed by Schulz. However, very little information is available for the 14 eV process as compared to that for the 4 eV and 10 eV processes. Transmission as well as scattering experiments had indicated the presence of a Σ^+ NIR in the 11 eV to 13.5 eV range. The same NIR was identified in the electron scattering experiments at 14 eV with a width of
Asymmetric at higher energies and that the asymmetry is substantially lower for D− images. The electron beam direction is from bottom to top of the figure. Note that whereas the intensity distribution is symmetric for H− at 4.5 eV, it is asymmetric at higher energies and that the asymmetry is substantially lower for D−.

One can estimate the amount of forward–backward asymmetry for a given electron energy if one knows the potential energy curves for the resonances involved and their widths as a function of inter-nuclear separations. Such an estimate of the asymmetry for two sets of potential energy curves as a function of the lifetime of the ungerade state and electron energy is shown in Fig. 4. The asymmetry shows an oscillatory pattern. Please refer the Methods for the details of the model. We have used an average lifetime of 8 fs for the 2Σg− state based on the reported width of 90 meV at 14 eV (ref. 21) and the potential energy curve given by Sharp25 for the 2Σg− state in both the simulations. For the 2Σu− state, we have used two different curves. For the results in Fig. 4a,c we used a curve that follows the B′ Σg+ state of the neutral, but with an appropriate energy shift. In a similar way, plots in Fig. 4b,d were obtained by using the potential energy curve that follows the C′ Σg+ curve of neutral H_{\text{2}} (ref. 25) with a downshift in energy. As expected the pattern strongly depends on the potential energy curves as well as lifetimes of the resonant states involved. The overall forward–backward asymmetry is seen to oscillate with electron energy. These oscillations are ‘faster’ if the two dissociating paths are considerably different, as in the case of Fig. 4a,c, and ‘slower’ when the two paths...
...with the values of η represented by the colour scale given next to each plot. In all the
plots the potential energy (PE) curve for the $^2\Sigma^+$ state is taken from Sharp25 and assumed to have an average lifetime of 8 fs. The PE curve for the $^2\Sigma^+$ state in a and c is assumed to follow the $^1\Sigma^+$ curve with an appropriate energy shift and that for b and d is assumed to follow the $^3\Pi_g$ curve from Sharp25; the plots b and d resemble the experimental observation more closely, indicating that the approximate potential energy curves used are closer to the real ones (see text).

![Figure 4](https://example.com/figure4.png)

Table 1 | Measured forward-backward asymmetry (η) for H_2 and D_2.

<table>
<thead>
<tr>
<th>H_2</th>
<th>D_2</th>
</tr>
</thead>
<tbody>
<tr>
<td>Electron energy (eV)</td>
<td>$\eta = \frac{I_F - I_B}{I_F + I_B}$</td>
</tr>
<tr>
<td>14.5</td>
<td>-0.19 ± 0.02</td>
</tr>
<tr>
<td>15.0</td>
<td>-0.17 ± 0.02</td>
</tr>
<tr>
<td>15.5</td>
<td>-0.12 ± 0.02</td>
</tr>
</tbody>
</table>

I_F and I_B are the angle-integrated signal strengths in the forward and backward directions, respectively. Please note that negative values of η indicate greater intensity in the backward direction and positive values indicate greater intensity in the forward direction.

A comparison of the present results with the observed symmetry breaking following single-photon absorption in H_2 (ref. 26) may be appropriate. The photoabsorption in H_2 at 33 eV leads to the creation of an autoionizing state which then decays by electron ejection to two ionic states of opposite parity, both of which dissociate to the same $H^+ + H$ limit. The corresponding ejected electron angular momentum is a superposition of odd and even parity, leading to an asymmetry in the angular distribution with respect to the molecular axis. The major difference in the present case is that the attachment of a single electron necessarily leads to the creation of a coherent superposition of two autodetaching resonances of opposite parity, which on surviving against autodetachment show interference in dissociation.

To conclude, coherent excitation of two resonant states of a homonuclear diatomic molecule by electron attachment results in symmetry breaking in dissociative attachment. Such coherence stems from various partial waves of the attaching electron, and the resulting quantum paths interfere as they lead to the same dissociation limits. This scenario may be observed in particular in electron attachment, but may also occur more generally in particle scattering as it allows more than one value of angular momentum transfer with comparable strength, unlike photoabsorption. It is also interesting to note that the preference of H^+ ejection in one direction as against the ejection of an excited H atom demonstrates the localization of charge and energy acquired by the molecule in electron attachment. This also provides direct evidence of the role of electron–electron correlations in terms of energy and charge segregation in the dissociation process. The asymmetry in the fragmentation of D_2 is weaker, indicating the reduced strength of the interference in D_2. This is due to the slower dissociation of the resonant states of D_2, resulting in relatively larger depletion of the amplitude of one of the dissociating channels through autodetachment. The situation is similar to two interferometers with...
different arm lengths and with an absorbing medium of differing thickness in the two arms. These results highlight the need, as well as the challenges, in developing full quantum dynamical calculations for DA to even the simplest system, such as H₂. Lastly, we wish to point out that the formation of coherent states we observe in the DA process may be far more general than has been recognized until now, and the signatures of such coherent effects may exist in electron scattering from molecules in general. Moreover, the coherent excitations of anion states also hint at more possibilities of electron-induced chemical control.

Methods
Methods, including statements of data availability and any associated accession codes and references, are available in the online version of this paper.

Received 22 June 2017; accepted 13 September 2017; published online 16 October 2017

References

Acknowledgements
We thank B. Nestmann and Y. Sajeev for useful discussions. E.K. acknowledges a Marie Curie Fellowship during the course of the measurements and E.K. and V.S.P. acknowledge the Department of Atomic Energy, India for financial support during the course of the work. N.J.M. recognizes support from the European Union Framework 7 programme LASSIE Marie Curie ITN Grant Agreement 238258 and VAMDC INFRA-2008-1.2.2 Scientific Data Infrastructure. Grant Agreement number: 239108.

Author contributions
E.K. and N.J.M. planned the research. E.K. built the experiment with help from N.J.M. and carried out the measurements. V.S.P. carried out the simulations and E.K. and V.S.P. interpreted the results. E.K. and V.S.P. prepared the manuscript.

Additional information
Supplementary information is available in the online version of the paper. Reprints and permissions information is available online at www.nature.com/reprints. Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations. Correspondence and requests for materials should be addressed to E.K.

Competing financial interests
The authors declare no competing financial interests.
Methods

Experimental apparatus. We carried out the measurements using the velocity slice imaging technique\(^\text{18}\). In this, a pulsed (200 ns pulse duration) electron beam is allowed to interact with an effusive molecular beam produced from a long capillary tube. A low magnetic field (50 G) is used to collimate the electron beam. The product anions are extracted into a velocity-mapping time-of-flight spectrometer mounted at right angles to the electron beam direction using a pulsed electric field after a delay of 200 ns with respect to the electron pulse. The ions are detected using a two-dimensional position-sensitive detector including a Z-stack of three 75-mm-diameter microchannel plates and a phosphor screen\(^\text{16}\). The image on the phosphor screen is recorded using a charge-coupled device (CCD) camera. Velocity slice imaging can be carried out by pulsing the detector and the phosphor bias corresponding to the arrival of the central slice of the Newton sphere of the relevant ion at the detector—however, due to the low signal levels, data were taken with relatively wide slices.

Model for the forward–backward asymmetry. With \(\tau_g\) and \(\tau_u\) as the average lifetimes of the gerade and ungerade resonant states involved in DA, \(t_g\) and \(t_u\) as the dissociation times for the parent anion along the respective potential energy curves for electron attachment with a specified energy, and assuming equal capture cross section for both the resonances, the forward–backward asymmetry, \(\eta\), can be obtained as

\[
\eta = \frac{\sqrt{3} \exp[-(t_g/2\tau_g + t_u/2\tau_u)]}{\exp[-(t_g/\tau_g)] + \exp[-(t_u/\tau_u)]} \cos \delta
\]

where \(\delta\) is the relative phase between the two paths of dissociation for the anion resonant states given by

\[
\delta = \frac{1}{R_C} \int_{R_C}^{\infty} \left[\sqrt{2\mu(E - V_g(R))} \right. - \left. \sqrt{2\mu(E - V_u(R))} \right] dR + \frac{\pi}{2}
\]

Here \(R_C\) is the inter-nuclear separation corresponding to the electron capture, \(\mu\) is the reduced mass of the dissociating system, \(E\) is the electron energy and \(V(R)\) is the potential energy corresponding to the given resonant state with respect to the \(v = 0\) level of the neutral ground state.

Data availability. The data that support the plots within this paper and other findings of this study are available from the corresponding author upon reasonable request.