Symmetry breaking by quantum coherence in single electron attachment

How to cite:

© 2017 Springer Nature
Version: Accepted Manuscript
Link(s) to article on publisher’s website:
http://dx.doi.org/doi:10.1038/nphys4289

oro.open.ac.uk
Symmetry breaking by quantum coherence in single electron attachment

E. Krishnakumar¹*, Vaibhav S. Prabhudesai¹, Nigel J. Mason²

¹Tata Institute of Fundamental Research, Homi Bhabha Road, Colaba, Mumbai 400005, India.
²Open University, Walton Hall, Milton Keynes, MK7 6AA, United Kingdom.

Coherently controlled interaction with photons is known to invoke quantum interference that removes the inversion symmetry in the dissociation of homonuclear diatomic molecules. But is it possible to observe this phenomenon in the interaction of incoherent electrons with such molecules? Here we show that resonant electron attachment to H₂ and its subsequent dissociation into H (n=2) + H⁻ is unexpectedly asymmetric about the inter-nuclear axis, while the asymmetry in D₂ is far less pronounced. We explain this counterintuitive observation as due to attachment of a single electron resulting in a coherent superposition two resonances of opposite parity. Apart from exemplifying a new process in studying quantum coherence phenomena, our observation of coherent quantum dynamics involving active participation of all three electrons and two nuclei should provide a new tool to study electron correlations which control all chemical processes and demonstrates the role of coherent effects in electron induced chemistry.

Quantum coherence induced effects in atomic and molecular processes are the foundations on which many concepts of quantum information technology are being developed [1]. These coherence properties are also the basis of several proposals for control of chemical reactions using lasers [2, 3]. The basic idea behind these control schemes has been to induce quantum coherence in molecular systems using coherent photon beams to establish more than one quantum path that may interfere with one another in order to achieve the desired outcome [4]. One of the most fascinating effects of such schemes is the breaking of inversion symmetry in a homonuclear diatomic molecule [5]. Since single photon absorption is dominated by dipole transitions, breaking the inversion symmetry present in any homonuclear diatomic system requires the simultaneous presence of two photon absorption paths. These coherent photon absorption paths, one of odd and the other of even parity interfere with one another such that the interference changes with the phase difference between the two photon paths. The crucial aspect in this process is the coherent transfer of odd and even angular momenta to a single molecule using two different sets of laser beams which are coherent with one another. Can such a phenomenon take place in particle collisions? In other words, will such quantum coherence be observed in a particle collision when more than one angular momentum transfer channels can be accessed with comparable strength to create a situation similar to the one and two photon interference process? If so, then such projectiles need not be coherent to invoke the quantum coherence in a
system. Here we show that this indeed happens in the case of electron attachment to hydrogen molecules.

Fig. 1: Expected angular distribution with respect to the incoming electron beam (direction - from top to bottom) of the H⁻ ion formed in DA to H₂ in ground state Σ⁺ in
(a) Σ⁺, (b) Σ⁺, (c) Π⁺ and (d) Π⁺ states, with lowest allowed angular momentum transfer. These curves show the preferred orientations of the molecular axis for the electron capture for a given transition.

Electron attachment to a hydrogen molecule leading to the formation of an H⁻ ion and H atom in a process called dissociative attachment (DA) and together with its time reversed process where an H⁻ ion interacts with an H atom to form H₂ molecule and a free electron known as associative detachment (AD) is important in many areas of physics and chemistry from Cosmology [6-8] to the science and technology of controlled fusion [9, 10]. Resonant attachment is based upon the symmetry of the neutral state and the Negative Ion Resonance (NIR). It has been shown [11] that due to the inversion symmetry and subsequent parity conservation in homonuclear diatomic molecules like H₂, capture of only odd or even partial waves (angular momentum quanta) of the incoming electron is allowed. Indeed for a transition between states with same parity, capture of only even values of angular momentum quanta, l, are allowed and for opposite parity only odd values are allowed. Also, due to low energy of the projectiles, lower order partial waves tend to be more dominant compared to the higher order partial waves. Thus, in the case of H₂, where the molecule in the ground state has a Σ⁺ symmetry, the formation of the NIR with Σ⁺ symmetry allows all orientations of the molecule with respect to the incoming electron (l = 0 is the dominant partial wave) and the angular distribution of H⁻ will show little if any anisotropy as shown in Fig. 1a. Similarly, for the negative ion states Σ⁺, Π⁺ and Π⁻, the angular distributions are expected to be as shown in Fig.1b-d respectively. In any such case, the distribution is always symmetric with respect to the direction of the electron beam. DA experiments on all the homonuclear diatomic molecules studied to date, including H₂ (in the limited angular range) have consistently shown this symmetry [12-15].
H\(^-\) production from H\(_2\) through DA appears as peaks in the cross section at 4 eV, 14 eV and as a broad peak between 7 and 13 eV [16]. The threshold for the formation of H\(^-\) from H\(_2\) is 3.724 eV (bond dissociation energy of H\(_2\) = 4.478 eV, electron affinity of H = 0.7545 eV). The 4 eV resonance dissociates to yield H\(^-\)(1s\(^2\)) + H (1s) with both fragments in their respective ground states. The broad peak between 7 eV and 13 eV is due to a purely repulsive NIR state which dissociates into the ground states of H\(^-\)(1s\(^2\)) and H(1s). The 14 eV peak leads to H\(^-\)(1s\(^2\)) and the excited H (n=2) atom (threshold 13.92 eV), hence the fragments are formed with very low kinetic energies similar to that of the 4 eV channel. H\(^-\) formation is also possible at higher electron energies, with opening of the new channel (dipolar dissociation) that has a threshold at 17.75 eV. It has been shown that between 14 eV and the dipolar dissociation threshold, DA leading to H\(^-\) and H (n=3, 4, etc.) does occur [17].

We carried out a series of experiments to measure the angular distribution of H\(^-\) produced by the DA to H\(_2\) and D\(_2\) using velocity slice imaging technique [18]. The details of the experimental technique are given in Methods. Velocity slice images of H\(^-\) at 4.5 eV and 14.5 eV are shown in Fig. 2a and 2b respectively.

Fig. 2: Velocity slice images of H\(^-\) from H\(_2\) at electron energies of (a) 4.5 eV (b) 14.5 eV (c) 15 eV and (d) 15.5 eV and those for D\(^-\) from D\(_2\) at electron energies of (e) 14 eV, (f) 14.5 eV and (g) 15 eV. The electron beam direction is from the top to bottom of the figure. Note that while the intensity distribution is symmetric for H\(^-\) at 4.5 eV, it is asymmetric at higher energies and that the asymmetry is substantially lower for D\(^-\).

It can be seen that the image at 4.5 eV shows a symmetric distribution in the forward and backward directions and based on Fig. 1b we conclude that the resonant state is of \(\Sigma_u^+\) symmetry. In contrast to the 4.5 eV image, the 14.5 eV image shows a noticeable forward-backward asymmetry. That the
intensity distribution is parallel to the electron beam implies the contribution from a resonance of \(\Sigma_u^+ \) symmetry. The measurements carried out at higher electron energies show a similar asymmetry in the distribution as can be seen in Fig. 2b to 2d. The results for \(D_2 \) in the same energy range are shown in Fig. 2e to 2g. While the images of \(H^- \) show a marked asymmetry, the images of \(D^- \) from \(D_2 \) show much less asymmetry. The slight asymmetry that is present in \(D^- \) image appears to change direction with electron energy - at 14 eV the asymmetry is opposite to that seen in \(H_2 \), almost symmetrical at 14.5 eV and in the same direction as that in \(H_2 \) at 15 eV.

As discussed earlier, due to the inversion symmetry of a homonuclear diatomic molecule, DA through a single NIR will not provide any asymmetry in the angular distribution of the ions. So how might such an observed asymmetry arise? We show below that the asymmetry can be explained in terms of the interference of two dissociating quantum paths if the electron attachment leads to the coherent formation of two NIRs of opposite parity. This takes place by attachment of s-wave (l=0) and p-wave (l=1) of a free electron coherently to form NIRs of \(\Sigma_g \) and \(\Sigma_u \) symmetry respectively. These two NIRs eventually dissociate to the same limit through their respective potential energy curves defining two interfering quantum paths, as shown in Fig. 3. For these two coherently formed NIRs, the angular distribution of the fragment ions is given by

\[
f(\theta) = \sigma_{DA_g} + 3\sigma_{DA_u}\cos^2\theta + 2\cos\phi\cos\theta \sqrt{\left| \sigma_{DA_g} \right| \left| \sigma_{DA_u} \right|} (1)
\]

where \(\sigma_{DA_g} \) and \(\sigma_{DA_u} \) are the DA cross sections for each of the channels contributing and \(\sqrt{\left| \sigma_{DA_g} \right|} \) and \(\sqrt{\left| \sigma_{DA_u} \right|} \) indicate the corresponding probability amplitudes of the contributions of the two states to the DA cross section, \(\theta \) is the angle of ejection of the \(H^- \) anion w.r.t. the incoming electron beam and \(\phi \) is the relative phase between the two channels at the dissociation limit.
Fig. 3: Schematic of the DA process at 14 eV in H$_2$ (left) and D$_2$ (right). The dashed long
arrows indicate electron attachment to form the coherent states $^2\Sigma^+_g$ and $^2\Sigma^+_u$. For electron
energies above 13.92 eV these states dissociate to form the negative ion (H$^-$/D$^-$) and the
neutral atom (H/D) in n = 2 state. As the wave packets of these states travel towards the
dissociation limits they continuously decay through electron ejection, as shown by the broad
faint arrows marked ‘a’. For H$_2$, the wave packets reach the dissociation limit with more or
less similar amplitudes, resulting in strong interference and the consequent asymmetry in the
momentum distribution as indicated by the velocity slice image. However, for D$_2$ one of the
wave packets has lost most of its amplitude and hence there is a relatively small interference
effect, yielding the almost symmetric momentum distribution observed in the image. Please
see the text for more details as well as the simulation results given in Fig. 4.

The extent of the asymmetry, which is seen as the contrast in the interference pattern depends on the
relative phase between two paths and the relative amplitudes of the wave packets traversing the two
paths. Phase differences between these two paths will then occur as the two NIRs evolve along the
two distinct potential energy curves. The relative amplitudes of the two paths depend on the capture
cross section associated with each NIR and its ‘survival probability’ against autodetachment which is
given by

$$ p_i = \exp\left(-\int_{R_c}^{R_e} \frac{\Gamma_a(R)}{h \nu(R)} dR\right) = \exp\left(-\int_{R_c}^{R_e} \frac{dt}{\tau(R)}\right) $$

where $\Gamma_a(R)$ is the width of the anion potential energy curve, $\nu(R)$ is the speed of separation of the
dissociating atoms, R_c is the inter-nuclear separation where the electron capture takes place and R_e is
the effective inter-nuclear separation beyond which the molecular anion is considered to be
dissociated. $\tau(R)$ is the corresponding lifetime of the NIR.

Effects due to survival probability are more prominent in the case of heavier isotopes as they have
longer dissociation times. As the survival probability of the NIR varies exponentially with the time for
dissociation the likelihood of a given resonance surviving against autodetachment in D$_2$ is
considerably smaller compared to that in H$_2$. This has long been recognised as the basis for the strong
isotope effect in DA in molecular hydrogen and its isotopomers [16]. If one of the two coherent NIRs
decays much faster compared to the other the contrast of the interference between the two will be
weakened. This situation is akin to putting an absorbing material in one arm of an optical
interferometer thereby reducing contrast of the interference fringes.

From the momentum images we have derived the forward-backward asymmetry, $\eta = \frac{I_f-I_b}{I_f+I_b}$, at
selected energies across the 14 eV resonance where the I_f and I_b are the forward and backward signal
strength with respect to the incoming electron beam. These are presented in Table 1. However, it can
be seen that, in the case of H$_2$, the asymmetry is negative at all energies due to larger backward intensity. The asymmetry in D$_2$, though small, is in the opposite direction at 14 eV and changes direction as we change the electron energy.

Table 1: Measured forward – backward asymmetry, $\eta = \frac{I_F - I_B}{I_F + I_B}$ for H$_2$ and D$_2$ at various electron energies. Please note that negative values of η indicates more intensity in the backward direction and positive values indicate more intensity in the forward direction.

<table>
<thead>
<tr>
<th>Energy (eV)</th>
<th>η = $\frac{I_F - I_B}{I_F + I_B}$</th>
<th>Energy (eV)</th>
<th>η = $\frac{I_F - I_B}{I_F + I_B}$</th>
</tr>
</thead>
<tbody>
<tr>
<td>14.5</td>
<td>-0.17</td>
<td>14.0</td>
<td>0.03</td>
</tr>
<tr>
<td>15</td>
<td>-0.15</td>
<td>14.5</td>
<td>0.007</td>
</tr>
<tr>
<td>15.5</td>
<td>-0.12</td>
<td>15.0</td>
<td>-0.05</td>
</tr>
</tbody>
</table>

In order to model the observed results quantitatively it is necessary to have detailed information on the potential energy curves and lifetimes of the NIRs that are involved. There have been several electron scattering studies on H$_2$ and D$_2$ which have provided a wealth of information on their NIRs, as reviewed by Schulz [19]. However, very little information is available for the 14 eV process as compared to that for the 4 eV and 10 eV processes. Transmission as well as scattering experiments had indicated the presence of a $^3\Sigma^+_g$ NIR in the 11eV to 13.5 eV range [20, 21]. The same NIR was identified in the electron scattering experiments at 14 eV with a width of 90 meV [21]. Subsequent DA measurements concluded that this Σ^+_g NIR is the main contributor to the 14 eV DA process [22] and this has been the accepted wisdom until now [16, 23]. Extensive R-matrix calculations [24] give several NIRs of Σ^+_g and Σ_u symmetry above 12 eV. However, none of these curves (including their widths) reach the dissociation limit of 13.92 eV in the Franck-Condon region.

In order to model the observed results quantitatively it is necessary to have detailed information on the potential energy curves and lifetimes of the NIRs that are involved. There have been several electron scattering studies on H$_2$ and D$_2$ which have provided a wealth of information on their NIRs, as reviewed by Schulz [19]. However, very little information is available for the 14 eV process as compared to that for the 4 eV and 10 eV processes. Transmission as well as scattering experiments had indicated the presence of a $^3\Sigma^+_g$ NIR in the 11eV to 13.5 eV range [20, 21]. The same NIR was identified in the electron scattering experiments at 14 eV with a width of 90 meV [21]. Subsequent DA measurements concluded that this Σ^+_g NIR is the main contributor to the 14 eV DA process [22] and this has been the accepted wisdom until now [16, 23]. Extensive R-matrix calculations [24] give several NIRs of Σ^+_g and Σ_u symmetry above 12 eV. However, none of these curves (including their widths) reach the dissociation limit of 13.92 eV in the Franck-Condon region.

One can estimate the amount of forward backward asymmetry for a given electron energy if one knows the potential energy curves for the resonances involved and their widths as a function of internuclear separations. Such an estimate of the asymmetry for two sets of potential energy curves as a function of the lifetime of the ungerade state and electron energy is shown in Fig. 4. The asymmetry shows an oscillatory pattern. Please refer the supplementary information for the details of the model.

We have used an average lifetime of 8 fs for the $^2\Sigma^+_g$ state based on the reported width of 90 meV at 14 eV [21] and the potential energy curve given by Sharp [25] for the $^2\Sigma^+_g$ state in both the simulations. For the $^2\Sigma_u^+$ state, we have used two different curves. For the results in Fig 4(a) and (c)
the curve that follows the $B^1\Sigma_g^+$ state of the neutral with appropriate energy shift [25] was used. Plots in Fig 4(b) and (d) were obtained by using the potential energy curve that would follow the $C^1\Pi_u$ curve of neutral H$_2$ [25]. As expected the pattern strongly depends on the potential energy curves as well as lifetimes of the resonance states involved. The overall forward backward asymmetry is seen to oscillate with electron energy. These oscillations are ‘faster’ if the two dissociating paths are considerably different, as in the case of Fig. 4 (a) and (c) and ‘slower’ when the two paths are fairly close as in the case of Fig. 4 (b) and (d). The difference between H$_2$ and D$_2$ are clearly visible if one compares (a) with (c) and (b) with (d). For a given lifetime of the $2\Sigma_u^+$ state, the amplitude of the oscillation is smaller in D$_2$ compared to that in H$_2$. This is consistent with the qualitative description given earlier and as depicted in Fig. 3. We also note that Fig. (b) and (d) show qualitative agreement with the experimental data (Table 1) and the degree of asymmetry does not change substantially in this case over a range of electron energies as in the case of the measured data for H$_2$. The directional change of the asymmetry with electron energy in the case of D$_2$ is also seen. From these qualitative agreements we predict that the two potential energy curves have similar shapes so that the phase difference between the two paths does not change drastically with energy. We wish to point out that curves used in this case are almost empirically chosen and only more accurate potential energy curves along with their lifetimes will allow us to fully understand the details of the coherent dynamics of this DA process.

Fig 4: Simulated forward backward asymmetry of the angular distribution for H$_2$ (top row) and D$_2$ (bottom row) as a function of electron energy and average lifetime of the $2\Sigma_u^+$ resonance involved. In all the plots the potential energy (PE) curve for $2\Sigma_u^+$ state is taken from Sharp [25] and assumed to have an average lifetime of 8 fs. The PE curve for $2\Sigma_u^+$ state for plots (a) and (c) is assumed to follow the $B^1\Sigma_u^+$ curve with appropriate energy shift and that for plots (b) and (d) it is assumed to follow the $C^1\Pi_u$ from Sharp.
The plots (b) and (d) resemble the experimental observation more closely indicating that the approximate potential energy curves used are closer to the real ones (see text).

To conclude, coherent excitation of two resonant states of homonuclear diatomic molecule by electron attachment results in symmetry breaking in DA. Such coherence stems from various partial waves of the attaching electron. The resulting quantum paths interfere as they lead to the same dissociation limits. Such a scenario may be observed in particular in electron attachment but may also occur in general in particle scattering as it allows more than one value of angular momentum transfer with comparable strength unlike photoabsorption. It is also interesting to note that the preference of H⁻ ejection in one direction as against the ejection of excited H atom demonstrates the localization of charge and energy acquired by the molecule in electron attachment. This is also a direct evidence of the role of electron-electron correlations in terms of energy and charge segregation in the dissociation process. The asymmetry in the fragmentation of D₂ is weaker, indicating the reduced strength of the interference in D₂. This is due to the slower dissociation of the resonant states of D₂ resulting in relatively larger depletion of the amplitude of one of the dissociating channels through autodetachment. The situation is similar to two interferometers with different arm lengths and with absorbing medium of differing thickness in the two arms. These results highlight the need, as well as the challenges, to develop a full quantum dynamical calculations for DA to even the simplest system like H₂. Lastly we wish to point out that the formation of coherent states we observe in the DA process may be far more general than has been recognised until now and the signatures of such coherent effects may exist in electron scattering from molecules in general. Moreover, the coherent excitations of anion states also hint at more possibilities of electron induced chemical control.

References:

Methods:

Experimental Apparatus:

We carried out the measurements using velocity slice imaging technique [18]. A schematic of the experimental arrangement is shown in Fig. 5. In this arrangement a pulsed (200 ns pulse duration) electron beam is allowed to interact with an effusive molecular beam produced from a long capillary tube. A low magnetic field (50 Gauss) is used to collimate the electron beam. The product anions are extracted into a velocity mapping time of flight spectrometer mounted at right angles to the electron beam direction using a pulsed electric field after a delay of 200 ns with respect to the electron pulse. The ions are detected using a 2-dimensional position sensitive detector including a Z-stack of three 75 mm diameter microchannel plates and phosphor screen [16]. The image on the phosphor screen is recorded using a CCD camera. Velocity slice imaging can be carried out by pulsing the detector and the phosphor bias corresponding to the arrival of the central slice of the Newton sphere of the relevant ion at the detector - however, due to the low signal levels, data were taken with relatively wide slices.

![Fig. 5: Schematic of the velocity slice imaging for low energy electron collisions employed in the present measurements. (a) SIMION simulation showing velocity map](image-url)
imaging. (b) Central slice of the Newton sphere in the plane containing the electron beam (blue arrow) and perpendicular to the time of flight axis. (c) Propagation of the Newton sphere (red circle) in the spectrometer. Note that it is stretched in the longitudinal direction as it moves towards the detector. (d) Time of flight spectrum as the Newton sphere arrives at the detector. The central slice of the sphere is captured (indicated by the region between the two red lines) by having the detector active using a pulsed bias. (e) The resultant velocity slice image.

Model for the forward–backward asymmetry:

With τ_g and τ_u as the average lifetimes of the *gerade* and *ungerade* resonant states involved in DA, t_g and t_u as the dissociation times for the parent anion along the respective potential energy curves for electron attachment with a specified energy and assuming equal capture cross section for both the resonances this asymmetry can be obtained as

$$\eta = \frac{\sqrt{\text{exp}[-\frac{(t_g/2\tau_g + t_u/2\tau_u)}{t_g/\tau_g}}]}{\text{exp}[-\frac{(t_g/\tau_g)}{t_g/\tau_g}]} \cos \delta$$

where δ is the relative phase between the two paths of dissociation for the anion resonant states given by

$$\delta = \frac{1}{\hbar} \int_{R_C} \sqrt{2\mu(E - V_g(R))} - \sqrt{2\mu(E - V_u(R))} dR + \frac{\pi}{2}$$

Here R_C is the inter-nuclear separation corresponding to the electron capture, μ reduced mass of the dissociating system, E is the electron energy and $V(R)$ is the potential energy corresponding to the given resonant state with respect to the $v=0$ level of the neutral ground state.