On the number of transversals in a class of Latin squares

How to cite:

For guidance on citations see FAQs.

© 2017 Elsevier B.V.

https://creativecommons.org/licenses/by-nc-nd/4.0/

Version: Accepted Manuscript

Link(s) to article on publisher’s website:
http://dx.doi.org/doi:10.1016/j.dam.2017.08.021

Copyright and Moral Rights for the articles on this site are retained by the individual authors and/or other copyright owners. For more information on Open Research Online’s data policy on reuse of materials please consult the policies page.

oro.open.ac.uk
On the number of transversals in a class of Latin squares

D. M. Donovan
Centre for Discrete Mathematics and Computing
University of Queensland
St. Lucia 4072
AUSTRALIA
(dmd@maths.uq.edu.au)

M. J. Grannell*
School of Mathematics and Statistics
The Open University
Walton Hall
Milton Keynes MK7 6AA
UNITED KINGDOM
(m.j.grannell@open.ac.uk)

Abstract
Denote by A^p_k the Latin square of order $n = p^k$ formed by the Cayley table of the additive group $(\mathbb{Z}_n^k, +)$, where p is an odd prime and k is a positive integer. It is shown that for each p there exists $Q > 0$ such that for all sufficiently large k, the number of transversals in A^p_k exceeds $(nQ)^{\frac{n}{p(p-1)}}$.

Running head: Transversals.
AMS classification: 05B15.
Keywords: Latin square; Transversal.

*Corresponding author
1 Introduction

Several recent papers have addressed the issue of bounds on the numbers of transversals in Latin squares. So, suppose that S is a Latin square. Denote by $T(S)$ the number of transversals in S, and put

$$T(n) = \max\{T(S) : S \text{ is a Latin square of order } n\}.$$

It was shown by McKay, McLeod and Wanless [4] that for $n \geq 5$, $15^{n/5} \leq T(n) \leq 6135n^2n!\sqrt{n}$.

The Cayley table of any finite group forms a Latin square, and such squares are called group-based. Let A_n denote the cyclic Latin square of order n, that is the square formed by the Cayley table of the cyclic group $(\mathbb{Z}_n, +)$. If n is even then $T(A_n) = 0$, but for odd n it was conjectured by Vardi [6] that there exist positive constants c and d such that $c^n n! \leq T(A_n) \leq d^n n!$. Subsequently Cavenagh and Wanless [1] proved that for all sufficiently large n, $T(A_n) > (3.246)^n$, and this appears to remain the best lower bound for any class of group-based Latin squares obtained to date.

More recently, Taranenko [5] proved that $T(n) \leq [(1 + o(1)) \frac{n}{e^{2}}]^n$, while Glebov and Luria [3] have shown that $T(n) \geq [(1 - o(1)) \frac{n}{e^{2}}]^n$. The latter result is based on a probabilistic argument employing random Latin squares. These more recent results lend credence to Vardi’s conjecture but do not address group-based squares directly.

In the current paper we take p to be an odd prime and k to be a positive integer. Then the Cayley table of the additive group $(\mathbb{Z}_p^k, +)$ forms a Latin square of order $n = p^k$ which we denote by A_{p^k}. We will assume that this square has its rows and columns labelled in the natural way by elements of \mathbb{Z}_p^k represented as k-vectors over \mathbb{Z}_p, and when $k = 1$ we write A_p rather than A_{p^1}. We prove that, for all sufficiently large k, A_{p^k} has more than $(nQ)^{\frac{n}{p^k-1}}$ transversals, where $Q > 0$ depends only on p and is independent of k.

Note added in proof: Since drafting our current paper, our attention has been drawn to the arXiv paper [2] which claims a proof of Vardi’s conjecture.

2 Results

We start with the observation that A_{p^k} has a transversal T formed from its leading diagonal. We will construct a large number of transversals by carrying out transversal trades on T. These trades are based on the square A_p and involve transversals within this square that do not contain the (row, column, entry) triple $(0,0,0)$. So let T^* denote the number of transversals of A_p that do not contain this triple. By transitivity, the number of transversals in A_{p^k} that contain the triple $(0,0,0)$ is $T(A_{p^k})/p^k$, so the number of transversals not containing this triple is $T(A_{p^k})(1 - \frac{1}{p^k})$. In particular, $T^* = T(A_p)(1 - \frac{1}{p})$, and note rather trivially that $T(A_p) \geq p$.

For \(k \geq 2 \), the square \(A_p^k \) can be partitioned into \(p^2 \) subarrays by writing the row labels, the column labels and the entries in the form \((z,i)\) where \(z \in \mathbb{Z}_p^{k-1} \) and \(i \in \mathbb{Z}_p \). This is shown schematically in Figure 1 with the row and column labels omitted.

\[
A_p^k = \begin{pmatrix}
(A_{p}^{k-1},0) & (A_{p}^{k-1},1) & \ldots & (A_{p}^{k-1},p-1) \\
(A_{p}^{k-1},1) & (A_{p}^{k-1},2) & \ldots & (A_{p}^{k-1},0) \\
\vdots & \vdots & \ddots & \vdots \\
(A_{p}^{k-1},p-1) & (A_{p}^{k-1},0) & \ldots & (A_{p}^{k-1},p-2)
\end{pmatrix}
\]

\[
= \begin{pmatrix}
A_{0,0} & A_{0,1} & \ldots & A_{0,p-1} \\
A_{1,0} & A_{1,1} & \ldots & A_{1,p-1} \\
\vdots & \vdots & \ddots & \vdots \\
A_{p-1,0} & A_{p-1,1} & \ldots & A_{p-1,p-1}
\end{pmatrix}
\]

Figure 1: Partitioning \(A_p^k \).

Taken without the row and column labels inherited from \(A_p^k \), the subarrays \(A_{i,j} \) and \(A_{i',j'} \) are identical when \(i + j = i' + j' \) in \(\mathbb{Z}_p \). However, we will associate each of these subarrays with their original row and column labels.

Our transversal trades will be based on copies of \(A_p^k \), each having precisely one entry from each \(A_{i,j} \). Specifically, one (row, column, entry) triple is selected from the leading diagonal of \(A_{0,0} \), say \(((a,0),(a,0),(2a,0))\), and one triple is selected from \(A_{0,1} \) having the same row entry, say \(((a,0),(b,1),(a+b,1))\). These two choices are sufficient to determine a copy of \(A_p^k \), denoted by \(A(a,b) \), as shown in Figure 2, which also shows the inherited row and column labels.

\[
\begin{pmatrix}
(a,0) & (b,1) & (2b-a,2) & \ldots & (2a-b,p-1) \\
(2a,0) & (a+b,1) & (2b,2) & \ldots & (3a-b,p-1) \\
(2a-b,1) & (2b-2,2) & (3b-a-3) & \ldots & (2a,0) \\
\vdots & \vdots & \vdots & \ddots & \vdots \\
(3a-b,p-1) & (2a,0) & (a+b,1) & \ldots & (4a-2b,p-2)
\end{pmatrix}
\]

Figure 2: The array \(A(a,b) \).

Note that the row and column labels of \(A(a,b) \), inherited from \(A_p^k \), have the form \((rb-(r-1)a,r)\) and the entries have the form \((rb-(r-2)a,r)\), both for \(r = 0,1,\ldots,p-1 \).

The leading diagonal of \(A(a,b) \) lies in the leading diagonal of \(A_p^k \) and therefore this diagonal of \(A(a,b) \) forms a part of the transversal \(T \). There are \(T^* \) transversals in \(A(a,b) \) that do not contain the triple \(((a,0),(a,0),(2a,0))\). If the diagonal transversal of \(A(a,b) \) in \(T \) is traded for any one of these \(T^* \) transversals, then a new transversal in \(A_p^k \) is obtained that does not contain the triple \(((a,0),(a,0),(2a,0))\). Hence, for each given \(a \in \mathbb{Z}_p^{k-1} \), \(T^* \) distinct transversals of \(A_p^k \) may be obtained for each \(b \in \mathbb{Z}_p^{k-1} \). Furthermore, for two different
values $b, b' \in \mathbb{Z}_p^{k-1}$, the arrays $A(a, b)$ and $A(a, b')$ only intersect in the cell $((0, a), (0, 0))$, and so by varying b, a total of $p^{k-1}T^*$ distinct transversals of A^k_p may be obtained that do not contain the triple $((a, 0), (0, a), (2a, 0))$.

In principle, we wish to carry out these trades sequentially for as many values of a as is possible. The obstacle is that having carried out a trade using $A(a, b)$, and having chosen $a' \neq a$, the choice of b' is constrained by the need to ensure that $A(a', b')$ avoids the rows, columns and entries of $A(a, b)$. So suppose that trades have already been made using $c-1$ choices of (a, b) and that a c^{th} choice is to be made. If (a, b) defines one of the previous choices and (a', b') is the proposed c^{th} choice, with $a' \neq a$, then to ensure that rows and columns do not clash it is necessary and sufficient that $(r'b' - (r' - 1)a', r')$ and $(rb - (r - 1)a, r)$ are unequal for all $r, r' = 0, 1, \ldots, p - 1$. But these two quantities can only be equal if $r' = r$, and then only if $r'b' - (r - 1)a' = rb - (r - 1)a$. Hence the rows and columns of $A(a, b)$ and $A(a', b')$ are distinct provided that $b' \neq b + \frac{b'}{a'}(a' - a)$ for $r = 1, 2, \ldots, p - 1$. As r varies from 1 to $p - 1$, $\frac{b'}{a'}$ takes all values in \mathbb{Z}_p, apart from the value 1. Hence in selecting b' it is necessary to avoid the $p - 1$ values $b + \rho(a' - a)$ for $\rho = 0, 2, 3, \ldots, p - 1$ for each previous choice of (a, b).

By arguing in a similar fashion regarding entries, we obtain exactly the same condition to avoid entry clashes between $A(a, b)$ and $A(a', b')$. It follows that at the c^{th} choice, there are at least $p^{k-1} - (c - 1)(p - 1)$ choices for b' (rather more if there is multiple counting of excluded rows, columns and entries).

Now put $C = \left[\frac{k-1}{p-1} \right] = \frac{k-1}{p-1}$ and let $c \leq C$ be a positive integer. Then it is possible to choose c subarrays of the form $A(a, b)$ that are pairwise disjoint as regards rows, columns and entries. Suppose that the subarrays chosen are $A(a_i, b_i)$ for $i = 1, 2, \ldots, c$. Then the number of transversals in A^k_p that do not contain any of the triples $((a_i, 0), (a_i, 0), (2a_i, 0))$ for $i = 1, 2, \ldots, c$, and which can be constructed by trades on these arrays is at least

$$(T^*)^c(p^{k-1})(p^{k-1} - (p - 1))(p^{k-1} - 2(p - 1)) \ldots (p^{k-1} - (c - 1)(p - 1))$$

$$> (T^*(p - 1))^c \frac{c!}{(C-c)!}$$

To see that these transversals are all distinct, consider any one of them, say T^*. Each a_i for $i = 1, 2, \ldots, c$ can be identified from those diagonal entries of $A_{0,0}$ that do not form part of T^*. Having identified an a_i, there will be a triple of T^* of the form $((a_i, 0), (rb_i - (r - 1)a_i, r), (rb_i - (r - 2)a_i, r))$ where $r \neq 0$. From this triple, r can be identified and hence also b_i. Thus the subarrays $A(a_i, b_i)$ can be recovered from T^*, and the distinctness of the transversals follows. In fact any distinct choices of up to C values for a_i will yield distinct transversals. Hence we obtain the following theorem.

Theorem 2.1 If p is an odd prime and k is a positive integer, then the number of transversals in the Latin square A^k_p, denoted by $T(A^k_p)$, satisfies the inequality

$$T(A^k_p) > \sum_{c=0}^{C} \binom{p^{k-1}}{c} (T^*(p - 1))^c \frac{C!}{(C-c)!}$$

(1)
where \(C = \frac{p^{k-1}}{p-1} \) and \(T^* = T(A_p)(1 - \frac{1}{p}) \).

The final term in the summation (1) gives

\[
T(A_k^k) > \binom{p^k-1}{C} (T^*(p-1))^C C!
\]

\[
= \frac{(p^k-1)!}{(p^k-1-C)!} (T^*(p-1))^C
\]

Applying Stirling’s Theorem in the form \(r! = r^{r+\frac{1}{2}} e^{-r} \sqrt{2\pi} e^{o(1)} \) (as \(r \to \infty \)) to this expression for large \(k \) gives

\[
T(A_k^k) > \left[p^{k-1} T^*(p-1) e^{-1} \right]^C \cdot \left(1 - \frac{C}{p^k-1} \right)^{-(p^k-1-C+\frac{1}{2})} \cdot e^{o(1)}. \tag{2}
\]

For \(p \geq 3 \) and \(k \geq 2 \) we have \((1 - \frac{C}{p^k-1}) \leq (1 - \frac{1}{p})\) and \(p^{k-1} - C + \frac{1}{2} > (p-2)C \). Hence

\[
T(A_k^k) > \left[p^k \left(\frac{p}{p-1} \right)^{p-4} T(A_p)e^{-1} \right]^C \cdot e^{o(1)}.
\]

The square \(A_k^k \) has order \(n = p^k \) and \(C = \frac{n}{p(p-1)} = \frac{1}{p-1} \), so taking \(Q \) to be slightly less than \(\left(\frac{p}{p-1} \right)^{p-4} T(A_p)e^{-1} \) gives the following corollary.

Corollary 2.1 If \(p \) is an odd prime, there exists \(Q > 0 \) such that for all sufficiently large \(k \),

\[
T(A_k^k) > (nQ)^{\frac{n}{p^k-1}},
\]

where \(n = p^k \).

In fact if \(p \) is also sufficiently large, then using the result of [1], we may take \(Q = (3.246)^p \). However, the bound is clearly best when \(p \) is small. In the case \(p = 3 \), inequality (2) simplifies as follows. Firstly \(T(A_3) = 3 \), so \(T^* = 2 \). Also \(C = (3^{k-1} - 1)/2 \) and \(3^{k-1} - C + \frac{1}{2} = 3^{k-1}/2 + 1 \). Hence

\[
T(A_3^k) > (4 \cdot 3^{k-1} \cdot e^{-1})^C \cdot \left(\frac{1}{2} + \frac{1}{3^{k-1}} \right)^{-(\frac{3^k-1}{2})^C} \cdot e^{o(1)}
\]

\[
= \left(\frac{4n}{3e} \right)^C \cdot 2^{C+\frac{1}{2}} \cdot \left(1 + \frac{1}{3^{k-1}} \right)^{-(\frac{3^k-1}{2})^C} \cdot e^{o(1)}
\]

\[
= \left(\frac{8n}{3e} \right)^C \cdot 2^{\sqrt{2}} \cdot \frac{1}{\sqrt{e}} \cdot e^{o(1)},
\]

since \((1 + \frac{1}{r})^{-r} \to e^{-1} \) as \(r \to \infty \). Noting that \(8/3e > 0.981 \) and that \(C = \frac{n}{6} - \frac{1}{7} \), we obtain
Corollary 2.2 For all sufficiently large \(k \), \(T(A_{3^k}^k) > (0.981n)^{\frac{k}{2}} \), where \(n = 3^k \).

Finally we remark that, by transitivity, the number of orthogonal mates of the Latin square \(A_{3^k}^k \) is \(T(A_{3^k}^k)/n \) (where \(n = p^k \)) and so Theorem 2.1 and its corollaries also provide lower bounds for this quantity.

References

