The Open UniversitySkip to content
 

Surprisingly different star-spot distributions on the near equal-mass equal-rotation-rate stars in the M dwarf binary GJ 65 AB

Barnes, J. R.; Jeffers, S. V.; Haswell, C. A.; Jones, H. R. A.; Shulyak, D.; Pavlenko, Ya. V. and Jenkins, J. S. (2017). Surprisingly different star-spot distributions on the near equal-mass equal-rotation-rate stars in the M dwarf binary GJ 65 AB. Monthly Notices of the Royal Astronomical Society, 471(1) pp. 811–823.

Full text available as:
[img]
Preview
PDF (Version of Record) - Requires a PDF viewer such as GSview, Xpdf or Adobe Acrobat Reader
Download (4MB) | Preview
DOI (Digital Object Identifier) Link: https://doi.org/10.1093/mnras/stx1482
Google Scholar: Look up in Google Scholar

Abstract

We aim to understand how stellar parameters such as mass and rotation impact the distribution of star-spots on the stellar surface. To this purpose, we have used Doppler imaging to reconstruct the surface brightness distributions of three fully convective M dwarfs with similar rotation rates. We secured high cadence spectral time series observations of the 5.5 au separation binary GJ 65, comprising GJ 65A (M5.5V, Prot = 0.24 d) and GJ 65B (M6V, Prot = 0.23 d). We also present new observations of GJ 791.2A (M4.5V, Prot = 0.31 d). Observations of each star were made on two nights with UVES, covering a wavelength range from 0.64 - 1.03μm. The time series spectra reveal multiple line distortions that we interpret as cool star-spots and which are persistent on both nights suggesting stability on the time-scale of 3 d. Spots are recovered with resolutions down to 8.3° at the equator. The global spot distributions for GJ 791.2A are similar to observations made a year earlier. Similar high latitude and circumpolar spot structure is seen on GJ 791.2A and GJ 65A. However, they are surprisingly absent on GJ 65B, which instead reveals more extensive, larger, spots concentrated at intermediate latitudes. All three stars show small amplitude latitude-dependent rotation that is consistent with solid body rotation. We compare our measurements of differential rotation with previous Doppler imaging studies and discuss the results in the wider context of other observational estimates and recent theoretical predictions.

Item Type: Journal Item
ISSN: 0035-8711
Academic Unit/School: Faculty of Science, Technology, Engineering and Mathematics (STEM) > Physical Sciences
Faculty of Science, Technology, Engineering and Mathematics (STEM)
Item ID: 51661
Depositing User: John Barnes
Date Deposited: 20 Oct 2017 12:46
Last Modified: 11 Jan 2018 16:36
URI: http://oro.open.ac.uk/id/eprint/51661
Share this page:

Altmetrics

Download history for this item

These details should be considered as only a guide to the number of downloads performed manually. Algorithmic methods have been applied in an attempt to remove automated downloads from the displayed statistics but no guarantee can be made as to the accuracy of the figures.

Actions (login may be required)

Policies | Disclaimer

© The Open University   contact the OU