On the number of transversals in a class of Latin squares

How to cite:

For guidance on citations see FAQs.

© 2017 Elsevier B.V.

Version: Version of Record

Link(s) to article on publisher’s website:
http://dx.doi.org/doi:10.1016/j.dam.2017.08.021

Copyright and Moral Rights for the articles on this site are retained by the individual authors and/or other copyright owners. For more information on Open Research Online’s data policy on reuse of materials please consult the policies page.

oro.open.ac.uk
Note

On the number of transversals in a class of Latin squares

Diane M. Donovan a, Mike J. Grannell b, *

a Centre for Discrete Mathematics and Computing, University of Queensland, St. Lucia 4072, Australia
b School of Mathematics and Statistics, The Open University, Walton Hall, Milton Keynes MK7 6AA, United Kingdom

A R T I C L E I N F O

Article history:
Received 27 September 2016
Accepted 17 August 2017
Available online 4 October 2017

Keywords:
Latin square
Transversal

A B S T R A C T

Denote by A_k^p the Latin square of order $n = p^k$ formed by the Cayley table of the additive group $(\mathbb{Z}_p^k, +)$, where p is an odd prime and k is a positive integer. It is shown that for each p there exists $Q > 0$ such that for all sufficiently large k, the number of transversals in A_k^p exceeds $(nQ)^{\frac{p-1}{p}}$. © 2017 Elsevier B.V. All rights reserved.

1. Introduction

Several recent papers have addressed the issue of bounds on the numbers of transversals in Latin squares. So, suppose that S is a Latin square. Denote by $T(S)$ the number of transversals in S, and put

$$T(n) = \max\{T(S) : S \text{ is a Latin square of order } n\}.$$

It was shown by McKay, McLeod and Wanless [4] that for $n \geq 5$, $15^{n/5} \leq T(n) \leq 0.6135n! \sqrt{n}$. The Cayley table of any finite group forms a Latin square, and such squares are called group-based. Let A_n denote the cyclic Latin square of order n, that is the square formed by the Cayley table of the cyclic group $(\mathbb{Z}_n, +)$. If n is even then $T(A_n) = 0$, but for odd n it was conjectured by Vardi [6] that there exist positive constants c and d such that $c^n n! \leq T(A_n) \leq d^n n!$. Subsequently Cavenagh and Wanless [1] proved that for all sufficiently large n, $T(A_n) > (3.246)^n$, and this appears to remain the best lower bound for any class of group-based Latin squares obtained to date.

More recently, Taranenko [5] proved that $T(n) \leq \lfloor (1 + o(1)) \frac{n}{2} \rfloor^n$, while Glebov and Luria [3] have shown that $T(n) \geq \lfloor (1 - o(1)) \frac{n}{2} \rfloor^n$. The latter result is based on a probabilistic argument employing random Latin squares. These more recent results lend credence to Vardi’s conjecture but do not address group-based squares directly.

In the current paper we take p to be an odd prime and k to be a positive integer. Then the Cayley table of the additive group $(\mathbb{Z}_p^k, +)$ forms a Latin square of order $n = p^k$ which we denote by A_k^p. We will assume that this square has its rows and columns labelled in the natural way by elements of \mathbb{Z}_p^k represented as k-vectors over \mathbb{Z}_p, and when $k = 1$ we write A_p rather than A_1^p. We prove that, for all sufficiently large k, A_k^p has more than $(nQ)^{\frac{p-1}{p}}$ transversals, where $Q > 0$ depends only on p and is independent of k.

Note added in proof: Since drafting our current paper, our attention has been drawn to the arXiv paper [2] which claims a proof of Vardi’s conjecture.

* Corresponding author.
E-mail addresses: dmd@maths.uq.edu.au (D.M. Donovan), m.j.grannell@open.ac.uk (M.J. Grannell).

http://dx.doi.org/10.1016/j.dam.2017.08.021
0166-218X/© 2017 Elsevier B.V. All rights reserved.
2. Results

We start with the observation that \mathcal{A}_p^k has a transversal \mathcal{T} formed from its leading diagonal. We will construct a large number of transversals by carrying out transversal trades on \mathcal{T}. These trades are based on the square A_p and involve transversals within this square that do not contain the (row, column, entry) triple $(0, 0, 0)$. So let T^* denote the number of transversals of A_p that do not contain this triple. By transitivity, the number of transversals in \mathcal{A}_p^k that contain the triple $(0, 0, 0)$ is $T(\mathcal{A}_p^k)/p^k$, so the number of transversals not containing this triple is $T(\mathcal{A}_p^k)(1 - 1/p)$. In particular, $T^* = T(A_p)(1 - 1/p)$, and note rather trivially that $T(A_p) \geq p$.

For $k \geq 2$, the square \mathcal{A}_p^k can be partitioned into p^2 subarrays by writing the row labels, the column labels and the entries in the form $(z, i) \in \mathbb{Z}_p^{k-1}$ and $i \in \mathbb{Z}_p$. This is shown schematically in Fig. 1 with the row and column labels omitted.

![Fig. 1](image1.png)

Taken without the row and column labels inherited from \mathcal{A}_p^k, the subarrays A_{ij} and A_{ip} are identical when $i + j = i' + j'$ in \mathbb{Z}_p. However, we will associate each of these subarrays with their original row and column labels.

Our transversal trades will be based on copies of A_p, each having precisely one entry from each A_{ij}. Specifically, one (row, column, entry) triple is selected from the leading diagonal of $A_{0,0}$, say $((a, 0), (a, 0), (2a, 0))$, and one triple is selected from $A_{0,1}$ having the same row entry, say $((a, 0), (b, 1), (a + b, 1))$. These two choices are sufficient to determine a copy of A_p, denoted by (a, b), as shown in Fig. 2, which also shows the inherited row and column labels.

![Fig. 2](image2.png)

Note that the row and column labels of $A(a, b)$, inherited from \mathcal{A}_p^k, have the form $(rb - (r - 1)a, r)$ and the entries have the form $(rb - (r - 2)a, r)$, both for $r = 0, 1, \ldots, p - 1$.

The leading diagonal of $A(a, b)$ lies in the leading diagonal of \mathcal{A}_p^k and therefore this diagonal of $A(a, b)$ forms a part of the transversal \mathcal{T}. There are T^* transversals in $A(a, b)$ that do not contain the triple $((a, 0), (a, 0), (2a, 0))$. If the diagonal transversal of $A(a, b)$ in \mathcal{T} is traded for any one of these T^* transversals, then a new transversal in \mathcal{A}_p^k is obtained that does not contain the triple $((a, 0), (a, 0), (2a, 0))$. Hence, for each given $a \in \mathbb{Z}_p^{k-1}$, T^* distinct transversals of \mathcal{A}_p^k may be obtained for each $b \in \mathbb{Z}_p^{k-1}$. Furthermore, for two different values $b, b' \in \mathbb{Z}_p^{k-1}$, the arrays (a, b) and (a, b') only intersect in the cell $((a, 0), (a, 0))$, and so by varying b, a total of $p^{k-1}T^*$ distinct transversals of \mathcal{A}_p^k may be obtained that do not contain the triple $((a, 0), (a, 0), (2a, 0))$.

In principle, we wish to carry out these trades sequentially for as many values of a as is possible. The obstacle is that having carried out a trade using $A(a, b)$, and having chosen $a' \neq a$, the choice of b' is constrained by the need to ensure that $A(a', b')$ avoids the rows, columns and entries of $A(a, b)$. So suppose that trades have already been made using $c - 1$ choices of (a, b), and that a cth choice is to be made. If (a, b) defines one of the previous choices and (a', b') is the proposed cth choice, with $a' \neq a$, then to ensure that rows, columns and entries do not clash it is necessary and sufficient that $(r' b' - (r' - 1)a', r')$ and $(r b - (r - 1)a, r)$ are unequal for all $r, r' = 0, 1, \ldots, p - 1$. But these two quantities can only be equal if $r' = r$, and then only if $r b' - (r - 1)a' = r b - (r - 1)a$. Hence the rows and columns of $A(a, b)$ and $A(a', b')$ are distinct provided that $b' = b + \frac{r - 1}{1}(a' - a)$ for $r = 1, 2, \ldots, p - 1$. As r varies from 1 to $p - 1$, $\frac{r - 1}{1}$ takes all values in \mathbb{Z}_p, apart from the value 1. Hence in selecting b' it is necessary to avoid the $p - 1$ values $b + \rho(a' - a)$ for $\rho = 0, 2, 3, \ldots, p - 1$ for each previous choice of (a, b). By arguing in a similar fashion regarding entries, we obtain exactly the same condition to avoid entry clashes...
between $A(a, b)$ and $A(a', b')$. It follows that at the cth choice, there are at least $p^{k-1} - (c - 1)(p - 1)$ choices for b' (rather more if there is multiple counting of excluded rows, columns and entries).

Now put $C = \left\lceil \frac{p^k}{p-1} \right\rceil = \frac{p^k-1}{p-1}$ and let $c \leq C$ be a positive integer. Then it is possible to choose c subarrays of the form $A(a, b)$ that are pairwise disjoint as regards rows, columns and entries. Suppose that the subarrays chosen are $A(a_i, b_i)$ for $i = 1, 2, \ldots, c$. Then the number of transversals in A_p^c that do not contain any of the triples $((a_i, 0), (a_i, 0), (2a_i, 0))$ for $i = 1, 2, \ldots, c$, and which can be constructed by trades on these arrays is at least

$$((T^*)^c(p^{k-1} - (p - 1)))/((p^k - 1)(p^k - 2(p - 1)) \ldots (p^{k-1} - (c - 1)(p - 1))) > (T^*(p-1))^c\frac{C!}{(C-c)!}.$$

To see that these transversals are all distinct, consider any one of them, say T^*. Each a_i for $i = 1, 2, \ldots, c$ can be identified from those diagonal entries of $A_{0,0}$ that do not form part of T^*. Having identified an a_i, there will be a triple of T^* of the form $((a_i, 0), (rb_i - (r - 1)a_i, r), (rb_i - (r - 2)a_i, r))$ where $r \neq 0$. From this triple, r can be identified and hence also b_i. Thus the subarrays chosen are $A(a_i, b_i)$ can be recovered from T^*, and the distinctness of the transversals follows. In fact any distinct choices of up to C values for a_i will yield distinct transversals. Hence we obtain the following theorem.

Theorem 2.1. If p is an odd prime and k is a positive integer, then the number of transversals in the Latin square A_p^k, denoted by $T(A_p^k)$, satisfies the inequality

$$T(A_p^k) > \frac{c}{\sum_{c=0}^{C} \left(\frac{p^{k-1}}{c}\right)} (T^*(p-1))^c \frac{C!}{(C-c)!},$$

where $C = \left\lceil \frac{p^k}{p-1} \right\rceil$ and $T^* = T(A_p)(1 - \frac{1}{p})$.

The final term in the summation (1) gives

$$T(A_p^k) > \left(\frac{p^{k-1}}{C}\right) (T^*(p-1))^c C! \frac{(p^{k-1})!}{(p^{k-1} - C)!}.$$

Applying Stirling’s Theorem in the form $r! = r^{r+\frac{1}{2}}e^{-r}\sqrt{2\pi}e^{o(1)}$ (as $r \to \infty$) to this expression for large k gives

$$T(A_p^k) > \left[p^{k-1}T^*(p-1) e^{-1}\right]^C \cdot \left[1 - \frac{C}{p^{k-1}}\right]^{-\left[p^{k-1} - C + \frac{1}{2}\right]} e^{o(1)},$$

(2)

For $p \geq 3$ and $k \geq 2$ we have $1 - \frac{C}{p^{k-1}} \leq 1 - \frac{1}{p}$ and $p^{k-1} - C + \frac{1}{2} > (p-2)C$. Hence

$$T(A_p^k) > \left[p^k\left(\frac{p}{p-1}\right)^{-p-4} T(A_p)e^{-1}\right]^c e^{o(1)}.$$

The square A_p^k has order $n = p^k$ and $C = \frac{n}{p(p-1)} - \frac{1}{p-1}$, so taking Q to be slightly less than $\left(\frac{p}{p-1}\right)^{p-4} T(A_p)e^{-1}$ gives the following corollary.

Corollary 2.1. If p is an odd prime, there exists $Q > 0$ such that for all sufficiently large k, $T(A_p^k) > (nQ)^{\frac{n}{p^{k-1}}}.$

where $n = p^k$.

In fact if p is also sufficiently large, then using the result of [1], we may take $Q = (3.246)^p$. However, the bound is clearly best when p is small. In the case $p = 3$, inequality (2) simplifies as follows. Firstly $T(A_3) = 3$, so $T^* = 2$. Also $C = (3^k-1)/2$ and $3^k-1 - C + \frac{1}{2} = 3^k-1/2 + 1$. Hence

$$T(A_3^k) > \left(4 \cdot 3^{k-1} \cdot e^{-1}\right)^c \cdot \left(1 + \frac{1}{2 \cdot 3^{k-1}}\right)^{-\left(3^{k-1} - 3 + 1\right)} e^{o(1)}$$

$$= \left(\frac{4n}{3e}\right)^c \cdot 2^{c+\frac{1}{2}} \cdot \left(1 + \frac{1}{3^{k-1}}\right)^{-\left(3^{k-1} - 3 + 1\right)} e^{o(1)}$$

$$= \left(\frac{8n}{3e}\right)^c \cdot 2\sqrt{2} \cdot \frac{1}{\sqrt{e}} e^{o(1)},$$

since $(1 + \frac{1}{x})^{-x} \to e^{-1}$ as $x \to \infty$. Noting that $8/3e > 0.981$ and that $C = \frac{n}{6} - \frac{1}{2}$, we obtain
Corollary 2.2. For all sufficiently large k, $T(A^k_3) > (0.981 n)^{3/2}$, where $n = 3^k$.

Finally we remark that, by transitivity, the number of orthogonal mates of the Latin square A^k_p is $T(A^k_p)/n$ (where $n = p^k$) and so Theorem 2.1 and its corollaries also provide lower bounds for this quantity.

References