Symmetry breaking by quantum coherence in single electron attachment

How to cite:

Copyright and Moral Rights for the articles on this site are retained by the individual authors and/or other copyright owners. For more information on Open Research Online’s data policy on reuse of materials please consult the policies page.

oro.open.ac.uk
Symmetry breaking by quantum coherence in single electron attachment

E. Krishnakumar1*, Vaibhav S. Prabhudesai1 and Nigel J. Mason2

Quantum coherence-induced effects in atomic and molecular systems are the basis of several proposals for laser-based control of chemical reactions. So far, these rely on coherent photon beams inducing coherent reaction pathways that may interfere with one another, to achieve the desired outcome. This concept has been successfully exploited for removing the inversion symmetry in the dissociation of homonuclear diatomic molecules, but it remains to be seen if such quantum coherent effects can also be generated by the interaction of incoherent electrons with such molecules. Here we show that resonant electron attachment to H2 and the subsequent dissociation into H (n = 2) + H− is asymmetric about the inter-nuclear axis, whereas the asymmetry in D2 is far less pronounced. We explain this observation as due to attachment of a single electron resulting in a coherent superposition of two resonances of opposite parity. In addition to exemplifying a new quantum coherent process, our observation of coherent quantum dynamics involves the active participation of all three electrons and two nuclei, which could provide new tools for studying electron correlations as a means to control chemical processes, and demonstrates the role of coherent effects in electron-induced chemistry.

The development of many concepts in quantum information technology depends crucially on effects induced by quantum coherence in atomic and molecular processes1. Quantum coherence forms also the basis of several proposals for controlling chemical reactions using lasers2,3, which can be achieved by exciting a molecule to a given state through more than one quantum path using coherent photon beams. To achieve the desired outcome, the ensuing interference between quantum paths can be tailored using their phase difference4. One of the most fascinating effects of these schemes is the breaking of inversion symmetry in a homonuclear diatomic molecule5. Since single-photon absorption is dominated by dipole transitions, breaking the inversion symmetry in a homonuclear diatomic system requires the simultaneous presence of two photon absorption paths. These coherent photon absorption paths, one of odd and the other of even parity, interfere with one another, and the interference changes with the phase difference between the two photon paths. An essential aspect of this process is the coherent transfer of odd and even angular momenta to a single molecule using two different sets of laser beams that are coherent with one another. Can such a phenomenon take place in particle collisions? In other words, will quantum coherence be observed in a particle collision when more than one angular momentum transfer channel can be accessed with comparable strength to create a situation similar to the two-photon interference process? If so, then such projectiles need not be coherent to invoke the quantum coherence in a system. Here we show that this indeed happens in the case of electron attachment to hydrogen molecules.

Resonant attachment of an electron to a molecule forming a negative ion resonance (NIR) and its subsequent decay through dissociation forming a stable negative ion and one or more neutral atoms or radicals is called dissociative attachment (DA). The process of DA in H2 together with its time-reversed process of H− and H combining to form a H2 molecule and a free electron, known as associative detachment (AD), are important in many areas of physics and chemistry, from cosmology6–8 to the science and technology of controlled fusion9,10. Resonant attachment is based upon the symmetry of the neutral state and the NIR that is formed. It has been shown11 that due to the inversion symmetry and subsequent parity conservation in homonuclear diatomic molecules such as H2+, capture of only odd or even partial waves (angular momentum quanta) of the incoming electron is allowed. Indeed, for a transition between states with the same parity, capture of only even values of angular momentum quanta, λ, are allowed and for opposite parity only odd values are allowed. Also, due to the low energy of the projectiles, lower-order partial waves tend to be more dominant compared to the higher-order partial waves. Thus, in the case of H2, where the molecule in the ground state has a Σ+g symmetry, the formation of the NIR with Σ−u symmetry allows all orientations of the molecule with respect to the incoming electron (λ = 0 is the dominant partial wave) and the angular distribution of H− will show little if any anisotropy, as shown in Fig. 1a. Similarly, for the negative ion states Π+g, Π0u, and Π−u, the angular distributions are expected to be as shown in Fig. 1b–d, respectively. In any such case, the distribution is always symmetric with respect to the direction of the electron beam. DA experiments on all the homonuclear diatomic molecules studied to date, including H2 (in the limited angular range), have consistently shown this symmetry.12–15

H− production from H2 through DA appears as peaks in the cross section at 4 eV and 14 eV, and as a broad peak between 7 and 13 eV (ref. 16). The threshold for the formation of H− from H2 is 3.724 eV (bond dissociation energy of H2 = 4.478 eV, electron affinity of H = 0.7545 eV). The 4 eV resonance dissociates to yield H− (1s5) + H (1s), whereas for the other fragments in their respective ground states. The broad peak between 7 eV and 13 eV is due to a purely repulsive NIR state which dissociates into the ground states of H− (1s5) and H(1s). The 14 eV peak leads to H− (1s5) and the excited H (n = 2) atom (threshold 13.92 eV), hence the fragments are formed with very low kinetic energies, similar to that of the 4 eV

1Tata Institute of Fundamental Research, Homi Bhabha Road, Colaba, Mumbai 400005, India. 2Open University, Walton Hall, Milton Keynes MK7 6AA, UK. *e-mail: ekkumar@tifr.res.in

© 2017 Macmillan Publishers Limited, part of Springer Nature. All rights reserved.
channel. H⁻ formation is also possible at higher electron energies, with the opening of a new channel (dipolar dissociation) that has a threshold at 17.75 eV. It has been shown that between 14 eV and the threshold at 17.75 eV, the angular distribution of H⁻ differs significantly from that of H₂. Between 14 eV and the opening of a new channel (dipolar dissociation) that has a threshold at 17.75 eV, it has been shown that the relative phase between two paths in the wave packets traversing the two paths is significant. Phase differences between these two paths will then occur as the two NRIs evolve along the two distinct potential energy curves. The relative amplitudes of the two paths depend on the capture cross section associated with each NRI, and its ‘survival probability’ against autodetachment, which is given by

\[f(\theta) = \sigma_{DA} + 3\sigma_{DA} \cos^2 \theta + 2\cos \delta \cos \theta \sqrt{\sigma_{DA}} \]

where \(\sigma_{DA} \) is the DA cross section for each of the channels contributing and \(\sqrt{\sigma_{DA}} \) and \(\sqrt{\sigma_{DA}} \) indicate the corresponding probability amplitudes of the contributions of the two states to the DA cross section, \(\theta \) is the angle of ejection of the H⁻ anion with respect to the incoming electron beam, and \(\delta \) is the relative phase between the two channels at the dissociation limit.

The extent of the asymmetry, which is seen as the contrast in the interference pattern, depends on the relative phase between two paths and the relative amplitudes of the wave packets traversing the two paths. Phase differences between these two paths will then occur as the two NRIs evolve along the two distinct potential energy curves. The relative amplitudes of the two paths depend on the capture cross section associated with each NRI and its ‘survival probability’ against autodetachment, which is given by

\[p_\text{DA} = \exp \left(-\int_R^{R_{\text{DA}}} \frac{\Gamma_\text{A}(R)}{\hbar \nu(R)} \, dR \right) = \exp \left(-\int_R^{R_{\text{DA}}} \frac{dt}{\tau(R)} \right) \]

where \(\Gamma_\text{A}(R) \) is the width of the anion potential energy curve, \(\nu(R) \) is the speed of separation of the dissociating atoms, \(R \) is the internuclear separation where the electron capture takes place and \(R \) is the effective inter-nuclear separation beyond which the molecular anion is considered to be dissociated. \(\tau(R) \) is the corresponding lifetime of the NRI.

Effects due to survival probability are more prominent in the case of heavier isotopes, as they have longer dissociation times. As the survival probability of the NRI varies exponentially with the time for dissociation, the likelihood of a given resonance surviving against autodetachment in D₂ is considerably smaller compared to that in H₂. This has long been recognized as the basis for the strong isotope effect in DA in molecular hydrogen and its isotopomers. If one of the two coherent NRIs decays much faster compared to the other then the contrast of the interference between the two will be weakened. This situation is akin to putting an absorbing material in one arm of an optical interferometer, thereby reducing the contrast of the interference fringes.

From the momentum images we have derived the forward–backward asymmetry, \(\eta = (I^+ - I^-)/(I^+ + I^-) \), at selected energies across the 14 eV resonance, where \(I^+ \) and \(I^- \) are the forward and backward signal strengths with respect to the incoming electron beam, determined as the respective angle-integrated counts in the forward (+ve \(P_\theta \)) and backward (−ve \(P_\theta \)) directions with respect to the horizontal axis (90°). The values of \(\eta \) are presented in Table 1. However, it can be seen that, in the case of H₂, the asymmetry is negative at all energies due to the larger backward intensity. The asymmetry in D₂, although small, is in the opposite direction at 14 eV and changes direction as we change the electron energy.

To model the observed results quantitatively it is necessary to have detailed information on the potential energy curves and lifetimes of the NRIs that are involved. There have been several electron scattering studies on H₂ and D₂ which have provided a wealth of information on their NRIs as reviewed by Schulz. However, very little information is available for the 14 eV process as compared to that for the 4 eV and 10 eV processes. Transmission as well as scattering experiments had indicated the presence of a \(^2 \Sigma^+ \) NRI in the 11 eV to 13.5 eV range. The same NRI was identified in the electron scattering experiments at 14 eV with a width of...
90 meV (ref. 21). Subsequent DA measurements concluded that this \(\Sigma^+ \) NIR is the main contributor to the 14 eV DA process\(^{22}\) and this has been the accepted wisdom until now\(^{16,23}\). Extensive R-matrix calculations\(^{24}\) give several NIRS of \(\Sigma_u \) and \(\Sigma_g \) symmetry above 12 eV. However, the overlap of these curves with the Franck–Condon region is below the energy range of interest here, even after taking their widths into account.

One can estimate the amount of forward–backward asymmetry for a given electron energy if one knows the potential energy curves for the resonances involved and their widths as a function of internuclear separations. Such an estimate of the asymmetry for two sets of potential energy curves as a function of the lifetime of the ungerade state and electron energy is shown in Fig. 4. The asymmetry shows an oscillatory pattern. Please refer the Methods for the details of the model. We have used an average lifetime of 8 fs for the \(\Sigma^+ \) state based on the reported width of 90 meV at 14 eV (ref. 21) and the potential energy curve given by Sharp\(^{25}\) for the \(\Sigma^+ \) state in both the simulations. For the \(\Sigma^+ \) state, we have used two different curves. For the results in Fig. 4a,c we used a curve that follows the \(\Sigma^+ \) state of the neutral, but with an appropriate energy shift\(^{25}\). In a similar way, plots in Fig. 4b,d were obtained by using the potential energy curve that follows the \(\Sigma^+ \) curve of neutral H\(_2\) (ref. 25) with a downshift in energy. As expected the pattern strongly depends on the potential energy curves as well as lifetimes of the resonant states involved. The overall forward–backward asymmetry is seen to oscillate with electron energy. These oscillations are ‘faster’ if the two dissociating paths are considerably different, as in the case of Fig. 4a,c, and ‘slower’ when the two paths

Figure 2 | Velocity slice images of \(H^- \) from \(H_2 \) and \(D^- \) from \(D_2 \) at different electron energies. a–g. Velocity slices have been converted to momentum images. The electron beam direction is from bottom to top of the figure. Note that whereas the intensity distribution is symmetric for \(H^- \) at 4.5 eV, it is asymmetric at higher energies and that the asymmetry is substantially lower for \(D^- \).

Figure 3 | Schematic of the DA process at 14 eV in \(H_2 \) and \(D_2 \). The dashed long arrows indicate electron attachment to form the coherent states \(2 \Sigma^+ \) and \(2 \Sigma^- \). For electron energies above 13.92 eV these states dissociate to form the negative ion (\(H^-/D^- \)) and the neutral atom (H/D) in the \(n=2 \) state. As the wavepackets of these states travel towards the dissociation limits they continuously decay through electron ejection, as shown by the broad faint arrows marked ‘a’. For \(H_2 \), the wavepackets reach the dissociation limit with more or less similar amplitudes, resulting in strong interference and the consequent asymmetry in the momentum distribution, as indicated by the velocity slice image. However, for \(D_2 \) one of the wavepackets has lost most of its amplitude and hence there is a relatively small interference effect, yielding the almost symmetric momentum distribution observed in the image. Please see the text for more details as well as the simulation results given in Fig. 4.
To conclude, coherent excitation of two resonant states of a homonuclear diatomic molecule by electron attachment results in symmetry breaking in dissociative attachment. Such coherence stems from various partial waves of the attaching electron, and the resulting quantum paths interfere as they lead to the same dissociation limits. This scenario may be observed in particular in electron attachment, but may also occur more generally in particle scattering as it allows more than one value of angular momentum transfer with comparable strength, unlike photoabsorption. It is also interesting to note that the preference of H− ejection in one direction as against the ejection of an excited H atom demonstrates the localization of charge and energy acquired by the molecule in electron attachment. This also provides direct evidence of the role of electron–electron correlations in terms of energy and charge segregation in the dissociation process. The asymmetry in the fragmentation of D2 is weaker, indicating the reduced strength of the interference in D2. This is due to the slower dissociation of the resonant states of D2, resulting in relatively larger depletion of the amplitude of one of the dissociating channels through autodetachment. The situation is similar to two interferometers with

A comparison of the present results with the observed symmetry breaking following single-photon absorption in H2 (ref. 26) may be appropriate. The photoabsorption in H2 at 33 eV leads to the creation of an autoionizing state which then decays by electron ejection to two ionic states of opposite parity, both of which dissociate to the same H+ + H limit. The corresponding ejected electron angular momentum is a superposition of odd and even parity, leading to an asymmetry in the angular distribution with respect to the molecular axis. The major difference in the present case is that the attachment of a single electron necessarily leads to the creation of a coherent superposition of two autodetaching resonances of opposite parity, which on surviving against autodetachment show interference in dissociation.

are fairly close, as in the case of Fig. 4b,d. The differences between H2 and D2 are clearly visible if one compares panel a with panel c and panel b with panel d. For a given lifetime of the $2\Sigma_u^+$ state, the amplitude of the oscillation is smaller in D2 compared to that in H2. This is consistent with the qualitative description given earlier and as depicted in Fig. 3. We also note that Fig. 4b,d shows qualitative agreement with the experimental data (Table 1) and the degree of asymmetry does not change substantially in this case over a range of electron energies as in the case of the measured data for H2. The directional change of the asymmetry with electron energy in the case of D2 is also seen. From these qualitative agreements we predict that the two potential energy curves have similar shapes so that the phase difference between the two paths does not change drastically with energy. We wish to point out that curves used in this case are almost empirically chosen and only more accurate potential energy curves along with their lifetimes will allow us to fully understand the details of the coherent dynamics of this DA process.

Table 1 | Measured forward–backward asymmetry (η) for H2 and D2.

<table>
<thead>
<tr>
<th>Electron energy (eV)</th>
<th>$\eta = \frac{I_F - I_B}{I_F + I_B}$ (H2)</th>
<th>$\eta = \frac{I_F - I_B}{I_F + I_B}$ (D2)</th>
</tr>
</thead>
<tbody>
<tr>
<td>14.5</td>
<td>-0.19 ± 0.02</td>
<td>0.02 ± 0.02</td>
</tr>
<tr>
<td>15</td>
<td>-0.17 ± 0.02</td>
<td>-0.03 ± 0.02</td>
</tr>
<tr>
<td>15.5</td>
<td>-0.12 ± 0.02</td>
<td>-0.08 ± 0.02</td>
</tr>
</tbody>
</table>

I_F and I_B are the angle-integrated signal strengths in the forward and backward directions, respectively. Please note that negative values of η indicate greater intensity in the backward direction and positive values indicate greater intensity in the forward direction.

A comparison of the present results with the observed symmetry breaking following single-photon absorption in H2 (ref. 26) may be appropriate. The photoabsorption in H2 at 33 eV leads to the creation of an autoionizing state which then decays by electron ejection to two ionic states of opposite parity, both of which dissociate to the same H+ + H limit. The corresponding ejected electron angular momentum is a superposition of odd and even parity, leading to an asymmetry in the angular distribution with respect to the molecular axis. The major difference in the present case is that the attachment of a single electron necessarily leads to the creation of a coherent superposition of two autodetaching resonances of opposite parity, which on surviving against autodetachment show interference in dissociation.

To conclude, coherent excitation of two resonant states of a homonuclear diatomic molecule by electron attachment results in symmetry breaking in dissociative attachment. Such coherence stems from various partial waves of the attaching electron, and the resulting quantum paths interfere as they lead to the same dissociation limits. This scenario may be observed in particular in electron attachment, but may also occur more generally in particle scattering as it allows more than one value of angular momentum transfer with comparable strength, unlike photoabsorption. It is also interesting to note that the preference of H− ejection in one direction as against the ejection of an excited H atom demonstrates the localization of charge and energy acquired by the molecule in electron attachment. This also provides direct evidence of the role of electron–electron correlations in terms of energy and charge segregation in the dissociation process. The asymmetry in the fragmentation of D2 is weaker, indicating the reduced strength of the interference in D2. This is due to the slower dissociation of the resonant states of D2, resulting in relatively larger depletion of the amplitude of one of the dissociating channels through autodetachment. The situation is similar to two interferometers with
different arm lengths and with an absorbing medium of differing
thickness in the two arms. These results highlight the need, as well
as the challenges, in developing full quantum dynamical calculations
for DA to even the simplest system, such as H₂. Lastly, we wish
to point out that the formation of coherent states we observe in
the DA process may be far more general than has been recognized
until now, and the signatures of such coherent effects may exist
in electron scattering from molecules in general. Moreover, the
coherent excitations of anion states also hint at more possibilities
of electron-induced chemical control.

Methods
Methods, including statements of data availability and any
associated accession codes and references, are available in the
online version of this paper.

Received 22 June 2017; accepted 13 September 2017;
published online 16 October 2017

References
1. Tichy, M. C., Mintert, F. & Buchleitner, A. Essential entanglement for atomic and
2. Rice, S. A. Interfering for the good of a chemical reaction. Nature 409,
3. Rabitz, H., de Vivie-Riedle, R., Motzkus, M. & Kompa, K. Whither the future of
5. Sansone, G. et al. Electron localization following attosecond molecular
7. Kreckel, H. et al. Experimental results for H₂ formation from H⁻ and H and
12. Van Brunt, R. J. & Keiffer, L. J. Angular distribution of O⁺ from dissociative
13. Tronc, M., Figuet-Fayard, F., Schermann, C. & Hall, R. I. Differential cross sections and angular distributions of H⁺ from dissociative electron attachment to
14. Prabhudesai, V. S., Nandi, D. & Krishnakumar, E. On the presence of the
'S⁺' resonance in dissociative electron attachment to O₂. J. Phys. B 39,
15. Gope, K., Prabhudesai, V. S., Mason, N. J. & Krishnakumar, E. Probing
the resonant states of Cl₂ using velocity slice imaging. J. Phys. B 49,
015201 (2016).
electron attachment cross sections for H₂ and D₂. Phys. Rev. Lett. 106,
243201 (2011).
17. Čadež, I., Markelj, S., Rupnik, Ž. & Pelicon, P. Processes with neutral hydrogen
and deuterium molecules relevant to edge plasma in tokamaks. J. Phys. Conf.
slice imaging for dissociative electron attachment. Rev. Sci. Instrum. 76,
053107 (2005).
22. Tronc, M., Hall, R. I., Schermann, C. & Taylor, H. S. Interference in dissociative
23. Celiberto, R., Janev, R. K., Wadehra, J. M. & Tennyson, J. Dissociative electron attachment to vibrationally excited H₂ molecules involving the 'Σ⁺' resonant

Acknowledgements
We thank B. Nestmann and Y. Sajeev for useful discussions. E.K. acknowledges a Marie
Curie Fellowship during the course of the measurements and E.K. and V.S.P.
acknowledge the Department of Atomic Energy, India for financial support during the
work. N.J.M. recognizes support from the European Union Framework 7
programme LASSIE Marie Curie ITN Grant Agreement 238258 and VAMDC
INFRA-2008-2.2 Scientific Data Infrastructure. Grant Agreement number: 239108.

Author contributions
E.K. and N.J.M. planned the research. E.K. built the experiment with help from N.J.M.
and carried out the measurements. V.S.P. carried out the simulations and E.K.
interpreted the results. E.K. and V.S.P. prepared the manuscript.

Additional information
Supplementary information is available in the online version of the paper. Reprints and
permissions information is available online at www.nature.com/reprints. Publisher’s note:
Springer Nature remains neutral with regard to jurisdictional claims in published maps
and institutional affiliations. Correspondence and requests for materials should be
addressed to E.K.

Competing financial interests
The authors declare no competing financial interests.
Methods

Experimental apparatus. We carried out the measurements using the velocity slice imaging technique\(^{18}\). In this, a pulsed (200 ns pulse duration) electron beam is allowed to interact with an effusive molecular beam produced from a long capillary tube. A low magnetic field (50 G) is used to collimate the electron beam. The product anions are extracted into a velocity-mapping time-of-flight spectrometer mounted at right angles to the electron beam direction using a pulsed electric field after a delay of 200 ns with respect to the electron pulse. The ions are detected using a two-dimensional position-sensitive detector including a Z-stack of three 75-mm-diameter microchannel plates and a phosphor screen\(^{16}\). The image on the phosphor screen is recorded using a charge-coupled device (CCD) camera. Velocity slice imaging can be carried out by pulsing the detector and the phosphor bias corresponding to the arrival of the central slice of the Newton sphere of the relevant ion at the detector—however, due to the low signal levels, data were taken with relatively wide slices.

Model for the forward–backward asymmetry. With \(\tau_g\) and \(\tau_u\) as the average lifetimes of the gerade and ungerade resonant states involved in DA, \(t_g\) and \(t_u\) as the dissociation times for the parent anion along the respective potential energy curves for electron attachment with a specified energy, and assuming equal capture cross section for both the resonances, the forward–backward asymmetry, \(\eta\), can be obtained as

\[
\eta = \frac{\sqrt{3} \exp\left(-\frac{t_g/2}{\tau_g} + \frac{t_u/2}{\tau_u}\right)}{\exp\left[-\frac{t_g}{\tau_g}\right] + \exp\left[-\frac{t_u}{\tau_u}\right]} \cos \delta
\]

where \(\delta\) is the relative phase between the two paths of dissociation for the anion resonant states given by

\[
\delta = \frac{1}{\hbar} \int_{R_c}^{\infty} \left[\sqrt{2\mu(E - V_g(R))} - \sqrt{2\mu(E - V_u(R))} \right] \, dR + \frac{\pi}{2}
\]

Here \(R_c\) is the inter-nuclear separation corresponding to the electron capture, \(\mu\) reduced mass of the dissociating system, \(E\) is the electron energy and \(V(R)\) is the potential energy corresponding to the given resonant state with respect to the \(v = 0\) level of the neutral ground state.

Data availability. The data that support the plots within this paper and other findings of this study are available from the corresponding author upon reasonable request.